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§1. A relative sequence of homomorphisms P
and a P-Galois extension.

Let B be a ring with an identity 1 and A a subring of B with common
identity 1 of B. In [6], the author studied on a relative sequence of
homomorphisms P of End(B,) and a P-Galois extension B/A. In this
paper we shall study on constructive P-Galois commutative extensions of
cyclic type as an application of the works of [6].

For the convenience of readers, we shall summarized notions and sev-
eral properties of a relative sequence of homomorphisms P and a P-Galois
extension. The details and proofs will be seen in [6].

Let P={D,=1, D, -+, D,} be a finite subset of End(B,) and let P be
a poset with respect to the order <. For D; and D, in P, D;>»D, means
that D; is a cover of D,, that is, D;>D; and no D,&P such that D;>D,>
D;.

P(min) (resp. P(max)) is the set of all minimal (resp. maximal)
elements of P.

For D;eP, a chain of D, means a descending chian in P such that
D,=Dy>.....>»D,,, D;,,&P(min),
and m+1 is said to be the length of the chain.

(I) P is said to be a relative sequence of homomorphisms if it satisfies
the following conditions (A.1)-(A.4) and (B.1)-(B.4):

(A.1) D;#0 for all D,eP and P(min) coincides with all D;€P such
that D; is a ring automorphism.

(A.2) The length of each chain of D, is unique and denotes it by
ht(D,).

(A.3) D.D,eP if D;D;+( and if D;D;=0 then D;D;=0.

(A.4) Assume D.D; and D;D, are in P.

(i) D.D;>D;D,(resp. D;D;>D,D;) if and only if D;>D,.

(ii) If D:.D,>D,, then D,,= DD, for some Ds<D; and D,<D;.
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(B.1) D;(1)=0 for any D,&P —P (min).

Let D;eP. Then there exists g(D;, D;)EEnd(B,) for each D;<D,
such that

(B.2) D:(xy)=20,9(D;, D;)(x)D;(y) for x, y&B where the sum runs
over all D; such that D,<D;.

(B.3) Letx yveEB.

(i) gDy, D) (xy) =2 pug(D;, D) (x)g(Dy, D;)(y) where the sum runs
over all D, such that D,<D,<D,;.

(ii) Let D;>D; and D;D,>D,. Then g¢(D;, D;)(x)g(D,Dy, Dy)(y)=
g(D;, D) (%)X p,, pg(D;, D) (x)g(Dy, Dy)(y) where the sum runs over all
D; and D, such that D;D,=D,.

(B.4) (i) gW;, D;) is a ring automorphism.

(ii) ¢g(D;, A)=D; for any minimal A of P,

(ii) gDy, D) (1) =0 if D,<D..

Since P(min) is a finite multiplicative semigroup which is contained
in the group of automorphisms of B, it forms a group.

A relative sequence of homomorphisms P={D,=1, D, ..., D,} is said
to be cyclic if D,=(D,)? for i=1, 2, ..., n and Di>D’ for {>j.

For the covenience, elements of P are some times denoted by Capital
Greek.

The sum of all A;& P (max) is denoted by A and for Q€P, g(A;, Q) is
the sum of all g(A;, Q) such that A;=Q.

For P(min), Bi=B ™" ={b& B ;Q(b)=b for all Q € P(min)} and
B?=B,N B, where By={beB ;Q(b)=0 for all QP — P (min)}.

(II) Assume a relative sequence of homomorphisms P satisfies the con-
-dition

(A.5) |P(min)|=|P (max)|.
Then B/A is said to be a P-Galois extension if

(g.1) BF=A

(g.2) There exists a system {x;, ¥;;7=1,2,...,s}<SB such that

=1 %:9(A, Q) (9:) =82 Where §,, is the Kronecker’s delta.

If P is cyclic then P satisfies (A.5) since |P(min)|=1=|P (max)|, and
in this case, a P-Galois extension B/A is said to be cyclic.

The system {x;, y;;i=1,2,...,s}< B which satisfies (g.2) is said to be
a P-Galois system for B/A.

Let D(B, P)=3X0crPBu, be a free left B-module with a B-basis {u,;
Q& P}. Then D(B, P) forms a ring by the multiplication (b« o) (cur)=
b2r<ag(Q, A) () (uar where u,r=0 if AT=0 (Theorem 2.2 [6].
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Then the map j of D(B, P) to End(B,) defined by
7 (uab) (x)=Q(bx) for x&€B

is a ring homomorphism.

Assume a relative sequence of homomorphisms P satsifies the condi-
tion (A.6). For each maximal element A;, if A;>Q then there exists Q'
P(resp. Q”) such that A;=Q'Q(resp. A,;=QQ").

Then, under the assumption that Bf=A, (g.2) is equivalent to (g.2")
B, is a finitely generated projective module and ; is an isomorphism
(Theorem 3.8 [6].

In the rest of this paper, we assume that a relative sequence of
homomorphisms satisfies (A.5) and (A.6).

(Il) Let P=P(min) (and hence P=P(max)). Then P is a finite
group of automorphisms of B, and g(A, Q)=¢(Q,Q)=Q by (B.3), (ii).
Hence the existence of a P-Galois system {x;, y;;7=1,2,..., S} means the
existence of that of X', xQ(y,)=48... Consequently, a P-Galois exten-
sion means a Galois extension of separable type which is studied in [2],
and the others.

Let B/A be a P-Galois extension. Then B, >A4 A, is a direct
summand of B,, if and only if there exists x& B such that

A(x)=1 (Theorem 3.3 [6]).
If B is commutative then B,P>A,.

(IV) Let P(min)={1} and P (max)={A}. If B is commutative and
Bf=A, then B/A is a P-Galois extension if and only if there exists a
system {x;, ¥;:;1=1,2,...,s}SB such that 25_; Q(x,)y;=84q, and if this is
the case, B=>5_, Ay;.

Moreover, the existence of such a system {x;, y;;:i=12,...,s} is
equivalent to the existence of an element x,&B for each Q&P such that
(i) Qo) =1,

(ii) T'(xo) =0 if and only if AT =Q for some A€ P
(iii) If AT=Q then I'(xy,)=x, (Theorem 6.6 and Corollary 5.8 [6]).

Hereafter, we assume that all ring considered are commutative.
§ 2. Cyclic P-Galois extensions.

In this section we assume that P={D°=1, D, D?, ..., D*'} is a cyclic
relative sequence of homomorphisms of End(B,). Thus P is a linearly
ordered set with P(min)={1} and P (max)={D?"'}. Moreover,
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D(xy)=g(D, D)(x)D)+gD, D(x)y
=g(D, D)(x)D(y)+Dx)y for x, yEB

shows that D is a g(D, D)-derivation of B.
The purpose of this section is to determine the structure of B when
B is a P-Galois extension over A.

REMARK: Let A be an algebra of prime characteristic p and let ¢ be
an A-automorphism of B of order p. Then D=¢—1 is a ¢-derivation,

P={D°=1, D, D?, ..., D* '} forms a cyclic relative sequence of homomor-
phisms and a P-Galois extension is a ¢-cyclic extension which is studied in
and [7].

R is said to be a p-extension of A if R=A[X]/(f(X)) for some
monic polynomial f(X)=X?—Xg—p3(a, BEA) of degree p. Hence if R
is a p-extension of A then it can be written
R=A[x]=APxADx*AP...Px*"* A and x’=xa+ B for some ¢, FEA.

In the rest we assume that P={D°=1, D, D?, ..., D**=A} such that
Dg(D, D)=g(D, D)D.

THEOREM 2.1. Let A be an algebra over a prime field GF(p) of
prime characteristic p and let B be an extension ring of A. Then B/A is
a P-Galois extension for some P if and only if B=A[x]=2%=0Px'A is a
p-extension with x’=xa+f for a, BEA and acA*'={a*';acA}. More
precisely, if this is the case,

(i) gD, DYx)=x+c for some ccA and c*'=aq,
(ii) D*&x®H=Fk! for 1<k<p-—1.

PrROOF. Assume B/A is P-Galois extension. Since B.@>A,, there
exists an element weB such that A(w)=1. Then x=D??%(w) is a re-
quested one. D (g(D, D)(x)—x)=g(D, D)(D(x))—D(x)=1—1=0 shows
that

gD, D)(x)—x=ceBf=A........ @,
For this x, Dx?)=g(D, D)(x)D(x)+Dx)x=g(D, D)(x)+x=2x+c.
Hence we can see that
D (x% :2?;(}(];) xic* " by induction on k. Thus,
D (x?) =cP 1,
Since D (x?—xc?') =0,

xP_xCp_IZBEBP:A ......... (**>
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Further, since D?*(x?)=2! we can see

D*(x®)=Fk!......... CFF%)
for 1<k<p—1 by induction on %.
Since

1if D'=A

Di(xP) 1+ DI(x*2/ (p—2) D'D’”("p—l):{o if Di=Dr-

we assume that there exist elements #,, #., ..., %, and v,, v,, ..., v; of
B such that ¢, Q(u)v;=08a0 for all Q=D’, j=k+1, ..., p—1 and each
u;, v; are contained in A[x]. Then

1 Di(u)v,i— D (x*/ R D)2 D7 (u)v;
_(1if j=p—1
‘{0 if j=k k+1, ..., k—2.
Thus there exists a system {u;, v;;i=1, 2, ..., s} such that
$o1 Q(u)v; =08 a0 for all Q € P and each u,;, v, A[x]. Then B=
?z3 x'A by (IV) and (**)

Next, we shall show that {1,x, x% ..., x*"'} is linearly independent
over A. If z=3%74 xia,=0 (a;€A), then 0=AE)=(p—1) ! ap-, by (***)
and this means that @,_;=0. Repeating this way we can see that a;=( for
i=0,1,2,...,p—1. Consequently, we can see that B is a p-extension such
that

B=A[x]=2%®x'A with x*=xc?'+d for ¢, dEA,

and further, this x satisfies (i) and (ii) by (*) and (**).

Conversely, assume that B=A[x]=2%2{Px'A is a p-extension such
that x?=xc?'+d for ¢, d € A. Then the map ¢ of a polynomial ring
A[X] over A defined by 6(X)=x+c gives an A-automorphism of A[X].
Further the map D of A[X] defined by () D(Xa)=a for a€ A, (ii)
D X*a)=(c(X)D(X*H)+D(X)X*Ya and (1) D(Zi0 X'a) =i
D(X9a; gives a o-derivation of A[X]. For, assume D(X*) =
o(XHD(X*¥H+D(XHX**for all k<n and i<k Then

D(X™)=6(X)D(X"+X"
:G(X)<O.<Xi-—1>D(Xn+l—i>_+_D<Xi—l>Xn+l-—i)+Xn
o O.(Xi)D(Xn+l—i> _+_ <0.<X)D<Xl—l> +Xi—l>Xn+i—l
— G(Xi>D<Xn+l—i> +D<Xz'>Xn+l—i.

Thus D is a o¢-derivation. Since D(X?) =c¢?!, D(X?—Xc**—d)=0 and
this shows that D induces a o¢-derivation of A[X]/(X?—Xc?'—d)=B.
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We denote it again by D. Then P={D°=1, D, D?, ..., D*"'=A} is a rela-
tive sequence of homomorphism for B/A such that P(min)={1},
P (max)={A} and Dg(D, D)=g(D, D)D.

Let 2=} xiaq,eBf(a;€A). Then 0=AG)=2ZAG&Ha;=(Pp—1)!
a,, yields a,_,=0. Repeating the same way, we can see that z=gq.
Thus, Bf=A. Since A" H=(p—-1) !=—-1, xpj)=D?'7(x*") satisfies
(i), (ii) and Gii) of (IV). Thus B/A is a P-Galois extension by (IV).

COROLLARY 2.2. Let A be an algebra over GF (p) and let B =
Alx]|=2%4PBx'A be a P-Galois extension over A such that x*=xc?'+d
for some ¢, d=A and D (x)=1. Then

(L A g(D, D)-derivation g(D, D)—1 is obtained by cD.

@) B ={peB ;g(D, D)(b)=b}=A if and only if c is a vegular
element (i. e, ¢ is non-zevo-divisor). In particular c¢ is a unit element if
and only if B/A is a g(D, D)-cyclic extension.

3 B9 A(G, e., A is a proper subset of BYPD) if and only if ¢
is a zero divisor. In particular if c is nilpotent then there exists a positive
integer k such that B**={b*"; bB}< A.

4) gD, D)=1 if and only if c=0. Moreover, if this is the case,
BPcA.

Proor. (1) g(D,D)—1=cD if and only if (g(D, D)—1)(x'a)=
cD (x'a) for acA and 0<i<p—1. Since (g(D, D)—1)(xa)=ca=cD (xa),
we can easily see (g(D, D)—1)x'a)=cD (x'a) by induction on 7.

(2) Let ¢ be regular and let y=>%2} x‘a;&cB??, Then 0= (gD,
D)—1D)=2°4(x+c)a;— 2%} xa; yields <§:;> cap_,=0. Since c¢ is
regular, this means that a,.;,=0. Repeating this way, we can easily see
that y=a,, and hence B9?P=4. Conversely, assume that B9 =4,
If ca=0 for some a(+0)&A, then g(D, D)(xa)=(x+c)a=xa shows that
xa€ A and this contradicts to linear independence of {1, x, x2, ..., x*7'}.

Let ¢ be a unit. Then g(D, D)(y)=y+1 for y=xc~'. Moreover we
can see that B=>%-{®y‘A and y*=y+d for some d=A. Thus B/A is a
g(D, D)-cyclic extension, and the converse is also true [see [4]].

(3) B*?DP5A if and only if ¢ is a zero divisor by (2). Since D (x%) =

285 (j) xics 1% (see the proof of [Theorem 2.1), D (x*)=c?! for some

t>1. If ¢ is nilpotent, we may assume (c¢? })?*=( for some £>(. Then
xP* = (xP)?* = d** shows that B**"'C A.
(4) Since g(D, D)(x)=x+c¢, g(D, D)=1 if and only if ¢=0. Further
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if this is the case, x?=d shows that B’C A.

REMARK: (i) If A is an algebra over GF'(2), and B is a 2-extension
of A, then B=A[x]=A®xA with x*=xc+d for some ¢, d=A. Hence
any 2-extension of A is a P-Galois extension by [Iheorem 2.1l

(ii) Let B=A[x]=2%=0®x'A be a p-extension such that x*=xc?'+d.
Corollary 2.2 of (2) shows that if ¢ is a regular element but not a unit
element then B/A is a P-Galois extension but not a g(D, D)-cyclic exten-
sion though B9®?P =4,

In the rest we assume that p>2 is a prime and K is a field of charac-
teristic p or of () and K contains a primitive p—1 the root ¢ of 1 if the
characteristic is 0. Further A is an algebra over K.

Let C=A[y]=2%2¢Py‘A be a ring with y*"'=c & A (and hence,
Aly]l=A[Y]/(Y?1'—¢)). For a primitive p—1 th root & of 1 of K, we
define two maps r and E of C as follows:

r(X8% yia) =280 ay,
Ea)=a EQ*a)=(OE@*)+E®»)y*")a and
E(X2% yia) =288 E(y'a) (a:, a€A).

Then 7 is an A-automorphism of order p—1. Further, we have the
following

LEMMA 2.3. E is a r-derivation of C such that

(i) E@H=y*'(¢F'+2+...... +¢+1)
. (=01 i=p—1
Gi) E {qto if 0<i<p—2
(i) E*OH=&+DE+H e+ g2+ +E4+1) for 2<k <
p—2.
(iv) Er=rtEt.

PROOF. By the same way as in the proof of [Theorem 2.1, we have
EGWH=rt(GWHEQ*H+EQHy*? for (0<i<k Since EQ>)=r)+y=
y(¢+1), we can easily see that E(y®=y*'(¢*'+&¢*2+--+¢+1D by
induction on k. Further E (P )=y 2(¢P 24P 34+ ¢4+1)=0=E(c)
shows that E is well-defined and is a r-derivation. This proves (i ).

Since any element of C is obtained by 3%=¢ y‘a;.(a;€A), (ii) is clear
by (i).

By induction on %, we can easily see (iii).

Er(yN=E@H =y (¢ 0 4+ E+ DL and cELGY) =
r(E(®) E=y* ek (¢ 4 g+ 24+ L+1) ¢ for each 0<k<p—2 shows




130 K. Kishimoto

that Er=tE¢
For 1<k<p—2, we put 7, =¢*+ &1+ + ¢ +1.

THEOREM 2.4. Let C be an extension ring of A. Then C /A is a
Q-Galois extension for some Q={E°=1, E, E?, ..., E*?} with Eg(E, E)=
g(E, EDEC if and only if C is isomorphic to A[Y]/(YP1—¢) for some ¢
cA.

PROOF. Assume C=A[y]=A@--@®y*? A with y*2=¢. Then Q=
{E°=1,E, ..., E*?% is a relative sequence of homomorphisms of C /A
where E is a r-derivation which is discussed in Lemma 2.3 and so Er=
tEt.

Let a=22f y'a;€C*. Then 0=E* (@) =ap_19p_s7p_s-- 7 shows that
a-,=0. Repeating this way, we have CF=A. For each E'=Q, Ya=y"’/
(pme--m-1) satisfies the conditions (i), (ii) and (iii) of (IV), and so
C/A is a @-Galois extension by (IV) again.

Conversely, assume that C/A is a Q-Galois extension. Since CiP>
A,, there exists w € C such that E*2(w)=1. Put y=FE?3(w). Then
E()=1. Since Eg(E, E)=g(E, EDEt, E(g(E, E)(y)—y8) =
9(E, EYEQO—E()=¢—¢=0, and hence, ¢(E, E)(y)—yt=acCE=A.
Then g(E, E)(y+a/({—1D)=@+a/(¢—1))¢t. We denote this y+a/(&—
1) by y again. Then g(E, E)(y)=y¢ and E (y) =1.

Let Q=FE’, yo=y’/mmp--7-. and T=E‘*. Then Q(y,)=1 and T'(y,) £0
if and only if /<j, that is, Q=TA where A=FE’i, Further if this is the
case, I'(Wa) =y *(—ifj—i+1- pi—1) =ys. Thus 7y, satisfies the conditions
(i), (i) and (iii) of (IV), and so C=3%¢ 3’A by (V). Let o=

%2 ¥’a;=0. Then 0=E**(a)=ap»(pp-- p_s) implies a,,=0. Repeat-
ing this way we can obtain a,,=a, s=--=a@,=a@=0. Thus {1, ¥% ...,
»*7%} is a linearly independent A-basis for C. Since E (y*~1)=y*2p,_,=0,
y#'=c for some c€A. Thus C is isomorphic to A[Y]/(Y?'—¢).

COROLLARY 2.5. Let C=A@®YAP---Dy*2A be a Q-Galois extension
with y*'=c€A, where Q={E°=1,E, E?, v, E"% and E is a r-deriva-
tion such that Er=tE¢, Then

( i ) C9EE = A

(ii) If c is a unit element then C/A is a g(E, E)-strongly cyclic exten-
sion.

(i) If A is of prime characteristic p and c is nilpotent, then there
exists a positive integer k such that C** < A.
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ProorF. (i) Let z=X%22 yia,e C95E, Then 0=g(&, E)(z)—2z=
P22 yi(¢ia;—a;) implies z€ A.
(ii) This is proved in [5].
(iii) Since ¢ is nilpotent, y is also nilpotent. Hence there exists an
integer % such that y?*=0. Since C=32@y'A, C*=A"CA.

§3. Embedding of p-extensions.

Let A be an algebra over GF (p) again. As is stated in [Theorem 2.1,
a p-extension B=A[X]/(X?—Xa—j) is a P-Galois extension over A for
some P={D°=1, D, D%, ..., D*7'} if and only if a€A?"'. Then it is natu-
ral to ask that whether a p-extension B/A can be embedded into an S-
Galois extension 7 /A for some relative sequence of homomorphisms S.
It seems like an open problem. But we can see that B/A can be embed-
ded into such 7 /A that T5=A and T, is finitely generated projective for
some finite set S of End(T,) where TS means {t&T ; A(¢)=t¢ for all A€
S., the set of all ring automorphism in S}N{¢t 7T ; Q(t) =0 for all Q€S-
Sa}.

Let B=A[x]=2%7®x’A be a p-extension with x’=xc+d and let C=
Aly]=20%@yiA be a Q-Galois extension with y?~'=c¢ which is given in
I'heorem 2.4.

Let T=B®.C=22322P(x'®y’)A. For the covenience, we denote
x'®y’ by x'y?. Hence T =240k @x'y’A=200Dx'C =258Dy’B.

Let ¢ be the map of T defined by ¢(3}%=¢ xic,) =24 (x+y)ic:(c;.€C).
Since ¢g(x?)=(x+y)P=xP+y?=xc+d+yc=0(xc+d), ¢ is well-defined and
a C-automorphism of order p. For this ¢ the map D of T defined by

(i) D(C)=0and D(xd)=d
(i) D&*d)=(cx)DE*H+Dx)x*Hd
Gil) D=4 xid) =823 D(x)d;, where d, d,;eC

becomes a ¢-derivation of 7T, and P={D°=1, D, ..., D*"'=A,} is a rela-
tive sequence of homomorphisms with P (max)={Ap} and T?=C. Fur-
ther, x pxy=x*/k! satisfies the conditions (i), (ii) and (iii) of (IV).
Therefore T /C is a P-Galois extension.

Next, an automorphism r and a r-derivation £ of C which are discus-
sed in Lemma 2.3 can be extended to that of T by (3% y'b)=
%2 r(y)?b; and E (%22 y'b) =248 E()b; for b;€B, and T/B is a
Q={E°=1, E, E?, ..., E*"2=A;}-Galois extension.

Let F(i,j) be DE’ for 0<i<p—1 and 0<j<p—2. By S we denote
the set of all nonzero finite products of F (3, j), that is, S={I17F (i, Js) ;
m=>1}—{0}. Then we have the following theorem.
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THEOREM 3.1. S is a finite set and T*=A.

PROOF. F (i, ))(x*y") =D (x®DE(y") =%k x"c,, che C=A[y]
shows that F (i, i) F (4, j2)-*+ F(in, ju)=0 if 44+4+--+i,> p. Hence if
FGy, jOF (G, )+ F (im, jn) #0 then it must be 4 +4+-+i,<p—1 and
Jx<p—1 for all k=1, 2,...,m. Thus S must be a finite set. Since S,=
{1}, TS=A is clear.

Let B=A[X]/(X?—Xc—d) and let ¢ be a unit element. Then B/A
can be embedded into an S-Galois extension T/A for some S=S(min)
since B/A is strongly separable ([1]). As a corollary to [Theorem 3.1,
we can show that a non-abelian group of the order p?2—p can be choose as
Sif p>2. For, let C=A[Y]/(Y?'—¢) and let T=B®,C =

Pz E5fPx'y’A.  (Note that y is a unit element since so is ¢). As is seen
in the begining of this section, ¢: x%y’'=—=(x+»)%’ and r: xy'==x'(y)’,
where yEGF (p) is a primitive p—1 th root of 1, are automorphisms of 7°
respectively, and further, 7/C is a g¢-cyclic extension and T/B is a r-
cyclic extension. Put z=xy~!. Then T=3%0PzC, ¢(z2)=2z+1 and
r(z)=zy™'. Hence ¢"r(z'y?)=0¢"(2y V" D) =(z+v)y/ ! and vo(ziy’)=
t(z+a)y) =y '+ D v'=(z+viy/L~' show that ¢“c=10. Therefore
S=(o )={o'c’;i=0,1,...,p—1 and j=0,1,...,p—2} is a non-abelian
group of the order p?—p and T5=A. Let {x;,y:;i=1,2,...,t} be a o-
Galois system for T/C and let {u;, v;;7=1,2,..., s} be a r-Galois system
for T/B. Then we may choose the system {w;, v;;7=1,2,...,s} in C
since C/A is a r-cyclic extension, and hence, #; and v; are invariant under
the action of g. Consequently we have

$=l(xi<2:?=luj0-kz-h(vj>> Gk(yi) = O1,0%z".

and this shows that 7°/A is an S-Galois extension. Thus we have

COROLLARY 3.2. Let p>2 be a prime. If B=A[x]=3t0Px'A is a
p-extension such that x’=xc+d and c is a unit element, then B/A can be
embedded into a G-Galois extension T /A wheve G is a non-abelian group
of the order p®—p.
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