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1. Introduction

Let A and B be bounded linear operators on an infinite dimensional
Hilbert space H with the kernel condition

1.1 ker ACker B.

Then we define a quotient [B/A] as the linear operator: Ax—Bx, xEH.
In we showed that both the adjoint and the closure of [B/A] are also
represented as reasonable quotients if they exist. Let P =PFPs- 5 be the
orthogonal projection onto the closure of the set B*V(A*H) : ={x; B*x&
A*H}, and let P+*=1—P. Then, applying Jorgensen decomposition
(Ota [10]) to [B/A], we obtain the sum decomposition [B/A]=
[PB/A]+[P+B/A] of [B/A] into the closable part [PB/A] and the sin-
gular part [P*B/A]. Extending this notion, we call the decomposition

[B/A]=[QB/A]+[Q*B/A]

J-decomposition of [B/A] by @, if @ is an orthogonal projection such that
[QB/A] is closable and [@Q*B/A] is singular.

Another decomposition is Lebesgue-type (or shortly L-) decomposition
of (bounded) positive operators, which was introduced by Ando [2]; if S
is a positive operator then every positive operator 7 is decomposed into the
sum T=U+V of two positive operators U and V such that U is S-
absolutely continuous and V is S-singular. It was proved in that a
positive operator T is S-absolutely continuous if and only if TY2-Y(SY2H )
isdense in H. The latter condition is, as a matter of fact, just what guaran-
tees closability of [ 7V2/SY2] when ker SCker T [5], [9]. This suggests
close connections between J-decomposition and L-decomposition.

In this paper we first consider J-decomposition of quotients and give
some equivalent conditions for uniqueness of this decomposition. Next we
show that every J-decomposition of a quotient [B/A] induces an L-
decomposition of B*B with respect to A*A , and conversely that every
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L-decomposition of 7" with respect to S, under the condition ker SCker T,
is induced from a J-decomposition of [B/A] such that A*A=S and B*B =
T

To avoid triviality we assume that the Hilbert space H has infinite
dimension. An operator is assumed to be bounded linear, defined on H ,
unless specially stated otherwise.

2. J-decomposition of quotients

For given operators A and B, put
(21) R:RA,B:<A*A+B*B>1/2.

Then as a basic fact we have RH=A*H +B*H [4, Theorem 2.2]. If we
consider the equations

(2.2) XR=A and YR=B,

then, since A*HCRH and B*H CRH we can fined operators X and Y
satisfying (2.2) [4, Theorem 2.1]. Furthermore, with the restrictions ker
X Dker R and ker Y Dker R each of the equations has a unique solution, so
that we then denote by X =A,(=A4s,) and Y =B,(=Bs,) [5]. Following
we now define

2.3 A*A : B*B=A*A,B%B,

and call it the parallel sum of A*4 and B*B. (If A*A=C*C for an operator
C, then we can see A*A,=C*C,, so that A*A : B*B is really well-defined

by (2.3).) In we proved the following facts which are useful for our
discussions.

LEMMA 2.1 (cf. [5, Lemma 2.3]). Let A, B be operators on H, and let
R, A, and B, are operators defined as before. Then

(1 A%tA,+ B B,=Pr, the orthogonal projection onto the closure (RH)-
- of RH.

2 A*A : B*B=B*B : A*A=A*(1—-A,A)A=B*(1—-B,B*)B.

(3 A*HNB*H=(A*A : B*B)"?H,

4 B*“Y(A*H)=1—-B,B%)"H.

Denote by P s (or P(A*, B*)) the orthogonal projection onto
{B*-Y(A*H)}~. Then we have

LEMMA 2.2 Let V, be the partial isometry obtained from the polar
decomposition A,= V,(A3ADY? of A,. Then
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(D Pipr=1—BB*+BV*V,B13.
2 Py g B=B,V*V,R.

PrROOF. From Lemma 2.1 (1) we see that A%A, and B*B, commute.
Hence we have easily

2.0 ViViBiB=BBViV.

To prove (1), let P=Pa- 5 and denote by @ the right hand side of (D).
Then, using Lemma 2.1 (1) again and (2.4), we can see that @*=@), that
is, @ is an orthogonal projection. Hence, since 1—B,B%=Q (or Q— 1 —
B,B*%) is positive), we have PH CQH. For the converse inclusion, first
note that B¥(1—BB*%) =(Pr—B*B,)B*=A%A,B*, and that ker A%A,B%=
ker V,B*%*. Hence we have

(2.5 ker (1—B,B*) Cker V,B*.

Hence ker (1—B,B*)Cker @, which implies PH DQH. Now the identity
(2) can be obtained from (1), (2.4) and Lemma 2.1 (1).

Let [B/A] be a quotient of operators (with the kernel condition
(1.1)). If AH is dense in H, then the adjoint [B/A]* of [B/A] exists,
and it is represented [5, Theorem 4.1] as

(2.6) [B/Al*=[V:B%/(—BB%)"].

In [5], assuming that AH is dense in H, we defined [B/A] to be closable if
the domain (1—B,B%)'2H of [B/A]* is dense in H. Here we, however,
want to define [B/A] to be closable (cf. [7, p.165]) if

(2.7  Ax,—0 and Bx,—y for a sequence {x,} in H imply y=0.

Consequently, we do not assume the denseness of AH in H for
closability of [B/A]. Denote by [B/A]- the closure of [B/A] when it
exists. Then we have

LEMMA 2.3 (cf. [5, Theorem 4.2], [8, Lemma 3]). Let [B/A] be a
quotient. Then the following conditions are equivalent ;

(D [B/A] is closable, (i.e., (2.7) is assumed.)
@) ker A,Cker B,
3 (1—BB*'H (=B*-Y(A*H)) is dense in H.

If one of (1)—(3) holds, then [B/A]-=[B/A.].

ProOF. (1)=(2); Let A,u=0, u=H. Then, since A, is defined as a
natural extension of the mapping Rx—Ax, x& H, we can find a sequence {x,}
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such that Rx,—u and Ax,—»A,u=0. Hence Bx,=B,Rx,—B,u, which implies
Bu=0.

(2)=(@3); Let 1—BB%)u=0. Then we have to show that #=0. By
(2.5) we see that Biu<Sker V,=ker A,, Hence B,B%*=0, so that u=(1—
BB*)u+BB*u=0.

(3)=() ; Let Ax,—0 and Bx,—y. Then {Rx,} is convergent. Put z=
limRx,. Then A,z=limA,Rx,=limA#»,=0. Hence (1—B,B*)B,z=B,(Pr—

Nn-—-soo n—-oo n-—-oo

B%B)z=B,A%A,z=0. Since ker (1—B,B%)={0}, we have Bz=0. Hence
y=1imBx,=1imB,Rx,= B,z =0.

For the closure [B/A]-, we first note that [B,/A,] is an extension of
[B/A), because A=A,R and B=B,R. Since A*A,+B*B,=P: (Lemma 2.1
(1)), we see that AYH+B*H is closed in H. Hence from [8, Theorem 1]
(or by a direct computation) we can show that [B,/A,] is closed. Now,
since AH is dense in A,H we can conclude that [B/A]-=[B/A4,].

Among general (possibly unbounded) operators a singular operator L
is defined ([6] and [10]) as one which has dense domain D(L) in H and
satisfies the condition L(D(L))CD(L*)*, that is, the range of L is orth-
ogonal to the domain of L*. Since the domain of the adjoint of a quotient
[B/A] is 1—B,B %)V*H, we naturally assume that a singular quotient
[B/A] satisfies the condition BH C{(1—B,B*)H}*, or equivalently

(2.8) BH Cker Py« p-.

We here adopt (2.8) as the definition of [B/A] to be singular, and we do
not request the denseness of AH in H (cf. [5]). Now on singularity of

quotients we can show the next equivalences, the proof of which is almost
similar to that in [5].

LEMMA 2.4 [5, Theorem 5.5]. Let [B/A] be a quotient. Then the
following conditions are equivalent ;

(D [B/A] is singular, (i.e., (2.8) is assumed.)
(2) A,B*%=0.

3 A*A . B*B=0.

4 A*HNB*H ={0}.

Recall that for a quotient [B/A] and an orthogonal projection @ the
decomposition

2.9  [B/A]=[QB/A]l+[Q'B/A]

is a J-decomposition by Q if [QB/A] is closable and [Q*B/A] is singular.
Easily we see that (@B)*“VY(A*B)=Q"V(B*“Y(A*H)), and that the rela-
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tion (Q*B)*H NA*H ={0} is equivalent to @*H NB*“Y(A*H)Cker B*.
Hence from Lemmas 2.3 and 2. 4 we have

THEOREM 2.5. Let [B/A] be a quotient, and let Q be an orthogonal
projection. Then [B/A)=[QB/Al+[Q*B/A] is a J-decomposition if and
only if the following two conditions hold.

¢H) Q-V(B*-V(A*H)) 1is dense in H.
(2) Q*HNB*Y(A*H)Cker B*.

It is easy to see that the orthogonal projection P = Ps- 5 satisfies the
above conditions (1) and (2). Hence

(2.100) [B/A]=[PB/Al+[P*B/A]
is really a J-decomposition of [B/A] [5, Theorem 5.4].

COROLLARY 2.6. Let Q be an orthogonal projection such that [B/A]=
[QB/A)+[Q*B/A] is a J-decomposition. Then Q= Pa- p-.

PROOF. Note that Q“V(B*VY(A*H))CQ"VY(PH) (P=Pa 5), and
that Q-V(PH) is closed. Hence, by the theorem, Q“Y(PH)=H, so that
QH CPH or Q=P.

On the closure [PB/A]- of the closable part [PB/A] of [B/A] in the
decomposition (2.10), we have

PRoOPOSITION 2.7. [PB/A]l-=[B,V*V,/Al.

ProoF. From (2) we see that [B,V*V,/A,] is an exten-
sion of [PB/A]=[B,V*V,R/A,R]. Since A%A+BViVO*(BVIV)=
V*V, is an orthogonal projection, we can see that [B,V%V,/A,] is closed
(as in the proof of Lemma 2.3). Now since AH is dense in A;H, we have
the desired identity.

A quotient [B/A] is bounded as an operator on AH if and only if there
exists some @>0 such that |Bx|=a|Ax|, x€H. An equivalent condition for
the boundedness of [B/A] is the relation B*H CA*H (e.g. by [4, Theo-
rem 2.1]). The following theorem characterizes a quotient whose closable
part of the decomposition (2.10) is bounded.

THEOREM 2.8.  The following conditions are equivalent ;

(D [Pa-3-B/A] is bounded on AH.
2 A, has closed range.
3 B*-Y(A*H) 1is closed in H.



204 S. Izumino

PrROOF. (1)=(2) ; Write P=Px- p- briefly. Since (1) is equivalent to
B*PHCA*H, we have B*P=A*X for some operator X. Hence by
(2) we have RVIV,B¥=RA*X, or V3V,B*=A*X. Hence
ViVi=ViVIATA+BIB) Vi Vi=ATA+AT XX*A=1+|x[|HDA% A,
This implies that ViH CA%YH, so that A% and hence also A, has closed
range.

(2)=(@3) ; Note that B*“V(A*H)=B“Y(A*H), and that the inverse
image B}“"V(A%H) of the closed set A*H is closed.

@B)=); If B*Y(A*H) is closed, then PH=B*“Y(A*H), so that
B*PHCA*H. This implies boundedness of [PB/A].

On uniqueness of the J-decomposition, we have

THEOREM 2.9. A quotient [B/A] has the unique J-decomposition
(2.10) of and only if one of the conditions (1)—(3) in Theorem 2.8 holds.

PROOF.  Suppose that (1) of [Theorem 2. 8§ holds, or equivalently, that
B*PHCA*H (P=Pa ). Let Q be an orthogonal projection which yields
a J-decomposition (2.8). Then, by [Corollary 2.6 P and @ commute, so
that B*Q*PH =B*PQ*H CA*H. Since [@Q*B/A] is singular, we have
A*HNB*Q*H ={0} from Lemma 2.4. Hence B*Q*PH ={0} or B*Q*P=
0, which implies @B = PB, uniqueness of J-decomposition of [B/A].

To see the converse assertion, suppose that B*PH ¢ A*H. Then there
is a vector € H such that B*Pu€ A*H. We can assume that u=PH and
lul=1. Put Q=PQ—u®u) (=(1—u®u)P), where #u®u is an operator
defined by (u®u)x=<x, w>u, xH. ({+,*> is the inner product of H.)
Then clearly @ is an orthogonal projection. Now we want to show that this
Q yields a J-decomposition of [B/A] which is deferent from (2.10). It
suffices to prove that

(i) OB+ PB, and
(ii) [QB/A] is closable and[Q*B/A] is singular.

For (i), since B*u&A*H, we see that B*u+0, so that PB—QB=
(u®u)B=u®B*u+0. For (ii), first note that [QB/A]=[QPB/A] has
an extension [QB,V31V,/A,] (PB,=B,V*%V,). By a simple computation we
can see that ATA,+(QB,ViVO*(QBViV)=V*%V,—B%u®B*u is an opera-
tor with closed range. Hence [@B,V*V,/A,] is a closed extension of
[QB/A]. Next in order to see that [Q*B/A] is singular, we want to show
that A*HNB*Q*H={0}). Let v€A*HNB*Q*H. Then v=A*x=B*Q'y
for some x, y=H. Hence R(A*x—B *Qty) =0, or equivalently, A¥x=
B31Q+y. Since BXQ*=B¥(P*+uu)=1—-V*iV)B*+B*u®u, we have
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Al x=A—-V3iVOB%y+<y, u>B%}u.

Multiplying this identity by RV %V, from the left, we have RATx=<y, u>
RV x V,B%u, that 1is, A*x=<y, upB*Pu. Hence, from the assumption
B*Pu#t A*H we conclude that A*x=0, or v=0.

3. Relations between J-decompositions and L-decompositions

We begin with the definition of L-decomposition of positive operators.
Let S be a positive operator. Then a positive operator U is said to be
S-absolutely continuous if there exists a sequence {U,} of positive operators
such that U,£U,,,, U,=a,S, for some a,>0 (n=1,2,...) and limU,=U

n—-oo
(strong limit). A positive operator V is S-singular if any operator W
satisfying 0= W=V, W =S isidentical to 0. Let T be a positive operator,
and let

3.1 T=U+V

for two positive operators U and V with the conditions defined as above.
Then we call (3.1) an L-decomposition of T with respect to S [2].
Recall that the parallel sum S : T of two positive operators S and T is
defined (see(2.3)) by S : T=SY2(SY2),(TY»)*Tv2, Easily we see that
S: T isbounded by S and T (e.g. by Lemma 2.1 (2)). Furthermore, it is
monotone [4, Theorem 4.4], that is, S : T,<S : T, if 0=7,=7,. Using
the parallel sum, Ando introduced an S-absolutely continuous operator

[S] TZLiEE(nS) : T,

and proved that
3.2) T=[SIT+(T—[S]IT)

is an L-decomposition of T with respect to S. (In defining the operator
[S]T, Ando, however, adopted a different but equivalent definition [1,
Theorem 9] of the parallel sum; <(S: T)x, x>=inf{<Sy, y>+<(Tz 2>; y+
z2=x}.)

Now, as a relation combining the J-decomposition (2.10) and the L-
decomposition (3.2), we have the following result which was essentially
obtained by Kosaki [9]. For completeness we shall prove it.

THEOREM 3.1 (cf. [9, Theorem 6]). Let A, B be operators, and let
S=A*A and T=B*B. Then [S]T=B*Ps 5B.

PrROOF. Let R,=Rus (cf. (2.1)), and let X=A,= A5, Y =B,=
Bra,: be the unique solutions of the equations XR,=#nA, ker X Dker R, and
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YR,=B, ker Y Dker R,, respectively (cf. (2.2)). Then we easily have the
following facts.

D 1A.l=1, |B.<1.

2) (n®S) : T=B*(1—-B,B%)B. (By Lemma 2.1 (2).)

3 A—-B,B»)'"*H=B*“Y(nA*H)=B*“Y(A*H). (By Lemma 4.1
4.

(4) 1—B,B%<Pu-p=Psp. (By ¢HD)
We want to add more two facts.

(5) {1-B,.B%} is an increasing squence.

For (5), since R%<R? for m=wu, we have the unique operator Z=Z,, such
that R,=R,Z=Z*R,, ker Z*Dker R,. Since B,R,=B=B,R,=B,Z*R,,
we can see that B,=B,Z*. Hence, since |Z|<1, we have B,B%=B,Z* X
ZB%<B,B?, which implies (5).

For (6), we can first obtain A,Z%,=(1/#)A, and B,Z},= B, by a similar
argument to that used above (to get B,=B,Z*). Notethat A,=A4,and B,=
B,. Hence, from Lemma 2.1 (2), we have

<1-BtB’:)Bn: <1'“BLB’DBL ’fn:BKPR_B"ZBL)ZTn
=BA%A,Z},=(1/n)BA%A,.

We now get (6) immediately.
To show the desired identity [S]7 =B*PB, where P=Pa- 5, let Q=
lim(1—B,B3%). Then, by (2), what we have to do is to show Q=P. Let-

ting n—oo in (6), we obtain (1—B,B%)(1—&)=0. Hence we have easily
P(Q—6Q)=0, or P=PQ. From (4) we can also have PQ=Q, which com-
pletes the proof.

From the fact ker B*CPH, we can see that P=1 is equivalent to PB=
B. Between closability of quotients and absolute continuity of positive
operators, we have

COROLLARY 3.2 (cf. [2, Theorem 5], [9, Lemma 3]). Let [B/A] be
a quotient. Then the following conditions are equivalent ;

(D [B/A] is closable.
(2) P p=1.
3) B*B is A*A-absolutely continuous.

Proor. (1)&=(2); Clear by Lemma 2. 3.
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(2)>=(3) ; From (2) we have [A*A](B*B)=B*B, which implies (3).
(3)=() ; If (3) is assumed, then there is a sequence {7} of positive opera-
tors such that T:<T2%,,, T:<a,A*A for some @,>0 and limT2=B*B.

n-—oo

Then, since T,H CA*H, we see that T, V(A*H)=H. Hence Pa-1,=1, so
that [A*A]T%2=T2. Hence [A*A)(B*B)=[A*A]T%:=T,. Taking the
limit, we have [A*A](B*B)=B*B, or equivalently, [A*A](B*B)=B*B.
From this identity, we can easily obtain Pa- 5B =B, which implies (2).

For the singularity of quotients and positive operators, we have

COROLLARY 3.3 (cf. [2, Corollary 3]). Let [B/A)] be a quotient.
Then the following conditions are equivalent ,

(L [B/A] is singular.
2 Pa- 5B =0.
3 B*B is A*A-singular.

ProOF. The equivalence (1)&=(2) is clear by the definition (2.8).
By Theorem 3.1 the condition (2) is equivalent to the identity

2" [A*A1(B*B)=0.

From the definitions of [A*A](B*B) and A*A-singularity, we can see the
equivalences (2)&=(n2A*A) : B*B=0 (n=1,2,..)=(@3).

Let [B/A]1=[QB/Al+[Q*B/A] be a J-decomposition of [B/A] by
an orthogonal projection @. Then by Corollaries 3.2 and 3.3 we see that
B*B=B*QB+B*Q*'B is an L-decomposition of B*B with respect to A*A.
Hence every J-decomposition of [B/A] induces an L-decomposition of B*B
with respect to A*A. As the converse to this fact we have

THEOREM 3.4. Let S and T be positive operators with ker SCker T,
and let T=U+V be an L-decomposition of T such that U and V are
S-absolutely continuous and S-singular positive opeators, respectively. Then
there exist an operator B and an orthogonal projection Q such that U=B*QB
and V=B*Q*B. Hence, if A is an operator with A*A=S, then [B/A]=
[QB/A]l+[Q*B/A] is a J-decomposition of [B/A] by Q, which induces the
giwen L-decomposition of T. o

PROOF. Since the dimension of H is infinite, we can find mutually
orthogonal closed linear subspaces M and N in H such that dim M =dim
(UH)~ and dim N =dim (VH)~. Then there exist partial isometries X
and Y such that
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3.3 XX*=PFPy, YY*=Py, XY*=0.

Here Py and Py are the orthogonal projections onto (UH)~ and (VH)-,
respectively. Put B=X*U""+Y*V' and Q=X*X. Then we can obtain
all that we desire.

THEOREM 3.5. If we add the assumption UVH N\ V2H ={0} to Theo-
rem 3.4, then we have a J-decomposition of [TY?/SY?] by some orthogonal
projection Q which induces the given L-decomposition T=U+V.

PrROOF. Let X and Y be, respectively, the unique solutions of the
equations XT'2=U"? and YT"2= V"2 such that ker XCker T and ker Y
Cker 7. Then we can see that X*X +Y*Y =Pr, and that TY2=X*U"2+
Y*VV2 or UV=XTV=XX*U"+XY*V"2 Hence (Pv—XX*)U'*=
XY*VV2  Taking the adjoints, we have UY*(Py—XX*)=V1"2YX*.
Hence by the assumption UY2H N V2H ={0}, we have Py—XX*=YX*=0.
Similarly we can obtain Pr— YY*=0. Hence we have (3.3) for those X
and Y. Now, letting B=T"2(A=S"?2and =X*X), we obtain the desired
J-decomposition of [T 2/S"?].

On uniqueness of L- and J-decompositions we have

THEOREM 3.6. Let S and T be positive operators with ker SCker T.
Then T has a unique L-decomposition with vespect to S if and only if
[Tv2/SY2] has a unique J-decomposition.

PROOF.  Suppose that T has a unique L-decomposition with respect to
S, and let [TY2/SY2]|=[QT"?/S"?]+[Q*+T"?/S"?] be a J-decomposition of
[TY2/SY2]. Then TYWQTY*=TYPTY2 where P=P(SY?, TV2). Hence
by Corollary 2.6, Q7 '2=PT"'? which implies that 7% has a unique J-
decomposition. Conversely, suppose that [7V2/S¥?] has a unique J-
decomposition, and let 7=U+ V be an L-decomposition of 7" such that U
is S-absolutely continuous and V is S-singular. Then by the monotone
property of the operation [S], we have U=[S|UZ[S]T=T"PT", so
that U'?HCT"Y?PH. By [Theorem 2.8 (1) and [Theorem 2.9, we see that
T'2PH CSY2H. Hence we have UY?H CSYH. On the other hand, since
[V12/S12] is singular we have VYZ2HNSYH={0}. Hence UY:HN
V12H ={0}. Now by [Theorem 3.5 we can find an orthogonal projection @
such that [TV3/SY?2]=[QTY?/S?]+[Q*+T"?/S"?] is a J-decomposition
which induces the L-decomposition T=U+ V. Hence, from uniqueness of
the J-decomposition we obtain QT Y2=PT'%? so that U=T"QT"'*=
T2PTV2 and V=TYP+T'2, This implies uniqueness of the L-
decomposition of 7.




Decomposition of quotients of bounded operators with respect to closability and
Lebesgue-type decomposition of positive operators 209

COROLLARY 3.7 (cf. [2, Theorem 6]). Let S and T be positive opera-
tors with ker SCker T. Then T has a unique L-decomposition with respect
to S if and only if [S]1T =<aS for some a>0.

PrROOF. By Theorems 2.7, and we see that 7 has a unique
L-decomposition with respect to S if and only if [P7'2/S¥?] is bounded on
S'H. The latter condition is equivalent to 7V2PH CSY2H, Since [S]T =
T'*PT'?, we now obtain [S]T =<aS for some ¢>0 as an equivalent condi-
tion for uniqueness of the L-decomposition of 7.

[1]
[2]
[3]
[4]

References

W. N. ANDERSON, JR. and G. E. TRAPP, Shorted operators. I1I, SIAM J. Appl. Math.
28 (1975), 60-71.

T. ANDO, Lebesgue-type decomposition of positive operators, Acta Sci Math. 38 (1976),
253-260.

Sirkka-Liisa ERIKSSON and H. LEUTWILER, A potential-theoretic approach to parallel
addition, Math. Ann. 274 (1986), 301-317.

P. A. FILLMORE and J. P. WILLIAMS, On operator ranges, Advances in Math. 7 (1971),
254-281.

S. IZUMINO, Quotients of bounded operators, to appear in Proc. Amer. Math. Soc.

P. E. T. JORGENSEN, Unbounded operators: Perturbations and commutativity problems,
J. Functional Anal. 39 (1980), 281-307.

T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New
York, 1966.

W. E. KAUFMAN, Representing a closed operator as a quotient of continuous operators,
Proc. Amer. Math. Soc. 72 (1978), 531-534.

H. KOSAKI, Remarks on Lebesgue-type decomposition of positive operators, J. Operator
Theory 11 (1984), 137-143.

S. OTA, On a singular part of an unbounded operator, Z. Anal. Anwendungen 7 (1)
(1987), 15-18.

Faculty of Education
Toyama University



	1. Introduction
	2. J-decomposition of ...
	THEOREM 2. ...
	THEOREM 2. ...
	THEOREM 2. ...

	3. Relations between J-decompositions ...
	THEOREM 3. ...
	THEOREM 3. ...
	THEOREM 3. ...

	References

