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Introduction. Throughout this paper every ring is assumed to have the
identity, and all subrings of a ring will contain the identity of the ring,
unless otherwise stated. Let B be a strongly primitive ring and A an
H-separable extension of B , and suppose A is left Binfinitely generated
projective. In [13] it is shown that in this case A is also strongly primi-
tive if and only if A3A\cap B=3 , where 3 is the socle of B. The aim of this
paper is to detail the structure of A and B which satisfy the above condi-
tion. Let furthermore I and \mathfrak{m} be faithful minimal left ideals of A and B,
respectively, and denote the double centralizers of AI , BI and B\mathfrak{m} by A^{*} .
\tilde{B} and B^{*} , respectively. Then there exists a ring isomorphism \Phi of B^{*}

to \tilde{B}(\subseteq A^{*}) such that \Phi(b)=b for each b\in B , and A^{*} is an H-separable
extension of \tilde{B}(\cong B^{*}) (Theorem 3.3), that is, the right full linear ring A^{*}

is an inner Galois extension of the right full linear ring B^{*} (See Theorem
4 [11] ) . We will also treat the inner Galois theory of full linear rings in
\S 4. Let A be a right full linear ring with its center C, D a simple C-
subalgebra of A with [D:C]<\infty and B=V_{A}(D) . Denote the class of
right full linear subrings R of A such that R contains B and the simple
left ideal of A is a finite direct sum of faithful simple left R-modules by
\mathscr{L} and the class of simple C-subalgebras of V_{A}(B) by \mathscr{D} . We already
know that there exists a duality between \mathscr{L} and \mathscr{D} . We will show that a
right full linear subring R of A containingt B is in \mathscr{L} if and only if A is
left or right B-projective (Theorem 4.1). \S 1 is the preparation for \S 2,
and in \S 2 we will introduce some fundamental properties of strongly
primitive rings. Let R be a ring and M a flat left R-module, and denote
the Gabriel topology of R consisting of right ideals t1 of R such that t1M=
M by \mathfrak{F} . As K. Morita showed in [5], there is a ring isomorphism \theta of
R_{\mathfrak{F}} , the ring of quotients of R with respect to \mathfrak{F} , to a subring of R^{*}=Bic
(_{R}M) In [3] the author gave a simpler proof of this theorem. Here we
will determine Im \theta pletely, and show that Im \theta consists of elements
r^{*} of R^{*} such that \mathfrak{a}r^{*}\subset\tilde{R} for some (l in \mathfrak{F} , where \tilde{R} is the image of the
canonical map of R to R^{*} (Theorem 1.1). By applying this theorem to
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the strongly primitive ring, we can obtain a generalization of the last part

of Theorem 3 [1], that is, if R is a strongly primitive ring with its socle 3
and a faithful minimal left ideal \mathfrak{m} , the above map \theta induces the isomor-
phism of End(a_{R}) to R^{*}=Bic(_{R}\mathfrak{m}) . This means that, regarding R as a sub-
ring of R^{*} by the canonical map, 3 becomes a left ideal of R^{*} . and the
map \sigma of R^{*} to End(a_{R}) such that \sigma(r^{*})(a)=r^{*}a , for each r^{*}\in R^{*} and a

\in 3 , is an isomorphism (Theorem 2.1).

1. Let R be a ring and M a left R-module. Assume that M is R-flat,

and let \mathfrak{F} be the set of right ideals Q of R such that tlM=M. Then \mathfrak{F} is a
Gabriel topology on R, and as is shown in [6] we can construct the rings
R( \mathfrak{F})=\lim_{0\in \mathfrak{F}} Hom (\mathfrak{a}_{R}, R_{R}) and R_{\mathfrak{F}}=\varliminf 0\in \mathfrak{F} Hom (\mathfrak{a}_{R}, R/t(R)_{R}) , where t(R)

is the \mathfrak{F}-torsion submodule of R , namely, t(R)=\{x\in R|x\mathfrak{a}=0 for some (l\in

\mathfrak{F}\} . For any m\in M and x\in R_{\mathfrak{F}} , if x is represented by \xi:(x_{R}arrow R/t(R)_{R}

with \mathfrak{a}\in \mathfrak{F} , then we have m=\Sigma a_{i}m_{i} with a_{i}\in \mathfrak{a} and m_{i}\in M , since m\in M

=\mathfrak{a}M . Then we can define xm=\Sigma\xi(a_{i})m_{i} , and by this definition we can
make M a left R_{\mathfrak{F}}-module such that R_{\mathfrak{F}}\otimes_{R}M\cong M , via x\otimes m- xm, for x\in

R_{\mathfrak{F}} and m\in M , and Hom(_{R_{\mathfrak{F}}}M_{ R_{\mathfrak{F}}},N)=Hom(_{R}M_{ R},N) for any R_{\mathfrak{F}}-module N.
(See [11]). Let S=Hom(_{R}M_{ R},M) and R^{*}=Bic(_{R}M)=Hom(M_{S}, M_{S}) .

There exists a ring homomorphism \theta of R_{\mathfrak{F}} to R^{*} such that \theta(x)(m)=

xm, for x\in R_{\mathfrak{F}} and m\in M , since S=Hom(_{R_{\mathfrak{F}}}M_{ R_{\mathfrak{F}}},M) . \theta is an injection,
since t(R)=Ann(_{R}M) . Denote the canonical ring homomorphisms of R to
R^{*} and R to R_{\mathfrak{F}} by \iota and \psi , respectively. Then \iota=\theta\psi . Now we have
the completion of theorems 1.4 and 1.6 [5] as follows (See also Theorem
1 [11] ) .

THEOREM 1. 1. With the same notation as above, R_{\mathfrak{F}} is isomorphic to
the subring of R^{*} consisting of all elements r^{*} of R^{*} such that r^{*}\mathfrak{a}\subset Im\iota

for some 0\in \mathfrak{F} , namely, Im\theta=\pi^{-1}(t(R^{*}/Im\iota)) , where \pi is the canonical
map of R^{*} to R^{*}/Im\iota .

PROOF. Since Cok\psi is \mathfrak{F}-torsion and \theta\psi=\iota , ImO/Imc is also \mathfrak{F} -

torsion. Thus Im\theta\subset\pi^{-1}(t(Cok\iota)) . Let r^{*}\in\pi^{-1}(t(Cok\iota)) . This means
that there exists \mathfrak{a}\in \mathfrak{F} such that r^{*}o\subset Im\iota . But we have Im\iota=R/t(R) ,

since Ker\iota=Ann(_{R}M)=t(R) . Therefore, for each a\in(l there exists an \overline{r}

\in R/t(R) such that \overline{r}m=(r^{*}a)(m)=r^{*}(am) for each m\in M , that is, r^{*}a

=\overline{r}\in R/t(R) . Thus we have an R homomorphism \xi of Q to R/t(R) such
that \xi(a)=r^{*}a\in R/t(R) . Let x be the element of R_{\mathfrak{F}} represented by \xi ,

and let m=\Sigma a_{i}m_{i} with a_{i}\in \mathfrak{a} and m_{i}\in M . Then xm=\Sigma\xi(a_{i})m_{i}=

\Sigma(r^{*}a_{i})m_{i}=r^{*}(\Sigma a_{i}m_{i})=r^{*}(m) , for each m\in M . This means r^{*}=x\in

Im\theta . Thus we have \pi^{-1}(t(Cok\iota))\subset Im\theta , and consequently, Im\theta=
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\pi^{-1}(t(Cok\iota)) .

COROLLARY 1. 1. (Proposition 8.5 XI [6]). If M is R- f\grave{\grave{i}}finitely generated
ed projective, then \theta is an isomorphism, i. e. , R_{\mathfrak{F}}\cong Bic(_{R}M) .

PROOF. Since M is R-finitely generated projective, we have R^{*}\otimes_{R}M

\cong M , via r^{*}\otimes m-arrow r^{*}(m) , for any r^{*}\in R^{*} and m\in M . Thus we have
R^{*}/Im\iota\otimes_{R}M=0 , which means that R^{*}/Im\iota is \mathfrak{F}-torsion. Then we have
that Im\theta=R^{*} by Theorem 1. 1.

COROLLARY 1. 2. Let M be a faithful fifinitety generated projective
R-module, and Q the trace ideal of M in R. Then we have an isomor-
phism \rho of Hom(aR_{ Q_{R}},) to R^{*} such that \rho(\xi)(m)=\Sigma\xi(a_{i})m_{i} for each \xi\in

Hom((l_{R}, \mathfrak{a}_{R}) and m\in M, where m=\Sigma a_{i}m_{i} with a_{i}\in \mathfrak{a} and m_{i}\in M. More-
over, () is a left ideal of R^{*} , regarding R as a subring of R^{*} by the usual
way, and the inverse map \sigma of \rho is given by \sigma(r^{*})(a)=r^{*}a, for each r^{*}\in

R^{*} and a\in_{t}x .

PROOF. Since M is R projective, we have \mathfrak{a}^{2}=\mathfrak{a} and \mathfrak{a}M=M . Q is
contained in every right ideal belonging to \mathfrak{F} . Hence we have R_{(\mathfrak{F})}=Hom

(Q_{R}, (l_{R}) . But t(R)=Ann(_{R}M)=0 , since M is R-faithful. Therefore we
have R^{*}\cong R_{\mathfrak{F}}=R_{(\mathfrak{F})}=Hom(Q_{R}, \mathfrak{a}_{R}) . Next, since R^{*}/R(=R^{*}/Im\iota) is \mathfrak{F} -

torsion, we have r^{*}()\subset R for each r^{*}\in R^{*} . But Q^{=}Q^{2} . Hence r^{*}\mathfrak{a}=(r^{*}\mathfrak{a})\mathfrak{a}

\subset R\mathfrak{a}=() . Thus Q is a left ideal of R^{*} . Note that r^{*}a=b\in \mathfrak{a} , for a\in \mathfrak{a} ,
means that r^{*}(am)=bm for each m\in M . Therefore if we define \sigma(r^{*})(a)

=r^{*}a for r^{*}\in R^{*} and a\in(l , we have (\rho\sigma(r^{*}))(m)=\Sigma\sigma(r^{*})(a_{i})m_{i}=

\Sigma(r^{*}a_{i})(m_{i})=r^{*}(\Sigma a_{i}m_{i})=r^{*}(m) for each r^{*}\in R^{*} and m\in M , where m=
\Sigma a_{i}m_{i} with a_{i}\in \mathfrak{a} and m_{i}\in M . Thus we have \rho\sigma=1_{R^{*}} and \sigma=\rho^{-1}-

2. Now we will apply the results of \S 1 to the theory on strongly
primitive rings. For a few moments we do not assume that all rings have
the identities. A ring R is said to be strongly primitive if R has a faithful
minimal left ideal. In this case R has also a faithful minimal right ideal,
and the left socle of R coincides with the right socle and is the smallest
non zero ideal of R . It is shown in Lemma 2 [1] that the typical exam-
ples of strongly primitive rings are subrings of a left (or right) full linear
ring which contain the socle of it. Here we will give a generalization of
it with a simpler proof.

PROPOSITION 2. 1. Let R be a strongly primitive ring with the socle 3.
Then every subring of R which contains 3 is also a strongly primitive ring.

PROOF. Let \mathfrak{l} be a faithful minimal left ideal of R. \mathfrak{l} is a left ideal
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of 3. Let \mathfrak{n} be a non zero left ideal of 3 contained in \mathfrak{l} . 3 is faithful as
right R-module. Hence 3t^{t} is a non zero left ideal of R with 3\mathfrak{n}\subset \mathfrak{n}\subset \mathfrak{l} .

Then we have 3\mathfrak{n}=\mathfrak{n}=\mathfrak{l} . Thus \mathfrak{l} is a minimal left ideal of 3. Then \mathfrak{l} is a
faithful minimal left ideal of every subring of R containing 3. (See \S 2. 4 [4]).

The next theorem is a generalization of the last part of Theorem 3
[1].

THEOREM 2. 1. Let R be a strongly primitive ring with the socle a

and \mathfrak{l} a faithful minimal left ideal of R. Denote the double centralizer of
R\mathfrak{l} by R^{*}r Then 3 is a left ideal of R^{*} , and the map \sigma of R^{*} to Hom(\% R,
3R) defifined by \sigma(r^{*})(x)=r^{*}x, for r^{*}\in R^{*} and x\in a , is an isomorphism.

PROOF. By Theorem 1 [1] we have \mathfrak{l}=Re for some primitive
idempotent e of R . Hom(_{R}Re_{ R},Re)=eRe and R\subset R^{*}=Hom(Re_{eRe}, Re_{eRe}) .
Of course, Re is R^{*} faithful Let R’ be the subring of R^{*} generated by

R and the identity of R^{*} . Then we have R’R=RR’=R, and consequent-
ly, R’e=Re , and see that Re is faithful minimal left ideal of R’ Thus R’

is also strongly primitive. Next, let R’f be any nlinimal left ideal of R’

with f^{2}=f\in R’ Since R’e\cong R’f , there exist x , y\in R’ such that f=
fyecxf and e=exffye . Then f\in R’RR’=R , and R’f=Rf\subset_{3} . This
means that the socle of R’ coincides with 3. Moreover since Re=R’e , we
have eRe=eR’e , and see that the double contralizer of R^{\prime R’e} coincides
with R^{*} . while Hom(a_{R}, 3R)=Hom(3R’, a_{R’}) . Therefore we can assume that
R has the identity. Then \mathfrak{l}=Re is R-faithful finitely generated projective,
and 3 coincides with the trace ideal of R\downarrow in R , since every two minimal
left ideals are isomorphic. Now we can apply Corollary 1. 2.

COROLLARY 2. 1. With the same notation as Theorem 2. 1, we have
that \partial R^{*} coincides with the socle of R^{*}

PROOF. Let 3* be the socle of R^{*} . Since aR^{*} is an ideal of R^{*} by

Theorem 2. 1, we have \mathfrak{z}R^{*}\supset 3^{*} . Let f be any primitive idempotent of R .
Then Re\cong Rf and R^{*}f\cong R^{*}\otimes_{R}Rf\cong R^{*}\otimes_{R}Re\cong Re as R^{*} -module. Thus
R^{*}f is a minimal left ideal of R^{*} , and we have f\in a^{*} . This means that 3
\subset a^{*} and 3R^{*}\subset a^{*} . Now we have aR^{*}=a^{*} .

LEMMA 2. 1. Let R be a left primitive ring and M a faithful simple

left R-module. Then, for each non zero idempotent e of R, eM is a faith-
ful simple left eRe-module. Thus eRe is also left primitive.

PROOF. It is obvious that eM is eRe-faithful, since M is R-faithful.
Let N be a non zero submodule of eReeM. Then 0\neq ReN\subset M , and we
have M=ReN, since M is R simple Then eM=eReN=N, which means
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\mathfrak{m} which contains no non zero ideal. Let \mathfrak{a}=Tr(A_{B}) , the trace ideal of
A_{B} . Under our hypotheses we have (l\neq 0 . If A\mathfrak{m}=A , we have f(A)=
f(A\mathfrak{m})=f(A)\mathfrak{m}\subset \mathfrak{m} for any f in Hom(A_{B}, B_{B}) . This means that 0\neq Q\subset \mathfrak{m} ,
a contradiction. Thus we have A\mathfrak{m}\neq A , and there exists a maximal left
ideal L of A such that A\mathfrak{m}\subset L and L\cap B=\mathfrak{m} . Suppose that L contains a
non zero ideal I of A. Then we have I=A(I\cap B) or I=(I\cap B)A by
Theorems 3. 1 and 4. 1 [8]. Hence we have 0\neq I\cap B\subset \mathfrak{m} , acontradiction.
Thus A has a maximal left ideal which contains no proper ideal.

PROPOSITION 3. 1. If R is a left (or right) primitive ring, then forany fifinitety generated projective left R-module M, End(_{R}M) is also a left(resp. right) primitive ring.

PROOF. This is clear by Lemma 2. 1 and Theorem 3. 1, since M_{n}(R)

is an H-separable extension of R.

PROPOSITION 3. 2. Let B be a left (or right) primitive ring and A
an H-separable extension of B. Assume that A is left Bfinitely generated
projective. Then D(=V_{A}(B)) is a semiprime ring without proper central
idempotent. In particular if C is a fifietd, D is a simple artinian ring.

PROOF. By assumption End(_{B}A) is a left (resp. right) primitive ring.
Therefore it has neither non zero nilpotent ideal nor proper central
idempotent. But there exists a ring isomorphism \eta of D\otimes_{C}A^{o} to End(_{B}A)
such that \eta(d\otimes a^{o})(x)=dxa for any a, x\in A and d\in D , since A is H-
separable over B. Then if Q is a nilpotent ideal of D, \mathfrak{a}\otimes A^{o} must be
zero in D\otimes_{C}A^{O} Therefore, for each a\in(l, \eta(a\otimes 1^{o})(A)=aA=0 . This
implies 0=0. For the same reason we have that, if e is acentral
idempotent of D, e=\eta(e\otimes 1^{o})(1)=0 . The rest of the proof is obvious,
since D is finitely generated as C-module.

The next lemma is a paraphrase of Proposition 4 [13].

LEMMA 3. 1. Let A and B be strongly primitive rings with their
socles S and 3, respectively. Suppose that A is left (or right) B-projective.
Then we have either B\cap S=0 or B\cap S=3 and S=A3A.

PROOF. Suppose that B\cap S\neq 0 . Since S and 3 are the smallest non
zero ideal of A and B, respectively, we have S cz\^AA and 3\subset B\cap S . On
the other hand we have B\cap S\subset_{3} by Proposition 4 [13]. Hence we have 3
=B\cap S\subset S , and AaA\subset S . Then we have S=A3A.

THEOREM 3. 2. Let A, B, S and 3 be as in Lemma 3. 1. Assume
furthermore that A is an H-separable extension of B. Then we have 3=
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that eM is eRe-simple. (See Proposition 3. 7. 1 [4]).

PROPOSITION 2. 2. Let R be a strongly primitive ring with the socle 3
and e a non zero idempotent of R. Then eRe is also a strongly primitive
ring with the socle e3e.

PROOF. By Theorem 1 [1], Re contains a faithful minimal left ideal
\mathfrak{l} of R . Then by the above lemma e\mathfrak{l}=e\mathfrak{l}e is a minimal faithful left ideal
of eRe . Thus eRe is strongly primitive. Let Q(=eQe) be any non zero
ideal of eRe . Then ReaeR contains 3. Hence we have e%edeReaeRe
Q. Thus e%e is the smallest non zero ideal of eRe . Then \^e e coincides
with the socle of eRe .

Hereafter we assume again that all rings have the identities.

PROPOSITION 2. 3. Let R be a strongly primitive ring and Ma
fifinitety generated projective left R-module. Then End(_{R}M) is also a strongly
ty primitive ring.

PROOF. M_{n}(R) , the n\cross n-full matrix ring over R, is an H-separable
extension of R and R-free of rank n^{2} . Moreover, M_{n}(a) is the smallest
ideal of M_{n}(R) with M_{n}(3)\cap R=3 , where 3 is the socle of R . Therefore
M_{n}(R) is a strongly primitive ring by Theorem 1 [13]. By assumptiom M
is a direct summand of a free R-module of rank n for some n, and there
exists an idempotent e of M_{n}(R) such that End(_{R}M)=eM_{n}(R)e . Then
End(_{R}M) is also a strongly primitive ring by Proposition 2. 2.

3. In this section we will deal with H-separable extensions of strong-
ly primitive rings. We will use the same notation as the author’s previous
papers. In particular for an R-R-module M we denote M^{R}=\{m\in M|rm=

mr for any r\in R}, and for any subring S of RV_{R}(S)=R^{s} . regarding R
as an S-S-module. Throughout this section A will be a ring with the
center C, B a subring of A and D=V_{A}(B) , the centralizer of.B in A. A
is an H-separable extension of B if and only if D is C finitely generated
projective and the map \eta of A\otimes_{B}A to Hom(_{C}D_{ C},A) defined by \eta(a\otimes b)(d)

adb , for a , b\in A and d\in D , is an isomorphism.

THEOREM 3. 1. Let B be a left primitive ring and A an H-separable
extension of B. If furthermore A is right B-fifinitety generated projective,
or B is a right B-direct summand of A, then A is also a left primitive
ring.

PROOF. A ring is left primitive if and only if it has a maximal left
ideal which contains no non zero ideal. Thus B has a maximal left ideal
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S\cap B and S=At_{J}A=3A=Soc(_{B}A) .

PROOF. Since A is H-separable over B and left B-finitely generated
projective, we have S=(S\cap B)A by Theorem 3. 1 [8]. Hence S\cap B\neq 0 ,
and we have a=S\cap B , S=\S A=A3A by Lemma 3. 1. That aA=Soc(_{B}(A)

follows from the next lemma.

LEMMA 3. 2. Let R be a strongly primitive ring with the socle 3 and
M a projective left R-module. Then we have Soc(_{R}M)=aM. Eve\eta R-
submodule of M is faithful.

PROOF. By assumption there exist f_{i}\in Hom(_{R}M_{ R},R) and m_{i}\in M , for
some index set i\in\Lambda , such that for each m\in Mf_{i}(m)=0 for almost all i
\in\Lambda and m=\Sigma f_{i}(m)m_{i} . Let N be any non zero R-submodule of M, and
suppose Ann(_{R}N)\neq 0 . Then a\subset Ann(_{R}N) and aN=0 . There exists at
least one i such that f_{i}(N)\neq 0 . Then f_{i}(N) is a faithful left ideal of R .
But we have af_{i}(N)=f_{i}(3N)=f_{i}(0)=0 , a contradiction. Thus every non
zero R-submodule of M is faithful. Then if N is a simple R-submodule of
M. we have 0\neq 3N=N . Hence N\subset 3M , and Soc(_{R}M)\subset_{3}M\subset Soc(_{R}M) .

In [13] it is shown that, in the case where A is an H-separable exten-
sion of a strongly primitive ring B and is left B-finitely generated projec-
tive, A is also strongly primitive if and only if B\cap A3A=3 holds (TheO-
rem 1 [13] ) . In this situation we will detail the structure of A and B.

THEOREM 3. 3. Let B be a strongly primitive ring and A an H-
separable extension of A. Assume that A is also strongly primitive and left
B-fifinitety generated projective, Let I and rn be faithful minimal left ideals
of A and B, respectively, and denote the double centralizers of AI and B\mathfrak{m}

by A^{*} and B^{*} . respectively. Still more let \tilde{B} be the double centralizer of
BI. Then we have

(1) I\cong\oplus^{r}\mathfrak{m} for some positive integer r, and End(_{B}I) is a simple arti-
n on ring.

(2) There exists a ring isomorphism \Phi of B^{*} to \tilde{B} such that \Phi(b)=b

for any b\in B.
(3) D\otimes_{C}C^{*} is a simple artinian ring and isomorphic to V_{A}*(\tilde{B}) ,

where C^{*} is the center of A^{*} .
(4) A^{*} is an H-separable extension of \tilde{B}(\cong B^{*}) .
PROOF. (1). I is B-finitely generated, since A is left B-finitely

generated, while we have Icl%A by Theorem 3. 2, where 3 is the socle of
B. Hence we have (1). (2). This is immediate from (1), since there
exists a canonical ring isomorphism of Bic(_{B}\mathfrak{m}) to Bic(_{B}\oplus \mathfrak{m}) . (3). Put \Delta
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=End(_{A}I) , \Gamma=End(_{B}I) and \Lambda=End(I) . A and B are subrings of \Lambda , and
we have \Lambda^{A}=V_{\Lambda}(A)=\Delta and \Lambda^{B}=V_{\Lambda}(B)=\Gamma . It is obvious that the center
of \Delta coincides with C^{*} , the center of End(I \Delta ) (=A^{*}) . Since A is H-
separable over B, we have a ring isomorphism g of D\otimes_{C}\Lambda^{A} to \Lambda^{B} such
that g(d\otimes\lambda)=d\mathcal{A} for each d\in D and \mathcal{A}\in\Lambda^{A} . This means that \Gamma=D\otimes_{C}\Delta

=(D\otimes_{C}C^{*})\otimes_{C}*\Delta . Then since \Gamma is simple artinian and \Delta is a division ring
with its center C^{*} , we have that D\otimes_{C}C^{*} is simple artinian by well known
Noether-Krosch Theorem. Next, since \tilde{B}=V_{\Lambda}(V_{\Lambda}(B)) , we have V_{\Lambda}(\tilde{B})=

V_{\Lambda}(V_{\Lambda}(V_{\Lambda}(B)))=V_{\Lambda}(B)=\Gamma Then, V_{A}*(B)=Hom(_{B}I_{\Delta}, BI_{\Delta})=End(I_{\Delta})\cap End

(_{B}I)=A^{*}\cap\Gamma=A^{*}\cap V_{\Lambda}(\tilde{B})=V_{A}*(\tilde{B}) , while C^{*}=V_{\Delta}(\Delta)=End(_{A}I_{\Delta})=V_{A}*(A) .
On the other hand since A is an H-separable extension of B, we have a
ring isomorphism D\otimes_{C}V_{A}*(A)\cong V_{A}*(B) defined by the same way as the
above map g. Then we have D\otimes_{C}C^{*}\cong V_{A}*(\tilde{B}) . (4). Since \tilde{B}=V_{\Lambda}(\Gamma)=

V_{\Lambda}(D\Delta)=V_{\Lambda}(D)\cap V_{\Lambda}(\Delta)=V_{\Lambda}(D)\cap A^{*}=V_{A}*(D) , we have V_{A}*(_{A}*(\tilde{B}))=\tilde{B} .
Furthermore, V_{A}*(\tilde{B}) is a simple C^{*} -algebra with [ V_{A}*(\tilde{B}) : C^{*}]=

[D\otimes_{C}C^{* }: C^{*}]<\infty by (3). Of course A^{*} and \tilde{B}(\cong B^{*}) are right full lin-
ear rings. Then by Theorem 4 [11], A^{*} is an H-separable extension of
\tilde{B} .

REMARK. With the same notation as Theorems 3. 2 and 3. 3, let I=
\oplus_{i=1}^{r}\mathfrak{m}_{i} with \mathfrak{m}_{i}\cong \mathfrak{m} as left B-module and f_{i} the B isomorphism of \mathfrak{m}_{i} to \mathfrak{m}

for each i . The isomorphism \Phi of B^{*} to \tilde{B} in Theorem 3. 3 (2) is given
by \Phi(b^{*})(\Sigma m_{i})=\Sigma(b^{*}(m_{i}f_{i}))f_{i-}^{-1} for each b^{*}\in B^{*} and m_{i}\in \mathfrak{m}_{i} . On the
other hand there is a ring isomorphism \overline{\Psi} of End(3B) to a subring of End
(3\otimes_{B}A_{A}) such that \overline{\Psi}(f)(a\otimes x)=f(a)\otimes x for f\in End(a_{B}) , a\in a and x\in A .
But we have 3\otimes_{B}A\cong 3A=S , since A is right B-flat. Then we obtain by
\overline{\Psi} a ring isomorphism \Psi of End (a_{B}) to a subring of End (S_{A}) such that
\Psi(f)(\Sigma a_{i}x_{i})=\Sigma f(a_{i})x_{i} for each f\in End(a_{B}) , a_{i}\in_{3} and x_{i}\in A . Moreover, by
Theorem 2. 1 there exist ring isomorphisms \sigma and \sigma’ of A^{*} to End(S_{A})

and B^{*} to End(a_{B}) , respectively. For each x\in I let x=\Sigma m_{i} with m_{i}\in

m_{i} , and m_{i}=\Sigma a_{ij}m_{ij} with a_{ij}\in a and m_{ij}\in \mathfrak{m}_{i}(=a\mathfrak{m}_{i}) . Then by direct
computations we have \Phi(\sigma^{\prime-1}(\xi))(x)=\Sigma_{i,j}\xi(a_{ij})m_{ij}=(\sigma^{-1}\Psi(\xi))(x) for each \xi

\in End(z_{B}) . Thus we have the following commutative diagram

B^{*}

\sigma’\downarrow

\Phi

End(z_{B})
\Psi

A^{*}

\sigma\downarrow

End(S_{A})

4. In this short section we will deal with H-separable extensions of
right full linear rings, which have closed relations with inner galois theory
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of full linear rings (See [1]).
Let B be a right full linear ring and A an H-separable extension of B.

Then, A is also a right full linear ring, D is a simple C-algebra with [D :
C]<\infty and B=V_{A}(D) (See Theorem 4 [13]). Let I be a faithful simple
left ideal of A . Denote the class of right full linear subrings R of A such
that R contains B and I is a finite direct sum of faithful simple left
R modules by \mathscr{L} . and the class of simple C-subalgebras of D by \mathscr{D} . Then
by Theorems 36. 2 and 36. 4 [2], we obtain mutually inverse 1-1-
correspondences between \mathscr{L} and \mathscr{D} , namely, if R\in \mathscr{L} , then V_{A}(R)\in \mathscr{D}

and R=V_{A}(V_{A}(R)) , and conversely if E\in \mathscr{L} . then V_{A}(E)\in \mathscr{D} and E=
V_{A}(V_{A}(E)) . Concerning with this inner Galois theory we have.

THEOREM 4. 1. Let A, B, \prime \mathscr{L} and \mathscr{D} be as above. Then for any
right full linear subring R of A which contains B, the following three
conditions are equivalent :

(a) A is left R-fifinitety generated projective.
(b) A is right R-fifinitety generated projective.
(c) R\in \mathscr{L}

PROOF. Firstly note that A is both left and right B-finitely generated
free (See Theorem 4 [11]). Let S , 3 and 3’ be the socles of A, B and R,
respectively. By Theorem 2 [13] we have S=3A and a=S\cap B\subset S\cap R

\neq 0 . Now suppose (a) or (b). Then in either case S\cap R=a ’ by Lemma
3. 1. Then, 3\subset 3^{\gamma}\subset S , and S=aA\subset a’A\subset S . Thus we have S=a’A, which
implies R\in\ell That (c) implies (a) is due to Theorem 36. 2 [2], while
that (c) implies (b) is shown in Theorem 4 [11]. Now we have proved
the theorem.
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