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\S 1. A relative sequence of homomorphisms P
and a P-Galois extension.

Let B be a ring with an identity 1 and A a subring of B with common
identity 1 of B. In [6], the author studied on a relative sequence of
homomorphisms P of End(B_{A}) and a P-Galois extension B/A . In this
paper we shall study on constructive P-Galois commutative extensions of
cyclic type as an application of the works of [6].

For the convenience of readers, we shall summarized notions and sev-
eral properties of a relative sequence of homomorphisms P and a P-Galois
extension. The details and proofs will be seen in [6].

Let P=\{D_{0}=1, D_{1}, \cdots. D_{n}\} be a finite subset of End(B_{A}) and let P be
a poset with respect to the order \leq . For D_{i} and D_{j} in P, D_{i}\gg D_{j} means
that D_{i} is a cover of D_{j} , that is, D_{i}>D_{j} and no D_{k}\in P such that D_{i}>D_{k}>

D_{j} .
P( \min) (resp. P( \max) ) is the set of all minimal (resp. maximal)

elements of P.
For D_{i}\in P , a chain of D_{i} means a descending chian in P such that

D_{i}=D_{i_{0}}\gg\ldots\ldots\gg D_{im} , D_{im} \in P(\min) ,

and m+1 is said to be the length of the chain.

(I) P is said to be a relative sequence of homomorphisms if it satisfies
the following conditions (A. 1) -(A. 4) and (B. 1) -(B. 4) :

(A. 1) D_{i}\neq 0 for all D_{i}\in P and P( \min) coincides with all D_{i}\in P such
that D_{i} is a ring automorphism.

(A. 2) The length of each chain of D_{i} is unique and denotes it by
ht(D_{i}) .

(A. 3) D_{i}D_{j}\in P if D_{i}D_{j}\neq 0 and if D_{i}D_{j}=0 then D_{j}D_{i}=0 .
(A. 4) Assume D_{i}D_{j} and D_{i}D_{k} are in P.
(i) D_{i}D_{j}\geq D_{i}D_{k} (resp. D_{j}D_{i}\geq D_{k}D_{i}) if and only if D_{j}\geq D_{k} .
(ii) If D_{i}D_{j}\geq D_{m} then D_{m}=D_{s}D_{t} for some D_{s}\leq D_{i} and D_{t}\leq D_{j} .
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(B. 1) D_{i}(1)=0 for any D_{i} \in P-P(\min) .
Let D_{i}\in P. Then there exists g(D_{i}, D_{j})\in End(B_{A}) for each D_{j}\leq D_{i}

such that
(B. 2) D_{i}(xy)=\Sigma_{D_{j}}g(D_{i}, D_{j})(x)D_{j}(y) for x, y\in B where the sum runs

over all D_{j} such that D_{j}\leq D_{i} .
(B. 3) Let x, y\in B.
(i) g(D_{i}, D_{j})(xy)=\Sigma_{D_{k}}g(D_{i}, D_{k})(x)g(D_{k}, D_{j})(y) where the sum runs

over all D_{k} such that D_{j}\leq D_{k}\leq D_{i} .
(ii) Let D_{i}>D_{j} and D_{j}D_{k}\geq D_{h} . Then g(D_{i}, D_{j})(x)g(D_{j}D_{k}, D_{h})(y)=

g(D_{i}, D_{j})(x)\Sigma_{D_{\acute{J}}} , D_{k}g(D_{j}, D_{j}’)(x)g(D_{k}, D_{k}’)(y) where the sum runs over all
D_{j}’ and D_{k}’ such that D_{j}’D_{k}’=D_{h} .

(B. 4) ( i) g(D_{i}, D_{i}) is a ring automorphism.
(ii) g(D_{i}, \Lambda)=D_{i} for any minimal \Lambda of P.
(iii) g(D_{i}, D_{k})(1)=0 if D_{k}<D_{i} .

Since P( \min) is a finite multiplicative semigroup which is contained
in the group of automorphisms of B , it forms a group.

A relative sequence of homomorphisms P=\{D_{0}=1, D_{1}, \ldots D_{n}\} is said
to be cyclic if D_{i}=(D_{1})^{i} for i=1,2 , \ldots . n and D^{i}\geq D^{j} for i\geq j .

For the covenience, elements of P are some times denoted by Capital
Greek.

The sum of all \Delta_{j}\in P(\max) is denoted by \Delta and for \Omega\in P, g(\Delta_{j}, \Omega) is
the sum of all g(\Delta_{j}, \Omega) such that \Delta_{j}\geq\Omega .

For P( \min) , B_{1}=BP( \min)= {b\in B ; \Omega(b)=b for all \Omega\in P(\min) } and
B^{P}=B_{1}\cap B_{0} where B_{0}= { b\in Bj\Omega(b)=0 for all \Omega\in P-P(\min) }.

(II) Assume a relative sequence of homomorphisms P satisfies the con-
dition

(A. 5) |P( \min)|=|P(\max)| .
Then B/A is said to be a P-Galois extension if

(g. 1) B^{P}=A

(g. 2) There exists a system \{x_{i}, y_{i} ; i=1,2, \ldots, s\}\subseteq B such that
\Sigma_{i=1}^{s}x_{i}g(\Delta, \Omega)(y_{i})=\delta_{1,\Omega} where \delta_{1,\Omega} is the Kronecker’s delta.

If P is cyclic then P satisfies (A. 5) since |P( \min)|=1=|P(ma\kappa)| , and
in this case, a P-Galois extension B/A is said to be cyclic.

The system \{x_{i}, y_{i} ; i=1,2, \ldots , s\}\subseteq B which satisfies (g. 2) is said to be
a P-Galois system for B/A .

Let D(B, P)=\Sigma_{\Omega\in P}\oplus Bu_{\Omega} be a free left B-module with a B-basis { u_{\Omega} ;
\Omega\in P\} . Then D(B, P) forms a ring by the multiplication (bu_{\Omega})(cu_{\Gamma})=

b\Sigma_{\Lambda\leq\Omega}g(\Omega, \Lambda)(c)(u_{\Lambda\Gamma} where u_{\Lambda\Gamma}=0 if \Lambda\Gamma=0 (Theorem 2.2 [6].
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Then the map j of D(B, P) to End (B_{A}) defined by

j(u_{\Omega}b)(x)=\Omega(bx) for x\in B

is a ring homomorphism.
Assume a relative sequence of homomorphisms P satsifies the condi-

tion (A. 6). For each maximal element \Delta_{j} , if \Delta_{j}\geq\Omega then there exists \Omega’\in

P (resp. \Omega’) such that \Delta_{j}=\Omega’\Omega(resp. \Delta_{j}=\Omega\Omega’) .
Then, under the assumption that B^{P}=A , (g. 2) is equivalent to (g. 2’)

B_{A} is a finitely generated projective module and j is an isomorphism
(Theorem 3.8 [6].

In the rest of this paper, we assume that a relative sequence of
homomorphisms satisfies (A. 5) and (A. 6).

(Ill) Let P=P( \min) (and hence P=P( \max) ). Then P is a finite
group of automorphisms of B , and g(\Delta, \Omega)=g(\Omega, \Omega)=\Omega by (B. 3), (iii).

Hence the existence of a P-Galois system \{x_{i}, y_{i} ; i=1,2, \ldots.S\} means the
existence of that of \sum_{i=1}^{s}x_{i}\Omega(y_{i})=\delta_{1,\Omega} . Consequently, a P-Galois exten-
sion means a Galois extension of separable type which is studied in [2],
[3] and the others.

Let B/A be a P-Galois extension. Then B_{A}\oplus>A_{A} , A_{A} is a direct
summand of B_{A} , if and only if there exists x\in B such that

\Delta(x)=1 (Theorem 3.3 [6]).
If B is commutative then B_{A}\oplus>A_{A} .

(IV) Let P( \min)=\{1\} and P( \max)=\{\Delta\} . If B is commutative and
B^{P}=A , then B/A is a P-Galois extension if and only if there exists a
system \{x_{i}, y_{i} ; i=1,2, \ldots.s\}\subseteq B such that \Sigma_{i=1}^{s}\Omega(x_{i})y_{i}=\delta_{\Delta.\Omega} , and if this is
the case, B=\Sigma_{i=1}^{s}Ay_{i} .

Moreover, the existence of such a system \{x_{i}, y_{i} ; i=1,2, \ldots, s\} is
equivalent to the existence of an element x_{\Omega}\in B for each \Omega\in P such that

(i) \Omega(x_{\Omega})=1 ,
(ii) \Gamma(x_{\Omega})\neq 0 if and only if \Lambda\Gamma=\Omega for some \Lambda\in P

(iii) If \Lambda\Gamma=\Omega then \Gamma(x_{\Omega})=x_{\Lambda} (Theorem 6.6 and Corollary 5.8 [6]).

Hereafter, we assume that all ring considered are commutative.

\S 2. Cyclic P-Galois extensions.

In this section we assume that P=\{D^{0}=1, D, D^{2}, \ldots.D^{p-1}\} is a cyclic
relative sequence of homomorphisms of End(B\"A). Thus P is a linearly
ordered set with P( \min)=\{1\} and P( \max)=\{D^{p-1}\} . Moreover,
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D(xy)=g(D, D)(x)D(y)+g(D, 1)(x)y
=g(D, D)(x)D(y)+D(x)y for x, y\in B

shows that D is a g(D, D) -derivation of B.
The purpose of this section is to determine the structure of B when

B is a P-Galois extension over A .

REMARK: Let A be an algebra of prime characteristic p and let \sigma be
an A -automorphism of B of order p. Then D=\sigma-1 is a \sigma-derivation
P=\{D^{0}=1, D, D^{2}, \ldots-D^{p-1}\} forms a cyclic relative sequence of homomor-
phisms and a P-Galois extension is a \sigma-cyclic extension which is studied in
[4] and [7].

R is said to be a p extension of A if R\cong A[X]/(f(X)) for some
monic polynomial f(X)=X^{p}-X\alpha-\beta(\alpha, \beta\in A) of degree p. Hence if R
is a p -extension of A then it can be written
R=A[x]=A\oplus xA\oplus x^{2}A\oplus\ldots\oplus x^{p-1} A and x^{p}=x\alpha+\beta for some \alpha , \beta\in A .

In the rest we assume that P=\{D^{0}=1, D, D^{2}, \ldots.D^{p-1}=\Delta\} such that
g(D, D)=g(D, D)D.

THEOREM 2. 1. Let A be an algebra over a prime field GF(p) of
prime characteristic p and let B be an extension ring of A. Then B/A is
a P-Galois extension for some P if and only if B=A[x]= \sum_{i=0}^{p-1}\oplus x^{i}A is a
p extension with x^{p}=x\alpha+\beta for \alpha, \beta\in A and \alpha\in A^{p-1}=\{a^{p-1} ; a\in A\} . More
precisely, if this is the case,

(i) g(D, D)(x)=x+c for some c\in A and c^{p-1}=\alpha,
(ii) D^{k}(x^{k})=k ! for 1\leq k\leq p-1 .

PROOF. Assume B/A is P-Galois extension. Since B_{A}\oplus>A_{A} , there
exists an element w\in B such that \Delta(w)=1 . Then x=D^{p-2}(w) is a re-
quested one. g(D, D)(x)-x)=g(D, D)(D(x))-D(x)=1-1=0 shows
that

g(D, D)(x)-x=c\in B^{P}=A\ldots\ldots\ldots (^{*})

For this x, D(x^{2})=g(D, D)(x)D(x)+D(x)x=g(D, D)(x)+x=2x+c .
Hence we can see that

D(x^{k})=\Sigma_{i=0}^{k-1}(\begin{array}{l}ki\end{array}) x^{i}c^{k-1-i} by induction on k. Thus,

D(x^{p})=c^{p-1} .

Since D(x^{p}-xc^{p-1})=0 ,

x^{p}-xc^{p-1}=\beta\in B^{P}=A\ldots\ldots\ldots(^{**})
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Further, since D^{2}(x^{2})=2 !, we can see

D^{k}(x^{k})=k ! \ldots\ldots\ldots
(^{***})

for 1\leq k\leq p-1 by induction on k.
Since

D^{j}(x^{p-1})\cdot 1+D^{j}(x^{p-2}/(p-2)!) \cdot D^{p-2}(x^{p-1})=\{
1 if D^{j}=\Delta

0 if D^{j}=D^{p-2} ,

we assume that there exist elements u_{1} , u_{2} , \ldots
u_{t} and v_{1} , v_{2} , \ldots-v_{t} of

B such that \Sigma_{i=1}^{t}\Omega(u_{i})v_{i}=\delta_{\Delta,\Omega} for all \Omega=D^{j}, j=k+1, \ldots
, p-1 and each

u_{i} , v_{i} are contained in A[x] . Then

\Sigma_{i=1}^{t}D^{i}(u_{i})v_{i}-D^{j}(x^{k}/k !)\Sigma_{i=1}^{t}D^{j}(u_{i})v_{i}

=\{
1 if j=p-1
0 if j=k, k+1 , \ldots

, k-2 .

Thus there exists a system \{u_{i}, v_{i},\cdot i=1,2, \ldots.s\} such that
\Sigma_{i=1}^{s}\Omega(u_{i})v_{i}=\delta_{\Delta,\Omega} for all \Omega\in P and each u_{i} , v_{i}\in A[x] . Then B=

\Sigma_{i=0}^{p-1}x^{i}A by (IV) and (^{**})

Next, we shall show that \{1, x, x_{ }^{2},\ldots , x^{p-1}\} is linearly independent
over A . If z=\Sigma_{i=0}^{p-1}x^{i}a_{i}=0(a_{i}\in A) , then 0=\Delta(z)=(p-1) ! a_{p-1} by (^{***})

and this means that a_{p-1}=0 . Repeating this way we can see that a_{i}=0 for
i=0,1,2 , \ldots , p-1 . Consequently, we can see that B is a p-extension such
that

B=A[x]=\Sigma_{i=0}^{p-1}\oplus x^{i}A with x^{p}=xc^{p-1}+d for c, d\in A ,

and further, this x satisfies ( i) and ( ii) by (^{*}) and (^{**}) .
Conversely, assume that B=A[x]= \sum_{i=0}^{p-1}\oplus x^{i}A is a p-extension such

that x^{p}=xc^{p-1}+d for c, d\in A . Then the map \sigma of a polynomial ring
A[X] over A defined by \sigma(X)=x+c gives an A -automorphism of A[X] .
Further the map D of A[X] defined by (i) D(Xa)=a for a\in A , (ii)
D(X^{k}a)=(\sigma(X)D(X^{k-1})+D(X)X^{k-1})a and (ii) D(\Sigma_{i=0}^{k} X^{i}a_{i})=\Sigma_{i=0}^{k}

D(X^{i})a_{i} gives a \sigma -derivation of A[X] For, assume D(X^{k})=

\sigma(X^{i})D(X^{k-i})+D(X^{i})X^{k-i} for all k\leq n and i\leq k. Then
D(X^{n+1})=\sigma(X)D(X^{n})+X^{n}

=\sigma(X)(\sigma(X^{i-1})D(X^{n+1-i})+D(X^{i-1})X^{n+1-i})+X^{n}

=\sigma(X^{i})D(X^{n+1-i})+(\sigma(X)D(X^{i-1})+X^{i-1})X^{n+i-1}

=\sigma(X^{i})D(X^{n+1-i})+D(X^{i})X^{n+1-i} .

Thus D is a \sigma-derivation. Since D(X^{p})=c^{p-1} , D(X^{p}-Xc^{p-1}-d)=0 and
this shows that D induces a \sigma-derivation of A[X]/(X^{p}-Xc^{p-1}-d)\cong B.
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We denote it again by D. Then P=\{D^{0}=1, D, D^{2}, \ldots D^{p-1}=\Delta\} is a rela-
tive sequence of homomorphism for B/A such that P ( \min)=\{1\} ,
P(nm)=\{\Delta\} and Dg(D, D)=g(D, D)D.

Let z=\Sigma_{i=0}^{p-1}x^{i}a_{i}\in B^{P}(a_{i}\in A) . Then 0=\Delta(z)=\Sigma_{i=0}^{p-1}\Delta(x^{i})a_{i}=(p-1) !
a_{p-1} yields a_{p-1}=0 . Repeating the same way, we can see that z=a_{0} .
Thus, BP=A. Since \Delta(x^{p-1})=(p-1)!=-1 , x_{(Dj)}=D^{p-1-j}(x^{p-1}) satisfies
(i ) , ( ii) and (iii) of (IV). Thus B/A is a P-Galois extension by (IV).

COROLLARY 2. 2. Let A be an algebra over GF(p) and let B=
A[x]=\Sigma_{i=0}^{p-1}\oplus x^{i}A be a P-Galois extension over A such that x^{p}=xc^{p-1}+d

for some c, d\in A and D(x)=1 . Then

(1) A g(D, D) -derivation g(D, D)-1 is obtained by cD.
(2) B^{g(D,D)}=\{b\in B; g(D, D)(b)=b\}=A if and only if c is a regular

element ( i. e, c is non-zerO-divisor). In particular c is a unit element if
and only if B/A is a g(D, D) -cyclic extension.

(3) B^{g(D.D)}\supset A ( i, e. , A is a proper subset of B^{g(D,D)}) if and only if c
is a zero divisor. In particular if c is nilpotent then there exists a positive
integer k such that B^{p^{k}}=\{b^{p}k:b\in B\}\subseteq A .

(4) g(D, D)=1 if and only if c=0 . Moreover, if this is the case,
B^{p}\subseteq A .

PROOF. (1) g(D,D)-1=cD if and only if (g(D, D)-1)(x^{i}a)=
cD(x^{i}a) for a\in A and 0\leq i\leq p-1 . Since (g(D, D)-1)(xa)=ca=cD(xa) ,
we can easily see (g(D, D)-1)x^{i}a)=cD(x^{i}a) by induction on i.

(2) Let c be regular and let y=\Sigma_{i=0}^{p-1}x^{i}a_{i}\in B^{g(D,D)} . Then 0=(g(D,

D)-1)(y)=\Sigma_{i=0}^{p-1}(x+c)^{i}a_{i}-\Sigma_{i=0}^{p-1}x^{i}a_{i} yields (\begin{array}{ll}p -1p -2\end{array}) ca_{p-1}=0 . Since c is

regular, this means that a_{p-1}=0 . Repeating this way, we can easily see
that y=a_{0} , and hence B^{g(D,D)}=A . Conversely, assume that B^{g(D,D)}=A .
If ca=0 for some a(\neq 0)\in A , then g(D, D)(xa)=(x+c)a=xa shows that
xa\in A and this contradicts to linear independence of \{1, x, x_{ }^{2},\ldots.x^{p-1}\} .

Let c be a unit. Then g(D, D)(y)=y+1 for y=xc^{-1} . Moreover we
can see that B=\Sigma_{i=0}^{p-1}\oplus y^{i}A and y^{p}=y+d for some d\in A . Thus B/A is a
g(D, D) -cyclic extension, and the converse is also true [see [4]].

(3) B^{g(D,D)}\supset A if and only if c is a zero divisor by (2). Since D(x^{s})=

\Sigma_{i=0}^{s-1} (\begin{array}{l}si\end{array}) x^{i}c^{s-1-i} (see the proof of Theorem 2.1), D(x^{pt})=c^{p-1}t for some
t\geq 1 . If c is nilpotent, we may assume (c^{p-1})^{p}k=0 for some k\geq 0 . Then
x^{p}k+l=(x^{p})^{p}k=d^{p}k shows that B^{p}k+1\subseteq A .

(4) Since g(D, D)(x)=x+c, g(D, D)=1 if and only if c=0 . Further
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if this is the case, x^{p}=d shows that B^{p}\subseteq A .

REMARK: ( i) If A is an algebra over GF(2) , and B is a 2-extensi0n
of A , then B=A[x]=A\oplus xA with x^{2}=xc+d for some c, d\in A . Hence
any 2-extension of A is a P-Galois extension by Theorem 2.1.

(ii) Let B=A[x]=\Sigma_{i=0}^{p-1}\oplus x^{i}A be a p-extension such that x^{p}=xc^{p-1}+d.
Corollary 2.2 of (2) shows that if c is a regular element but not a unit
element then B/A is a P-Galois extension but not a g(D, D) -cyclic exten-
sion though B^{g(D,D)}=A .

In the rest we assume that p>2 is a prime and K is a field of charac-
teristic p or of 0 and K contains a primitive p-1 the root \zeta of 1 if the
characteristic is 0. Further A is an algebra over K.

Let C=A[y]=\Sigma_{i=0}^{p-2}\oplus y^{i}A be a ring with y^{p-1}=c\in A (and hence,
A[y]\cong A[Y]/(Y^{p-1}-c)) . For a primitive p-1 th root \zeta of 1 of K , we
define two maps \tau and E of C as follows:

\tau(\sum_{i=0}^{p-2}y^{i}a_{i})=\sum_{i=0}^{p-2}(y\zeta)^{i}a_{i} ,

E(ya)=a, E(y^{k}a)=(\tau(y)E(y^{k-1})+E(y)y^{k-1})a and
E(\Sigma_{i=0}^{p-2}y^{i}a_{i})=\Sigma_{i=0}^{p-z}E(y^{i}a_{i})(a_{i}, a\in A) .

Then \tau is an A-automorphism of order p-1 . Further, we have the
following

Lemma 2. 3. E is a \tau-derivation of C such that

(i) E(y^{k})=y^{k-1}(\zeta^{k-1}+\zeta^{k-2}+\ldots\ldots+\zeta+1)

(ii) E^{i}\{
=0 if i=p-1
\neq 0 if 0\leq i\leq p-2

(ii) E^{k}(y^{k})=(\zeta+1)(\zeta^{2}+\zeta+1)\cdots(\zeta^{k-1}+\zeta^{k-2}+\ldots\ldots+\zeta+1) for 2\leq k\leq

p-2 .
(iv) E\tau=\tau E\zeta.

PROOF. By the same way as in the proof of Theorem 2.1, we have
E(y^{k})=\tau(y^{i})E(y^{k-i})+E(y^{i})y^{k-i} for 0\leq i\leq k . Since E(y^{2})=\tau(y)+y=

y(\zeta+1) , we can easily see that E(y^{k})=y^{k-1}(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1) by
induction on k. Further E(y^{p-1})=y^{p-2}(\zeta^{p-2}+\zeta^{p-s}+\cdots+\zeta+1)=0=E(c)

shows that E is well-defined and is a \tau-derivation. This proves ( i ) .
Since any element of C is obtained by \Sigma_{i=0}^{p-2}y^{i}a_{i}(a_{i}\in A) , ( ii) is clear

by (i ) .
By induction on k , we can easily see (iii).
E\tau(y^{k})=E(y^{k})\zeta^{k}=y^{k-1}(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1)\zeta^{k} and \tau E\zeta(y^{k})=

\tau(E(y^{k}))\zeta=y^{k-1}\zeta^{k-1}(\zeta^{k-1}+\zeta^{k-2}+\cdots+\zeta+1)\zeta for each 0\leq k\leq p-2 shows
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that E\tau=\tau E\zeta

For 1\leq k\leq p-2 , we put \eta_{k}=\zeta^{k}+\zeta^{k-1}+\cdots+\zeta+1 .

THEOREM 2. 4. Let C be an extension ring of A. Then C/A is a
Q-Galois extension for some Q=\{E^{0}=1, E, E^{2}, \ldots.E^{p-2}\} with Eg(E, E)=
g(E, E)E\zeta if and only if C is isomorphic to A[Y]/(Y^{p-1}-c) for some c
\in A .

PROOF. Assume C=A[y]=A\oplus\cdots\oplus y^{p-2} A with y^{p-2}=c. Then Q=
\{E^{0}=1, E_{ },... E^{p-2}\} is a relative sequence of homomorphisms of C/A
where E is a \tau-derivation which is discussed in Lemma 2.3 and so E\tau=

\tau E\zeta.
Let \alpha=\Sigma_{i=0}^{p-2}y^{i}a_{i}\in C^{E} . Then 0=E^{p-g}(\alpha)=a_{p-2}\eta_{p-3}\eta_{p-4}\cdots\eta_{1} shows that

a_{p-2}=0 . Repeating this way, we have C^{E}=A . For each E^{j}=\Omega , y_{\Omega}=y^{j}/

(\eta_{1}\eta_{2}\cdots\eta_{j-1}) satisfies the conditions ( i ) , ( ii) and (iii) of (IV), and so
C/A is a Q-Galois extension by (IV) again.

Conversely, assume that C/A is a Q-Galois extension. Since C_{A}\oplus>

A_{A} , there exists w\in C such that E^{p-2}(w)=1 . Put y=E^{p-s}(w) . Then
E(y)=1 . Since Eg(E, E)=g(E, E)E\zeta, E(g(E, E)(y)-y\zeta)=
g(E, E)E(y\zeta)-E(y\zeta)=\zeta-\zeta=0 , and hence, g(E, E)(y)-y\zeta=a\in C^{E}=A .
Then g(E, E)(y+a/(\zeta-1))=(y+a/(\zeta-1))\zeta. We denote this y+a/(\zeta-
1) by y again. Then g(E, E)(y)=y\zeta and E(y)=1 .

Let \Omega=E^{j}, y_{\Omega}=y^{j}/\eta_{1}\varphi\cdots\eta_{j-1} and \Gamma=E^{i} . Then \Omega(y_{\Omega})=1 and \Gamma(y_{\Omega})\neq 0

if and only if i\leq j, that is, \Omega=\Gamma\Lambda where \Lambda=E^{j-i} . Further if this is the
case, \Gamma(y_{\Omega})=y^{j-i}(\eta_{j-i}\eta_{j-i+1}\cdots\eta_{j-1})=y_{\Lambda} . Thus y_{\Omega} satisfies the conditions
(i ) , ( ii) and (iii) of (IV), and so C=\Sigma_{j=0}^{p-2} y^{j}A by (IV). Let \alpha=

\Sigma_{j=0}^{p-2}y^{j}a_{j}=0 . Then 0=E^{p-2}(\alpha)=a_{p-2}(\eta_{1}\%\cdots\eta_{p-3}) implies a_{p-2}=0 . Repeat-
ing this way we can obtain a_{p-2}=a_{p-3}=\cdots=a_{1}=a=0 . Thus {1, y, y^{2} , \ldots-

y^{p-2}\} is a linearly independent A-basis for C. Since E(y^{p-1})=y^{p-2}\eta_{p-2}=0 ,
y^{p-1}=c for some c\in A . Thus C is isomorphic to A[Y]/(Y^{p-1}-c) .

COROLLARY 2. 5. Let C=A\oplus yA\oplus\cdots\oplus y^{p-2}A be a Q-Galois extension
with y^{p-1}=c\in A , where Q=\{E^{0}=1, E, E^{2}, \ldots E^{p-2}\} and E is a \tau-deriva-
tion such that E\tau=\tau E\zeta, Then

(i) C^{g(E,E)}=A

(ii) If c is a unit element then C/A is a g(E, E)-strongly cyclic exten-
sion.

(iii) If A is of prime characteristic p and c is nilpotent, then there
exists a positive integer k such that C^{p\iota}\subseteq A .
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P ROOF. (i) Let z=\Sigma_{i=0}^{p-2}y^{i}a_{i}\in C^{g(E,E)} . Then 0=g(E, E)(z)-z=
\Sigma_{i=0}^{p-2}y^{i}(\zeta^{i}a_{i}-a_{i}) implies z\in A .

(ii) This is proved in [5].
(iii) Since c is nilpotent, y is also nilpotent. Hence there exists an

integer k such that y^{p}=0k . Since C=\Sigma_{i=0}^{p-2}\oplus y^{i}A , C^{p^{k}}=A^{p}k\subseteq A .

\S 3. Embedding of p-extensions.

Let A be an algebra over GF(p) again. As is stated in Theorem 2.1,
a p-extension B\cong A[X]/(X^{p}-X\alpha-\beta) is a P-Galois extension over A for
some P=\{D^{0}=1, D, D^{2}, \ldots.D^{p-1}\} if and only if \alpha\in A^{p-1} . Then it is natu-
ral to ask that whether a p-extension B/A can be embedded into an S-
Galois extension T/A for some relative sequence of homomorphisms S.
It seems like an open problem. But we can see that B/A can be embed-
ded into such T/A that T^{s}=A and T_{A} is finitely generated projective for
some finite set S of End(T_{A}) where T^{s} means { t\in T;\Lambda(t)=t for all \Lambda\in

S_{a} , the set of all ring automorphism in S} \cap\{t\in T;\Omega(t)=0 for all \Omega\in S-

S_{a}\} .
Let B=A[x]=\Sigma_{i=0}^{p-1}\oplus x^{i}A be a p-extension with x^{p}=xc+d and let C=

A[y]=\Sigma_{j=0}^{p-2}\oplus y^{i}A be a Q-Galois extension with y^{p-1}=c which is given in
Theorem 2.4.

Let T=B\otimes_{A}C=\Sigma_{i=0,j=0}^{p-1,p-2}\oplus(x^{i}\otimes y^{j})A . For the covenience, we denote
x^{i}\otimes y^{j} by x^{i}y^{j} . Hence T=\Sigma_{j=0,j=0}^{p-1,p-2}\oplus x^{i}y^{j}A=\Sigma_{i=0}^{p-1}\oplus x^{i}C=\Sigma_{j=0}^{p-2}\oplus y^{j}B.

Let \sigma be the map of T defined by \sigma(\Sigma_{i=0}^{p-1}x^{i}c_{i})=\Sigma_{i=0}^{p-1}(x+y)^{i}c_{i}(c_{i}\in C) .
Since \sigma(x^{p})=(x+y)^{p}=x^{p}+y^{p}=xc+d+yc=\sigma(xc+d) , \sigma is well-defined and
a C-automorphism of order p. For this \sigma the map D of T defined by

(i) D(C)=0 and D(xd)=d
(ii) D(x^{k}d)=((\sigma(x)D(x^{k-1})+D(x)x^{k-1})d

(iii) D(\Sigma_{i=0}^{p-1}x^{i}d_{i})=\Sigma_{i=0}^{p-1}D(x^{i})d_{i} , where d, d_{i}\in C

becomes a \sigma-derivation of T, and P=\{D^{0}=1, D, ... . D^{p-1}=\Delta_{D}\} is a rela-
tive sequence of homomorphisms with P(nm)=\{\Delta_{D}\} and T^{P}=C. Fur-
ther, x_{(D^{k})}=x^{k}/k ! satisfies the conditions ( i) , ( ii) and (iii) of (IV).

Therefore T/C is a P-Galois extension.
Next, an automorphism \tau and a \tau-derivation E of C which are discus-

sed in Lemma 2.3 can be extended to that of T by \tau(\Sigma_{j=0}^{p-1}y^{j}b_{j})=

\Sigma_{j=0}^{p-2}\tau(y)^{j}b_{j} and E ( \Sigma_{j=0}^{p-z} yjbj)= \Sigma_{j=0}^{p-2}E(y^{j})b_{j} for b_{j}\in B , and T/B is a
Q=\{E^{0}=1, E, E^{2}, \ldots jE^{p-2}=\Delta_{E}\} -Galois extension.

Let F(i, j) be D^{i}E^{j} for 0\leq i\leq p-1 and 0\leq j\leq p-2 . By S we denote
the set of all nonzero finite products of F(i, j) , that is, S=\{\Pi_{s=1}^{m}F(i_{S}, j_{s}) ;
m\geq 1\}-\{0\} . Then we have the following theorem.
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THEOREM 3. 1. S is a finite set and T^{s}=A .

PROOF. F (i, j)(x^{k}y h)=D^{i}(x^{k})E^{j}(y^{h})=\Sigma_{h=0}^{k-i}x^{h}c_{h} , c_{h}\in C=A[y]

shows that F(i_{1}, j_{1})F(i_{2}, j_{2})\cdots F(i_{n}, j_{n})=0 if i_{1}+i_{2}+\cdots+i_{n}\geq p . Hence if
F(i_{1}, j_{1})F(i_{2}, j_{2})\cdots F(i_{m}, j_{m})\neq 0 then it must be i_{1}+i_{2}+\cdots+i_{m}\leq p-1 and
j_{k}<p-1 for all k=1,2 , \ldots , m. Thus S must be a finite set. Since S_{a}=

\{1\} , T^{s}=A is clear.

Let B=A[X]/(X^{p}-Xc-d) and let c be a unit element. Then B/A
can be embedded into an S-Galois extension T/A for some S=S( \min)
since B/A is strongly separable ([1]). As a corollary to Theorem 3.1,
we can show that a non-abelian group of the order p^{2}-p can be choose as
S if p>2 . For, let C\cong A[Y]/(Y^{p-1}-c) and let T=B\otimes_{A}C=

\Sigma_{i=0.j=0}^{p-1,p-2}\oplus x^{i}y^{j}A . (Note that y is a unit element since so is c). As is seen
in the begining of this section, \sigma:x^{i}y^{j}\Rightarrow(x+y)^{i}y^{j} and \tau:x^{i}y^{j}\Rightarrow x^{i}(y\nu)^{j},
where \nu\in GF(p) is a primitive p-1 th root of 1, are automorphisms of T
respectively, and further, T/C is a \sigma-cyclic extension and T/B is a \tau -

cyclic extension. Put z=xy^{-1} . Then T=\Sigma_{i=0}^{p-1}\oplus z^{i}C, \sigma(z)=z+1 and
\tau(z)=z\nu^{-1} . Hence \sigma^{\nu}\tau(z^{i}y^{j})=\sigma^{\nu}(z^{i}y^{j}\nu^{j-1})=(z+\iota_{J})^{i}y^{j}\nu^{j-1} and \nu\sigma(z^{i}y^{j})=

\tau(z+a)^{i}y^{j})=(z\nu^{-1}+1)^{i}y^{j}\nu^{j}=(z+\nu^{i}y^{j}\nu^{j-i} show that \sigma^{\nu}\tau=\tau\sigma . Therefore
S=(\sigma, \tau)= { \sigma^{i}\tau^{j} : i=0,1 , \ldots , p-1 and j=0,1 , \ldots , p-2 } is a non-abelian
group of the order p^{2}-p and T^{s}=A . Let \{x_{i}, y_{i} ; i=1,2, \ldots, t\} be a \sigma -

Galois system for T/C and let \{u_{j}, v_{j} ; j=1,2, \ldots , s\} be a \tau-Galois system
for T/B. Then we may choose the system \{u_{j}, v_{j} ; j=1,2, \ldots , s\} in C
since C/A is a \tau-cyclic extension, and hence, u_{j} and v_{j} are invariant under
the action of \sigma . Consequently we have

\sum_{i=1}^{t}(x_{i}(\sum_{j=1}^{s}u_{j}\sigma^{k}\tau^{h}(v_{j}))\sigma^{k}(y_{i})=\delta_{1},\sigma k\tau h .

and this shows that T/A is an S-Galois extension. Thus we have

COROLLARY 3. 2. Let p>2 be a prime. If B=A[x]=\Sigma_{i=0}^{p-1}\oplus x^{i}A is a
p-extension such that x^{p}=xc+d and c is a unit element, then B/A can be
embedded into a G-Galois extension T/A where G is a non-abelian group
of the order p^{2}-p .
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