On P-Galois extensions of rings of cyclic type

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

Kazuo KISHIMOTO (Received August 31, 1989)

§ 1. A relative sequence of homomorphisms P and a P-Galois extension.

Let B be a ring with an identity 1 and A a subring of B with common identity 1 of B. In [6], the author studied on a relative sequence of homomorphisms P of $End(B_A)$ and a P-Galois extension B/A. In this paper we shall study on constructive P-Galois commutative extensions of cyclic type as an application of the works of [6].

For the convenience of readers, we shall summarized notions and several properties of a relative sequence of homomorphisms P and a P-Galois extension. The details and proofs will be seen in [6].

Let $P = \{D_0 = 1, D_1, \dots, D_n\}$ be a finite subset of $End(B_A)$ and let P be a poset with respect to the order \leq . For D_i and D_j in P, $D_i \gg D_j$ means that D_i is a cover of D_j , that is, $D_i > D_j$ and no $D_k \in P$ such that $D_i > D_k > D_j$.

P(min) (resp. P(max)) is the set of all minimal (resp. maximal) elements of P.

For $D_i \in P$, a chain of D_i means a descending chian in P such that $D_i = D_{i_0} \gg \dots \gg D_{i_m}$, $D_{i_m} \in P(min)$, and m+1 is said to be the length of the chain.

- (I) P is said to be a relative sequence of homomorphisms if it satisfies the following conditions (A. 1)-(A. 4) and (B. 1)-(B. 4):
- (A.1) $D_i \neq 0$ for all $D_i \in P$ and P(min) coincides with all $D_i \in P$ such that D_i is a ring automorphism.
- (A. 2) The length of each chain of D_i is unique and denotes it by $ht(D_i)$.
 - (A. 3) $D_iD_j \in P$ if $D_iD_j \neq 0$ and if $D_iD_j = 0$ then $D_jD_i = 0$.
 - (A. 4) Assume D_iD_i and D_iD_k are in P.
 - (i) $D_iD_j \ge D_iD_k(resp. D_jD_i \ge D_kD_i)$ if and only if $D_j \ge D_k$.
 - (ii) If $D_iD_j \ge D_m$ then $D_m = D_sD_t$ for some $D_s \le D_i$ and $D_t \le D_j$.

- (B. 1) $D_i(1)=0$ for any $D_i \in P-P(min)$.
- Let $D_i \in P$. Then there exists $g(D_i, D_j) \in End(B_A)$ for each $D_j \leq D_i$ such that
- (B. 2) $D_i(xy) = \sum_{D_j} g(D_i, D_j)(x) D_j(y)$ for $x, y \in B$ where the sum runs over all D_j such that $D_j \leq D_i$.
 - (B. 3) Let x, $y \in B$.
- (i) $g(D_i, D_j)(xy) = \sum_{D_k} g(D_i, D_k)(x) g(D_k, D_j)(y)$ where the sum runs over all D_k such that $D_j \le D_k \le D_i$.
- (ii) Let $D_i > D_j$ and $D_j D_k \ge D_h$. Then $g(D_i, D_j)(x)g(D_j D_k, D_h)(y) = g(D_i, D_j)(x)\sum_{D'_j} D_k g(D_j, D'_j)(x)g(D_k, D'_k)(y)$ where the sum runs over all D'_j and D'_k such that $D'_j D'_k = D_h$.
 - (B. 4) (i) $g(D_i, D_i)$ is a ring automorphism.
 - (ii) $g(D_i, \Lambda) = D_i$ for any minimal Λ of P.
 - (iii) $g(D_i, D_k)(1) = 0$ if $D_k < D_i$.

Since P(min) is a finite multiplicative semigroup which is contained in the group of automorphisms of B, it forms a group.

A relative sequence of homomorphisms $P = \{D_0 = 1, D_1, ..., D_n\}$ is said to be cyclic if $D_i = (D_1)^i$ for i = 1, 2, ..., n and $D^i \ge D^j$ for $i \ge j$.

For the covenience, elements of P are some times denoted by Capital Greek.

The sum of all $\Delta_j \in P(max)$ is denoted by Δ and for $\Omega \in P$, $g(\Delta_j, \Omega)$ is the sum of all $g(\Delta_j, \Omega)$ such that $\Delta_j \geq \Omega$.

For P(min), $B_1 = B^{P(min)} = \{b \in B ; \Omega(b) = b \text{ for all } \Omega \in P(min)\}$ and $B^P = B_1 \cap B_0$ where $B_0 = \{b \in B ; \Omega(b) = 0 \text{ for all } \Omega \in P - P(min)\}$.

- (II) Assume a relative sequence of homomorphisms P satisfies the condition
 - (A. 5) |P(min)| = |P(max)|.

Then B/A is said to be a P-Galois extension if

- $(g. 1) B^P = A$
- (g. 2) There exists a system $\{x_i, y_i; i=1, 2, ..., s\} \subseteq B$ such that $\sum_{i=1}^{s} x_i g(\Delta, \Omega)(y_i) = \delta_{1,\Omega}$ where $\delta_{1,\Omega}$ is the Kronecker's delta.

If P is cyclic then P satisfies (A.5) since |P(min)|=1=|P(max)|, and in this case, a P-Galois extension B/A is said to be cyclic.

The system $\{x_i, y_i; i=1, 2, ..., s\}\subseteq B$ which satisfies (g. 2) is said to be a P-Galois system for B/A.

Let $D(B, P) = \sum_{\Omega \in P} \bigoplus Bu_{\Omega}$ be a free left *B*-module with a *B*-basis $\{u_{\Omega}; \Omega \in P\}$. Then D(B, P) forms a ring by the multiplication $(bu_{\Omega})(cu_{\Gamma}) = b\sum_{\Lambda \leq \Omega} g(\Omega, \Lambda)(c)(u_{\Lambda\Gamma})$ where $u_{\Lambda\Gamma} = 0$ if $\Lambda\Gamma = 0$ (Theorem 2.2 [6].

Then the map j of D(B, P) to $End(B_A)$ defined by

$$j(u_{\Omega}b)(x) = \Omega(bx)$$
 for $x \in B$

is a ring homomorphism.

Assume a relative sequence of homomorphisms P satsifies the condition (A. 6). For each maximal element Δ_j , if $\Delta_j \ge \Omega$ then there exists $\Omega' \in P(\text{resp. }\Omega'')$ such that $\Delta_j = \Omega' \Omega(\text{resp. }\Delta_j = \Omega \Omega'')$.

Then, under the assumption that $B^P = A$, (g. 2) is equivalent to (g. 2') B_A is a finitely generated projective module and j is an isomorphism (Theorem 3.8 [6].

In the rest of this paper, we assume that a relative sequence of homomorphisms satisfies (A.5) and (A.6).

(III) Let P = P(min) (and hence P = P(max)). Then P is a finite group of automorphisms of B, and $g(\Delta, \Omega) = g(\Omega, \Omega) = \Omega$ by (B. 3), (iii). Hence the existence of a P-Galois system $\{x_i, y_i; i=1, 2, ..., S\}$ means the existence of that of $\sum_{i=1}^{s} x_i \Omega(y_i) = \delta_{1,\Omega}$. Consequently, a P-Galois extension means a Galois extension of separable type which is studied in [2], [3] and the others.

Let B/A be a P-Galois extension. Then $B_A \oplus > A_A$, A_A is a direct summand of B_A , if and only if there exists $x \in B$ such that

$$\Delta(x) = 1$$
 (Theorem 3.3 [6]).

If B is commutative then $B_A \oplus > A_A$.

(IV) Let $P(min) = \{1\}$ and $P(max) = \{\Delta\}$. If B is commutative and $B^P = A$, then B/A is a P-Galois extension if and only if there exists a system $\{x_i, y_i; i=1, 2, ..., s\} \subseteq B$ such that $\sum_{i=1}^s \Omega(x_i) y_i = \delta_{\Delta,\Omega}$, and if this is the case, $B = \sum_{i=1}^s Ay_i$.

Moreover, the existence of such a system $\{x_i, y_i; i=1, 2, ..., s\}$ is equivalent to the existence of an element $x_0 \in B$ for each $\Omega \in P$ such that

- (i) $\Omega(x_{\Omega})=1$,
- (ii) $\Gamma(x_0) \neq 0$ if and only if $\Lambda \Gamma = \Omega$ for some $\Lambda \in P$
- (iii) If $\Lambda \Gamma = \Omega$ then $\Gamma(x_0) = x_{\Lambda}$ (Theorem 6.6 and Corollary 5.8 [6]).

Hereafter, we assume that all ring considered are commutative.

§ 2. Cyclic P-Galois extensions.

In this section we assume that $P = \{D^0 = 1, D, D^2, ..., D^{p-1}\}$ is a cyclic relative sequence of homomorphisms of $End(B_A)$. Thus P is a linearly ordered set with $P(min) = \{1\}$ and $P(max) = \{D^{p-1}\}$. Moreover,

$$D(xy) = g(D, D)(x)D(y) + g(D, 1)(x)y$$

= $g(D, D)(x)D(y) + D(x)y$ for $x, y \in B$

shows that D is a g(D, D)-derivation of B.

The purpose of this section is to determine the structure of B when B is a P-Galois extension over A.

REMARK: Let A be an algebra of prime characteristic p and let σ be an A-automorphism of B of order p. Then $D = \sigma - 1$ is a σ -derivation, $P = \{D^0 = 1, D, D^2, \dots, D^{p-1}\}$ forms a cyclic relative sequence of homomorphisms and a P-Galois extension is a σ -cyclic extension which is studied in [4] and [7].

R is said to be a p-extension of A if $R \cong A[X]/(f(X))$ for some monic polynomial $f(X) = X^p - X\alpha - \beta(\alpha, \beta \in A)$ of degree p. Hence if R is a p-extension of A then it can be written

$$R = A[x] = A \oplus xA \oplus x^2A \oplus ... \oplus x^{p-1} A$$
 and $x^p = x\alpha + \beta$ for some α , $\beta \in A$.

In the rest we assume that $P = \{D^0 = 1, D, D^2, \dots, D^{p-1} = \Delta\}$ such that Dg(D, D) = g(D, D)D.

THEOREM 2.1. Let A be an algebra over a prime field GF(p) of prime characteristic p and let B be an extension ring of A. Then B/A is a P-Galois extension for some P if and only if $B = A[x] = \sum_{i=0}^{p-1} \bigoplus x^i A$ is a p-extension with $x^p = x\alpha + \beta$ for α , $\beta \in A$ and $\alpha \in A^{p-1} = \{a^{p-1} ; a \in A\}$. More precisely, if this is the case,

- (i) g(D, D)(x) = x + c for some $c \in A$ and $c^{p-1} = a$,
- (ii) $D^{k}(x^{k}) = k!$ for $1 \le k \le p-1$.

PROOF. Assume B/A is P-Galois extension. Since $B_A \oplus > A_A$, there exists an element $w \in B$ such that $\Delta(w) = 1$. Then $x = D^{p-2}(w)$ is a requested one. D(g(D,D)(x)-x) = g(D,D)(D(x)) - D(x) = 1-1=0 shows that

$$g(D, D)(x) - x = c \in B^P = A....(*)$$

For this x, $D(x^2) = g(D, D)(x)D(x) + D(x)x = g(D, D)(x) + x = 2x + c$. Hence we can see that

$$D(x^k) = \sum_{i=0}^{k-1} {k \choose i} x^i c^{k-1-i} \text{ by induction on } k. \text{ Thus,}$$

$$D(x^p) = c^{p-1}.$$

Since $D(x^{p}-xc^{p-1})=0$,

$$x^{p} - xc^{p-1} = \beta \in B^{p} = A.....(**)$$

Further, since $D^2(x^2) = 2!$, we can see

$$D^{k}(x^{k}) = k! \dots (***)$$

for $1 \le k \le p-1$ by induction on k. Since

$$D^{j}(x^{p-1}) \cdot 1 + D^{j}(x^{p-2}/(p-2)!) \cdot D^{p-2}(x^{p-1}) = \begin{cases} 1 & \text{if } D^{j} = \Delta \\ 0 & \text{if } D^{j} = D^{p-2}, \end{cases}$$

we assume that there exist elements u_1 , u_2 , ..., u_t and v_1 , v_2 , ..., v_t of B such that $\sum_{i=1}^t \Omega(u_i) v_i = \delta_{\Delta,\Omega}$ for all $\Omega = D^j$, j = k+1, ..., p-1 and each u_i , v_i are contained in A[x]. Then

$$\sum_{i=1}^{t} D^{i}(u_{i}) v_{i} - D^{j}(x^{k}/k!) \sum_{i=1}^{t} D^{j}(u_{i}) v_{i}$$

$$= \begin{cases} 1 & \text{if } j = p - 1 \\ 0 & \text{if } j = k, k + 1, \dots, k - 2. \end{cases}$$

Thus there exists a system $\{u_i, v_i; i=1, 2, ..., s\}$ such that

 $\sum_{i=1}^{s} \Omega(u_i) v_i = \delta_{\Delta,\Omega}$ for all $\Omega \in P$ and each u_i , $v_i \in A[x]$. Then $B = \sum_{i=0}^{p-1} x^i A$ by (IV) and (**)

Next, we shall show that $\{1, x, x^2, \dots, x^{p-1}\}$ is linearly independent over A. If $z = \sum_{i=0}^{p-1} x^i a_i = 0$ $(a_i \in A)$, then $0 = \Delta(z) = (p-1)! a_{p-1}$ by (***) and this means that $a_{p-1} = 0$. Repeating this way we can see that $a_i = 0$ for $i = 0, 1, 2, \dots, p-1$. Consequently, we can see that B is a p-extension such that

$$B = A[x] = \sum_{i=0}^{p-1} \bigoplus x^i A$$
 with $x^p = xc^{p-1} + d$ for $c, d \in A$,

and further, this x satisfies (i) and (ii) by (*) and (**).

Conversely, assume that $B=A[x]=\sum_{i=0}^{p-1} \oplus x^i A$ is a p-extension such that $x^p=xc^{p-1}+d$ for $c,\ d\in A$. Then the map σ of a polynomial ring A[X] over A defined by $\sigma(X)=x+c$ gives an A-automorphism of A[X]. Further the map D of A[X] defined by (i) D(Xa)=a for $a\in A$, (ii) $D(X^ka)=(\sigma(X)D(X^{k-1})+D(X)X^{k-1})a$ and (iii) $D(\sum_{i=0}^k X^ia_i)=\sum_{i=0}^k D(X^i)a_i$ gives a σ -derivation of A[X]. For, assume $D(X^k)=\sigma(X^i)D(X^{k-i})+D(X^i)X^{k-i}$ for all $k\leq n$ and $i\leq k$. Then

$$\begin{split} D(X^{n+1}) &= \sigma(X)D(X^n) + X^n \\ &= \sigma(X)(\sigma(X^{i-1})D(X^{n+1-i}) + D(X^{i-1})X^{n+1-i}) + X^n \\ &= \sigma(X^i)D(X^{n+1-i}) + (\sigma(X)D(X^{i-1}) + X^{i-1})X^{n+i-1} \\ &= \sigma(X^i)D(X^{n+1-i}) + D(X^i)X^{n+1-i}. \end{split}$$

Thus D is a σ -derivation. Since $D(X^p) = c^{p-1}$, $D(X^p - Xc^{p-1} - d) = 0$ and this shows that D induces a σ -derivation of $A[X]/(X^p - Xc^{p-1} - d) \cong B$.

We denote it again by D. Then $P = \{D^0 = 1, D, D^2, ..., D^{p-1} = \Delta\}$ is a relative sequence of homomorphism for B/A such that $P(min) = \{1\}$, $P(max) = \{\Delta\}$ and Dg(D, D) = g(D, D)D.

Let $z = \sum_{i=0}^{p-1} x^i a_i \in B^P(a_i \in A)$. Then $0 = \Delta(z) = \sum_{i=0}^{p-1} \Delta(x^i) a_i = (p-1)$! a_{p-1} yields $a_{p-1} = 0$. Repeating the same way, we can see that $z = a_0$. Thus, $B^P = A$. Since $\Delta(x^{p-1}) = (p-1)! = -1$, $x_{(Dj)} = D^{p-1-j}(x^{p-1})$ satisfies (i), (ii) and (iii) of (IV). Thus B/A is a P-Galois extension by (IV).

COROLLARY 2.2. Let A be an algebra over GF(p) and let $B = A[x] = \sum_{i=0}^{p-1} \bigoplus x^i A$ be a P-Galois extension over A such that $x^p = xc^{p-1} + d$ for some c, $d \in A$ and D(x) = 1. Then

- (1) A g(D, D)-derivation g(D, D)-1 is obtained by cD.
- (2) $B^{g(D,D)} = \{b \in B ; g(D,D)(b) = b\} = A$ if and only if c is a regular element (i. e, c is non-zero-divisor). In particular c is a unit element if and only if B/A is a g(D,D)-cyclic extension.
- (3) $B^{g(D,D)} \supset A(i, e., A \text{ is a proper subset of } B^{g(D,D)})$ if and only if c is a zero divisor. In particular if c is nilpotent then there exists a positive integer k such that $B^{p*} = \{b^{p*}; b \in B\} \subseteq A$.
- (4) g(D, D) = 1 if and only if c = 0. Moreover, if this is the case, $B^p \subseteq A$.

PROOF. (1) g(D,D)-1=cD if and only if $(g(D,D)-1)(x^ia)=cD(x^ia)$ for $a\in A$ and $0\le i\le p-1$. Since (g(D,D)-1)(xa)=ca=cD(xa), we can easily see $(g(D,D)-1)x^ia)=cD(x^ia)$ by induction on i.

(2) Let c be regular and let $y = \sum_{i=0}^{p-1} x^i a_i \in B^{g(D,D)}$. Then $0 = (g(D,D)-1)(y) = \sum_{i=0}^{p-1} (x+c)^i a_i - \sum_{i=0}^{p-1} x^i a_i$ yields $\binom{p-1}{p-2} c a_{p-1} = 0$. Since c is regular, this means that $a_{p-1} = 0$. Repeating this way, we can easily see that $y = a_0$, and hence $B^{g(D,D)} = A$. Conversely, assume that $B^{g(D,D)} = A$. If ca = 0 for some $a(\neq 0) \in A$, then g(D,D)(xa) = (x+c)a = xa shows that $xa \in A$ and this contradicts to linear independence of $\{1, x, x^2, \dots, x^{p-1}\}$.

Let c be a unit. Then g(D, D)(y) = y + 1 for $y = xc^{-1}$. Moreover we can see that $B = \sum_{i=0}^{p-1} \bigoplus y^i A$ and $y^p = y + d$ for some $d \in A$. Thus B/A is a g(D, D)-cyclic extension, and the converse is also true [see [4]].

- (3) $B^{g(D,D)} \supset A$ if and only if c is a zero divisor by (2). Since $D(x^s) = \sum_{i=0}^{s-1} \binom{s}{i} x^i c^{s-1-i}$ (see the proof of Theorem 2.1), $D(x^{pt}) = c^{pt-1}$ for some $t \ge 1$. If c is nilpotent, we may assume $(c^{p-1})^{pk} = 0$ for some $k \ge 0$. Then $x^{p^{k+1}} = (x^p)^{p^k} = d^{p^k}$ shows that $B^{p^{k+1}} \subseteq A$.
 - (4) Since g(D, D)(x) = x + c, g(D, D) = 1 if and only if c = 0. Further

if this is the case, $x^p = d$ shows that $B^p \subseteq A$.

REMARK: (i) If A is an algebra over GF(2), and B is a 2-extension of A, then $B = A[x] = A \oplus xA$ with $x^2 = xc + d$ for some c, $d \in A$. Hence any 2-extension of A is a P-Galois extension by Theorem 2.1.

(ii) Let $B = A[x] = \sum_{i=0}^{p-1} \bigoplus x^i A$ be a *p*-extension such that $x^p = xc^{p-1} + d$. Corollary 2.2 of (2) shows that if c is a regular element but not a unit element then B/A is a P-Galois extension but not a g(D, D)-cyclic extension though $B^{g(D,D)} = A$.

In the rest we assume that p>2 is a prime and K is a field of characteristic p or of 0 and K contains a primitive p-1 the root ζ of 1 if the characteristic is 0. Further A is an algebra over K.

Let $C = A[y] = \sum_{i=0}^{p-2} \bigoplus y^i A$ be a ring with $y^{p-1} = c \in A$ (and hence, $A[y] \cong A[Y]/(Y^{p-1}-c)$). For a primitive p-1 th root ζ of 1 of K, we define two maps τ and E of C as follows:

$$\begin{split} &\tau(\sum_{i=0}^{p-2} y^i a_i) = \sum_{i=0}^{p-2} (y\zeta)^i a_i, \\ &E(ya) = a, \ E(y^k a) = (\tau(y)E(y^{k-1}) + E(y)y^{k-1})a \ \text{and} \\ &E(\sum_{i=0}^{p-2} y^i a_i) = \sum_{i=0}^{p-2} E(y^i a_i)(a_i, a \in A). \end{split}$$

Then τ is an A-automorphism of order p-1. Further, we have the following

LEMMA 2.3. E is a τ -derivation of C such that

- $\begin{array}{ll} (\ {\rm i}\) & E\,(y^{\it k})\!=\!y^{\it k\!-\!1}(\zeta^{\it k\!-\!1}\!+\!\zeta^{\it k\!-\!2}\!+\!\ldots\!\ldots\!+\!\zeta\!+\!1) \\ (\ {\rm ii}\) & E\,{}^{\it i}\!\!\left\{ \!\!\!\begin{array}{l} =\!0 \ \ i\!\!f \ \ i\!\!=\!p\!-\!1 \\ \neq\!0 \ \ i\!\!f \ \ 0\!\leq\!i\!\leq\!p\!-\!2 \end{array} \right. \end{array}$
- p-2.
 - (iv) $E\tau = \tau E\zeta$.

By the same way as in the proof of Theorem 2.1, we have $E(y^{k}) = \tau(y^{i})E(y^{k-i}) + E(y^{i})y^{k-i}$ for $0 \le i \le k$. Since $E(y^{2}) = \tau(y) + y = i$ $y(\zeta+1)$, we can easily see that $E(y^{k}) = y^{k-1}(\zeta^{k-1} + \zeta^{k-2} + \dots + \zeta+1)$ by induction on k. Further $E(y^{p-1}) = y^{p-2}(\zeta^{p-2} + \zeta^{p-3} + \dots + \zeta + 1) = 0 = E(c)$ shows that E is well-defined and is a τ -derivation. This proves (i).

Since any element of C is obtained by $\sum_{i=0}^{p-2} y^i a_i(a_i \in A)$, (ii) is clear by (i).

By induction on k, we can easily see (iii).

 $E_{\tau}(y^{k}) = E(y^{k}) \zeta^{k} = y^{k-1} (\zeta^{k-1} + \zeta^{k-2} + \dots + \zeta + 1) \zeta^{k}$ and $\tau E_{\zeta}(y^{k}) = \zeta^{k}$ $\tau(E(y^k))\zeta = y^{k-1}\zeta^{k-1}(\zeta^{k-1} + \zeta^{k-2} + \dots + \zeta + 1)\zeta$ for each $0 \le k \le p-2$ shows that $E_{\tau} = \tau E \zeta$

For $1 \le k \le p-2$, we put $\eta_k = \zeta^k + \zeta^{k-1} + \dots + \zeta + 1$.

Theorem 2.4. Let C be an extension ring of A. Then C/A is a Q-Galois extension for some $Q = \{E^0 = 1, E, E^2, ..., E^{p-2}\}$ with $Eg(E, E) = g(E, E)E\zeta$ if and only if C is isomorphic to $A[Y]/(Y^{p-1}-c)$ for some $c \in A$.

PROOF. Assume $C = A[y] = A \oplus \cdots \oplus y^{p-2} A$ with $y^{p-2} = c$. Then $Q = \{E^0 = 1, E, \dots, E^{p-2}\}$ is a relative sequence of homomorphisms of C/A where E is a τ -derivation which is discussed in Lemma 2.3 and so $E_{\tau} = \tau E \zeta$.

Let $\alpha = \sum_{i=0}^{p-2} y^i a_i \in C^E$. Then $0 = E^{p-g}(\alpha) = a_{p-2}\eta_{p-3}\eta_{p-4}\cdots\eta_1$ shows that $a_{p-2} = 0$. Repeating this way, we have $C^E = A$. For each $E^j = \Omega$, $y_{\Omega} = y^j/(\eta_1\eta_2\cdots\eta_{j-1})$ satisfies the conditions (i), (ii) and (iii) of (IV), and so C/A is a Q-Galois extension by (IV) again.

Conversely, assume that C/A is a Q-Galois extension. Since $C_A \oplus > A_A$, there exists $w \in C$ such that $E^{p-2}(w)=1$. Put $y=E^{p-3}(w)$. Then E(y)=1. Since $Eg(E,E)=g(E,E)E\zeta$, $E(g(E,E)(y)-y\zeta)=g(E,E)E(y\zeta)-E(y\zeta)=\zeta-\zeta=0$, and hence, $g(E,E)(y)-y\zeta=a\in C^E=A$. Then $g(E,E)(y+a/(\zeta-1))=(y+a/(\zeta-1))\zeta$. We denote this $y+a/(\zeta-1)$ by y again. Then $g(E,E)(y)=y\zeta$ and E(y)=1.

Let $\Omega=E^j$, $y_{\Omega}=y^j/\eta_1\eta_2\cdots\eta_{j-1}$ and $\Gamma=E^i$. Then $\Omega(y_{\Omega})=1$ and $\Gamma(y_{\Omega})\neq 0$ if and only if $i\leq j$, that is, $\Omega=\Gamma\Lambda$ where $\Lambda=E^{j-i}$. Further if this is the case, $\Gamma(y_{\Omega})=y^{j-i}(\eta_{j-i}\eta_{j-i+1}\cdots\eta_{j-1})=y_{\Lambda}$. Thus y_{Ω} satisfies the conditions (i), (ii) and (iii) of (IV), and so $C=\sum_{j=0}^{p-2}y^jA$ by (IV). Let $\alpha=\sum_{j=0}^{p-2}y^ja_j=0$. Then $0=E^{p-2}(\alpha)=a_{p-2}(\eta_1\eta_2\cdots\eta_{p-3})$ implies $a_{p-2}=0$. Repeating this way we can obtain $a_{p-2}=a_{p-3}=\cdots=a_1=a_0=0$. Thus $\{1,y,y^2,\ldots,y^{p-2}\}$ is a linearly independent A-basis for C. Since $E(y^{p-1})=y^{p-2}\eta_{p-2}=0$, $y^{p-1}=c$ for some $c\in A$. Thus C is isomorphic to $A[Y]/(Y^{p-1}-c)$.

COROLLARY 2.5. Let $C = A \oplus yA \oplus \cdots \oplus y^{p-2}A$ be a Q-Galois extension with $y^{p-1} = c \in A$, where $Q = \{E^0 = 1, E, E^2, \dots, E^{p-2}\}$ and E is a τ -derivation such that $E_{\tau} = \tau E \zeta$, Then

- (i) $C^{g(E,E)}=A$
- (ii) If c is a unit element then C/A is a g(E, E)-strongly cyclic extension.
- (iii) If A is of prime characteristic p and c is nilpotent, then there exists a positive integer k such that $C^{pk} \subseteq A$.

PROOF. (i) Let $z = \sum_{i=0}^{p-2} y^i a_i \in C^{g(E,E)}$. Then $0 = g(E, E)(z) - z = \sum_{i=0}^{p-2} y^i (\zeta^i a_i - a_i)$ implies $z \in A$.

- (ii) This is proved in [5].
- (iii) Since c is nilpotent, y is also nilpotent. Hence there exists an integer k such that $y^{pk} = 0$. Since $C = \sum_{i=0}^{p-2} \bigoplus y^i A$, $C^{pk} = A^{pk} \subseteq A$.

§ 3. Embedding of p-extensions.

Let A be an algebra over GF(p) again. As is stated in Theorem 2.1, a p-extension $B \cong A[X]/(X^p - X\alpha - \beta)$ is a p-Galois extension over A for some $P = \{D^0 = 1, D, D^2, \dots, D^{p-1}\}$ if and only if $\alpha \in A^{p-1}$. Then it is natural to ask that whether a p-extension B/A can be embedded into an S-Galois extension T/A for some relative sequence of homomorphisms S. It seems like an open problem. But we can see that B/A can be embedded into such T/A that $T^s = A$ and T_A is finitely generated projective for some finite set S of $End(T_A)$ where T^s means $\{t \in T : \Lambda(t) = t \text{ for all } \Lambda \in S_a$, the set of all ring automorphism in $S\} \cap \{t \in T : \Omega(t) = 0 \text{ for all } \Omega \in S - S_a\}$.

Let $B = A[x] = \sum_{i=0}^{p-1} \bigoplus x^i A$ be a *p*-extension with $x^p = xc + d$ and let $C = A[y] = \sum_{j=0}^{p-2} \bigoplus y^j A$ be a *Q*-Galois extension with $y^{p-1} = c$ which is given in Theorem 2.4.

Let $T = B \bigotimes_A C = \sum_{i=0,j=0}^{p-1,p-2} \bigoplus (x^i \bigotimes y^j) A$. For the covenience, we denote $x^i \bigotimes y^j$ by $x^i y^j$. Hence $T = \sum_{j=0,j=0}^{p-1,p-2} \bigoplus x^i y^j A = \sum_{i=0}^{p-1} \bigoplus x^i C = \sum_{j=0}^{p-2} \bigoplus y^j B$.

Let σ be the map of T defined by $\sigma(\sum_{i=0}^{p-1} x^i c_i) = \sum_{i=0}^{p-1} (x+y)^i c_i (c_i \in C)$. Since $\sigma(x^p) = (x+y)^p = x^p + y^p = xc + d + yc = \sigma(xc+d)$, σ is well-defined and a C-automorphism of order p. For this σ the map D of T defined by

- (i) D(C)=0 and D(xd)=d
- (ii) $D(x^{k}d) = ((\sigma(x)D(x^{k-1}) + D(x)x^{k-1})d$
- (iii) $D(\sum_{i=0}^{p-1} x^i d_i) = \sum_{i=0}^{p-1} D(x^i) d_i$, where $d, d_i \in C$

becomes a σ -derivation of T, and $P = \{D^0 = 1, D, ..., D^{p-1} = \Delta_D\}$ is a relative sequence of homomorphisms with $P(max) = \{\Delta_D\}$ and $T^P = C$. Further, $x_{(D^k)} = x^k/k!$ satisfies the conditions (i), (ii) and (iii) of (IV). Therefore T/C is a P-Galois extension.

Next, an automorphism τ and a τ -derivation E of C which are discussed in Lemma 2.3 can be extended to that of T by $\tau(\sum_{j=0}^{p-1} y^j b_j) = \sum_{j=0}^{p-2} \tau(y)^j b_j$ and $E(\sum_{j=0}^{p-2} y^j b_j) = \sum_{j=0}^{p-2} E(y^j) b_j$ for $b_j \in B$, and T/B is a $Q = \{E^0 = 1, E, E^2, \dots, E^{p-2} = \Delta_E\}$ -Galois extension.

Let F(i, j) be $D^i E^j$ for $0 \le i \le p-1$ and $0 \le j \le p-2$. By S we denote the set of all nonzero finite products of F(i, j), that is, $S = \{\prod_{s=1}^m F(i_s, j_s); m \ge 1\} - \{0\}$. Then we have the following theorem.

THEOREM 3.1. S is a finite set and $T^s = A$.

PROOF. $F(i, j)(x^k y^k) = D^i(x^k) E^j(y^k) = \sum_{h=0}^{k-i} x^h c_h$, $c_h \in C = A[y]$ shows that $F(i_1, j_1) F(i_2, j_2) \cdots F(i_n, j_n) = 0$ if $i_1 + i_2 + \cdots + i_n \ge p$. Hence if $F(i_1, j_1) F(i_2, j_2) \cdots F(i_m, j_m) \ne 0$ then it must be $i_1 + i_2 + \cdots + i_m \le p - 1$ and $j_k for all <math>k = 1, 2, \ldots, m$. Thus S must be a finite set. Since $S_a = \{1\}$, $T^s = A$ is clear.

Let $B = A[X]/(X^p - Xc - d)$ and let c be a unit element. Then B/Acan be embedded into an S-Galois extension T/A for some S=S(min)since B/A is strongly separable ([1]). As a corollary to Theorem 3.1, we can show that a non-abelian group of the order p^2-p can be choose as S if p > 2. For, let $C \cong A[Y]/(Y^{p-1}-c)$ and let $T = B \otimes_A C =$ $\sum_{i=0,j=0}^{p-1,p-2} \oplus x^i y^j A$. (Note that y is a unit element since so is c). As is seen in the beginning of this section, $\sigma: x^i y^j \longrightarrow (x+y)^i y^j$ and $\tau: x^i y^j \longrightarrow x^i (y\nu)^j$, where $\nu \in GF(p)$ is a primitive p-1 th root of 1, are automorphisms of T respectively, and further, T/C is a σ -cyclic extension and T/B is a τ cyclic extension. Put $z = xy^{-1}$. Then $T = \sum_{i=0}^{p-1} \bigoplus z^i C_i$, $\sigma(z) = z+1$ and $\tau(z) = z \, \nu^{-1}$. Hence $\sigma^{\nu} \tau(z^{i} y^{j}) = \sigma^{\nu}(z^{i} y^{j} \nu^{j-1}) = (z + \nu)^{i} y^{j} \nu^{j-1}$ and $\nu \sigma(z^{i} y^{j}) = (z + \nu)^{i} y^{j} \nu^{j-1}$ $\tau(z+a)^i y^j = (z\nu^{-1}+1)^i y^j \nu^j = (z+\nu^i y^j \nu^{j-i})$ show that $\sigma^{\nu} \tau = \tau \sigma$. Therefore $S = (\sigma, \tau) = {\sigma^i \tau^j; i = 0, 1, ..., p-1 \text{ and } j = 0, 1, ..., p-2}$ is a non-abelian group of the order p^2-p and $T^s=A$. Let $\{x_i, y_i; i=1, 2, ..., t\}$ be a σ -Galois system for T/C and let $\{u_j, v_j; j=1, 2, ..., s\}$ be a τ -Galois system for T/B. Then we may choose the system $\{u_i, v_i; j=1, 2, ..., s\}$ in C since C/A is a τ -cyclic extension, and hence, u_j and v_j are invariant under the action of σ . Consequently we have

$$\sum_{i=1}^{t} (x_i (\sum_{j=1}^{s} u_j \sigma^k \tau^h(v_j)) \sigma^k(y_i) = \delta_{1,\sigma^k \tau^h}.$$

and this shows that T/A is an S-Galois extension. Thus we have

COROLLARY 3.2. Let p>2 be a prime. If $B=A[x]=\sum_{i=0}^{p-1} \oplus x^i A$ is a p-extension such that $x^p=xc+d$ and c is a unit element, then B/A can be embedded into a G-Galois extension T/A where G is a non-abelian group of the order p^2-p .

References

- [1] M. AUSLANDER and O. GOLDMAN; The Brauer group of a commutative ring, Trans. A. M. S., Vol. 97 (1960), 367-409.
- [2] S. U. CHASE, D. K. HARRISON and A. ROSENBERG; Galois theory and Galois cohomology of commutative rings, Mem. A. M. S., No. 52 (1965), 15-33.
- [3] F. R. DEMEYER; Some notes on the general Galois theory of rings, Osaka Math. J., Vol. 2 (1970), 159-174.

- [4] K. KISHIMOTO; On abelian extensions of rings I, Math. J. Okayama Univ., Vol. 14 (1970), 159-174.
- [5] K. KISHIMOTO; On abelian extensions of rings II, Math. J. Okayama Univ., Vol. 15 (1971), 57-70.
- [6] K. KISHIMOTO; Finite posets P and P-Galois extensions of rings, (to appear).
- [7] T. NAGAHARA and A. NAKAJIMA; On cyclic extensions of commutative rings, Math. J. Okayama Univ., Vol. 15 (1971), 81-90.

Department of Mathematics Shinshu University Matsumoto 390, Japan