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On serial quasi-hereditary rings

Morio UEMATSU and Kunio YAMAGATA
(Received November 21, 1988)

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

In their Carleton Lecture Note [3], V. Dlab and C. M. Ringel studied
the quasi-hereditary rings initiated by E. Cline, B. Parshall and L. Scott
[1] and applied to the representation theory of algebras. The quasi-
hereditary algebras generalize the hereditary algebras and have the finite
global dimension. But not all algebras of finite global dimension are
quasi-hereditary, though the algebras of global dimension 2 are quasi-
hereditary [3]. In fact, they showed an example of a non-quasi-hereditary
algebra of global dimension 4 and dominant dimension \geqq 2 . Taking
account of these facts, Dlab posed a question in [2] whether the algebras
of global dimensaion 3 are quasi-hereditary. The aim of this note is to
show that serial Artinian rings ( = Nakayama rings) of global dimension 3
are quasi-hereditary, and to answer in the negative to his question by
showing an example of an algebra, without any heredity ideals, whose
global dimension and dominant dimension are three.* ) In the first two
sections, we shall give two remarks concerning the refinement of heredity
chains and Morita invariance of the quasi-hereditarity of rings. In the
final section, some examples will be given and some problem, which is
naturally arised from those examples, will be discussed.

Throughout this note, all rings are semi-primary and, unless specified
otherwise, all modules are right modules. Denoted by add M we under-
stand the category of modules which are isomorphic to direct summands
of direct sums of copies of M. For a given ring A, the Jacobson radical
will be denoted by N.

1. Refinement of heredity chains

In this section we shall show that all heredity chains are refined to
heredity chains with the same length as the number of simple modules.

We first recall from [3] the definition of heredity chains. Let A be a

*) Our example was announced in a lecture of Dlab at the Conference of Representation The-
ory of Algebras held at the Banach Center (Warsaw, April, 1988).
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semi-primary ring and N the Jacobson radical. An ideal J of A is said to
be a heredity ideal of A if J^{2}=J , JNJ=0 and J is projective as a left or
right A-module. This implies that the ideal J is projective on both sides.
A semi-primary ring A is said to be quasi-hereditary if there is a chain 0
=J_{0}\subset J_{1}\subset\cdots\subset J_{t-1}\subset J_{t}\subset\cdots\subset Jm=A of ideals of A such that, for any 1\leq t\leq

m, J_{t}/J_{t-1} is a heredity ideal of A/J_{t-1} . Such a chain is called a heredity
chain. An idempotent e is called a heredity idempotent when AeA is a
heredity ideal. For two idempotents e and f, we say that f contains e if
e=ef=fe . Two orthogonal idempotents e and f are said to be purely
orthogonal if eA does not contain any summand isomorphic to a summand
of /A. An idempotent e is said to be basic if it is a sum of orthogonal
and nonisomorphic primitive idempotents or, equivalently, eA is basic.

Now we begin by stating a supplementary lemma to [3] Statement 6.

LEMMA 1. 1. Suppose that I and J are idempotent ideals of A such
that J\subset I and J=AeA for a basic idempotent e . Then there is an
idempotent f purely orthogonal to e such that I=A(e+f)A.

PROOF. Let I=Af’A for a basic idempotent f’ Since I_{A} is gener-
ated by f’A and eA is a summand of I_{A} , eA is also generated by f’A.
It follows that eA is isomorphic to a summand of f’A, because eA is
basic. Hence, f’ is a sum of orthogonal idempotents e’ and f such that
e’\simeq e , so that I=A(e+f)A.

LEMMA 1. 2. Suppose that I is a heredity ideal of A and I=AeA
with an idempotent e, and let e_{1} be an idempotent contained in e such
that e_{1} and e-e_{1} are purely orthogonal. Then I=Ae_{1}A\oplus A(e-e_{1})A ,

and both Ae_{1}A and A(e-e_{1})A are heredity ideals.

PROOF. The second assertion is an easy consequence of the first.
Since I=Ae_{1}A+A(e-e_{1})A , it then suffices to show that Ae_{1}A\cap A(e

-e_{1})A=0 . Now, I_{A} is isomorphic to a summand of a direct sum of
copies of eA_{A} , because I_{A} is projective and generated by eA . Hence, I_{A}

=P\oplus Q , where P and Q are isomorphic to summands of direct sums of
copies of e_{1}A and (e-e_{1})A , respectively. For our aim it suffices to show
that Ae_{1}A=P and A(e-e_{1})A=Q . Since e-e_{1} and e_{1} are purely orth-
ogonal and eNe=0, we have that (e-e_{1})Ae_{1}=(e-e_{1})Ne_{1}=0 , hence Qe_{1}=

0 . Therefore it follows that Ie_{1}=Pe_{1} and so AeiAdP. Conversely, let
P=\oplus_{i} UieiA, where every e_{i} is a primitive idempotent contained in e_{1}

and u_{i}e_{i}A\simeq e_{i}A canonically. Then, since Uiei u_{i}e_{i}e_{i}\in Pe_{1}A , we have
that PdPeiA, which implies that P\subset Ie_{1}A\subset Ae_{1}A . In consequence, we
have that P=Ae_{1}A , as desired. Similarly we know that Q=A(e-e_{1})A .
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PROPOSITION 1. 3. Any heredity chain is refined to a maximal hered-
ity chain of the same length as the number of simple modules.

PROOF. Let e and f be basic and purely orthogonal idempotents,
and e= \sum_{i=1}^{s}e_{i} a sum of orthogonal primitive idempotents. Let I=A(e
+f)A and J=AfA, and assume that \overline{I}:=I/J is a heredity ideal in \overline{A}:=

A/J. Then, by Lemma 1. 1, it suffices to show that the inclusion J\subset I is
refined to a chain J=J_{0}\subset J_{1}\subset\cdots\subset J_{S}=I such that every Jj/J_{j-1} is a hered-
ity ideal in A/Jj-l, where J_{j}=A(f+\Sigma_{i=1}^{j}e_{i})A . For any one of e_{i} , say e_{1} ,

we know from Lemma 1. 2 that \overline{I}=\overline{A}\overline{e}_{1}\overline{A}\oplus\overline{A}(\overline{e}-\overline{e}_{1})\overline{A}, and both \overline{A}\overline{e}_{1}\overline{A}

and \overline{A}(\overline{e}-\overline{e}_{1})\overline{A} are heredity ideals of \overline{A}. This implies that, putting J_{1}=

A(e_{1}+f)A , J_{1}/J is a heredity ideal in A/J. Moreover, since I/J_{1}\simeq\overline{I}/\overline{J}_{1}\simeq

\overline{A}(\overline{e}-\overline{e}_{1})\overline{A} as \overline{A}-modules, I/J_{1} is a projective \overline{A}-module. Hence I/J_{1} is
clearly a heredity ideal of A/J_{1} . Thus, by induction, we have a desired
refinement.

Lemma 1. 4. Let P and P’ be projective A -modules, and assume that
e is a heredity idempotent such that P belongs to add(eA). Then, for any
morphism f:Parrow P’ such that ker f is small in P, the morphism Parrow P’eA

induced from f is a splittable monomorphism.

PROOF. We may assume that e and 1- e are purely orthogonal,
which implies that eA(1-e)=eN(1-e) , where N=radA. First observe
that P=PeA. Then f(P)\cap P’eN=[f(P)eA(1-e)+f(P)eAe]\cap P’eN=
f(P)eN(1-e)+(f(P)eAe\cap P’eN) . Moreover, f(P)eAe\cap P’eN\subset P’eNe=0 .
As a consequence, we have that f(P)\cap P’eN=f(P)N and hence f(P)/
f(P)N\simeq(f(P)+P’eN)/P’eN , which is a summand of FeA/F eN. Hence
there is a splittable epimorphism p:P’eA/P’eNarrow f(P)/f(P)N so that the
following diagram is commutative

P-f(P)-f(P)/f(P)N
P’eA-P’eA/P’ eNr|p-

where all morphisms except p are natural. Since the composite Parrow f(P)

arrow f(P)/f(P)N is a projective cover, we therefore know that the morphism
Parrow P’eA induced from f is a splittable monomorphism, because AeA_{A}

and so P’eAA are projective.
As an easy application, we can give another proof of the following

proposition which characterizes the hereditary rings in terms of the
refinement of chains of ideals [3].
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PROPOSITION 1. 5 (Dlab-Ringel). A semi-primary ring is hereditary if
and only if every chain of idempotent ideals can be refined to be a hered-
ity chain.

PROOF. First, assume that a semi-primary ring A is hereditary and
let J\subset I be a chain of idempotent ideals. It follows from Lemma 1. 1 that
there are primitive idempotents e_{i} , 1\leq i\leq s , and an idempotent e such that
the set \{e, e_{i}|1\leq i\leq s\} is of orthogonal idempotents and J=I_{0}\subset\cdots\subset J_{S-1}\subset J_{S}

=I, where J_{0}=AeA and J_{i}=A(e+e_{1}+\cdots+e_{i})A for i\geq 1 . Take any i

and let \overline{A}=A/J_{i-1} . Since \overline{A} is hereditary and \overline{e}_{i}\overline{N}\overline{e}_{i}=0 , it is then obvi-
ous that J_{i}/J_{i-1}(=\overline{A}\overline{e}_{i}A3 is a heredity ideal in \overline{A}.

To show the converse, we shall show that N_{A} is projective. Let \{e_{i}|0

\leq i\leq n\} be a complete set of orthogonal primitive idempotents and p:\oplus_{i=0}^{n}

P_{i}arrow N_{A} a projective cover such that P_{i}\in add(e_{i}A) . Since from our
assumption every e_{i} is a heredity idempotent, we can assume that j\leq i if
e_{j}Ae_{i}\neq 0 . Now put P_{\acute{s}}=P_{0}\oplus\cdots\oplus P_{s-1} and e_{\acute{s}}=e_{0}+\cdots+e_{s-1}(1\leq s\leq n+1) .
Then, p(P_{s+1}’)=p(P_{\acute{s}})+p(P_{s}) and N=p(P_{\acute{n}+1}) , where by Lemma 1. 4 every
p(P_{s}) is projective. To show the projectivity of N_{A} , we shall show by
induction on s that every p(P_{\acute{s}}) is projective. Now let \overline{A}=A/Ae_{\acute{s}}A and
\overline{N}=(N+Ae_{\acute{s}}A)/Ae_{\acute{S}}A . Since e_{j}Ae_{i}=0 for i<j , all e_{i}A ( i\geq s) are
canonically considered as \overline{A}-modules, so that P_{i}\in add(\overline{e}_{i}A3(i\geq s) . On
the other hand, it is easily seen that the morphism \overline{p}:\oplus_{\iota\geq s}\cdot P_{i}arrow\overline{N} , which
is naturally induced from p, is a projective cover. The composite f:P_{s}arrow

\oplus_{i\geq s}P_{i}arrow\overline{N}arrow\overline{A}\overline{p}
- has the small kernel, and \overline{A}\overline{e}_{S}\overline{A} is a heredity ideal of

\overline{A} because by the assumption on the refinement the chain Ae_{\acute{s}}A\subset Ae_{\acute{s}+1}A

is a consecutive part of a heredity chain. It therefore follows from
Lemma 1. 4 that f is a monomorphism, which implies that p(P_{s})\cap Ae_{\acute{s}}A=0 .
Thus we have that p(P_{\acute{s}+1})=p(P_{s})+p(P_{\acute{s}}) is a direct sum since p(P_{\acute{s}})\subset

Ae_{\acute{s}}A , which implies that p(P_{\acute{s}+1}) is a projective A-module.

2. Morita invariance

In this section, we shall show that the quasi-hereditarity of semi-
primary rings is Morita invariant.

PROPOSITION 2. 1. Suppose that e is an idempotent of A such that A
=AeA. Then, an ideal I of A is a heredity ideal if and only if eIe is a

heredity ideal of eAe.

PROOF. We denote by B the ring eAe , and choose an idempotent f
such that f\leq e and I=AfA. Then, J:=eIe is an idempotent ideal BfB
of B. Since the rings A and B are Morita equivalent, we have that Ie is
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projective B-module, because I_{A} is projective and Ie\simeq I\otimes_{A}Ae as B-
modules. This clearly implies that J is a heredity ideal of B, because J is
a summand of Ie , and f(radB)f\subset e(radA)e=0 .

Conversely, assume that J(:=eIe) is a heredity ideal of B. Let f be
an idempotent contained in e such that J=BfB, and let I=AfA . Since
eA_{A} is a generator, A_{A} is isomorphic to a summand of a direct sum, say
\oplus eA , of copies of eA. This implies that I_{A} is isomorphic to a summand
of \oplus JA_{A} . On the other hand, JA is a projective A-module, since JA=
BfA\simeq BfB\otimes_{B}eA as A-modules and A is Morita equivalent to B . Thus
we know that I is a projective A-module.

LEMMA 2. 2. Suppose that e is an idempotent of A such that A=
AeA. Then a chain of ideals of A, 0=I_{0}\subset I_{1}\subset\cdots\subset I_{m}=A, is heredity if
and only if 0=eI_{0}e\subset eI_{1}e\subset\cdots\subset eI_{m}e=eAe is a heredity chain of eAe.

PROOF. Let I be an ideal and \overline{A}=A/I . Then by induction on m,
the lemma follows from Proposition 2. 1, taking account of the fact that \overline{A}

=\overline{A}\overline{e}\overline{A} and \overline{e}\overline{A}\overline{e} is canonically isomorphic to eAejele.
Assume now that A is Morita equivalent to a ring B. Then, as well

known, their basic rings are isomorphic and generated by idempotents.
Hence, the following statement is an immediate consequence of the above
lemma.

PROPOSITION 2. 3. Suppose that two semi-primary rings A and B are
Morita equivalent. Then, A is quasi-hereditary if and only if so is B.

3. Serial quasi-hereditary rings

Throughout this section, all rings will be serial Artinian rings.

PROPOSITION 3. 1. Let A be a connected serial Artinian ring and
N=rad A. Then the following statements are equivalent.

(1) A is quasi-hereditary.
(2) Either there is a simple projective module or there is a morphism

f : e1Aarrow e_{2}A with primitive idempotents e_{1} , e_{2} such that Im f=e_{2}N and
Ker f is projective, that is, there is a simple module with projective dimen-
sion 2.

(3) There is an indecomposable projective module, say eA, such that
every non-zero morphism form eA to a projective module is a monomor-
phism.

Moreover, in the statement (2), let eA be a module with an
idempotent e which is isomorphic to Ker f. Then, AeA in (2) as well as
in (3) is a heredity ideal of A .
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PROOF. We assume that A contains no simple projective modules
because, otherwise, all assertions are obviously valid.

(1)\supset(3) By Proposition 1. 3 there is a heredity and primitive
idempotent e . The assertion (3) for the module eA is then clear from
Lemma 1. 4.

(3)\supset(2) Assume that eA is a module given in (3). Let e_{1}A be
an indecomposable projective module of maximal length which contains a
submodule, say P, isomorphic to eA. Since A contains no simple projec-
tives, there is an indecomposable projective module e_{2}A and a non-zero
morphism f:e_{1}A-arrow e_{2}A such that f(e_{1}A)=e_{2}N . From the maximalilty of
e_{1}A , f is not a monomorphism and so the restriction of f to P is not

monomorphic. Hence the composite eA_{arrow}^{-}Parrow e_{2}Af is not a monomor-
phism. It therefore follows from assumption that P\subset Kerf . which
implies that Ker f is projective because any module containing a projec-
tive submodule must be projective.

(2)\supset(3) Let e_{1} , e_{2} and f be the idempotents and the morphism
given in the statement (2). Let now e be an idempotent such that eA is
isomorphic to Ker f, g a non-monomorphism from eA to a projective
module P, and i:Parrow I an injective hull of P. We claim that g is a zero
map. The composite ig : eAarrow I is extended to e_{1}A , say g’ : e_{1}Aarrow I .
Since g’ is not an isomorphism, it is easily seen that there is a morphism
h:e_{2}Aarrow I such that g’=hf because I is projective and f is a source map
( = a minimal left almost split map) in the category of finitely generated
projective modules (see the proof of [6] Theorem 1). Hence Ker f
\subset Ker g’ so that g=0, as desired.

(3)\supset(1) From the assumption, the endomorphism ring of eA is a
division ring and hence eNe=0. Next, to show that AeA_{A} is projective,
take an idempotent e_{1} such that e_{1}AeA\neq 0 . Since e_{1}AeA is a homomor-
phic image of eA, there is a morphism from eA to e_{1}A , eAarrow e_{1}AeA\subsetarrow

e_{1}A , which is a monomorphism by assumption. We therefore have an
isomorphism eA_{arrow}^{-}e_{1}AeA , which implies that e_{1}AeA is projective. Thus
we conclude that AeA is a heredity ideal and A is quasi-hereditary,
because the quiver of A/AeA is a tree so that A/AeA is obviously quasi-
hereditary.

THEOREM 3. 2. Assume that A is a serial Artinian ring whose global
dimension is three. Let P_{2}arrow P_{1}arrow P_{0}arrow Marrow 0 be a minimal projective resolu-
tion of an indecomposable module M such that P_{2} is not zero, and let e be
an idempotent such that eA is isomorphic to the smallest projective sub-
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module of P_{2} . Then AeA is a heredity ideal of A, and A is quasi-
hercditary.

PROOF. From results in Section 2 we can assume that A is basic and
connected. Let u:P_{2}arrow P_{1} be the given morphism and i:eAarrow P_{2} an em-
bedding. Since injective hulls of projective modules are projective, there
exists an idempotent e_{1} such that e_{1}A is an injective hull of eA, and let
k:eAarrow e_{1}A be the embedding which is extended to a monomorphism j:P_{2}

arrow e_{1}A .
(a) We first assume that top e_{1}A(=e_{1}A/e_{1}N) is injective. To show

that AeA is a heredity ideal, by Proposition 3. 1 it suffices to show that
every non-zero morphism g:eAarrow Q is monomorpic for any indecomposa-

ble projective module Q . But we can obviously assume that Q is projec-
tive and injective. Then, clearly there exists a morphism h:e_{1}A-arrow Q such
that g=hk. Since top e_{1}A is injective, h should be an epimorphism and
so an isomorphism. Thus we know that g is a monomorphism.

(b) Next we assume that top e_{1}A is not injective. There is then a
morphism f:e_{1}Aarrow e_{2}A such that f(e_{1}A)=e_{2}N . By Proposition 3. 1 again,
it suffices to show that Ker f is a projective submodule and we consider
the case where j(P_{2}) is not contained in Ker f. Thus we have that Ker f
\subsetneqq j(P_{2}) and, since e_{1}A is injective, Ker f is not zero. It follows that
there are canonical isomorphisms soc(e_{2}A/fj(P_{2}))arrow- soc (Cok u ) arrow- soc P_{0} .

Since fj(P_{2})\neq 0 and P_{0} is projective, it is easily seen that the isomorphism
soc(e_{2}A/fj(P_{2}))arrow-soc P_{0} is extended to a monomorphism v’ : e_{2}A/fj(P_{2})\Leftrightarrow

P_{0} . In consequence, denoting by v the composite of morphisms e_{2}Aarrow

e_{2}A/fj(P_{2})v’arrow P_{0} , there exists the following exact sequence

0arrow Kerfarrow P_{2}arrow e_{2}Aarrow P_{0}arrow Cokvarrow 0fjv ,

because Ker f\subsetneqq j(P_{2}) and so j^{-1}(Kerf)\simeq Kerf . Since the projective
dimension of Cok v is less than 4, it therefore follows that Ker f is pr0-

jective. This completes the proof of the theorem.

4. Examples

All algebras given in the examples in this section will be defined by
quivers with relations over a field. By dom. dim A we understand the
dominant dimension of a ring A.

(1) First we shall note that, in Theorem 3. 2, Ker u does not neces-
sarily generate a heredity ideal, though Ker u is projective. This is seen,

for instance, by the algebra A_{1} given in Figure 1. This algebra has a
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unique heredity idempotent e_{5} , and by taking top e_{5}A_{1} as M in Theorem
3. 2, we have that Ker u\simeq e_{4}A_{1} , where the idempotents e_{i} correspond to
the vertices i .

(2) We next consider the algebra A2 defined by the quiver with rela-
tions in Figure 2. Then it is easily seen that dom. dim A_{2}=g1 . dim A_{2}=3 .
But, A2 has no heredity primitive idempotents so that A2 has no hered_{\dot{1}}ty

ideals (Lemma 1. 2).
(3) For the algebra A_{3} given in Figure 3 ([3] Part 1, Example) it

holds that dom. dim A_{3}=g1 . dim A_{3}=4 . This shows that the global dimen-
sion 3 in Theorem 3. 2 is the best possible dimension for serial Artinian
rings. (See Lemma 4. 2 below.)

1

2\nearrow^{\alpha 1} \backslash ^{\alpha_{5}}5 0=\alpha_{3}\alpha_{2}\alpha_{1}=\alpha_{4}\alpha_{3}\alpha_{2}

=\alpha_{2}\alpha_{1}\alpha_{5}

\alpha_{2}\backslash

\parallel_{\alpha 4}

3 4 Figure 1
\alpha_{3}

1\alpha\backslash _{\backslash }^{\backslash \alpha’}3

\gamma

4\nearrow_{\delta}^{5}\delta’’ 0=\beta’\beta=\gamma\alpha=\alpha’\beta

=\epsilon’\gamma=\delta’\delta=\delta’\epsilon

2\nearrow^{\beta}\gamma_{\beta’}
\backslash _{\epsilon’}\backslash _{6}^{\epsilon}

\alpha\alpha’=\beta\beta’\delta\delta’=\epsilon\epsilon’

Figure 2
1

\nearrow^{\alpha_{1}}
\backslash ^{\alpha_{3}}

2 3 0=\alpha_{2}\alpha_{1}\alpha_{3}=\alpha_{1}\alpha_{3}\alpha_{2}\alpha_{1}

\alpha_{2}

Figure 3

(4) Considering the algebras A2, A3 and the other examples (e. g .
[3] ) , it is very natural to ask when the algebras of dominant dimension
\geq 2 are quasi-hereditary. In the following we answer this question for
serial artinian rings.
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LEMMA 4. 1. Let A be a semi-primary ring, G a generator-
cogenerator, and R the endomorphism ring of G. Then, an indecomposa-
ble summand X of G is simple if and only if every non-zero morphism
from e_{X}R to an indecomposable projective module e_{Y}R is monomorphic.
Here, e_{Z} denotes the idempotent of R corresponding to a summand Z of
G.

PROOF. We denote by Mod A the category of all right A-modules.
Since the functor Hom_{A}(G, -) : Mod Aarrow Mod R is fully faithful, for any
non-zero morphism f:e_{X}R -arrow e_{Y}R there is^{1} a non-zero morphism f’ : Xarrow Y

such that f=Hom(G_{ },’ f’) , where X and Y are indecomposable summands
of G . Hence, in case X is simple, f is clearly monomorphic because so is
f’ Conversely, suppose that an indecomposable summand X of G con-
tains a simple submodule S with S\subsetneqq X . Take a projective cover p:Parrow S

and an indecomposable summand I of an injective hull of X/S , and let u :
Parrow X, v:Xarrow I be the canonical morphisms factoring through S and X/S ,
respectively. Since G is a generator-cogenerator, we can assume that P
and I are summands of G and so u and v are non-zero elements of e_{X}Re_{P}

and eiRex, respectively. Let now f:e_{X}Rarrow e_{I}R be a morphism defined by
a multiplication of v . It then follows from assumption that v is a
monomorphism and hence u is zero, because f(u)=vu=0, a contradiction.

LEMMA 4. 2. Let R be the endomorphism ring of a generator-
cogenerator A -module G, and assume that R is connected and serial
Artinian. Then, R is quasi-hereditary if and only if G has a simple sum-
mand.

PROOF. Since the heredity chains are determined by primitive
idempotents (Proposition 1. 3), this immediately follows from Proposition
3. 1 and Lemma 4. 1.

PROPOSITION 4. 3. Let R be a serial Artinian ring of dominant
dimension greater than 1, and e an idempotent such that eR is minimal
faithful. Then the following assertions hold.

(i) R is quasi-hereditary if and only if the left eRe module eR has
a simple summand.

(ii) If the Loewy length of every indecomposable summand of eRe_{eRe}

is greater than 2, then R has no heredity ideals.

PROOF. Let A be the ring eRe and G=eR. Then G is a generator-
cogenerator as an A module and R=End_{A}(G)^{op}([5] and [4] \S 4. 3, PropO-
sition 1). The assertion ( i) is therefore clear from Lemma 4. 2. For
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(ii), assume that l (eRe)\geq 3 , where l (X) denotes the minimal Loewy
length of indecomposable summands of a module X. By [6], we know
that G belongs to the category add(A\oplus I\oplus I/soc I), where I is the in-
jective hull of the top of AA . It therefore follows from the assumption
that the minimal Loewy length of indecomposable objects in add(A\oplus I\oplus I/

soc I) is greater than one, so that G has no simple summands. In conse-
quence, our assertion follows from ( i ) .
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