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1. Introduction

Let A and B be bounded linear operators on an infinite dimensional
Hilbert space H with the kernel condition

(1. 1) ker A\subset kerB.

Then we define a quotient [B/A] as the linear operator: Ax-arrow Bx, x\in H.
In [5] we showed that both the adjoint and the closure of [B/A] are also
represented as reasonable quotients if they exist. Let P=P_{A}\cdot,B,\cdot be the
orthogonal projection onto the closure of the set B^{*(-1\rangle}(A^{*}H):=\{x;B^{*}x\in

A^{*}H\} , and let P^{\perp}=1-P. Then, applying Jorgensen decomposition [6]
(\^Ota [10]) to [B/A] , we obtain the sum decomposition [5] [B/A]=
[PB/A]+[P^{\perp}B/A] of [B/A] into the closable part [PB/A] and the sin-
gular part [P^{\perp}B/A] . Extending this notion, we call the decomposition

[B/A]=[QB/A]+[Q^{\perp}B/A]

J-decomposition of [B/A] by Q, if Q is an orthogonal projection such that
[QB/A] is closable and [Q^{\perp}B/A] is singular.

Another decomposition is Lebesgue-type (or shortly L-) decomposition
of (bounded) positive operators, which was introduced by Ando [2] ; if S
is a positive operator then every positive operator T is decomposed into the
sum T=U+V of two positive operators U and V such that U is S-
absolutely continuous and V is S-singular. It was proved in [2] that a
positive operator T is S-absolutely continuous if and only if T^{1/2(-1)}(S^{1/2}H)

is dense in H. The latter condition is, as a matter of fact, just what guaran-
tees closability of [T^{1/2}/S^{1/2}] when ker S\subset kerT[5] , [9]. This suggests
close connections between J-decomposition and L-decomposition.

In this paper we first consider J-decomposition of quotients and give
some equivalent conditions for uniqueness of this decomposition. Next we
show that every J-decomposition of a quotient [B/A] induces an L-
decomposition of B^{*}B with respect to A^{*}A and conversely that every
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L-decomposition of T with respect to S, under the condition ker S\subset kerT .
is induced from a J-decomposition of [B/A] such that A^{*}A=S and B^{*}B=
T_{r}

To avoid triviality we assume that the Hilbert space H has infinite
dimension. An operator is assumed to be bounded linear, defined on H ,
unless specially stated otherwise.

2. J-decomposition of quotients

For given operators A and B , put

(2. 1) R=R_{A,B}=(A^{*}A+B^{*}B)^{1/2} .

Then as a basic fact we have RH=A^{*}H+B^{*}H [4, Theorem 2. 2]. If we
consider the equations

(2.2) XR=A and YR=B ,

then, since A^{*}H\subset RH and B^{*}H\subset RH we can fined operators X and Y
satisfying (2. 2) [4, Theorem 2. 1]. Furthermore, with the restrictions ker
X\supset kerR and ker Y\supset kerR each of the equations has a unique solution, so
that we then denote by X=A_{t}(=A_{B,l}) and Y=B_{t}(=B_{A,l})[5] . Following
[4] we now define
(2. 3) A^{*}A : B^{*}B=A^{*}A_{t}B_{t}^{*}B ,

and call it the parallel sum of A^{*}A and B^{*}B. (If A^{*}A=C^{*}C for an operator
C , then we can see A^{*}A_{t}=C^{*}C_{t} , so that A^{*}A : B^{*}B is really well-defined
by (2. 3).) In [5] we proved the following facts which are useful for our
discussions.

LEMMA 2. 1 (cf. [5, Lemma 2. 3]). Let A, B be operators on H, and let
R, A_{t} and B_{t} are operators defined as before. Then
(1) A_{t}^{*}A_{t}+B_{t}^{*}B_{t}=P_{R}, the orthogonal projection onto the closure (RH)^{-}

of RH.
(2) A^{*}A : B^{*}B=B^{*}B : A^{*}A=A^{*}(1-A_{t}A_{t}^{*})A=B^{*}(1-B_{t}B_{t}^{*})B.
(3) A^{*}H\cap B^{*}H=(A^{*}A : B^{*}B)^{1/2}H.
(4) B^{*t-1)}(A^{*}H)=(1-B_{t}B_{t}^{*})^{1/2}H.

Denote by P_{A}\cdot,B,\cdot (or P (A^{*} , B^{*} )) the orthogonal projection onto
\{B^{*(-1)}(A^{*}H)\}- T^{(}hen we have

LEMMA 2. 2 Let V_{t} be the partial isometry obtained from the polar
decomposition A_{t}=V_{t}(A_{t}^{*}A_{t})^{1/2} of A_{t} . Then
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(1) P_{A^{*},B}\cdot=1-B_{t}B_{l}^{*}+B_{t}V_{t}^{*}V_{t}B_{l}^{*} .
(2) P_{AB}.,\cdot B=B_{t}V_{t}^{*}V_{t}R .

PROOF. From Lemma 2. 1 (1) we see that A_{t}^{*}A_{t} and B_{t}^{*}B_{t} commute.
Hence we have easily

(2.4) V_{tttt}^{*}VB^{*}B=B_{t}^{*}B_{t}V_{t}^{*}V_{l} .

To prove (1), let P=P_{A}\cdot,B,\cdot and denote by Q the right hand side of (1).

Then, using Lemma 2. 1 (1) again and (2. 4), we can see that Q^{2}=Q , that
is, Q is an orthogonal projection. Hence, since 1-B_{t}B_{t}^{*}\leqq Q (or Q-(1-
B_{t}B_{t}^{*}) is positive), we have PHdQH. For the converse inclusion, first
note that B_{t}^{*}(1-B_{t}B_{t}^{*})=(P_{R}-B_{t}^{*}B_{t})B_{t}^{*}=A_{t}^{*}A_{t}B_{l}^{*} , and that ker A_{t}^{*}A_{t}B_{t}^{*}=

ker V_{t}B_{l}^{*} . Hence we have

(2.5) ker (1-B_{t}B_{t}^{*})\subset ker V_{t}B_{l}^{*} .

Hence ker (1-B_{t}B_{t}^{*})\subset ker Q, which implies PHZ) QH. Now the identity
(2) can be obtained from (1), (2. 4) and Lemma 2. 1 (1).

Let [B/A] be a quotient of operators (with the kernel condition
(1. 1) ) . If AH is dense in H , then the adjoint [B/A]^{*} of [B/A] exists,
and it is represented [5, Theorem 4. 1] as
(2.6) [B/A]^{*}=[V_{t}B_{l}^{*}/(1-B_{t}B_{t}^{*})^{1/2}] .

In [5], assuming that AH is dense in H , we defined [B/A] to be closable if
the domain (1-B_{t}B_{t}^{*})^{1/2}H of [B/A]^{*} is dense in H. Here we, however,
want to define [B/A] to be closable (cf. [7, p. 165]) if

(2.7) Ax_{n}arrow 0 and Bx_{n}arrow y for a sequence \{x_{n}\} in H imply y=0 .

Consequently, we do not assume the denseness of AH in H for
closability of [B/A] . Denote by [B/A]- the closure of [B/A] when it
exists. Then we have

LEMMA 2. 3 (cf. [5, Theorem 4. 2], [8, Lemma 3]). Let [B/A] be a

quotient. Then the following conditions are equivalent;

(1) [B/A] is closable, (i.e., (2.7) is assumed.)

(2) ker ALaker B_{t} .
(3) (1-B_{t}B_{t}^{*})^{1/2}H(=B^{*t-1)}(A^{*}H)) is dense in H.

If one of (1)-(3) holds, then [B/A]^{-}=[B_{t}/A_{t}] .

PROOF. (1)\Rightarrow(2) ; Let A_{t}u=0 , u\in H. Then, since A_{t} is defined as a
natural extension of the mapping Rx^{-\nu}Ax, x\in H, we can find a sequence \{x_{n}\}
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such that Rx_{n}arrow u and Ax_{n}arrow A_{t}u=0 . Hence Bx_{n}=B_{t}Rx_{n}arrow B_{t}u, which implies
B_{t}u=0 .

(2)\Rightarrow(3) : Let (1-B_{t}B_{t}^{*})u=0 . Then we have to show that u=0 . By
(2. 5) we see that B_{t}^{*}u\in ker V_{t}=ker A_{t} . Hence B_{t}B_{t}^{*}=0 , so that u=(1-
B_{t}B_{t}^{*})u+B_{t}B_{t}^{*}u=0 .

(3)\Rightarrow(1) ; Let Ax_{n}arrow 0 and Bx_{n}arrow y . Then \{Rx_{n}\} is convergent. Put z=
\lim_{narrow\infty}Rx_{n} . Then A_{t}z= \lim_{narrow\infty}A_{t}Rx_{n}=\lim_{narrow\infty}An_{n}=0 . Hence (1-B_{t}B_{t}^{*})B_{t}z=B_{t}(P_{R}-

B_{t}^{*}B_{t})z=B_{t}A_{t}^{*}A_{t}z=0 . Since ker (1-B_{t}B_{t}^{*})=\{0\} , we have B_{t}z=0 . Hence
y= \lim_{narrow\infty}Bx_{n}=\lim_{narrow\infty}B_{t}Rx_{n}=B_{t}z=0 .

For the closure [B/A]^{-} we first note that [B_{t}/A_{t}] is an extension of
[B/A] , because A=A_{t}R and B=B_{t}R . Since A_{t}^{*}A_{t}+B_{t}^{*}B_{t}=P_{R} (Lemma 2. 1
(1) ) , we see that A^{*}{}_{\iota}H+B^{*}{}_{l}H is closed in H. Hence from [8, Theorem 1]
(or by a direct computation) we can show that [B_{t}/A_{t}] is closed. Now,
since AH is dense in A{}_{\iota}H we can conclude that [B/A]^{-}=[B_{t}/A_{t}] .

Among general (possibly unbounded) operators a singular operator L
is defined ([6] and [10]) as one which has dense domain D(L) in H and
satisfies the condition L(D(L))\subset D(L^{*})^{\perp} , that is, the range of L is orth-
ogonal to the domain of L^{*} . Since the domain of the adjoint of a quotient
[B/A] is (1-B_{t}B*t)^{1/2}H , we naturally assume that a singular quotient
[B/A] satisfies the condition BH\subset\{(1-B_{t}B_{t}^{*})H\}^{\perp} , or equivalently

(2.8) BH\subset ker P_{A}\cdot,B,\cdot .

We here adopt (2. 8) as the definition of [B/A] to be singular, and we do
not request the denseness of AH in H (cf. [5]). Now on singularity of
quotients we can show the next equivalences, the proof of which is almost
similar to that in [5].

LEMMA 2. 4 [5, Theorem 5. 5]. Let [B/A] be a quotient. Then the
following conditions are equivalent:

(1) [B/A] is singular, ( i. e. , (2. 8) is assumed.)
(2) A_{t}B_{t}^{*}=0 .
(3) A^{*}A : B^{*}B=0 .
(4) A^{*}H\cap B^{*}H=\{0\} .

Recall that for a quotient [B/A] and an orthogonal projection Q the
decomposition

(2.9) [B/A]=[QB/A]+[Q^{\perp}B/A]

is a J -decomposition by Q if [QB/A] is closable and [Q^{\perp}B/A] is singular.
Easily we see that (QB)^{*(-1)}(A^{*}B)=Q^{(-1)}(B^{*(-1)}(A^{*}H)) , and that the rela-
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tion (Q^{\perp}B)^{*}H\cap A^{*}H=\{0\} is equivalent to Q^{\perp}H\cap B^{*t-1)}(A^{*}H)\subset kerB^{*} .

Hence from Lemmas 2. 3 and 2. 4 we have

THEOREM 2. 5. Let [B/A] be a quotient, and let Q be an orthogonal
projection. Then [B/A]=[QB/A]+[Q^{\perp}B/A] is a J decomposition if and
only if the following two conditions hold.

(1) Q^{(-1)}(B^{*(-1)}(A^{*}H)) is dense in H.
(2) Q^{\perp}H\cap B^{*t-1)}(A^{*}H)\subset kerB^{*} .

It is easy to see that the orthogonal projection P=P_{AB^{r}}., satisfies the
above conditions (1) and (2). Hence

(2. 10) [B/A]=[PB/A]+[P^{\perp}B/A]

is really a J-decomposition of [B/A] [ 5 , Theorem 5. 4].

COROLLARY 2. 6. Let Q be an orthogonal projection such that [B/A]=
[QB/A]+[Q^{\perp}B/A] is a J-decomposition. Then Q\leqq P_{AB}.,* .

PROOF. Note that Q^{(-1)}(B^{*(-1)}(A^{*}H))\subset Q^{(-1)}(PH)(P=P_{A}\cdot,B,\cdot) , and
that Q^{(-1)}(PH) is closed. Hence, by the theorem, Q^{(-1)}(PH)=H , so that
QH\subset PH or Q\leqq P.

On the closure [PB/A]^{-} of the closable part [PB/A] of [B/A] in the
decomposition (2. 10), we have

PROPOSITION 2. 7. [PB/A]^{-}=[B_{t}V_{t}^{*}V_{t}/A_{t}] .

PROOF. From Lemma 2. 2 (2) we see that [B_{t}V_{t}^{*}V_{l}/A_{t}] is an exten-
sion of [PB/A]=[B_{t}V_{t}^{*}V_{t}R/A_{t}R] . Since A_{t}^{*}A_{t}+(B_{t}V_{t}^{*}V_{t})^{*}(B_{t}V_{t}^{*}V_{t})=

V_{t}^{*}V_{l} is an orthogonal projection, we can see that [B_{t}V_{t}^{*}V_{l}/A_{t}] is closed
(as in the proof of Lemma 2. 3). Now since AH is dense in A{}_{l}H . we have
the desired identity.

A quotient [B/A] is bounded as an operator on AH if and only if there
exists some \alpha>0 such that ||Bx||\leqq\alpha||Ax|| , x\in H. An equivalent condition for
the boundedness of [B/A] is the relation B^{*}H\subset A^{*}H(e.g . by [4, Then
rem 2. 1]). The following theorem characterizes a quotient whose closable
part of the decomposition (2. 10) is bounded.

THEOREM 2. 8. The following conditions are equivalent;

(1) [P_{AB^{*}}.,B/A] is bounded on AH.
(2) A_{t} has closed range.
(3) B^{*(-1)}(A^{*}H) is closed in H.
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PROOF. (1)\Rightarrow(2)j Write P=P_{A}\cdot ,_{B}*, briefiy. Since (1) is equivalent to
B^{*}PH\subset A^{*}H , we have B^{*}P=A^{*}X for some operator X. Hence by
Lemma 2. 2 (2) we have RV_{t}^{*}V_{t}B_{t}^{*}=RA_{t}^{*}X , or V_{t}^{*}V_{t}B_{t}^{*}=A_{t}^{*}X. Hence
V_{t}^{*}V_{t}=V*\iota V_{t}(A*A\iota\iota+B*\iota B_{t})V*\iota V_{\iota t\iota\iota}=A*A+A*XX^{*}A_{t}\leqq(1+||x||^{2})A*A_{l}\iota .
This implies that V^{*}{}_{\iota}H\subset A^{*}{}_{\iota}H . so that A_{t}^{*} and hence also A_{t} has closed
range.

(2)\Rightarrow(3) ; Note that B^{*(-1)}(A^{*}H)=B_{t}^{*(-1)}(A^{*}{}_{l}H) , and that the inverse
image B_{t}^{*(-1)}(A^{*}{}_{l}H) of the closed set A^{*}{}_{l}H is closed.

(3)\Rightarrow(1),\cdot If B^{*t-1)}(A^{*}H) is closed, then PH=B^{*(-1)}(A^{*}H) , so that
B^{*}PH\subset A^{*}H. This implies boundedness of [PB/A] .

On uniqueness of the J -decomposition, we have

THEOREM 2. 9. A quotient [B/A] has the unique J-decomposition
(2. 10) if and only if one of the conditions (1)-(3) in Theorem 2. 8 holds.

PROOF. Suppose that (1) of Theorem 2. 8 holds, or equivalently, that
B^{*}PH\subset A^{*}H(P=P_{AB}.,\cdot) . Let Q be an orthogonal projection which yields
a J-decomposition (2. 8). Then, by Corollary 2. 6 P and Q commute, so
that B^{*}Q^{\perp}PH=B^{*}PQ^{\perp}H\subset A^{*}H. Since [Q^{\perp}B/A] is singular, we have
A^{*}H\cap B^{*}Q^{\perp}H=\{0\} from Lemma 2. 4. Hence B^{*}Q^{\perp}PH=\{0\} or B^{*}Q^{\perp}P=

0 , which implies QB=PB , uniqueness of J-decomposition of [B/A] .
To see the converse assertion, suppose that B^{*}PH\not\subset A^{*}H. Then there

is a vector u\in H such that B^{*}Pu\not\in A^{*}H. We can assume that u\in PH and
||u||=1 . Put Q=P(1-u\otimes u)(=(1-u\otimes u)P) , where u\otimes u is an operator
defined by (u\otimes u)x=\langle x, u\rangle u, x\in H. ( \langle\cdot , \cdot\rangle is the inner product of H. )

Then clearly Q is an orthogonal projection. Now we want to show that this
Q yields a J-decomposition of [B/A] which is deferent from (2. {0}. It
suffices to prove that

(i) OB\neq PB , and
(ii) [QB/A] is closable and [Q^{\perp}B/A] is singular.

For ( i ) , since B^{*}u\not\in A^{*}H , we see that B^{*}u\neq 0 , so that PB - QB=
(u\otimes u)B=u\otimes B^{*}u\neq 0 . For (ii), first note that [QB/A]=[QPB/A] has
an extension [QB_{t}V_{t}^{*}V_{t}/A_{t}](PB_{t}=B_{t}V_{t}^{*}V_{t}) . By a simple computation we
can see that A_{t}^{*}A_{t}+(QB_{t}V_{t}^{*}V_{t})^{*}(QB_{t}V_{t}^{*}V_{t})=V_{t}^{*}V_{t}-B_{t}^{*}u\otimes B_{t}^{*}u is an opera-
tor with closed range. Hence [QB_{t}V_{t}^{*}V_{t}/A_{t}] is a closed extension of
[QB/A] . Next in order to see that [Q^{\perp}B/A] is singular, we want to show
that A^{*}H\cap B^{*}Q^{\perp}H=\{0\} . Let v\in A^{*}H\cap B^{*}Q^{\perp}H. Then v=A^{*}x=B^{*}Q^{\perp}y

for some x, y\in H. Hence R(\dot{A}_{t}^{*}x-B_{t}^{*}Q^{\perp}y)=0 , or equivalently, A_{t}^{*}x=

B_{t}^{*}Q^{\perp}y. Since B_{t}^{*}Q^{\perp}=B_{t}^{*}(P^{\perp}+u\otimes u)=(1-V_{t}^{*}V_{t})B_{t}^{*}+B_{t}^{*}u\otimes u , we have
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A_{t}^{*}x=(1-V_{t}^{*}V_{t})B_{t}^{*}y+\langle y, u\rangle B_{t}^{*}u .

Multiplying this identity by RV_{t}^{*}V_{l} from the left, we have RA_{t}^{*}x=\langle y, u\rangle

RV_{t}^{*}\cross V_{t}B_{t}^{*}u , that is, A^{*}x=\langle y, u\rangle B^{*}Pu . Hence, from the assumption
B^{*}Pu\not\in A^{*}H we conclude that A^{*}x=0 , or v=0.

3. Relations between J-decompositions and L-decompositions

We begin with the definition of L-decomposition of positive operators.
Let S be a positive operator. Then a positive operator U is said to be
S-absolutely continuous if there exists a sequence \{U_{n}\} of positive operators
such that U_{n}\leqq U_{n+1} , U_{n}\leqq\alpha_{n}S_{n} for some \alpha_{n}>0 (n=1,2, \ldots) and \lim_{narrow\infty}U_{n}=U

(strong limit). A positive operator V is S-singular if any operator W
satisfying 0\leqq W\leqq V, W\leqq S is identical to 0. Let T be a positive operator,
and let

(3. 1) T=U+V

for two positive operators U and V with the conditions defined as above.
Then we call (3. 1) an L-decomposition of T with respect to S [2].

Recall that the parallel sum S : T of two positive operators S and T is
defined (see(2. 3)) by S : T=S^{1/2}(S^{1/2})_{t}(T^{1/2})_{t}^{*}T^{1/2} . Easily we see that
S:T is bounded by S and T (e. g . by Lemma 2. 1 (2)). Furthermore, it is
monotone [4, Theorem 4. 4], that is, S : T_{1}\leqq S : T_{2} if 0\leqq T_{1}\leqq T_{2} . Using
the parallel sum, Ando [2] introduced an S-absolutely continuous operator

[S]T= \lim_{narrow\infty}(nS) : T,

and proved that

(3.2) T=[S]T+(T-[S]T)
is an L-decomposition of T with respect to S. (In defining the operator
[S]T . Ando, however, adopted a different but equivalent definition [1,
Theorem 9] of the parallel sum; \langle(S:T)x, x\rangle=\inf\{\langle Sy, y\rangle+\langle Tz, z\rangle,\cdot y+

z=x\}.)

Now, as a relation combining the J decomposition (2. 10) and the L-
decomposition (3. 2), we have the following result which was essentially
obtained by Kosaki [9]. For completeness we shall prove it.

THEOREM 3. 1 (cf. [9, Theorem 6]). Let A, B be operators, and let
S=A^{*}A and T=B^{*}B. Then [S]T=B^{*}P_{AB}.,\cdot B.

PROOF. Let R_{n}=R_{nA,B} (cf. (2. 1)), and let X=A_{n}=(nA)_{B,l}, Y=B_{n}=

B_{nA,l} be the unique solutions of the equations XR_{n}=nA , ker X\supset kerR_{n} and
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YR_{n}=B , ker Y\supset ker R_{n} , respectively (cf. (2. 2)). Then we easily have the
following facts.

(1) ||A_{n}||\leqq 1 , ||B_{n}||\leqq 1 .
(2) (n^{2}S) : T=B^{*}(1-B_{n}B_{n}^{*})B. (By Lemma 2. 1 (2).)
(3) (1-B_{n}B_{n}^{*})^{1/2}H=B^{*(-1)}(nA^{*}H)=B^{*(-1)}(A^{*}H) . (By Lemma 4. 1

(4).)
(4) 1-B_{n}B_{n}^{*}\leqq P_{nAB}..\cdot=P_{A}\cdot , B.. (By Lemma 2. 2 (1).)

We want to add more two facts.

(5) \{1-B_{n}B_{n}^{*}\} is an increasing squence.
(6) (1-B_{t}B_{t}^{*})B_{n}B_{n}^{*}=(1/n)B_{t}A_{t}^{*}A_{n}B_{n}^{*} .
For (5), since R_{m}^{2}\leqq R_{n}^{2} for m\leqq n , we have the unique operator Z=Z_{mn} such
that R_{m}=R_{n}Z=Z^{*}R_{n} , ker Z^{*}\supset ker R_{n} . Since B_{n}R_{n}=B=B_{m}R_{m}=B_{m}Z^{*}R_{n} ,
we can see that B_{n}=B_{m}Z^{*} . Hence, since ||Z||\leqq 1 , we have B_{n}B_{n}^{*}=B_{m}Z^{*}\cross

ZB_{m}^{*}\leqq B_{m}B_{m}^{*} , which implies (5).

For (6), we can first obtain A_{1}Z_{1n}^{*}=(1/n)A_{n} and B_{1}Z_{1n}^{*}=B_{n} by a similar
argument to that used above (to get B_{n}=B_{m}Z^{*}). Note that A_{1}=A_{t} and B_{1}=

B_{t} . Hence, from Lemma 2. 1 (2), we have

(1-B_{t}B_{t}^{*})B_{n}=(1-B_{t}B_{t}^{*})B_{t}Z_{1n}^{*}=B_{t}(P_{R}-B_{t}^{*}B_{t})Z_{1n}^{*}

=B_{t}A_{t}^{*}A_{t}Z_{1n}^{*}=(1/n)B_{t}A_{t}^{*}A_{n} .
We now get (6) immediately.

To show the desired identity [S]T=B^{*}PB , where P=P_{AB}.,\cdot , let Q=
\lim_{narrow\infty}(1-B_{n}B_{n}^{*}) . Then, by (2), what we have to do is to show Q=P. Let-
ting narrow\infty in (6), we obtain (1-B_{t}B_{t}^{*})(1-Q)=0 . Hence we have easily
P(1-Q)=0, or P=PQ. From (4) we can also have PQ=Q, which com-
pletes the proof.

From the fact ker B^{*}\subset PH , we can see that P=1 is equivalent to PB=
B. Between closability of quotients and absolute continuity of positive
operators, we have

COROLLARY 3. 2 (cf. [2, Theorem 5], [9, Lemma 3]). Let [B/A] be
a quotient. Then the following conditions are equivalent:

(1) [B/A] is closable.
(2) P_{AB^{*}}.=1’ .
(3) B^{*}B is A^{*}A -absolutely continuous.

PROOF. (1)\Leftrightarrow(2) ; Clear by Lemma 2. 3.
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(2)\Rightarrow(3) ; From (2) we have [A^{*}A](B^{*}B)=B^{*}B , which implies (3).
(3)\Rightarrow(1) ; If (3) is assumed, then there is a sequence \{T_{n}\} of positive opera-
tors such that T_{n}^{2}\leqq T_{n+1}^{2} , T_{n}^{2}\leqq\alpha_{n}A^{*}A for some \alpha_{n}>0 and \lim_{narrow\infty}T_{n}^{2}=B^{*}B.

Then, since T_{n}H\subset A^{*}H , we see that T_{n}^{t-1)}(A^{*}H)=H. Hence P_{AT_{n}}.,=1 , so
that [A^{*}A]T_{n}^{2}=T_{n}^{2} . Hence [A^{*}A](B^{*}B)\geqq[A^{*}A]T_{n}^{2}=T_{n} . Taking the
limit, we have [A^{*}A](B^{*}B)\geqq B^{*}B , or equivalently, [A^{*}A](B^{*}B)=B^{*}B.
From this identity, we can easily obtain P_{AB}..\cdot B=B , which implies (2).

For the singularity of quotients and positive operators, we have

COROLLARY 3. 3 (cf. [2, Corollary 3]). Let [B/A] be a quotient.
Then the following conditions are equivalent;

(1) [B/A] is singular.
(2) P_{AB}.B=0’\cdot .
(3) B^{*}B is A^{*}A singular.

PROOF. The equivalence (1)\supset(2) is clear by the definition (2. 8).

By Theorem 3. 1 the condition (2) is equivalent to the identity

(2’)[A^{*}A](B^{*}B)=0 .

From the definitions of [A^{*}A](B^{*}B) and A^{*}A -singularity, we can see the
equivalences (2’)=(n^{2}A^{*}A) : B^{*}B=0(n=1,2,\ldots)\Leftrightarrow(3) .

Let [B/A]=[QB/A]+[Q^{\perp}B/A] be a J-decomposition of [B/A] by
an orthogonal projection Q. Then by Corollaries 3. 2 and 3. 3 we see that
B^{*}B=B^{*}QB+B^{*}Q^{\perp}B is an L-decomposition of B^{*}B with respect to A^{*}A .
Hence every J-decomposition of [B/A] induces an L decomposition of B^{*}B

with respect to A^{*}A . As the converse to this fact we have

THEOREM 3. 4. Let S and T be positive operators with ker S\subset kerT,

and let T=U+V be an L-decomposition of T such that U and V are
S-absolutely continuous and S-singular positive opeators, respectively. Then
there exist an operator B and an orthogonal projection Q such that U=B^{*}QB

and V=B^{*}Q^{\perp}B. Hence, if A is an operator with A^{*}A=S, then [B/A]=
[QB/A]+[Q^{\perp}B/A] is a J-decomposition of [B/A] by Q, which induces the
given L decomposition of T.

PROOF. Since the dimension of H is infinite, we can find mutually
orthogonal closed linear subspaces M and N in H such that dim M=\dim

(UH)^{-} and dim N=\dim(VH)^{-} Then there exist partial isometries X
and Y such that
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(3.3) XX^{*}=P_{U}, YY^{*}=P_{V}, XY^{*}=0 .

Here P_{U} and P_{V} are the orthogonal projections onto (UH)^{-} and (VH)^{-}-

respectively. Put B=X^{*}U^{1/2}+Y^{*}V^{1/2} and Q=X^{*}X. Then we can obtain
all that we desire.

THEOREM 3. 5. If we add the assumption U^{1/2}H\cap V^{1/2}H=\{0\} to Then-
rem3.4 , then we have a J-decomposition of [T^{1/2}/S^{1/2}] by some orthogonal
projection Q which induces the given L-decomposition T=U+V.

PROOF. Let X and Y be, respectively, the unique solutions of the
equations XT^{1/2}=U^{1/2} and YT^{1/2}=V^{1/2} such that ker X\subset kerT and ker Y
\subset kerT. Then we can see that X^{*}X+Y^{*}Y=P_{T} , and that T^{1/2}=X^{*}U^{1/2}+

Y^{*}V^{1/2} or U^{1/2}=XT^{1/2}=XX^{*}U^{1/2}+XY^{*}V^{1/2} . Hence (P_{U}-XX^{*})U^{1/2}=

XY^{*}V^{1/2} . Taking the adjoints, we have U^{1/2}(P_{U}-XX^{*})=V^{1/2}YX^{*} .
Hence by the assumption U^{1/2}H\cap V^{1/2}H=\{0\} , we have P_{U}-XX^{*}=YX^{*}=0 .
Similarly we can obtain P_{V}-YY^{*}=0 . Hence we have (3. 3) for those X
and Y. Now, letting B=T^{1/2} (A=S^{1/2} and Q=X^{*}X ), we obtain the desired
J-decomposition of [T^{1/2}/S^{1/2}] .

On uniqueness of L- and J-decompositions we have

THEOREM 3. 6. Let S and T be positive operators with ker S\subset kerT.
Then T has a unique L-decomposition with respect to S if and only if
[T^{1/2}/S^{1/2}] has a unique J-decomposition.

PROOF. Suppose that T has a unique L-decomposition with respect to
S, and let [T^{1/2}/S^{1/2}]=[QT^{1/2}/S^{1/2}]+[Q^{\perp}T^{1/2}/S^{1/2}] be a J-decomposition of
[T^{1/2}/S^{1/2}] . Then T^{1/2}QT^{1/2}=T^{1/2}PT^{1/2} , where P=P(S^{1/2}, T^{1/2}) . Hence
by Corollary 2. 6, QT^{1/2}=PT^{1/2} , which implies that T^{1/2} has a unique J-
decomposition. Conversely, suppose that [T^{1/2}/S^{1/2}] has a unique J-
decomposition, and let T=U+V be an L-decomposition of T such that U
is S-absolutely continuous and V is S singular. Then by the monotone
property of the operation [S] , we have U=[S]U\leqq[S]T=T^{1/2}PT^{1/2} , so
that U^{1/2}H\subset T^{1/2}PH. By Theorem 2. 8 (1) and Theorem 2. 9, we see that
T^{1/2}PH\subset S^{1/2}H. Hence we have U^{1/2}H\subset S^{1/2}H. On the other hand, since
[V^{1/2}/S^{1/2}] is singular we have V^{1/2}H\cap S^{1/2}H=\{0\} . Hence U^{1/2}H\cap

V^{1/2}H=\{0\} . Now by Theorem 3. 5 we can find an orthogonal projection Q

such that [T^{1/2}/S^{1/2}]=[QT^{1/2}/S^{1/2}]+[Q^{\perp}T^{1/2}/S^{1/2}] is a J-decomposition
which induces the L-decomposition T=U+V. Hence, from uniqueness of
the J-decomposition we obtain QT^{1/2}=PT^{1/2} , so that U=T^{1/2}QT^{1/2}=

T^{1/2}PT^{1/2} and V=T^{1/2}P^{\perp}T^{1/2} . This implies uniqueness of the L-
decomposition of T.
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COROLLARY 3. 7 (cf. [2, Theorem 6]). Let S and T be positive opera-
lors with ker S\subset ker T. Then T has a unique L-decomposition with respect
to S if and only if [S]T\leqq\alpha S for some \alpha>0 .

PROOF. By Theorems 2. 7, 2. 8 and 3. 6 we see that T has a unique
L-decomposition with respect to S if and only if [PT^{1/2}/S^{1/2}] is bounded on
S^{1/2}H. The latter condition is equivalent to T^{1/2}PH\subset S^{1/2}H. Since [S]T=
T^{1/2}PT^{1/2} , we now obtain [S]T\leqq\alpha S for some \alpha>0 as an equivalent condi-
tion for uniqueness of the L decomposition of T.
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