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2-Type flat integral submanifolds in S^{7}(1)
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Abstract. This paper determines all flat, mass-symmetric, 3-dimensional 2-type sub-
manifolds of the unit sphere S^{7}(1) which are integral submaniifolds of the canonical
contact structure.
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1. Introduction

In [5,6] Bang-Yen Chen introduced the notion of submanifolds of finite
type. Let M be a submanifold of Euclidean space E^{n} and \triangle the Laplacian
of the induced metric. M is said to be of finite type if its position vector
field x has a decomposition of the form

x=x_{0}+x_{1}+ +x_{k}

where x_{0} is a constant vector and \triangle x_{i}=\lambda_{i}x_{i} . Assuming the \lambda_{i} to be
distinct we say that M is of k-type.

The theory of finite type submanifolds has become an area of active
research. The first results on this subject have been collected in the book
[6]; for a recent survey, see [7]. In particular, there is the problem of classifi-
cation of low type submanifolds which lie in a hypersphere. Far from being
solved in general, there are many partial results which contribute to the s0-

lution of this problem. For instance, by the well-known result of Takahashi
[10], 1-type submanifolds are characterized as being minimal in a sphere.

However, classification of even 2-type spherical submanifolds seems to
be virtually impossible. A compact submanifold M^{n} of a hypersphere S^{m}

of E^{m+1} is said to be mass-symmetric if the center of mass of M^{n} in E^{m+1}

is the center of S^{m} in E^{m+1} . Note that the only 2-type surface in S^{3} is
the flat torus S^{1}(a)\cross S^{1}(b) , a\neq b , while a 2-type mass-symmetric integral
surface in S^{5} is locally the product of a circle and a helix of order 4, or

lThis work was done while the first author was a visiting scholar at Michigan State
University.

1991 Mathematics Subject Classification : 53C25,53C40,53C15 .



474 C. Baikoussis and D.E. Blair

the product of two circles [1]. Integral finite type surfaces in S^{5} are also
studied in [3], where a weaker assumption is used. On the other hand the
codimension seems to play a crucial role in the characterization of low type
spherical submanifolds of codimension greater than 1 and hence it seems
to be necessary to use extra conditions. In [7] B.-Y. Chen gives a list of
open problems and conjectures concerning submanifolds of finite type. He
also gives a good survey of what is known about the classification of 2-type
(spherical) submanifolds with arbitrary codimension.

This paper provides a contribution in codimension greater than 1 by
classifying 2-type, mass-symmetric, flat integral 3-dimensional submanifolds
of the unit sphere S^{7}(1)\subset E^{8} .

It is well-known [4] that an odd-dimensional sphere S^{2n+1} carries a con-
tact structure, i.e., a global 1-form \eta such that \eta\wedge(d\eta)^{n}\neq 0 . A submanifold
of a contact manifold M^{2n+1} with contact form \eta is an integral submani-
fold if it is an integral submanifold of the 2n-dimensional subbundle defined
by \eta=0 . It is well known that the maximum dimension of an integral
submanifold is only n and hence of dimension at most 3 in S^{7} . Moreover,
contact transformations map integral submanifolds to integral submanifolds
and hence integral submanifolds are fundamental objects in the geometry
of contact manifolds. For a general discussion of these ideas see [4, Chap.
Ill] or [9].

Theorem Let x : Marrow S^{7}\subset E^{8} be an isometric immersion of a flat 3-
dimensional mass-symmetric 2-type integral submanifold M into S^{7} Then
M lies fully in S^{7}\subset E^{8}\cong \mathbb{C}^{4} and the position vector x=x(u, v, w) of M
in E^{8} is given by

x= \frac{\lambda}{\sqrt{\lambda^{2}+1}}\cos\frac{u}{\lambda}e_{1}+\frac{1}{\sqrt{\sigma_{2}(\sigma_{1}+\sigma_{2})}}\sin(\lambda u-\sigma_{2}v)e_{2}

+ \frac{1}{\sqrt{\rho_{1}(\rho_{1}+\rho_{2})}}\sin(\lambda u+\sigma_{1}v+\rho_{1}w)e_{3}

+ \frac{1}{\sqrt{\rho_{2}(\rho_{1}+\rho_{2})}}\sin(\lambda u+\sigma_{1}v-\rho_{2}w)e_{4}

+ \frac{\lambda}{\sqrt{\lambda^{2}+1}}\sin\frac{u}{\lambda}e_{5}+\frac{1}{\sqrt{\sigma_{2}(\sigma_{1}+\sigma_{2})}}\cos(\lambda u-\sigma_{2}v)e_{6}

+ \frac{1}{\sqrt{\rho_{1}(\rho_{1}+\rho_{2})}}\cos(\lambda u+\sigma_{1}v+\rho_{1}w)e_{7}
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+ \frac{1}{\sqrt{\rho_{2}(\rho_{1}+\rho_{2})}}\cos(\lambda u+\sigma_{1}v-\rho_{2}w)e_{8}

with \rho_{1}=\frac{1}{2}(\sqrt{4c(2c-a)+d^{2}}+d) , \rho_{2}=\frac{1}{2}(\sqrt{4c(2c-a)+d^{2}}-d) . \sigma_{1}=

c , \sigma_{2}=c-a , where a , c , d , \lambda are constants such that-l \leq\lambda<0,1+\lambda^{2}+

ac-c^{2}=0 , a\geq 0 , a^{2}\geq d^{2} and \{e_{1} , e_{2} , e_{3} , e_{4} , e_{5}=-Je_{1} , e_{6}=-Je_{2} ,
e_{7}=-Je_{3} , e_{8}=-Je_{4}\} is an orthonormal basis of \mathbb{C}^{4} .

2. Preliminaries

First we briefly describe the Sasakian structure on S^{7} . We consider
the space \mathbb{C}^{4} of 4-complex variables. Let J denote its natural complex
structure, namely by identifying z= (x_{1}+iy_{1}, . . , x_{4}+iy_{4})\in \mathbb{C}^{4} with
(x_{1}, . . , x_{4}, y_{1}, . , y_{4})\in E^{8} , Jz=(-y_{1}, \ldots, -y_{4}, x_{1}, \ldots, x_{4}) . We give the
unit sphere S^{7}=\{z\in \mathbb{C}^{4} : |z|=1\} its usual contact structure. Define a
tangent vector field \xi , a 1-form \eta and a (1, 1) tensor field \varphi on S^{7} as follows:

Let \langle , \rangle denote the metric on S^{7} induced from \mathbb{C}^{4} (so S^{7} has constant
sectional curvature 1),

\xi=-Jz , \eta(X)=\langle X, \xi\rangle and \varphi=s\circ J

where s denotes the orthogonal projection from T_{z}\mathbb{C}^{4} onto T_{z}S^{7} and X an
arbitrary tangent vector field on S^{7} . Using these definitions, we obtain for
all tangent vector fields X and Y on S^{7} that

\varphi^{2}X=-X+\eta(X)\xi ,
\eta(\xi)=1 , \eta(X)=\langle X, \xi\rangle , d\eta(\xi, X)=0 ,
d\eta(X, Y)=\langle X, \varphi Y\rangle ,
N=-2d\eta\otimes\xi , (2.1)

where N is the Nijenhuis tensor of \varphi given by N(X, Y)=[\varphi X, \varphi Y]+

\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] . It is well-known [4] that these formulas
imply that (\varphi, \xi, \eta, \langle, \rangle) determines a Sasakian structure on S^{7} . Therefore,
we also have

\nabla_{X}’\xi=-\varphi X , (\nabla_{X}’\varphi)Y=\langle X, Y\rangle\xi-\eta(Y)X (2.2)

where \nabla’ denotes the Levi-Civita connection of \langle , \rangle . For more details see
[4].
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A Riemannian manifold M, isometrically immersed in S^{7} , is called an
integral submanifold if \eta restructed to M vanishes. Some authors call in-
tegral submanifolds, C-totally real submanifolds. A direct consequence of
the definition is that \varphi(TM)\subset T^{\perp}M (i.e., that M is an anti-invariant
submanifold of S^{7} ), in particular, d\eta=0 on M.

In this paper we consider the unit hypersphere S^{7}(1)\subset \mathbb{C}^{4}\cong E^{8}cen-

tered at the origin and with the Sasakian structure (\varphi, \xi, \eta, \langle, \rangle) .
Let

x : Marrow S^{7}(1) (2.3)

be an immersion of a 3-dimensional integral submanifold M into S^{7}(1) . De-
note by \overline{\nabla} the usual Levi-Civita connection of E^{8} and by \nabla , \nabla’ the induced
connections on M and S^{7}(1) , respectively. Let H, h , A and D denote the
mean curvature vector, the second fundamental form, the Weingarten maps
and the normal connection of M in E^{8} , respectively. Finally, denote by
H’ , h’ , A’ and D’ the corresponding quantities for M in S^{7}(1) . Then we
have H=H’-x and, for any vector ( normal to M in S^{7}(1) , A_{\zeta}=A_{\zeta}’ .
If X_{1} , X_{2} , X_{3} is a local orthonormal basis of vector fields on M, then
\xi_{i}=\varphi X_{i} , i=1,2,3 , \xi_{0}=\xi , x form a basis of the normal space of M in E^{8} .
For convenience, we put (e_{1}, , e_{8})=(X_{1}, X_{2}, X_{3}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{0}, x) , and de-
note by \{w_{i}\} , i=1 , \ldots , 8 the dual frame of \{e_{i}\} and by \{w_{i}^{j}\} , i , j=1 , , 8
the corresponding connection forms. Thus we have \overline{\nabla}e_{i}=\sum_{i=1}^{8}w_{i}^{j}e_{j} . If A_{s}

is the Weingarten maps with respect to \xi_{s} , then from [4, pp. 102-103], we
have A_{i}X_{j}=A_{j}X_{i} , i , j=1,2 , 3 and A_{0}=0 . Thus, by means of straight-
forward calculation and using the Gauss-Weingarten formulas we obtain for
the tangent vector fields X_{i} on M

\varphi h’(X_{i}, X_{j})=-A_{\varphi X_{j}}X_{i} ,
\langle h(X_{i}, X_{j}), \varphi X_{k}\rangle=\langle h(X_{i}, X_{k}), \varphi X_{j}\rangle . (2.4)

On the other hand, using the Gauss-Weingarten formulas, (2.2) and (2.4)
we obtain \sum_{\ell=1}^{8}w_{3+j}^{\ell}(e_{i})e_{\ell}=\delta_{ij}e_{7}+\sum_{\ell=1}^{6}w_{j}^{\ell}(e_{i})\varphi e_{\ell} , i , j=1,2,3 . Thus

w_{3+i}^{3+j}=w_{i}^{j} , w_{3+j}^{7}(e_{i})=\delta_{ij} , w_{3+j}^{8}=w_{7}^{8}=0 , i , j=1,2,3 . (2.5)

The sectional curvature K(X_{i}, X_{j}) of M determined by an orthonormal pair
X_{i} , X_{j} is given by
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K(X_{i}, X_{j})=1+ \sum_{\ell=1}^{3}(\langle A_{\ell}X_{i}, X_{i}\rangle\langle A_{\ell}X_{j}, X_{j}\rangle-\langle A_{\ell}X_{i}, X_{j}\rangle^{2}) . (2.6)

The covariant derivative \overline{\nabla}h is defined by

\overline{\nabla}h(X_{i}, X_{j}, X_{k})=D_{X_{i}}h(X_{j}, X_{k})-h(\nabla_{X_{i}}X_{j}, X_{k})

-h(X_{j}, \nabla_{X_{i}}X_{k}) .

We say that the submanifold M is C-parallel if the vector \overline{\nabla}h is parallel to
the characteristic vector field \xi .

3. 2-type Submanifolds

Let M be a 3-dimensional integral submanifold of S^{7}(1) . In what fol-
lows we will always work with an orthonormal basis on a component of an
open dense subset U\subset M constructed in the following way. Let p\in M .
Consider the function f : UM_{p} – \mathbb{R} : uarrow f(u)=\langle h(u, u), \varphi u\rangle , where
UM_{p} is the unit sphere in the tangent space M_{p} . Since UM_{p} is compact, f
attains an absolute maximum at a unit vector X_{1} . We deduce from (2.4)
that \langle h(X_{1}, X_{1}), \varphi w\rangle=0 for w\in UM_{p} with \langle X_{1}, w\rangle=0 . So X_{1} is an
eigenvector of A_{\varphi X_{1}} . Hence, since A_{\varphi X_{1}} is symmetric we can also choose
X_{2} and X_{3} as eigenvectors of A_{\varphi X_{1}} . If X_{2} and X_{3} are both eigenvectors of
A_{\varphi X_{1}} with the same eigenvalue, we choose X_{2} as the vector in which the
function f restricted to \{u\in UM_{p} : \langle u, X_{1}\rangle=0\} attains an absolute maxi-
mum. So, in this case, we find that \langle h(X_{2}, X_{2}), \varphi X_{3}\rangle=0 . Furthermore, we
may still assume that X_{2} and X_{3} satisfy the following two properties, see
[2]. \langle h(X_{2}, X_{2}), \varphi X_{2}\rangle\geq 0 , \langle h(X_{2}, X_{2}), \varphi X_{2}\rangle^{2}\geq\langle h(X_{3}, X_{3}), \varphi X_{3}\rangle^{2} . Then
with respect to such an orthonormal basis \{X_{1}, X_{2}, X_{3}\} , we can write the
Weingarten maps A_{i}=A_{\xi_{i}}(\xi_{i}=\varphi X_{i}i=1,2,3) at the point p\in M in the
following way:

A_{1}=\{\begin{array}{lll}\lambda_{1} 0 00 \lambda_{2} 00 0 \lambda_{3}\end{array}\} , A_{2}= \{\begin{array}{lll}0 \lambda_{2} 0\lambda_{2} a b0 b c\end{array}\} A_{3}= \{\begin{array}{lll}0 0 \lambda_{3}0 b c\lambda_{3} c d\end{array}\}

(3.1)

If the eigenvalues of A_{1} have constant multiplicity on a neighborhood
of p we extend this basis differentiably about p and define the open dense
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set U by this property. Note that we have, from the above arguments,

\lambda_{1} , a\geq 0 , a^{2}\geq d^{2} at p. (3.2)

Also at the point p , since f attains an absolute maximum in the direc-
tion X_{1} , we know that the function f_{2} defined by f_{2}(\theta)=f(\cos\theta X_{1}+

sin \theta X_{i} ), i=2,3 has a relative maximum at the origin. Hence f_{2}’(0)\leq 0 ,
which implies that

\lambda_{1}\geq 2\lambda_{2} , \lambda_{1}\geq 2\lambda_{3} at p. (3.3)

We remark that if \lambda_{2}=\lambda_{3} on a component of U we can choose the basis in
such a way that b=0 on this component.

We now consider the hypothesis that M is 2-type and mass-symmetric.
Let \triangle be the Laplacian of M associated with the induced metric. This
Laplacian can be extended componentwise to E^{8}-valued smooth maps u of
M as follows:

\triangle u=\sum_{i=1}^{3}(\overline{\nabla}_{\nabla_{X_{i}}X_{i}}u-\overline{\nabla}_{X_{i}}\overline{\nabla}_{X_{i}}u) . (3.4)

The position vector x of M with respect to the origin of E^{8} is given by the
immersion (2.3) and can be written as follows:

x=x_{1}+x_{2} , \triangle x_{1}=\mu_{1}x_{1} , \triangle x_{2}=\mu_{2}x_{2} (3.5)

where x_{1} , x_{2} are non-constant E^{8}-valued maps on M . Note that A_{x}=-I

and Dx=0. Moreover, since H= \sum_{i=1}^{3}\frac{1}{3} (tr A_{i} ) \xi_{i}-x and \triangle x=-3H , by
using (3.5) we find

\triangle H=(\mu_{1}+\mu_{2})\sum_{i=1}^{3}\alpha_{i}\xi_{i}+(\frac{\mu_{1}\mu_{2}}{3}-(\mu_{1}+\mu_{2}))x (3.6)

where \alpha_{i}=\frac{1}{3}tr A_{i} , i=1,2,3 . On the other hand applying (3.4) to H we
have, by direct computation

\triangle H=\sum_{i,j}[(\triangle\alpha_{i})\xi_{i}+\alpha_{i}\triangle^{D}\xi_{i}+2A_{i}
grad \alpha_{i}+\alpha_{i}(\nabla_{X_{j}}A_{i})X_{j}

-\alpha_{i} (tr A_{i}A_{j} ) \xi_{j}-2D_{grad\alpha_{i}}\xi_{i}

+\alpha_{i}A_{D_{X_{j}}\xi_{i}}X_{j}+3\alpha_{i}\xi_{i}-3||H||^{2}x] (3.7)



2-Type flat integral submanifolds in S^{7}(1) 479

where

\triangle^{D}\xi_{i}=\sum_{j=1}^{3}(D_{\nabla_{X_{j}}X_{j}}\xi_{i}-Dx_{j}Dx_{j}\xi_{i}) . (3.8)

Since Dx=0 , we have that D\xi_{i} is perpendicular to x . So \langle\triangle^{D}\xi_{i}, x\rangle=0 .
Now combining (3.6) with (3.7) we obtain from the x-component that
||H||^{2}= \frac{1}{3}(\mu_{1}+\mu_{2})-\frac{\mu_{1}\mu_{2}}{9} . Thus M has constant mean curvature, (for
this well-known result, see [6, p. 274] ) and so we have

\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=const . (3.9)

Also, from the tangential component we have

\sum_{i,j=1}^{3} ( 2A_{j} grad \alpha_{j}+\alpha_{j}(\nabla_{X_{i}}A_{j})X_{i}+\alpha_{j}A_{D_{X_{i}}\xi_{j}}X_{i} ) =0 . (3. 10)

Now using the Codazzi equation

(\nabla_{X_{i}}A_{s})X_{j}-A_{D_{X_{i}}\xi_{s}}X_{j}-(\nabla_{X_{j}}A_{s})X_{i}+A_{D_{X_{j}}\xi_{s}}X_{i}=0 (3.11)

we obtain

grad tr A_{s}- \sum_{i,j=1}^{3} (tr A_{i}w_{s}^{i}(X_{j})X_{j}+(\nabla_{X_{j}}A_{s})X_{j}-A_{D_{X_{j}}\xi_{s}}X_{j} ) =0 .

(3.12)

From (3.9),

\sum_{i=1}^{3} (tr A_{i} )grad tr A_{i}=0 . (3.13)

Using (3. 12) we obtain

\sum_{i,j}\alpha_{j}(\nabla_{X_{i}}A_{j})X_{i}=\sum_{i,j}\alpha_{j}A_{D_{X_{i}}\xi_{j}}X_{i}
.

Thus (3.10) becomes \sum_{i,j} ( A_{i} grad \alpha_{i}+\alpha_{i}A_{D_{X_{j}}\xi_{i}}X_{j} ) =0 , or

\sum_{i,j}A_{i}(\beta_{i}^{j}X_{j})=0
(3.14)
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where for convenience we have put

\beta_{j}^{i}=X_{i}\alpha_{j}-\sum_{k}\alpha_{k}w_{j}^{k}(X_{i})
. (3.15)

Now from (3.1) and (3.14) we obtain the following useful equations

\lambda_{1}\beta_{1}^{1}+\lambda_{2}\beta_{2}^{2}+\lambda_{3}\beta_{3}^{3}=0 ,
\lambda_{2}\beta_{1}^{2}+\lambda_{2}\beta_{2}^{1}+a\beta_{2}^{2}+b\beta_{2}^{3}+b\beta_{3}^{2}+c\beta_{3}^{3}=0 ,
\lambda_{3}\beta_{1}^{3}+b\beta_{2}^{2}+c\beta_{2}^{3}+\lambda_{3}\beta_{3}^{1}+c\beta_{3}^{2}+d\beta_{3}^{3}=0 . (3.16)

We continue with some further calculations. Combining the \xi-comp0-

nent of (3.6) and (3.7) we obtain

\sum_{i=1}^{3}\langle\alpha_{i}\triangle^{D}\xi_{i}-2D_{grad\alpha_{i}}\xi_{i}, \xi\rangle=0

which by direct computation becomes

\sum_{i=1}^{3}\beta_{i}^{i}=0 . (3.17)

Also (3.13) gives

\sum_{i=1}^{3}\alpha_{i}\beta_{i}^{j}=0 , j=1,2,3 . (3.18)

Finally, combining the \xi_{i}-components, i=1,2,3 , of (3.6) and (3.7) we have
the following.

From the \xi_{1} -component

\triangle\alpha_{1}+\sum_{i,j}[\alpha_{1}(1+w_{1}^{2}(X_{i})^{2}+w_{1}^{3}(X_{i})^{2})

+\alpha_{2}(X_{i}w_{1}^{2}(X_{i})-w_{1}^{2}(X_{j})w_{i}^{j}(X_{i})+w_{1}^{3}(X_{i})w_{2}^{3}(X_{i}))

+\alpha_{3}(X_{i}w_{1}^{3}(X_{i})-w_{1}^{3}(X_{j})w_{i}^{j}(X_{i})-w_{1}^{2}(X_{i})w_{2}^{3}(X_{i}))

+2 (X_{i}\alpha_{j})w_{1}^{j}(X_{i})-\alpha_{i}trA_{i}A_{1}]=\alpha_{1}(\mu_{1}+\mu_{2}-3) . (3.19)

From the \xi_{2}-component

\triangle\alpha_{2}+\sum_{i,j}[\alpha_{1}(w_{1}^{2}(X_{j})w_{i}^{j}(X_{i})-X_{i}w_{1}^{2}(X_{i})+w_{1}^{3}(X_{i})w_{2}^{3}(X_{i}))

+\alpha_{2}(1+w_{1}^{2}(X_{i})^{2}+w_{2}^{3}(X_{i})^{2})
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+\alpha_{3}(X_{i}w_{2}^{3}(X_{i})-w_{2}^{3}(X_{j})w_{i}^{j}(X_{i})+w_{1}^{2}(X_{i})w_{1}^{3}(X_{i}))

+2 (X_{i}\alpha_{j})w_{2}^{j}(X_{i})-\alpha_{i} tr A_{i}A_{2} ] =\alpha_{1}(\mu_{1}+\mu_{2}-3) . (3.20)

From the \xi_{3}-component

\triangle\alpha_{3}+\sum_{i,j}[\alpha_{1}(X_{i}w_{3}^{1}(X_{i})+w_{1}^{3}(X_{j})w_{i}^{j}(X_{i})-w_{1}^{2}(X_{i})w_{2}^{3}(X_{i}))

+\alpha_{2}(X_{i}w_{3}^{2}(X_{i})+w_{1}^{2}(X_{i})w_{1}^{3}(X_{i})+w_{2}^{3}(X_{j})w_{i}^{j}(X_{i}))

+\alpha_{3}(1+w_{1}^{3}(X_{i})^{2}+w_{2}^{3}(X_{i})^{2})

+2(X_{i}\alpha_{j})w_{3}^{j}(X_{i})-\alpha_{i} tr A_{i}A_{3} ] =\alpha_{3}(\mu_{1}+\mu_{2}-3) . (3.21)

Now set

E_{1}(X_{i})=X_{i}\lambda_{1}

E_{2}(X_{i})=(\lambda_{1}-2\lambda_{2})w_{1}^{2}(X_{i})

E3 (X_{i})=(\lambda_{1}-2\lambda_{3})w_{1}^{3}(X_{i})

E_{4}(X_{i})=(\lambda_{2}-\lambda_{3})w_{2}^{3}(X_{i})-bw_{1}^{2}(X_{i})-cw_{1}^{3}(X_{i})

E_{5}(X_{i})=X_{i}\lambda_{2}-aw_{1}^{2}(X_{i})-bw_{1}^{3}(X_{i})

E_{6}(X_{i})=X_{i}\lambda_{3}-cw_{1}^{2}(X_{i})-dw_{1}^{3}(X_{i})

E7 (X_{i})=X_{i}a+3\lambda_{2}w_{1}^{2}(X_{i})-3bw_{2}^{3}(X_{i})

E_{8}(X_{i})=X_{i}b+\lambda_{2}w_{1}^{3}(X_{i})+(a-2c)w_{2}^{3}(X_{i})

E9 (X_{i})=X_{i}c+\lambda_{3}w_{1}^{2}(X_{i})+(2b-d)w_{2}^{3}(X_{i})

E_{10}(X_{i})=X_{i}d+3\lambda_{3}w_{1}^{3}(X_{i})+3cw_{2}^{3}(X_{i}) . (3.22)

Applying the Codazzi equation (3.11) successively for all values of
(s, i, j) we obtain

(i) E_{1}(X_{2})=E_{2}(X_{1}) (i) E_{1}(X_{3})=E_{3}(X_{1})

(iii) E_{2}(X_{2})=E_{5}(X_{1}) (iv) E_{2}(X_{3})=E_{4}(X_{1})

(v) E3 (X_{2})=E_{4}(X_{1}) (vi) E3 (X_{3})=E_{6}(X_{1})

(vii) E_{4}(X_{2})=E_{5}(X_{3}) (viii) E_{4}(X_{3})=E_{6}(X_{2})

(ix) E_{5}(X_{2})=E_{7}(X_{1}) (x) E_{5}(X_{3})=E_{8}(X_{1}) (3.23)
(xi) E_{6}(X_{2})=E_{9}(X_{1}) (xii) E_{6}(X_{3})=E_{10}(X_{1})

(xiii) E7 (X_{3})=E_{8}(X_{2}) (xiv) E_{8}(X_{3})=E_{9}(X_{2})

(xv) E_{8}(X_{3})=E_{10}(X_{2})
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and in addition

3\beta_{1}^{i}=E_{1}(X_{i})+E_{5}(X_{i})+E_{6}(X_{i})

3\beta_{2}^{i}=E_{2}(X_{i})+E_{7}(X_{i})+E_{9}(X_{i})

3\beta_{3}^{i}=E_{3}(X_{i})+E_{8}(X_{i})+E_{10}(X_{i}) . (3.24)

Thus by using (3.23) we observe that \beta_{i}^{j}=\beta_{j}^{i} , i , j=1,2,3 .

4. Proof of the Theorem

Now we assume that M is flat and continue with some more calculations.
From (2.6) and (3.1) we obtain

1+\lambda_{1}\lambda_{2}-\lambda_{2}^{2}=0

1+\lambda_{1}\lambda_{3}-\lambda_{3}^{2}=0

1+\lambda_{2}\lambda_{3}+ac+bd-b^{2}-c^{2}=0 (4.1)

and from these (\lambda_{2}-\lambda_{3})(\lambda_{1}-\lambda_{2}-\lambda_{3})=0 . If \lambda_{2}\neq\lambda_{3} , then \lambda_{1}=\lambda_{2}+\lambda_{3} .
But from (3.3) we obtain \lambda_{2}+\lambda_{3}\geq 2\lambda_{2} and \lambda_{2}+\lambda_{3}\geq 2\lambda_{3} at p.
Thus \lambda_{2}=\lambda_{3} , a contradiction. So \lambda_{2}=\lambda_{3}=\lambda and then, from our initial
discussion in Section 3, we have also b=0. Now (4.1) becomes

1+\lambda_{1}\lambda-\lambda^{2}=0

1+\lambda^{2}+ac-c^{2}=0 . (4.2)

From these relations we have that \lambda\neq 0 , \lambda_{1}\neq\lambda , \lambda_{1}\neq 2\lambda , c\neq 0 and
a\neq c . Also using (3.3) we have -1\leq\lambda<0 at p .

Now from (3.16) and (3.17) we obtain \beta_{1}^{1}=0 and \beta_{3}^{3}=-\beta_{2}^{2} .
Also, since \Sigma_{i}\alpha_{i}^{2}\neq 0 and \beta_{i}^{J}=\beta_{j}^{i} , from (3.18) we get

\beta_{2}^{2}[(\beta_{1}^{2})^{2}-(\beta_{1}^{3})^{2}+\frac{c-a}{\lambda}\beta_{1}^{3}\beta_{2}^{3}]=0 . (4.3)

Lemma 1 \beta_{2}^{2}=-\beta_{3}^{3}=0 .

Proof. Suppose \beta_{2}^{2}\neq 0 . Then ffom (4.3) we have

( \beta_{1}^{2})^{2}-(\beta_{1}^{3})^{2}+\frac{c-a}{\lambda}\beta_{1}^{3}\beta_{2}^{3}=0 . (4.4)
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From (3. 18) by using (3. 16) we obtain

(c^{2}-a^{2}+d^{2})\beta_{2}^{2}-2cd\beta_{2}^{3}=0 ,
((3\lambda^{2}-1) (c-a)+2\lambda^{2}(a+c))\beta_{2}^{2}+2\lambda^{2}d\beta_{2}^{3}=0 ,
(\lambda^{2}-1)d\beta_{2}^{2}+(2\lambda^{2}(a+c)-2c(3\lambda^{2}-1))\beta_{2}^{3}=0 . (4.5)

If d=0, from (4.5) we have a+c=0 and 3\lambda^{2}-1=0 . Thus \alpha_{1}=\alpha_{2}=

\alpha_{3}=0 , a contradiction.
Thus d\neq 0 , and from (4.5) we have \beta_{2}^{3}=\frac{c^{2}-a^{2}+d^{2}}{2cd}\beta_{2}^{2} , while using (4.4)

and (3. 16) we obtain

d^{2}= \frac{(a+c)^{2}(a-2c)}{a} .

Also from (4.5) we obtain \lambda^{2}=\frac{a}{a-2c} and from (4.1) a= \frac{2(c^{2}-1)}{c} . Thus finally
we have

\lambda^{2}=1-c^{2}’. a= \frac{2(c^{2}-1)}{c} , d^{2}= \frac{(3c^{2}-2)^{2}}{c^{2}(1-c^{2})} (4.6)

and from (3.9) we conclude that \lambda , a , c , d are constant.
Now from (3.15) we obtain

3 \beta_{1}^{i}=-\frac{3c^{2}-2}{c}w_{1}^{2}(X_{i})-dw_{1}^{3}(X_{i}) ,

3 \beta_{2}^{i}=-\frac{3c^{2}-2}{\lambda}w_{1}^{2}(X_{i})-dw_{2}^{3}(X_{i}) ,

3 \beta_{3}^{i}=-\frac{3c^{2}-2}{\lambda}w_{1}^{3}(X_{i})+\frac{3c^{2}-2}{c}w_{2}^{3}(X_{i}) .

From (4.6) and (3.16) we obtain

\beta_{1}^{2}=\frac{2-c^{2}}{2\lambda c}\beta_{2}^{2} , \beta_{2}^{3}=\frac{c(3c^{2}-2)}{2d(1-c^{2})}\beta_{2}^{2} , \beta_{1}^{3}=\frac{(c^{2}-2)(3c^{2}-2)}{2\lambda c^{2}d}\beta_{2}^{2} .

Now from (3.23, (i), (ii)) we get w_{1}^{2}(X_{1})=0 , w_{1}^{3}(X_{1})=0 and then
from (3.23, (iii), (vi)), w_{1}^{2}(X_{2})=w_{1}^{3}(X_{3})=0 . Thus we have \beta_{1}^{2}=

-dw_{1}^{3}(X_{2}) , \beta_{2}^{2}=-dw_{2}^{3}(X_{2}) and \beta_{2}^{3}=-\frac{3c^{2}-2}{\lambda}w_{1}^{2}(X_{3})-dw_{2}^{3}(X_{3}) . There-
fore

w_{1}^{3}(X_{2})= \frac{2-c^{2}}{2\lambda c}w_{2}^{3}(X_{2})
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and

(3c^{2}-2)w_{1}^{2}(X_{3})+ \lambda dw_{2}^{3}(X_{3})=\frac{\lambda c(3c^{2}-2)}{2(1-c^{2})}w_{2}^{3}(X_{2}) . (4.7)

Also 3 \beta_{1}^{3}=-\frac{3c^{2}-2}{c}w_{1}^{2}(X_{3}) and 3 \beta_{3}^{1}=\frac{3c^{2}-2}{c}w_{2}^{3}(X_{1}) . Thus w_{2}^{3}(X_{1})=

-w_{1}^{2}(X_{3}) and from \beta_{1}^{2}=\beta_{2}^{1} we get w_{2}^{3}(X_{1})=w_{1}^{3}(X_{2}) . Then

w_{1}^{2}(X_{3})= \frac{c^{2}-2}{2\lambda c}w_{2}^{3}(X_{2}) . (4.8)

From (3.22) we obtain E_{8}(X_{2})=- \frac{c^{2}+2}{2c}w_{2}^{3}(X_{2}) and E_{10}(X_{2})=3 \frac{c^{2}+2}{2c}w_{2}^{3}(X_{2}) .
Thus E_{10}(X_{2})=-3E_{8}(X_{2}) . Now, using (3.23, (xiii), (xv)) we have E9 (X_{3})

=-3E_{7}(X_{3}) or

10\lambda w_{1}^{2}(X_{3})-dw_{2}^{3}(X_{3})=0 . (4.9)

Finally from (4.6), (4.7) and (4.8) we have (5c^{4}-12c^{2}+8)w_{2}^{3}(X_{2})=0 . But
5c^{4}-12c^{2}+8\neq 0 . Thus w_{2}^{3}(X_{2})=0 and so \beta_{2}^{2}=0 , a contradiction. \square

Lemma 2 \lambda , a , c , d are constant and w_{i}^{j}=0 , i , j=1,2,3 on Mr

Proo/. We have \beta_{1}^{1}=\beta_{2}^{2}=\beta_{3}^{3}=0 and from (3.16) and (3.18) we get
\beta_{1}^{2}=0 , d\beta_{1}^{3}=0 , d\beta_{2}^{3}=0 and

\lambda\beta_{1}^{3}+c\beta_{2}^{3}=0 , (3\lambda^{2}-1)\beta_{1}^{3}+\lambda(a+c)\beta_{2}^{3}=0 . (4.10)

We will examine two cases, d\neq 0 and d=0 .

Case I : d\neq 0

We have \beta_{1}^{3}=\beta_{2}^{3}=0 . Thus \beta_{i}^{j}=0 , i,j, =1,2,3 . From (3.15) we get

\frac{3\lambda^{2}+1}{\lambda^{2}}X_{i}\lambda=(a+c)w_{1}^{2}(X_{i})+dw_{1}^{3}(X_{i}) (4.11)

and from (3.23, (iv), (v))

(\lambda^{2}+1)w_{1}^{2}(X_{3})=\lambda cw_{1}^{3}(X_{1})

w_{1}^{2}(X_{3})=w_{1}^{3}(X_{2}) . (4.12)

Now using (4.2), (4.11) and (4.12), from (3.23, (vii)) we obtain

(1-\lambda^{2})(\lambda^{2}-2c^{2}+1)w_{1}^{2}(X_{3})=0 . (4.13)



2- Type flat integral submanifolds in s^{7} (1) 485

We claim that (1-\lambda^{2})(\lambda^{2}-2c^{2}+1)\neq 0 .
Indeed, let \lambda^{2}=1 , or \lambda=-1 since \lambda is negative. Then from (4.2)

we have a= \frac{c^{2}-2}{c} and from (3.22) E_{1}=0 . Now from (3.23, (i), (ii)) we
get w_{1}^{2}(X_{1})=w_{1}^{3}(X_{1})=0 and then from (4.12) and (3.23, (iii)) w_{1}^{2}(X_{3})=

w_{1}^{3}(X_{2})=w_{1}^{2}(X_{2})=0 . After these from (4.11) we also have w_{1}^{3}(X_{3})=0 .
Thus w_{1}^{2}=w_{1}^{3}=0 .

Now from (3.19) we obtain (3\lambda^{2}-1)(4-\lambda_{1}^{2}-2\lambda^{2}-\mu_{1}-\mu_{2})-\lambda^{2}(a+c)^{2}-

\lambda^{2}d^{2}=0 . This relation with (3.9) and (4.2) imply that a , c , d are constant.
Now from (3.23, (x), (xiii), (xiv)) we get w_{2}^{3}=0 . Thus w_{i}^{j}=0 , i , j=1,2 , 3
and then (3.19), (3.20), (3.21) become

2+ac+c^{2}+d^{2}+2z=0 , (a+c)(3+a^{2}+c^{2}+z)+cd^{2}=0 ,

3+ac+3c^{2}+d^{2}+z=0

where z=\mu_{1}+\mu_{2}-3 .
We can easily see that this system together with (4.2) is impossible.

Thus \lambda^{2}\neq 1 .
Suppose now that \lambda^{2}-2c^{2}+1=0 . Then from (4.2) we get a+c=0.

Thus from (3.15) we have

X_{i} \lambda=\frac{\lambda^{2}d}{3\lambda^{2}+1}w_{1}^{3}(X_{i}) , (3\lambda^{2}-1)w_{1}^{2}=\lambda dw_{2}^{3} ,

X_{i}d=- \frac{3\lambda^{2}-1}{\lambda}w_{1}^{3}(X_{i}) . (4.14)

Now from (3.23, (i), (ii), (iv), (v)) we get

X_{2}\lambda=-\lambda w_{1}^{2}(X_{1}) , X_{3}\lambda=-\lambda w_{1}^{3}(X_{1})

(\lambda^{2}+1)w_{1}^{2}(X_{3})=\lambda cw_{1}^{3}(X_{1}) , w_{1}^{2}(X_{3})=w_{1}^{3}(X_{2}) (4.15)

By using (4.14) and (4.15), from (3.23, (x)) we obtain (3\lambda^{2}-1)w_{1}^{2}(X_{1}) -

\lambda dw_{1}^{2}(X_{3})=0 , while from (3.23, (ix), (xi)) we conclude that
(3\lambda^{2}+1)w_{1}^{2}(X_{1})+\lambda dw_{1}^{2}(X_{3})=0 . From these two relations we have
w_{1}^{2}(X_{1})=w_{1}^{2}(X_{3})=0 . Now from (4.15) we have w_{1}^{3}(X_{1})=w_{1}^{3}(X_{2})=0

and from (3.23, (iii)) w_{1}^{2}(X_{2})=0 . Thus w_{1}^{2}=0 and now from (4.14) we get
w_{2}^{3}=0 . Therefore (3.20) becomes cd^{2}=0 , a contradiction.

Thus finally we have (1-\lambda^{2})(\lambda^{2}-2c^{2}+1)\neq 0 and from (4.13) we have
w_{1}^{2}(X_{3})=0 , while from (4.12) w_{1}^{3}(X_{1})=w_{1}^{3}(X_{2})=0 . Also from (4.11) and
(3.23), (ii), (vi), (viii) ) we find w_{1}^{3}(X_{3})=0 , w_{1}^{2}(X_{1})=0 and w_{1}^{2}(X_{2})=0 .
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Thus we have w_{1}^{2}=w_{1}^{3}=0 . Now from (4.11), \lambda=const . and from (3.19)

(\lambda_{1}+2\lambda)(4-\lambda_{1}^{2}-2\lambda^{2}-\mu_{1}-\mu_{2})-\lambda(a+c)^{2}-\lambda d^{2}=0 .

From this, (3.9) and (4.2) we conclude that a , c, d are constant.
Finally from (3.15) we obtain w_{2}^{3}=0 .

Case II : d=0
The determinant of (4.10) is D= \frac{1}{c}(\lambda^{4}+(1+c^{2})\lambda^{2}-c^{2}) .
If D=0, using (3.9) and (4.2) we conclude that \lambda , a , c are constant.

Thus from (3.15) we have

\beta_{1}^{i}=\alpha_{2}w_{2}^{1}(X_{i}) , \beta_{2}^{i}=\alpha_{1}w_{1}^{2}(X_{i}) , \beta_{3}^{i}=\alpha_{1}w_{1}^{3}(X_{i})+\alpha_{2}w_{2}^{3}(X_{i})

and since \alpha_{1}^{2}+\alpha_{2}^{2}\neq 0 we obtain w_{1}^{2}(X_{1})=w_{1}^{2}(X_{2})=0 . Now from (3.23,
(ii), (iv) ) , w_{1}^{3}(X_{1})=0 and then w_{1}^{2}(X_{3})=0 . So w_{1}^{2}=0 . From (3.23, (vii),
(viii) ) we obtain w_{1}^{3}(X_{2})=w_{1}^{3}(X_{3})=0 . Thus w_{1}^{3}=0 . Using w_{1}^{2}=w_{1}^{3}=0 ,
from (3.23, (ix), (xiii), (xiv)) we conclude that w_{2}^{3}=0 .

Now suppose D\neq 0 . In this case from (4.10) we have \beta_{i}^{j}=0 for
i , j=1,2,3 . Then from (3.15),

X_{i}\alpha_{1}=\alpha_{2}w_{1}^{2}(X_{i}) , X_{i}\alpha_{2}=\alpha_{1}w_{2}^{1}(X_{i}) , \alpha_{1}w_{1}^{3}+\alpha_{2}w_{2}^{3}=0 . (4.16)

We assert that \alpha_{1}\neq 0 . Indeed, if for the moment we suppose that \alpha_{1}=0 ,
then from (4.16) we have w_{1}^{2}=w_{2}^{3}=0 . Now from (3.23, (iv), (vii), (viii))
we obtain w_{1}^{3}=0 and from (3.19) we get \lambda(a+c)^{2}=0 , a contradiction.

For \alpha_{2} we distinguish two subcases II_{1} , \alpha_{2}=0 and II_{2} , \alpha_{2}\neq 0 , which
we examine separately.

II_{1} : \alpha_{2}=0 .
In this case we have a+c=0 and \lambda=const . So from (4.1) we have

that a , c are constant, while ffom (4.16) w_{1}^{2}=w_{1}^{3}=0 . Now from (3.23, (x),
(xiii), (xiv) ) we get w_{2}^{3}=0 .

II_{2} : \alpha_{2}\neq 0 .
Now we have \alpha_{1}\alpha_{2}\neq 0 . From (4.16) and (3.23, (i), (iii)) we obtain

(3\lambda^{2}+1)w_{1}^{2}(X_{1})+\lambda(a+c)w_{1}^{2}(X_{2})=0 ,
\lambda((2\lambda^{2}+1)a-\lambda^{2}c)w_{1}^{2}(X_{1})-(3\lambda^{2}+1)(\lambda^{2}+1)w_{1}^{2}(X_{2})=0 .

The determinant of this system is

D=(3\lambda^{2}+1)^{2}(\lambda^{2}+1)+\lambda^{2}(a+c)((2\lambda^{2}+1)a-\lambda^{2}c) .
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If D=0, then using (3.9) and (4.2) we have that \lambda , a , c are constant.
Now from (4.16) we have w_{1}^{2}=0 and from (3.23, (iii), (v), (vi)) we obtain
w_{1}^{3}=0 . Finally ffom (4.16) w_{2}^{3}=0 . Now suppose D\neq 0 . Then w_{1}^{3}(X_{1})=

w_{1}^{2}(X_{2})=0 and X_{1}\lambda=X_{2}\lambda=0 . Now from (3.23, (vi)) we have w_{1}^{3}(X_{3})=0 .
From (4.16) and (3.23, (ii), (iv)) we obtain

(3\lambda^{2}+1)w_{1}^{3}(X_{1})+\lambda(a+c)w_{1}^{2}(X_{3})=0 ,
\lambda cw_{1}^{3}(X_{1})-(\lambda^{2}+1)w_{1}^{2}(X_{3})=0 .

If for the determinant D_{1}=(\lambda^{2}+1)(3\lambda^{2}+1)+\lambda^{2}c(a+c) , we have D_{1}=0 ,
then from (3.9) and (4.2) we obtain \lambda , a , c=constant . So, from (4.16)
and (3.23, (v)) we conclude that w_{1}^{3}=w_{2}^{3}=0 . If D_{1}\neq 0 , then w_{1}^{3}(X_{1})=

w_{1}^{2}(X_{3})=0 . Thus w_{1}^{2}=0 and from (4.16) \lambda=constant and a+c=const .
Now from (4.2) we have a , c are constant. Again from (3.23, (v)) we have
w_{1}^{3}(X_{2})=0 . So w_{1}^{3}=0 and from (4.16) w_{2}^{3}=0 , which completes the proof
of the lemma. \square

Proof of the Theorem. From Lemma 2 we have that \lambda , a , c , d are constant
and w_{i}^{j}=0 , i , j=1,2,3 . Thus from (3.22) we have E_{1}=E_{2}= =E_{10}=

0 . Now, according to [2], we have that M is C-parallel and the theorem
follows from Proposition 5.2 of [2] which says that under these conditions
the position vector is as in the statement of the Theorem and M lies fully
in E^{8} . \square

We close this paper with an auxiliary result for which we need the
following definition (see [8, p. 20]).

Definition If \gamma(s) is a curve in a Reimannian manifold N , parametrized
by arc length s , we say that \gamma is a Frenet curve of order r when there exist
orthonormal vector fields E_{1} , E_{2} , \ldots , E_{r} , along \gamma , such that:

\dot{\gamma}=E_{1} , \nabla_{\dot{\gamma}}E_{1}=k_{1}E_{2} , \nabla_{\dot{\gamma}}E_{2}=-k_{1}E_{1}+k_{2}E_{3} , .

\nabla_{\dot{\gamma}}E_{r-1}=-k_{r-2}E_{r-2}+k_{r-1}E_{r} , \nabla_{\dot{\gamma}}E_{r}=-k_{r-1}E_{r-1}

where k_{1} , k_{2} , . . , k_{r-1} are positive C^{\infty} functions of s . k_{j} is called the j-th
curvature of \gamma .

So, for example, a geodesic is a Frenet curve of order 1; a circle is a
Frenet curve of order 2 with k_{1} a constant; a helix of order r is a Frenet
curve of order r , such that k_{1} , k_{2} , . . k_{r-1} are constants.



488 C. Baikoussis and D.E. Blair

Proposition Let M be a flat, Z -dimensional mass-symmetric 2-type in-
tegral submanifold of S^{7}\subset E^{8} . Then M is locally the product of 3 curves.
Any one of these curves is a helix of order 4, or a circle in E^{8} .

Proof. According to Lemma 2, the Weingarten maps (3.1) of M have
constant components and w_{i}^{j}=0 , i,j, =1,2,3 . Thus, by using the Gauss-
Weingarten formulas we have

\overline{\nabla}_{X_{1}}X_{1}=\lambda_{1}\xi_{1}-x , \overline{\nabla}_{X_{2}}X_{1}=\lambda\xi_{2} , \overline{\nabla}_{X_{3}}X_{1}=\lambda\xi_{3} ,
\overline{\nabla}_{X_{2}}X_{2}=\lambda\xi_{1}+a\xi_{2}-x , \overline{\nabla}_{X_{3}}X_{2}=c\xi_{3} , \overline{\nabla}_{X_{i}}x=X_{i} ,
\overline{\nabla}_{X_{3}}X_{3}=\lambda\xi_{1}+c\xi_{2}+d\xi_{3}-x , \overline{\nabla}_{X_{1}}\xi_{1}=-\lambda_{1}X_{1}+\xi ,
\overline{\nabla}_{X_{2}}\xi_{1}=-\lambda X_{2} , \overline{\nabla}_{X_{3}}\xi_{1}=-\lambda X_{3} , \overline{\nabla}_{X_{2}}\xi_{2}=-\lambda X_{1}-aX_{2}+\xi ,
\overline{\nabla}_{X_{3}}\xi_{2}=-cX_{3} , \overline{\nabla}_{X_{3}}\xi_{3}=-\lambda X_{1}-cX_{2}-dX_{3}+\xi , \overline{\nabla}_{X_{i}}\xi=-\xi_{i} .

(4.17)

Let X_{1}=E_{1} . From (4. 17) we obtain

\overline{\nabla}_{E_{1}}E_{1}=\lambda_{1}\xi_{1}-x=k_{1}E_{2} , where k_{1}=\sqrt{1+\lambda^{2}} , E_{2}= \frac{1}{k_{1}}(\lambda\xi_{1}-x) ,

\overline{\nabla}_{E_{1}}E_{2}=-k_{1}X_{2}+\frac{\lambda_{1}}{k_{1}}\xi=-k_{1}E_{1}+k_{2}E_{3} , k_{2}= \frac{\lambda_{1}}{k_{1}} and E_{3}=\xi ,

\overline{\nabla}_{E_{1}}E_{3}=-\xi_{1}=-k_{2}E_{2}+k_{3}E_{4} , k_{3}= \frac{1}{k_{1}} and E_{4}=- \frac{1}{k_{1}}(\xi_{1}+\lambda_{1}x) ,

\overline{\nabla}_{E_{1}}E_{4}=-k_{3}E_{3} .

Thus k_{4}=0 and an X_{1} -curve of M is a helix of order 4 in E^{8} . If \lambda_{1}=0 ,
we have k_{2}=0 and the X_{1} -curve is a circle.

Now we put X_{2}=E_{1} . From (4.17) we obtain

\overline{\nabla}_{E_{1}}E_{1}=\lambda\xi_{1}+a\xi_{2}-x=k_{1}E_{2} , k_{1}=\sqrt{\lambda^{2}+a^{2}+1} ,

E_{2}= \frac{1}{k_{1}}(\lambda\xi_{1}+a\xi_{2}-x) .

\overline{\nabla}_{E_{1}}E_{2}=\frac{1}{k_{1}} (-\lambda aX_{1}-k_{1}^{2}X_{2}+a\xi)=-k_{1}E_{1}+k_{2}E_{3} ,

k_{2}= \frac{\epsilon a\sqrt{\lambda^{2}+1}}{k_{1}} , E_{3}= \frac{\epsilon}{\sqrt{\lambda^{2}+1}}(-\lambda X_{1}+\xi) ,

where \epsilon=\pm 1 according as a>0 or a<0 .
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\overline{\nabla}_{E_{1}}E_{3}=-\epsilon\sqrt{\lambda^{2}+1}\xi_{2}=-k_{2}E_{2}+k_{3}E_{4} , k_{3}= \epsilon\epsilon_{1}\frac{1+\lambda^{2}}{k_{1}} ,

E_{4}= \frac{\epsilon_{1}}{k_{1}\sqrt{\lambda^{2}+1}}(\lambda a\xi_{1}-(\lambda^{2}+1)\xi_{2}-ax) ,

where \epsilon_{1}=\pm 1 according as \epsilon=\pm 1 .
\overline{\nabla}_{E_{1}}E_{4}=-k_{3}E_{3} .

Thus k_{4}=0 and an X_{2}-curve of M is a helix of order 4 in E^{8} . If a=0, we
have k_{2}=0 and the curve is a circle.

Let now X_{3}=E_{1} . In the same manner, from (4.17) we have

\overline{\nabla}_{E_{1}}E_{1}=\lambda\xi_{1}+c\xi_{2}+d\xi_{3}-x=k_{1}E_{2} , k_{1}=\sqrt{\lambda^{2}+c^{2}+d^{2}+1} ,

E_{2}= \frac{1}{k_{1}}(\lambda\xi_{1}+c\xi_{2}+d\xi_{3}-x) .

\overline{\nabla}_{E_{1}}E_{2}=\frac{1}{k} (-\lambda dX_{1}-cdX_{2}-k_{1}^{2}X_{3}+d\xi)=-k_{1}E_{1}+k_{2}E_{3} ,

k_{2}= \frac{\epsilon d}{k_{1}}\sqrt{\lambda^{2}+c^{2}+1} ,

E_{3}= \frac{\epsilon}{\sqrt{\lambda^{2}+c^{2}+1}}(-\lambda X_{1}-cX_{2}+\xi) ,

where \epsilon=\pm 1 according as d>0 or d<0 .
\overline{\nabla}_{E_{1}}E_{3}=-\epsilon\sqrt{\lambda^{2}+c^{2}+1}\xi_{3}=-k_{2}E_{2}+k_{3}E_{4} ,

k_{3}= \frac{\epsilon\epsilon_{1}}{k_{1}}(\lambda^{2}+c^{2}+1) ,

E_{4}= \frac{\epsilon_{1}}{k_{1}\sqrt{\lambda^{2}+c^{2}+1}}(\lambda d\xi_{1}+cd\xi_{2}-(\lambda^{2}+c^{2}+1)\xi_{3}-dx) ,

where \epsilon_{1}=\pm 1 according as \epsilon=\pm 1 .
\overline{\nabla}_{E_{1}}E_{4}=-k_{3}E_{3} .

Thus an X_{3}-curve is a helix of order 4. If d=0 , the curve is a circle. \square
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