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2-Type flat integral submanifolds in S7(1)
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Abstract. This paper determines all flat, mass-symmetric, 3-dimensional 2-type sub-

manifolds of the unit sphere S7(1) which are integral submaniifolds of the canonical
contact structure.
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1. Introduction

In [5,6] Bang-Yen Chen introduced the notion of submanifolds of finite
type. Let M be a submanifold of Euclidean space E™ and A the Laplacian
of the induced metric. M is said to be of finite type if its position vector
field x has a decomposition of the form

T=Tyg+ 21+ -+ X

where zo is a constant vector and Ax; = A;z;. Assuming the A\; to be
distinct we say that M is of k-type.

The theory of finite type submanifolds has become an area of active
research. The first results on this subject have been collected in the book
; for a recent survey, see . In particular, there is the problem of classifi-
cation of low type submanifolds which lie in a hypersphere. Far from being
solved in general, there are many partial results which contribute to the so-
lution of this problem. For instance, by the well-known result of Takahashi
, 1-type submanifolds are characterized as being minimal in a sphere.

However, classification of even 2-type spherical submanifolds seems to
be virtually impossible. A compact submanifold M™ of a hypersphere S™
of E™*! is said to be mass-symmetric if the center of mass of M™ in E™*!
is the center of S™ in E™T!. Note that the only 2-type surface in S is
the flat torus S'(a) x S1(b), a # b, while a 2-type mass-symmetric integral
surface in S° is locally the product of a circle and a helix of order 4, or

!This work was done while the first author was a visiting scholar at Michigan State
University.
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the product of two circles [1]. Integral finite type surfaces in S° are also
studied in [3], where a weaker assumption is used. On the other hand the
codimension seems to play a crucial role in the characterization of low type
spherical submanifolds of codimension greater than 1 and hence it seems
to be necessary to use extra conditions. In B.-Y. Chen gives a list of
open problems and conjectures concerning submanifolds of finite type. He
also gives a good survey of what is known about the classification of 2-type
(spherical) submanifolds with arbitrary codimension.

This paper provides a contribution in codimension greater than 1 by
classifying 2-type, mass-symmetric, flat integral 3-dimensional submanifolds
of the unit sphere S7(1) C E3. |

It is well-known [4] that an odd-dimensional sphere $2"t! carries a con-
tact structure, i.e., a global 1-form 7 such that nA (dn)™ # 0. A submanifold
of a contact manifold M?"*! with contact form 7 is an integral submani-
fold if it is an integral submanifold of the 2n-dimensional subbundle defined
by 7 = 0. It is well known that the maximum dimension of an integral
submanifold is only n and hence of dimension at most 3 in S”. Moreover,
contact transformations map integral submanifolds to integral submanifolds
and hence integral submanifolds are fundamental objects in the geometry
of contact manifolds. For a general discussion of these ideas see [4, Chap.

IT1] or [9].

Theorem Letx: M — S” C E® be an isometric immersion of a flat 3-
dimensional mass-symmetric 2-type integral submanifold M into S7. Then
M lies fully in 8™ C E® = C* and the position vector T = z(u,v,w) of M
in E® is given by

A U 1
I = —————=C0s —e] +

A2 41 A Voa(o1 + o3)
1 .
+ sin(Au + o1v + pyw)es
p1(p1 + p2)
1

" v p2(p1 + p2)

A LU
sin —es + cos(Au — o9v)eg

+ -
VA2 41 A o2(01 + 02)

1
+ cos(Au + 01v + pyw)er
p1(p1 + p2)

sin(Au — oqv)eq

sin(Au + o1v — paw)ey
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1

v p2(p1 + p2)

with p1 = 1 (\/4c(2c—— a) + d? +d> P2 =73 (\/4c(2c— a) +d? — d) , 01 =
¢, 02 = c — a, where a,c,d, \ are constants such that —1 < XA <0, 1+ A2 +
ac—c2=0,a>0, a2 > d? and {e1,e2,e3,e4,65 = —Je1, eg = —Jea,

er = —Jes, es = —Jey} is an orthonormal basis of C*.

+

cos(Au + o1v — paw)eg

2. Preliminaries

First we briefly describe the Sasakian structure on S7. We consider
the space C* of 4-complex variables. Let J denote its natural complex
structure, namely by identifying z = (1 +¢ y1,...,24 + 1 y4) € C* with
(Z1,...,%4, Y1,...,ya) € E® Jz=(—y1,...,~y4, T1,...,T4). We give the
unit sphere S” = {z € C*: |z| = 1} its usual contact structure. Define a
tangent vector field £, a 1-form 1 and a (1, 1) tensor field ¢ on S7 as follows:

Let (,) denote the metric on S” induced from C* (so S7 has constant
sectional curvature 1),

£=—Jz, n(X) = (X,&) and p=s0J

where s denotes the orthogonal projection from T,C* onto T, S” and X an
arbitrary tangent vector field on S7. Using these definitions, we obtain for
all tangent vector fields X and Y on S that

P*X = —X +n(X)E,

n(€) =1, n(X) = (X,§), dn(§, X) =0,

dn(X,Y) = (X, ¢Y),

N =-2dnQ®E¢, (2.1)
where N is the Nijenhuis tensor of ¢ given by N(X,Y) = [pX,pY] +
O’ X, Y] = plpX,Y] — [ X, ¢Y]. It is well-known [4] that these formulas

imply that (¢,&,n,(,)) determines a Sasakian structure on S”. Therefore,
we also have

ViE = X, (Vi)Y = (X, Y)€ —n(¥)X (2.2)

where V' denotes the Levi-Civita connection of {,). For more details see

[4].
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A Riemannian manifold M, isometrically immersed in S7, is called an
integral submanifold if n restructed to M vanishes. Some authors call in-
tegral submanifolds, C-totally real submanifolds. A direct consequence of
the definition is that o(TM) C T+M (ie., that M is an anti-invariant
submanifold of S7), in particular, dyp = 0 on M.

In this paper we consider the unit hypersphere S7(1) C C* = E8 cen-
tered at the origin and with the Sasakian structure (p,&,7, (,)).

Let

z: M — S7(1) (2.3)

be an immersion of a 3-dimensional integral submanifold M into S7(1). De-
note by V the usual Levi-Civita connection of E® and by V, V'’ the induced
connections on M and S7(1), respectively. Let H,h, A and D denote the
mean curvature vector, the second fundamental form, the Weingarten maps
and the normal connection of M in E3, respectively. Finally, denote by
H')K A" and D' the corresponding quantities for M in S7(1). Then we
have H = H' — z and, for any vector ¢ normal to M in S7(1), Ac = AIC‘
If X1, X2,X3 is a local orthonormal basis of vector fields on M, then
&= 9X;, 1=1,2,3, & = £, x form a basis of the normal space of M in E3.
For convenience, we put (ey,...,es) = (X1, X2, X3,£1,82,63,80, %), and de-
note by {w;}, ¢ = 1,..., 8 the dual frame of {e;} and by {w!}, 7,7 =1,...,8
the corresponding connection forms. Thus we have Ve; = Zf’:l wg ej. If Ag
is the Weingarten maps with respect to &, then from [4, pp. 102-103], we
have A4;X; = A;X;, 14, j =1, 2,3 and Ag = 0. Thus, by means of straight-
forward calculation and using the Gauss-Weingarten formulas we obtain for
the tangent vector fields X; on M

gOh’(Xi,Xj) - _Achina
<h(Xi,Xj),(pXk> = <h(XZ,Xk),QOXJ> (24)

On the other hand, using the Gauss-Weingarten formulas, and
we obtain Y 5_; wgﬂ-(ei)e(g = bijer + Y0, wf(ei)gpeg, i, =1,2,3. Thus

g , o
w3iz]' = w}, w’o7‘+j(ei) = by, w§+j =wy =0, i,j=1,2,3. (2.5)

The sectional curvature K (X;, X;) of M determined by an orthonormal pair
X;, X; is given by
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K(Xi, X;) = 1+ ) ((AeXs, Xi) (A X5, X;) — (AXi, X;)%). (2.6)
=1

The covariant derivative Vh is defined by

Vh(X:, X;, Xi) = Dx,h(X;, X3) — h(Vx,X;, Xp)
— h(X;,Vx,X).

We say that the submanifold M is C-parallel if the vector Vh is parallel to
the characteristic vector field &.

3. 2-type Submanifolds

Let M be a 3-dimensional integral submanifold of S7(1). In what fol-
lows we will always work with an orthonormal basis on a component of an
open dense subset U C M constructed in the following way. Let p € M.
Consider the function f : UM, — R : u — f(u) = (h(u,u), pu), where
UM, is the unit sphere in the tangent space M,. Since UM, is compact, f
attains an absolute maximum at a unit vector X;. We deduce from
that (h(X1,X1),pw) = 0 for w € UM, with (X;,w) = 0. So X; is an
eigenvector of A,x,. Hence, since A,x, is symmetric we can also choose
X9 and X3 as eigenvectors of A,x,. If X and X3 are both eigenvectors of
A,x, with the same eigenvalue, we choose X, as the vector in which the
function f restricted to {u € UM, : (u, X;) = 0} attains an absolute maxi-
mum. So, in this case, we find that (h(X2, X3), v X3) = 0. Furthermore, we
may still assume that X, and X3 satisfy the following two properties, see
. <h(X2,X2),(,0X2> 2 0, <h(X2,X2),(pX2>2 Z <h(X3,X3),(,0X3>2. Then
with respect to such an orthonormal basis {X7, X5, X3}, we can write the
Weingarten maps A; = A¢, (& = ¢X; i =1,2,3) at the point p € M in the
following way:

A1 0 O 0 X O 0 0 A3
Al = 0 )\2 0 3 A2 = )\2 a b y A3 = 0 b C
0 0 /\3 0 b c )\3 c d

(3.1)

If the eigenvalues of A; have constant multiplicity on a neighborhood
of p we extend this basis differentiably about p and define the open dense
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set U by this property. Note that we have, from the above arguments,
A, a>0, a2>d? at p. (3.2)

Also at the point p, since f attains an absolute maximum in the direc-
tion X;, we know that the function fy defined by f2(0) = f(cos0X; +
sin#X;), i = 2,3 has a relative maximum at the origin. Hence f5(0) <0,
which implies that

A1 >2X9, A1 > 2A3 at p. (33)

We remark that if A\, = A3 on a component of U we can choose the basis in
such a way that b = 0 on this component.

We now consider the hypothesis that M is 2-type and mass-symmetric.
Let A be the Laplacian of M associated with the induced metric. This
Laplacian can be extended componentwise to FE8-valued smooth maps u of
M as follows:

3

Au = Z(vvxixiu — Vx, Vx,u). (3.4)
i=1

The position vector x of M with respect to the origin of E8 is given by the
immersion and can be written as follows:
T =1+ T2, Az = p171, ATy = 22 (3.5)

where x1, 2 are non-constant EB8-valued maps on M. Note that A, = —1
and Dz = 0. Moreover, since H = Y, 1(tr A;)& — x and Az = —3H, by
using we find

3
AH = (py + p2) Y oubi + (#1:2 — (1 + Mz)) T (3.6)
i=1

where a; = %tr A;, 1 =1,2,3. On the other hand applying to H we
have, by direct computation

AH = Z[(Aaz)& + O_/z'ADfi + 2A; grad o; + ai(VXin)Xj
1,J
— aj(tr A;A;)& — 2Dgrad ;6
+ a,;ADngin + 3o — 3||H“2£E] (3.7)
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where

3

AP¢, = Z(DVXJ_ x,& — Dx,Dx,&). (3.8)
j=1

Since Dz=0, we have that D¢; is perpendicular to z. So (AP¢;, z)=0.
Now combining with we obtain from the z-component that

|H|? = %(ul + p2) — #&2. Thus M has constant mean curvature, (for
this well-known result, see [6, p. 274]) and so we have

o2 + ai + a3 = const. (3.9)

Also, from the tangential component we have

3
> (245 grad a; + aj(Vx, A;)Xi + a;Ap, ¢, Xi) = 0. (3.10)
i,j=1

Now using the Codazzi equation
(inAs)Xj — ADXistj — (VXjAs)Xz' + ADngin =0 (3.11)

we obtain

3
grad tr A,— ) (br A (X)X + (Vx, As) Xj—Apy ¢, X;) = 0.
ij=1
(3.12)

From ,

3
> (tr A;)grad tr A; = 0. (3.13)
1=1

Using (3.12) we obtain
Z aj(VXiAj)Xi = Z ajADxiﬁin-
V] 1]
Thus (3.10) becomes }_; ;(A; grad a; + Oéz'ADngin) =0, or
S A(BIX) =0 (3.14)

Y]
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where for convenience we have put

= X — Z apwh( (3.15)

Now from (3.1) and (3.14) we obtain the following useful equations

A8+ Xaf2 + A3f3 =0,
X2fBE + XafBy + aBs + bB3 + bB3 + cB3 =0,
X33 + bB2 + cB + A3B3 + B + dBs = 0. (3.16)

We continue with some further calculations. Combining the &-compo-

nent of and we obtain

3
> (aiAPg — 2Dgrad o8> §) =0

1=1

which by direct computation becomes

3
Zﬁ;’ =0. (3.17)
i=1
Also (3.13) gives
3 .
Y ol =0, j=1,2,3. (3.18)
i=1

Finally, combining the &-components, i = 1,2, 3, of and we have
the following.
From the & -component

Aoy + Z[al(l +wi(X:)? + wi(X;)?)
+ ap(Xgwi(X;) — wi( j)wf:(Xz’) + w? (Xs)w3 (Xi))
+ a3 (Xiw? (X;) — wi (Xj)w] (Xs) — wi(Xi)ws (X))
+ 2(X; aj)wl(Xz) — atr A;A1] = ag(p1 + pe — 3). (3.19)
From the &;-component
Aoy + Y o (wi(Xy)w! (Xi) — Xiwd(X;) + wi (Xi)w (X))
1,J
+ag(1+wi(X,)? + w3(X,)?)
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+ ag(Xyw3 (Xi) — w3 (X )w! (X3) + wi(XiJwi(Xy)
+ 2(X05)wi(X;) — oy tr A;Ag] = a1 (p1 + pe — 3). (3.20)

From the £3-component

Aoz + Y [on (Xawd (Xs) + wi(X;)w! (X;) — wi(Xe)wh(X:))
i\j
+ o (X;w (Xi) + wi (Xa)wi (X3) + wd(X;)w! (X3))
+ as(1+ wi(Xo)? + wi(X:)?)
+ 2(Xzaj)w§(Xl) — o tr AZA3] = a3(u1 + ug — 3) (321)

Now set

Es(X;

E7(X;) = Xia + 3hqwi(X;) — 3bws(X;)

Es(X;) = X;b+ dow? (X;) + (a — 2c)wi(X;)

Ey(X:) = Xic+ Mwi(X;) + (2b — d)wd (X))

E10(X;) = Xid + 3A3wi (X;) + 3cwd(X;). (3.22)

Applying the Codazzi equation (3.11) successively for all values of
(s,%,j) we obtain

(1) Eq(Xs2) = E2(X7) (ii Fy(X3) = E3(X4)

(lll) E2(X2) - E5(X1) (iV) EQ(X3) = E4(X1)

(v)  E3(Xp) =E4(X1)  (vi) E3(Xs)=Ee(X1)

(Vll) E4(X2) == E5(X3) (Vlll) E4(X3) = EG(XQ)

(ix)  Es(Xa) =E7(X1)  (x) Es(X3)=Es(X1) (3.23)
(Xi EG(X2) == Eg(Xl) (Xii) E6<X3) = ElO(Xl)

(Xiii) E7(X3) = E8(.X2) (XiV) Eg(Xg) = E9<X2)

(XV) Eg(Xg) = Elo(Xg)
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and in addition

36} = E1(X;) + Es(X) + Ee(X:)
3ﬁ§ = EQ(Xl) + E7(X1) + Eg(Xl)
3@13 = Eg(Xz) + E’g(Xl) + ElO(Xi)- (3.24)

Thus by using (3.23) we observe that ,Bf = ;-, i, =1,2,3.

4. Proof of the Theorem

Now we assume that M is flat and continue with some more calculations.
From (2.6) and (3.1) we obtain

14+ AMA—A2=0
14+ MA3—A5=0
14+ XA +ac+bd—b?>—c2 =0 (4.1)

and from these ()\2 - )\3)()\1 - )\2 - )\3) =0.If )\2 75 )\3, then )\1 = )\2 —}-)\3.
But from (3.3) we obtain Ay + A3 > 2X; and Ay + A3 > 2XA3 at p.
Thus A2 = A3, a contradiction. So A2 = A3 = A and then, from our initial
discussion in Section 3, we have also b = 0. Now becomes

1-}-)\1)\—-)\2:0
14+ X +ac—c*=0. (4.2)

From these relations we have that A # 0, A\ Z A, A1 # 2\, ¢# 0 and
a # c. Also using (3.3) we have -1 < A <0 at p.

Now from and [[3.17) we obtain 8 =0 and 85 = —f3.
Also, since X;a? # 0 and 3] = ;-, from we get

8 | (B2 — (81)? + ——B383| = 0. (4.3)

Lemma 1 [32=-43=0.

Proof.  Suppose (32 # 0. Then from we have

cC—a

2683 = 0. (4.4)

(81 = (B)* +
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From (3.18) by using (3.16) we obtain

(c® — a® + d*)B5 — 2cdB3 = 0,
(33 = 1)(c—a) + 2)2(a 4 ¢)) B2 + 2)2dB3 = 0,
(A2 = 1)dB3 + (2X%(a + ¢) — 2¢(3)% — 1))83 = 0. (4.5)

If d = 0, from we have a + ¢ =0 and 3)\2 — 1 = 0. Thus a; = ay =
asg = 0, a contradiction.

Thus d # 0, and from we have 35 = ¢ _a2+d2 e—atd 32 while using (4.9)
and (3.16) we obtain

(a+c)*(a— 20)'

d? =

Also from we obtain A = —%— and from a= &626_—1) Thus finally

we have

2 _ 1 302 _ 9)2
M =1-¢2 a:ﬁ——), d2=(——c——) (4.6)
c c2(1—c?)
and from we conclude that A, a,c,d are constant.
Now from we obtain
- 3c -2
36i = w3(X;) — dw?(Xs),
: 3c? —2
302 = —— wi(X;) — dws (Xs),
: 3c? —2 3c? —2
305 = = wi(X:) + ——wj(X,).
From and we obtain
2 —c? (3c ) (c2 —2)(3c¢% - 2)
2 _ 2

Now from (3.23, (i), (ii)) we get w?(X;) = 0, w$(X;) = 0 and then
from (3.23, (iii), (vi)), w?(Xs) = wl(Xg) = 0. Thus we have 82 =
—dw}(Xa), B3 = —dw3(X;) and 3 = —3¢=2w2(X3) — dwd(Xs). There-

fore
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and
Ac(3c? — 2
(3¢® — 2)wi(X3) + Adws(X3) = i(—c——)wg*(XQ). (4.7)
2(1 —¢?)
Also 363 = —3627_210%()(3) and 361 = 3027“2w§(X1). Thus w3(X;) =
—w?(X3) and from B2 = 8} we get w3(X;) = w$(X2). Then
ct—2
w}(Xs) = ——wy(X3). (4.8)

From we obtain Eg(Xs)=— CZ—?wg(Xg) and E1o(X2) = 3c22’:2w%(X2).
Thus F19(X2) = —3Es(X2). Now, using (3.23, (xiii), (xv)) we have Eg(X3)
= —3F,(X3) or

10 w? (X3) — dwi(X3) = 0. (4.9)
Finally from [4.6), and we have (5¢* —12c2 + 8)w3(X3) = 0. But
5¢t—12c?+8 # 0. Thus w3(X2) = 0 and so 55 = 0, a contradiction. ]

Lemma 2 ), a,c,d are constant and wf =0,1t7=12,30on M.

Proof.  We have 81 = 82 = 33 = 0 and from and we get
B2 =0, d3} =0, dB; =0 and

AB 4B =0, BN2-1)8 +Aa+c)Bs =0. (4.10)

We will examine two cases, d # 0 and d = 0.

Case I: d#0
We have 33 = 33 = 0. Thus ﬁf =0, 1,7,=1,2,3. From we get
3X2+1
32 X\ = (a + )w?(X;) + dw(X;) (4.11)

and from (3.23, (iv), (v))

(W + Dwi(X3) = Aewi(X1)
wi(X3) = wi(X2). (4.12)

Now using (4.2), and (4.12), from (3.23, (vii)) we obtain
(1= M)A\ —2¢% + Dwi(X3) =0. (4.13)
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We claim that (1 — A2)(A\2 — 2¢2 + 1) # 0.

Indeed, let A2 = 1, or A\ = —1 since X is negative. Then from
we have a = 027_2 and from E; = 0. Now from (3.23, (i), (ii)) we
get w¥(X;) = w3(X;) = 0 and then from and (3.23, (iii)) w?(X3) =
w3 (Xz) = w?(X32) = 0. After these from we also have w3(X3) = 0.
Thus w? = w3 = 0.

Now from (3.19) we obtain (3A2—1)(4— X2 —2X2 — g — p2) — A3 (a+c)? -
A2d? = 0. This relation with [3.9) and [4.2) imply that a, c,d are constant.
Now from (3.23, (x), (xiii), (xiv)) we get w3 = 0. Thus w? =0, i,j = 1,2, 3
and then (3.19), (3.20), (3.21) become

24ac+c+d?+22=0, (a+c)3+a’+c+2)+cd® =0,
34+ac+3+d?*+2=0

where z = p; + pg — 3.

We can easily see that this system together with is impossible.
Thus A2 # 1.

Suppose now that A2 — 2¢?2 + 1 = 0. Then from we get a +c = 0.
Thus from we have

A2d
X\ = mwi’()(i), (3X2 — Dw? = Mduws3,
2
-1
X;d = — 3) ;) w3 (X;). (4.14)

Now from (3.23, (i), (ii), (iv), (v)) we get

Xod = —2wi(X1), X3\=—dwi(X1)
(A2 + Dw?(X3) = Aewd(X1), wi(X3) = wi(Xz) (4.15)

By using and [4.15), from (3.23, (x)) we obtain (3)\% — 1)w}(X;) —
AMdw?(X3) = 0, while from (3.23, (ix), (xi)) we conclude that
(3X% + Dw?(X1) + Mdw?(X3) = 0. From these two relations we have
w?(X1) = w?(X3) = 0. Now from we have w3(X1) = wi(Xz2) = 0
and from (3.23, (iii)) w?(X3) = 0. Thus w? = 0 and now from we get
w3 = 0. Therefore (3.20) becomes cd? = 0, a contradiction.

Thus finally we have (1 —\2?)(A%2 —2c?+1) # 0 and from we have

w3(X3) = 0, while from w3 (X1) = w3(X3) = 0. Also from and
(3.23), (ii), (vi), (viii)) we find w3(X3) = 0, w?(X;) = 0 and w?(X3) = 0.
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Thus we have w{ = w} = 0. Now from [4.11), A = const. and from (3.19)
M +20)(4 = AT =202 — g — o) — Ma+)? = M =0.

From this, (3.9) and (4.2) we conclude that a, c, d are constant.
Finally from we obtain w3 = 0.

Case 1I: d=0

The determinant of is D=1+ (142N -¢?).
If D = 0, using and we conclude that ), a,c are constant.
Thus from we have

Bi = aquy(X), B =oawl(Xs), B =enwd(X;) + azwd(Xi)

and since of + o # 0 we obtain w?(X;) = w?(Xs) = 0. Now from (3.23,
(i), (iv)), w}(X1) = 0 and then w#(X3) = 0. So w? = 0. From (3.23, (vii),
(viil)) we obtain w}(X;) = w}(X3) = 0. Thus w} = 0. Using w? = w3 =0,
from (3.23, (ix), (xiii), (xiv)) we conclude that w3 = 0.

Now suppose D # 0. In this case from we have ﬁf = 0 for

i,j =1,2,3. Then from [3.15),

X,oq = agw%(Xi), X9 = alw%(Xi), alwi’ + Otg’wg = 0. (4.16)

We assert that a; # 0. Indeed, if for the moment we suppose that a; = 0,
then from (4.16) we have w} = wj = 0. Now from (3.23, (iv), (vii), (viii))
we obtain w$ = 0 and from (3.19) we get A(a + ¢)? = 0, a contradiction.

For as we distinguish two subcases Iy, as = 0 and I, ag # 0, which
we examine separately.

II;: a3 =0.

In this case we have a + ¢ = 0 and A = const. So from we have
that a, c are constant, while from (4.16) w} = w} = 0. Now from (3.23, (x),
(xiii), (xiv)) we get w3 = 0.

II2: a9 75 0.

Now we have ajag # 0. From (4.16) and (3.23, (i), (iii)) we obtain

(3X* + 1)wi(X1) + Ma + c)wi(Xq) =0,
A((2X% 4+ 1)a — N)wi(X1) — 3A2+1)(\2 + 1)wi(X,) = 0.

The determinant of this system is

D=0EBN+1)2A+1) +M(a+c)((2X? + 1)a — A\%e).
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If D = 0, then using [3.9) and (4.2) we have that A, a,c are constant.
Now from (4.16) we have w? = 0 and from (3.23, (iii), (v), (vi)) we obtain
w3 = 0. Finally from (4.16) w3 = 0. Now suppose D # 0. Then w3(X1) =
w?(Xs) = 0and X3\ = XoA = 0. Now from (3.23, (vi)) we have w;(X3) = 0.
From (4.16) and (3.23, (ii), (iv)) we obtain

(3A* + Dwi(X1) + Aa + c)wi(X3) = 0,
Aewd (X1) — (A2 + Dwi(X3) = 0.

If for the determinant D; = (A2 +1)(3)2 + 1) 4+ A2c(a + ¢), we have D; = 0,
then from and we obtain \,a,c = constant. So, from (4.16)
and (3.23, (v)) we conclude that w? = w3 = 0. If Dy # 0, then wj(X;) =
w?(X3) = 0. Thus w? = 0 and from (4.16) A = constant and a + ¢ = const.
Now from we have a,c are constant. Again from (3.23, (v)) we have
w3(X,) = 0. So w} =0 and from (4.16) w3 = 0, which completes the proof
of the lemma. ]

Proof of the From we have that )\, a, ¢, d are constant
andwf =0, i,j=1,2,3. Thus from [3.22) we have E; = Ey = ... = Ejp =
0. Now, according to , we have that M is C-parallel and the theorem
follows from Proposition 5.2 of [2| which says that under these conditions
the position vector is as in the statement of the and M lies fully
in EB. []

We close this paper with an auxiliary result for which we need the
following definition (see [8, p. 20]).

Definition If v(s) is a curve in a Reimannian manifold N, parametrized
by arc length s, we say that 7 is a Frenet curve of order r when there exist
orthonormal vector fields F, F», ..., E,, along ~, such that:

¥ =Ey, VyB1 =k Ey, VyEy = —k1Ey + ka2Es, .. .,
V;YEr_l = —kr _oE, 2+ kr—lEra V")'E'r = —kr_1Er_1

where ki, kg, ..., k,_1 are positive C* functions of s. k; is called the j-th
curvature of ~.

So, for example, a geodesic is a Frenet curve of order 1; a circle is a
Frenet curve of order 2 with k; a constant; a helix of order r is a Frenet
curve of order r, such that ki, ko, ...k,._; are constants.
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Proposition Let M be a flat, 3-dimensional mass-symmetric 2-type in-
tegral submanifold of ST C E8. Then M is locally the product of 3 curves.
Any one of these curves is a heliz of order 4, or a circle in EB.

Proof.  According to Lemma 2, the Weingarten maps (3.1) of M have
constant components and w] = 0, 4,j,= 1,2,3. Thus, by using the Gauss-
Weingarten formulas we have

Vx, X1 =M& —z, Vx,X1 =X, Vx,Xi=\&,

Vx,Xo = X1 +abp—x, Vx,X9=1cf3, Vxz=X,,

Vx; Xz =M1+ c&a+dés—z, Vx, & =-MX1+¢,

Vx,61 = =AXy, Vx &1 =—-MX3, Vx,& =-2X; —aXs+¢,

V€2 = —cX3, Vx,&3=-AX; —cXp—dX3+¢ V& =—¢.
(4.17)

Let X; = E;. From (4.17) we obtain

_ 1
VElEl = A& — x = k1 Ey, where k1=v'1 + )\2, E2:k_()\§1 — CC),
1

_ A A
Vi By =~k Xy + €= ~kiEy+ kpBs, ky= 7" and By = ¢,
1 1

_ 1 1
VE B3 = & = —koFo + k3Ey, k3:E and E4= — k—l(& + \iz),

Vg, Es = —ksEs.

Thus k4 = 0 and an X;-curve of M is a helix of order 4 in E8. If \; = 0
we have k9 = 0 and the Xi-curve is a circle.
Now we put Xy = E;. From (4.17) we obtain

’

Ve E1 =X+ a&—z=kEy, ki =VA+a2+1,
1
Ey = H(Afl + afy — ).

_ 1
Vg, B = k—l(—)\aXl — k2 Xy + af) = =k Ey + kg Es,
eav 2 +1 £
ky= ——— = F3= —\X; +¢),
2 kl 3 32 T 1( 1 f)

where € = £1 according as a > 0 or a < 0.
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1+ A2
E;=—evX2+41 €y = —koFo + k3E4, k3 =cee; _*]; ,
1
€1
E,= ——(X\a A+ 1)& — ax),
4 — k \/W( 51 ( )62 O,LE)
where €1 = £1 according as € = +1.
Vg, E4 = —k3E;3.

Thus k4 = 0 and an Xs-curve of M is a helix of order 4 in E®. If a = 0, we
have k; = 0 and the curve is a circle.

Let now X3 = E;. In the same manner, from (4.17) we have

Ve, El =M1+ co+dés—x=k1Ea, k1= VX242 +d2+1,
1
IPES k_l(/\£1 + 6o + dé3 — ).

_ 1
Vg Ez = E(—)\Xm —cdXy — k¥X3+ df) = —kE1 + ko Es,
d
ky = Z VA F 41,
1
€
E3 = —AX1 —cX2+§),
= rrag KTt
where € = £1 according as d > 0 or d < 0.

E3s = —ev)2+c2+ 1 &3 = —koFEs + k3Fy,

ks = LN+ 2 +1),
k1
&1 2, 2
E, = Adé1 + cdés — (A + ¢ + 1)&3 — dx),
= e (e + s — )és — da)
where £ = £1 according as € = +1.
Vg, Ey = —k3E;3.

Thus an X3-curve is a helix of order 4. If d = 0, the curve is a circle. L]
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