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Introduction

In this paper we consider a small data scattering for the nonlinear
wave equation

(0.1) Gu—Au=f(u)

in two space dimensions, where f(u)=Alul"'u or f(u)=A|u|’, AER,

3+ /17

5 The scattering theory compares asymptotic behaviors for ¢

0>
— 100 of solutions of (0.1) with those of the free wave equation
0.2) Fuo—Auo=0.

The comparison will be done in the energy norm :
0-3) L OR=4 IV s+ 8 Dl

More precisely, we start with the solution u (¢#) of (0.2) with initial data
5 (0)E C*(R?), due (0)E CHR?)

which are small and decay sufficiently rapidly at infinity. Then we con-
struct a global solution #(¢) of (0.1) behaving like # (¢#) near t=—oo:

0.4)  Jlu(t)—us (t)]e—0 as t——oo.
Moreover, there exists another solution 5 (¢#) of (0.2) such that
(0.5) loe(t) — us ()| e—0 as t—+oo.

Thus, the scattering operator .&: uy—us is shown to exist on a dense set
of a neighborhood of 0 in the energy space.

The existence of the scattering operator has been proved by Strauss
[13], Klainerman [6] and Mochizuki-Motai [8], in the general n(>2)
dimensional problem. In these works the requirements on the power p of
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the nonlinear term are rather strong, and it is assumed in [9] that

W +3n—2+V(n?+3n—2l—8n(n—1) _
(0.6) o> 2n(n—1) N

7(n).

Note that 7(2)=2++3 =3.732 and 7(3):ﬁ3—@22.535.

In the 3-dimensional case condition (0.6) was improved by Pecher
to o> p(3)=1++2 =2.414, where

_n+1l/n*+10n—7
0.1 p(m=t L=t

His result is sharp in the sense that the Cauchy problem for (0.1) with
non-trivial regular data does not have global regular solutions if o< p(n)
(see John [5], Schaeffer and Asakura [2] for »=3, Glassey [3] and
Agemi-Takamura for n=2, and Sideris for n=4). Our aim of
this paper is to obtain the corresponding sharp result in the 2-dimensional
ﬁZLTZZQ,%L

Our problem (0. 1), (0.4) will be reduced to the integral equation

case. Thus, we require p>0(2)=

0.8)  ulx, )=us (x, t)+f_;% dr | f(”(x+1(:£€, ) ge

To show the global solvability of (0.8), we use, as in the case of Pecher
[10], a weighted norm in space and time. This kind of norm is originally
introduced by John to study a Cauchy problem of (0.1) at a finite
time. In contrast to the Cauchy problem, (0.8) includes an integral over
unbounded space-time region. In the 3-dimensional problem, the integral
being simpler, we can estimate it by almost the same method as in the
case of the Cauchy problem. In our 2-dimensional problem, however, to
add an extra estimate which is not used in the Cauchy problem is really
necessary.

The paper is organized as follows: In § 1 we first summarize results
of Kubota (cf., also Glassey and Tsutaya [14]) for the Cauchy
problems at ¢=0 for (0.1) and (0.2). In the last half of this section,
asymptotics for solutions of (0.1) will be given as a direct result. In §2
we prove a basic a-priori estimate for the nonlinear term of (0.8), and
construct a unique global solution of (0.8), from which the scattering
operator is easily shown to exist.

Finally, we remark that a similar result for the 2-dimensional problem
has been obtained independently by Tsutaya [15], where a basic estimate
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for nonlinear term is proved by a slightly different way.
§1. The Cauchy problems at {=0
Let us first consider the Cauchy problem

{G?uo—Auo:O, xER? t>0,
uo(x, 0)=p(x), duto(x, 0)=¢(x), xER?.

For given ¢(x)EC*R®) and ¢(x)SC* R?), a unique classical solution
exists and is given for £ =0 by

( +f5) AC R3]
(1 2) uo(x t) at<27l' E|<l¢/x lélz > 272-/|<1 z IEP d§.

In the following we assume that for all xE R?,

(1.1)

& ] j+1 3
(j=0,1,2), where €>0 and »>1.

ProPOSITION 1. 1. Let x>% in (1.3). Then there exists a constant

C >0 depending on x such that

Ce(1+|t—|x|)i-**2
JI+t+x] V1+]t—|x]]

(1.4)  |Viu(x, t)|< (0<7<2)

for xER? and t=0. Here and in the following we use the notation : [a]=
max{0, a} for aR and A"=(1+1ogA) for A=1.

We shall sketch a proof. As for the details, see e. g., Proposition 2.1
of [7]. Note that the first inequality of (1.3) is replaced by |e(x)|<

—& —in [7]. However, by expression (1.2), we easily see that (1.3) is
(1+]x)

enough to obtain (1. 4).
For the sake of simplicity, we only consider the term

_t [ Yt pxt8) 4
woa(x, t)= 27 Jel<1 ‘“lélz ,/;«W

In the last integral we use the polar coordinates £=7w, |w|=1, and put
=|x| and A=|x+7w|. Then by means of (1.3),

(1.5) ool t)|é%f0 n{tz—772}‘1’2d77f|w|=1(1+|x+ nw|)™"dSe

_E t 2__ . 2\-1/2 T —k
= ﬁﬁ {t*—n*) df/fm_rli(lﬂ%) WA, n, 7)dA,
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where
(1.6) kA n, n)={n*—Q=r)} A+ 7)— 79?7

(the equality in (1.5) is proved in of [7]). Thus, changing the
order of integrations, we have

(1.7)  |uoax, t)|

séﬁ t+r/1(1+/1)”‘d/1/t (2= V2 (A, 5, v)dy
7 Jie-rl A=)

t—r

4_€ e=rl —K s 2__ . 2\-1/2
LA [l G, 0

LEMMA 1. 2. Let a<b<c. Then
b
(1.8) f (b= 0)""(6— a) (¢ — o) Pdo<x(c—b) "™
PROOF. Obvious if we note that

/;b(b —6)y V(o—a) V*do=nm O

LEMMA 1.3. Let x>%, [>0, a=R and b=\|a|. Then

(1.9) ﬁw(1+0)_”+1(0—a)'1’2d0£ C(1+b)*+¥2,
(1. 10) Lb(l_i_ldl)_l(b— o) 2do< C(1+ b)12(14 b)Y,

PROOF. We have only to show these inequalities in case b>1.
Then (1.9) follows since we have

35
left of (1.9)<(14 )+ ﬁ (o—b)"2do
+V2 [ (1+0) o< C1+b) ",
Next, we have
b/2
left of (1.10)<(b/2)™"? f " (1+lol)do
+(145/2)"! fb ;(b— 5)-V2ds,

which implies (1.10). ©

PROOF OF PROPOSITION 1.1. We apply lemma 1.2 to (1.7). Note
that
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A/At n(t*—=n*) (A, 9, v)dy

—Tl

i b _ -1/2 _ —-1/2 _ -1/2
szfa(b ) (6 —a) (¢ — 6)"V2do,
where a=(A—7)%, b=t* and c=(A+7)*>. Then by (1.8),

fut_,ﬂ(fz* ), 3, )dp<G{(A+ 7)1,

Similarly, we have

At+r
/|;—+77(t2_77z)—1/2h(/1, 7, 7’>d77£%{t2—(/1+7)2}_”2,

and thus, it follows that

| a0z, l‘)|£2€/irl/1(l+/1)—"{(/l+ ¥)2— 127124

[t

[t—7]
+oe fo AL+ D= (A )2

<2e(t+ r)‘”z{fm+f[t_r]}(1+/1)“‘“|/1—t+ 7|712d
B lt—7| 0
<ce(t+7r) 21+t — 7)) A1+t —#|) 2,

Here we have used (1.9) with a=t—7 b=la| and (1.10) with ¢=x—1,
a=0, b=|t—7| to obtain the last inequality. ©
Next we consider the Cauchy problem

‘u—Au=1f(u), rER? >0,
(1.11) {u(x, 0)=o(x), duulx, 0)=¢(x), xER

where f(u)=Alul""'u or f(u)=Alu|", AER, p>3+2m, and ¢, ¢ satisfies

(1.3). Asis well known, (1.11) is reduced to the integral equation

(1.12)  ulx, t)=wuolx, t)+ Lo(f (u))(x, t),

where u(x, ¢) is the solution of (1.1) and

(1.13)  Low)s D=5 [ (=) [ w(xj;it-;ézé, ) ge

PROPOSITION 1.4.  Assume that for all x€R? and t>0,

M
JI+ ][ A+t =]

(1.14)  |ulx, t)|<

wheve M >0 and
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(1. 15) u>[5;—pp] and ov+1.

Then there exists a C>0 depending on v such that

CM”(I + ‘ t— |x||)[—P/Z+[—pU+1]+2]

(1.16) | Lo([ul)x D<= A5t T =Tl

for x€R? and t>0.

As in the case of wu(x, t), a simple calculation with shows
that

(1.17) | Lo(lul*)(x, )|
<om [z [T AQH A+ O+ A= o)
- 0 lt—7—1]
X{(A+7)—(t— )%} 2dA
vonte [ e [T A A 0P+ A o)
0 0
X{(t—r)?—(A+ 7))} 2dA.
We choose the new independent variables
(1.18) a=A—r and f=A+r.
in the right integrals. Then it follows that
t+r
Lol < M? [ (14 B 28— t+ 1) dB

N
xﬁit(1+|a|)‘p”(a+t+ r)*da
wue [T By = — BB
x [ Z(1+|a'|)“’”(a/+t+r)‘”zdaEM”{Il-f-Iz}.
LEMMA 1.5. Let aER, b>l|a| and c=a. Then
(1.19) [ (A+lo) (= 0) 2do< CA+|c) 1+ b)Y,

PrROOF. We denote the left of (1.19)=K. First assume ¢>1. If ¢
>2a, obviously K <C(c—a)™"*(1+b6)""*Y, and if ¢<2a,

ajl2 a
K="+
-b al2

< C(c—%ywm )P+ C(1 -1-%)_””(6—%)”2.
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Next assume |c|<1. If a>—2,
-2 a
K=[ "+ [(<Clct2y 1+ )1+ C1+a) (e +2)',
-b -2
and if a<—2,

K< / ;ZSC(c+2)‘1’Z(1+b)[“’”“’.

Finally assume c¢<-—1. If c2%, obviously we have K<C(c—

a)"*(14 b))+ if cé—g— and aZ—%,

2a a
K:./—'b + 2a
<C(c—2a)"*(1+ )=+ C(1+|a))*(c—2a)"

. a b
and if csz and as~2 ,

K< [ :s CA+]al)*(c—2a)".

These inequalities show (1.19). ©

PROOF OF PROPOSITION 1.4. Cf., e.g., Propositions 3.1 and 3.2 of
. First consider /i. By use of (1.19) with a=t—7, =4, c=t+v,

Ilsc(l+t+7)_1/2'/i;t_-:(1+|B|)_p/2+l+[—py+”(£—t+7’)_1/ZdB.

Since
o _r_ _[0/2 (if pu>1)} 3
(1.20) 2 [ ‘0V+1]f{p/2+pu—1 (if ov<1) >2
follows from (1.15), we can apply (1.9) with x:%—[—pw-l], a=1t—y,

b=|a| to obtain
L<C(O+t+ 7’)_1/2(1—f— lt— 7/|)_P/2+[—PU+1]+3/2.

Next, we consider L assuming {—7>0 and 7+¢>3 (the other cases
are easier). By use of (1.19) with e=b=8, c=¢+7 and then (1.10) with

l:—g—[-pu-ﬂ]—l, a=0, b=|t—r| we obtain
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t—r
[23(:(1+t+7’)_1/2'£ (14 pB)Fretlevtlidl(y — y — gY12418
<CA+t+7) "2+t — 7)) VA1 + |t — 7 |)eretevrlirz]
These inequalities show (1.16). ©

COROLLARY 1.6.  If we choose

2o p
(1.21) [Z(p—l)

]<u<min{%,p—g—§} and pv+1

3+m)
2

(this is possible since we have requived p> , then this v satisfies (1.

15) and we have

cMm?
IFE+Id A+ —lxl)”

(1.22)  |Lo(lul)x, )I<

PROOF. Assume first u<%. Then

1 0. r_ _1l _,_e_
m= [ 5 +[—pv+1]+2]= 5 [ 5 pov+3].
_ . 5—p . 6—po _1 . 6—p
By (1.21), m=pv 5 >y if z/<—2p , and m= 5 >y if u2~—~2p . Next
assume 1/>i Then m:L—[—ﬁﬁ-Z]:min{i ;3}>v also by (1.21)
o 2 2 27 2 R

Hence we have

(1+|t—|x||)[_"’2+[‘p”+11+21 - C
JI+—]x Sa+t=p7 - °

REMARK 1.7. If p#4, we can choose

_ .1 p—S}
(1. 23) u—mln{z,—z

in the above corollary.
Next, we consider the integral

.20 Liw)s 0= [ (c—dr [ M“’("jl_(f__‘lé%f’ 2) ge.

PROPOSITION 1.8.  Let u(x, t) be as in Proposition 1.4. Then theve
exists a C>0 depending on v such that

CMP(1+ £+ =
(Lt £+l ™

(1.25) |Li(Jul”)(x, )<
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for x€R? and t>0.
PROOF.  As in the case of Lo(|#|®), the use of and (1.18)

shows that
Llu)= ey [T 1+ 8) =g+ 7 — 1) dg
x[:(1+|a|)—"”(a+r+t)-”2a’a
+CM? [T (14 B PP B+ r— 1) g

—_r—t ~ ~
X / e M (—r =t @) da=CM* i+ B,

By use of (1.9) and (1.10) with Jf:%, [=pv, a=t—r, b=t+vr, it fol-

lows that
R<CA+1+7) 2221+ t+ 7)1+ ¢+ 7)o,

Next, by use of (1.19) with a=c=—¢—7, b=4,
k< C(1+t+ 7)_1/2/:j (14 B) P21l rll(p— 4y )220

By means of (1.20), we can apply (1.9) to obtain
ESC(1+t+7)_1/2(1+t+ 7)*P/2+[—pu+1]+3/2.

These prove (1.25). ©

In the rest of this section, to show the existence and properties of
solutions of (1.11), we restrict x as

3 ,o—H}
(1. 26) x>max{2,—p_1

and choose v as follows :

5—0] - {L o—3 __3_}
(1.27) [2(0_1) <y<min 2 g Xy and pov=+1.

°o—po _pt+1 3 3 . . : :
2(o=1) o=1 2 <x 5> it s always possible to choose v satisfy

ing (1.27).
Define a Banach space

(1.28) X ={v|Viv(x, t)&C(R*XR;) and |Viv|s<oo for 0<;<2},

Since

where
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(1. 29) ||v||v=( t)seuRgxk{(1+t+\xl)”Z(HIt—lxll)”lv(x, DI}

x,

Then, since u<x—~3—, Proposition 1.1 shows that the solution wu(x, t) of
(1.1) belongs to X and
(1. 30) ||V§cuo||v£ Ce, 052,

where C >0 depends on x and v. Moreover, since v satisfy (1.21), Corol-
lary 1.6 shows that

(1.31)  ILo(f Dllv<Cllul

for any u= C(R*X R.) such that |u|v<oo, where this C>0 depends on p,
x, v and A.

With these inequalities with >0 sufficiently small, we can follow a
method of successive approximation (already used by John [5]) to estab-
lish the unique existence of solutions #€ X of the integral equation (1.12).
Moreover, asymptotics as ¢~ +9 of « can be derived since we have f(u)
eLY(R"; L*(R?) for ucX.

QOur results are summarized in the following

THEOREM 1.9. (1) Let o, x and v be as given above, and assume
(1.3). Then there exists an €>0 depending on these parameters and A
such that the initial value problem (1.11) has a unique solution u(x, t) in
X provided 0<e=<¢y.

(2)  There exists a solution ui(x, t)EX of the linear wave equation (0.
2) such that

(1.32)  lee(8)—us (Bl
<Cllulf(1+¢)" 31+ ¢)2 20 gs t >+ 00,

REMARK 1.10. As is proved e.g., in [7], for the existence of a
global small smooth solution of (1.11), it is “necessary” and sufficient to
assume

3—+2i_11 and xzﬂ—

(1.33) p> =1

In this paper we add the “needless” condition ;c>i only for the sake of

2
3+417
5
Note also that the case p>5 is already covered by the previous works [6],

, @ and .

simplicity, and to concentrate on the power nonlinearities ©0>
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PROOF OF THEOREM 1.9. (1) With the above two inequalities (1. 30)
and (1.31), we can follow the same argument as given e. g., in Glassey

or Asakura (see Kubota [7]).
(2) Note that

ViIL(f(u))(x, )= L(Vif(u))(x, t), 0<7<2.

Then since < X, it follows from [Proposition 1. § that L,(f(«))EX.
Define

(1.34)  ui(x, t)=ulx, t)—Li(f(u)x, t)eX.

Then we can directly prove that ud(x, t) satisfies the linear wave equation
(0.2) (see, e.g., Pecher [10]) and moreover,

()= (D)= [ If G-, Dz,

Thus, by means of (1.29), we have
lee(t)— 2 (2)]e
<Clulty 71 (4 e+ + = Il a2

Put

fora=[ +f +f
R lx|<7/2 T/2<|x|<37/2 |x|>37/2

= K1 + Kz + K3.
Then

K<+ Z'/Z)_p_zpy_/|;|<,,2dx£ C(1+7)-r2v+2,

7/2
K<(1+7)"" f_ LHISD ™ ds < CA+ 1)~ (14 1) =,

K< C+|x|) " de < C(1+ 1)~ 2%v*2,

|x|>7/2

Thus, we obtain

()= s (Do Clally [ {1+ 20014 )22y
< Cllulf(1+ )91+ ey

and the proof is completed. O
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§ 2. Basic estimates and the existence of the scattering operator

We begin with preparing a-priori estimates corresponding to Proposi-
tion 1.4, which guarantee the existence of the global solution of (0.8):

(2.1)  wulx, t)=wus(x, t)+L(f(u)x, 1),
where u5(x, t) is a solution of (1.1) with initial data (¢ (x), ¢™(x)) satis-
fying (1.3), F(u)=Alul"'u or f(u)=Alul* with AER and p>—5— 3+‘/_ , and

@2 Lw)x 0=5 [(-odr [ AEHEDED

PROPOSITION 2.1. Let

(2. 3) lu(x, t)]

~/1+|tl+|x (1+|It|—x||
where M >0, and v>0 satisfies (1.15). Then we have

o CMp(l—H ltl-— le |)[—P/2+[—pu+1]+2+a]
2.4)  |L(ul)(x )< L

for x<€R* t€R and 0<6<min{%,p—;i,pu—s—gﬁ}, where C>0

depends on v and 0.

In the following we shall prove this proposition in case £>0. A stron-
ger result is already proved for ¢<0 by [Proposition 1.8 In fact, if we
change 7~ —7 and t——¢ in (2.2), we have

L(w)(x, t)=Li(@)(x, —t), where @(x, t)=w(x, —1).

By definition

(2.5)  |L(ul)x, p| < {]1+]z+]3}+|Lo(|u|")(x Bl

0 t—t+71
@6  Ji=[ dr[ " aQtatld)ra—ld)a
t—7
\2_ 21172
X/M_r;”{(t o =0y h(4, 0, 7)dn

min{0,¢t—7} t—7—-7
@1 Leth=[l [ A A ) A el )

A+r
N2 21 -1/2
< [ gl == kA 0, ),
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where »=|x| and %(A, 7, ») is as given in (1. 6). Dividing the integral of
(2.7), we define /> and J; as follows:

.8)  J=[f [ an G=2,3),

where

Dy={—t+7r<r<0,0<A<t—7+1} and
Ds={—c0< <0, max{0, t—r+r}<A<t—r—r1}.

As for the term |Lo(Ju|’)(x, ¢)|, a corresponding estimate to (2.4) is
already proved in [Proposition 1.4 In order to obtain similar estimates
for /1 and J.+ /s, we shall follow the line of proof of Proposition 1.4. In
the present case, however, it is necessary to modify inequalities corre-
sponding to (1.17). The main reason is in the fact that ¢+ and r have

different signs in both /i and /J.+/s. Thus, we require other than Lemma
1. 2 the following

LEMMA 2.2. Let a<b<c. Then
b
2.9) fa (b—0)"o—a) " (c—o0)"*do

éﬁ{ﬁ+log<%:bi)>}(b—d)‘”2-

PrROOF. Note that
left of (2.9)
:[/(a+b)/2+ b ](b_O_)—1/2(O._a)—1/2(c_o.)—l/zdo‘

(a+b)/2

Sﬁ(b_a)—I/Z{/a‘C(G_a)'I/Z(C_0)—1/2d0

b
+ [[(b= o)y (c— o) do)
Then since
L (o—a) " (c— o) do=1,

[[(6=0)""(c—0)"do
=2{log(Vo—a ++Jc—a )—logyc— b},

we have (2.9). ©

LEMMA 2.3. We have
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(2. 10) fzﬁ%fo[t—”(l-’ra)‘p’z“(t%h r+a) 2 da
x [+ 18) -t~ r—B)dB
(2. 11) jss%ﬁir|(1+a)_p/2+l(a+t+ 7’)_1/Zda'

x [ arlgh et —r— 8 dg,

PROOF. We use Lemma 1.2. Then it follows from (2.8) that

L= Atz 2@+ A= e
X(t—1—=A—»)"V¥t—r+A+»)2dAdr (j=2,3).

Choosing the new variable (1.18) and nothing <0, we obtain (2.10) and
(2.11). ©

LEMMA 2.4. For any 0<8<‘O—;i, we have

@.12)  =C [ AHIB) (4 r— By HIH(8—t+ 7)) dB
o IR o R PR

(2.13) < Cr—”Z/l:rl(1+a)—p/2+1/2+ada

< [ B L (= B) )8

PrOOF. We use Lemma 2.2. Then since

At rf—(QA=r) _ 42

s _ -
log (At 7)P—(t—7) <log - <C+A+A+r—t+71)

for A+»>¢t—r, (2.12) follows from (2.6). Next since

log 8: 32:8;:;2 slog————t _2(:__;)_ < C+A—r)Y+(t—r—A—7r)"?°

for A+»<t—r and A—r=|t—7|, (2.13) follows from (2.8). ©
PROOF OF PROPOSITION 2.1. We choose ¢ as in Proposition 2.1.

First we estimate /i using (2.12). Since %—8>%, we can use (1.9) with

x:—é——é, a=r—t, b=|t—r| (or b=p) to obtain
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]1£C(1—|—|t_7,|)—p/2+8+3/2
X /tl_t,_rl(1+ 18D~ (t+7—B) " (1+(8—t+7)"*}dB
i C t+r(1+3)_pu_p/2+3/2+8(t+7—£)—1/2{1+(B_t+7’)_5}dﬂ.

lt—rl

Note also that é‘<%. Then obviously /i< C if t+7<3. Thus, we have

only to consider the case t+7»>=3. If t>2r,

B CQ 1=y oo [Ty g1 4 (- 14 7))

< C(1+ f— 7,)—pu--n/2+3/z+s{1_|_ 7,1/2}-

If r<t<L2r,

flg Cr—llz{‘/t'j:ﬁq_f_ e }(1+B)—pu—9/2+3/2+8{1__I_(B_lz_f_ 7’)_8}615

t—7+1

t+r
+ C(]. + t)—Pu—P/2+3/2+8[ (t 44— ,5’)_1/20'3

t—7r+1

< CV*I/Z{(I_}_t_ 7,)—;OL/—;0/2+3/2+a"/t'- (3_t+ r)—sdﬂ
t+r
—pU—p/[2+3/2+8 1/2 —pV—p[/2+3/2+8
+[Ta+s dB}+Cre(1+ 1)
< C?"_“z{(l‘*' — r)—pu—p/2+3/2+8+(1_+_ t— r)—pu—p/2+5/2+8}

where we have used the fact that —pu+5_T‘0+6<0. If t<r<2¢,

]l < C(l +py— t)—P/2+3/2+8
t—r+1 r—t
-1/2 _ -8 . oy
x{re [ =t ryag e [0+ 18) )

+ Ct—llz’/r‘iir(l_*_|B|)—py—p/2+3/2+8{1_+_(13_t_+_ },)—a}dﬂ

+ CtV2(1+ ) Pr-ria+3iz+e
< C(1+ y— t)—p/2+3/2+a{7,—1/2_|_ t—1/2(1+ y— t)[—pu+1]
+ Ct V(147 — ) o282+ L (14— £)-PupIzesIzs)

If »r=2t¢,
t—7+1
]lg C(l +y— t)—p/2+3/2+8{7—1/2[_ * (,8_ t+ 7’)_86{,8

+ a8+ = B) 7 ag)
-+ C(1+ y— t)~pu—p/2+3/2+s/t:7(t+ V—B)_l/zdﬂ
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<C(L+7—t) P23 V2 (14 £+ ) A+ 7+ 1))
+ C(l +y— t)—pu—p/2+3/2+a(2t)1/z

where we have used (1.19) with /=pv, a=b=r—t, c=t+r to obtain the
last inequality. These inequalities show

(2.14)  L<CA+7r+) (14|t —p|)-errderizertive,
Next, We estimate J» assuming ¢>7 in (2.10). Since a<{—r7, with
the help of (1.19) with a=b=ga, c=t—7,
(2.15)  |< C(l+|t—rl)‘”z'/o‘t_r(l-!-a/)""’z“”_"””(a+H—r)‘”zda/
< CA+|t—7|)7V2(28) V2A A+t —r|)l-ererizer i,
Finally we estimate J;. If =27 or »+¢<3, we use (2.11). By (1.
19) with a=c=7r—t, b=a, and by (1.9) with x=—§—-—[—pu+1], a=b=
t—=7],
Js<CQ+[t—r)"" /u il(Ha)"”“”["’””(wt+ )2 da
< O+t = )Lt e

If 72%, we use (2.13). Then since

[ a1g) 0+ (= r—B) 8= CU+ A @) ),
it follows that
< Cr‘”zfl:rl(l-i-a)"”“””"““’“*”da
< Cr V14|t —r|)-rrrdEesrizevl,
Summarizing these inequalities, we have

(2.16)  Js< CA+7+8) (1]t — p|)reizeriissnss,

Inequalities (2. 14)~(2.16) and [Proposition 1. 4 prove (2.4). ©
In the rest of this section, we choose x and v to satisfy (1.26) and (1.
27), respectively. And let 8 be such that

(1 =3 . _ _5—0}
(2.17) 0<6<m1n{2, 5 , (o—1v 5 [

Define a Banach space
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(2.18)  Y={v|Vu(x, t)eC(R*}XR) and |Viv|w<oo for 0<;<2},
where

(219 lolw=_sup [(U+[el+ |1+ 1]~ L] )]G, £)],

As for the free solution g (x, ), the estimate of [Proposition 1. 1 holds for
any tER if we replace ¢ by |¢|. Thus, s €Y and

(2.20)  |Viwsllw<Ce, 0</5<2,

where C>0 depends on x. On the other hand, Proposition 2.1 with ¢ sat-
isfying (2.17) shows that

(2.21) (LG @)lw=< Cllalt

for any u€ C(R*X R) such that [|«||w<co, where this C>0 depends on p,
x, v, 0 and A.
With these inequalities we can prove the following

THEOREM 2.5. (1) Let p, x, v and & be as above, and assume that
(97, ¢7) satisfy (1.3). Then there exists an e>0 depending on these
pavameters and A such that the integral equation (2.1) has a unique solu-
tion u(x, t) in Y provided 0<e<eo in (1.3).

(2) u(t) is a classical global solution of the nonlinear wave equation
(0.1), and we have

(2.22) D)~ (D)l
< Cllaellfd (U A4-[2]) =21 4 )2 012 5 0 gs ¢ > —o0,
Furthermore, if we define
(2.23)  wi(x, )=ulx, t)— Li(f(u))x, 1),
then ud €Y satisfies the linear wave equation (0.2), and we have

(2.24)  u(t)—us ().
S Clauld(X+ )31+ )22 5 0 gs t - 400,

PROOF. (1) With the two inequalities (2.20) and (2.21), a method
of successive approximation is also applicable to show the existence of the
unique solution #(¢) of (2.1) in Y for given small us(¢) satisfying (2. 20).

See, e.g., Pecher [10].
(2) We note that

et =i (D= [ 1A, D)lesde.
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Then by means of (2.19), we can repeat the proof of [Theorem 1.9 (2) to
obtain (2.22). Moreover, (2.24) is exactly what we have proved in Theo-
rem1.9 (2). ©
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