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Interpolating sequences and embedding theorems in
weighted Bergman spaces
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Abstract. For 0 < p < 00, let LP4(u) denote the weighted Bergman space on the unit
disk D in the complex plane, where p is a finite positive Borel measure on D. When p is an
absolutely continuous measure which satisfies an (Ap)-condition, we study interpolating
sequences on LP,(u) and give several sufficient conditions in order that such a sequence
exists in LP,(u). Using them, we obtain embedding theorems for weighted Bergman
spaces between LP,(u) and L94(v), where v is a finite positive Borel measure on D and
0<g<oo.

Key words: interpolating sequence, (Ajp)-condition, Carleson inequality, Bergman space,
analytic function.

1. Introduction

Let D denote the open unit disk in the complex plane and H a set
of all analytic functions on D. For 0 < p < oo, let LP(u) denote an LP-
space on D with respect to a finite positive Borel measure 1 on D and set
LP, () = LP(pu) N H, which is called a weighted Bergman space on D.

For any ain D, let ¢, be the Mébius function on D, that is, ¢, (2) = (a—
2)/(1—a2) (= € D), and put B(a,2) = 1/2{log(1 + |da(2)|)(1 — |6a(2)) "}
(a,z€ D). For 0 <r < oo and a in D, let D,(a) = {z € D;B(a,z) < r} be
the Bergman disk with “center” a and “radius” r, and m be the Lebesgue
area measure on ). We define an average of a finite positive measure u on

D,(a) by

o )
@) = @] o @€ D)

and if there exists a non-negative function w in L!(m) such that du = wdm,
then we may write it @, instead of [i,.

Let v and p be finite positive Borel measures on D, and for 0 < p,
q < oo, let i: LP,(u) — L, (v) be an inclusion mapping. Our purpose of
this paper is to study a necessary and sufficient condition on v and u so
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that the inclusion mapping 7 is continuous. We say that v and u satisfy a
(v, u)-Carleson inequality of (g,p), if there is a constant C > 0 such that
([ 1f19dv)V/a < C(f | f[Pdp)*/? for all f in H. When 1 < p, g < oo, clearly i
is continuous if and only if v and p satisfy the (v, u)-Carleson inequality of
(g,p). Hence, naturally we will study a necessary and sufficient condition
on v and pu so that v and p satisfy the (v, u)-Carleson inequality of (g,p)
for 1 < p, ¢ < o0 and remaining cases, namely 0 < p < lor0< g < 1.

Particularly, put du = (1 — |2|?)%m for o > —1. When 0 < p <
q < oo, Oleinik-Pavlov showed that v and p satisfy the (v, u)-Carleson
inequality of (g,p) if and only if there exists 0 < r < oo such that (1 —
|a|?)2(1=9/P)5, (a) /iy (a)?/? is bounded for a € D. And when 0 < ¢ < p < oo,
Luecking [8] showed that v and p satisfy the (v, u)-Carleson inequality of
(¢,p) if and only if there exists 0 < r < oo such that 7r(a)/fi,(a) is in
L*(p), where 1/t +1/(p/q) = 1. In the result of [8], roughly speaking, if
p — g, then t — oo, hence we obtain that 7,.(a)/fi-(a) is bounded for a €
D. Therefore, we can find the common property between two inequalities
which are the (v, u)-Carleson inequalities of (¢,p) when 0 < p £ ¢ < oo
and 0 < ¢ < p < oco. Conversely, when 0 < p < oo, 4 = m and du =
Xcdm, where X is a characteristic function of a measurable subset G of D,
Luecking [5] showed the equivalence between the (v, u)-Carleson inequality
of (p,p) and the condition that ;.(a)/fi.(a) is bounded for a € D. A
necessary and sufficient condition for the (v, u)-Carleson inequality of (g, p)
is not known completely when v, u, p, and g are general. Therefore, it is
interesting to study this condition. However, the result for this investigation
is known only in Nakazi-Yamada @ When p = ¢ = 2, du = wdm, and
w satisfies the (A3(0))s-condition (See §3.), Nakazi-Yamada [9] showed the
equivalence between the (v, u)-Carleson inequality of (2,2) and the condition
that 7, (a)/fir(a) is bounded for a € D. Since w(z) = (1 — |2|?)* does not
satisfies the (A2(0))s-condition if @ 2 1, this result does not contain Oleinik-
Pavlov’s one.

In §2 of this paper, we give two sufficient conditions for the (v, u)-
Carleson inequality of (¢,p) when 0 < pLg<ocand 0< ¢ <p < oco. In
§3, observing interpolating sequences in weighted Bergman spaces, we show
that two sufficient conditions in §2 are also necessary when u satisfies some
conditions. This interpolation problem was studied by Amar [1], Amar gives
a sufficient condition for a sequence in D in order that it is an interpolating
sequence in LP,(m). And Rochberg extended it when D is a symmetric
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domain in C™. The proofs in are based on the results in . Here,
it is difficult that the results in [2] can be extend to the weighted case.
Therefore, we use quantities eg and dr in order to avoid the difficulty (See
§3.). Using the quantities, we give a sufficient condition for p in order that
an interpolating sequence exists in LP, (1), and give necessary and sufficient
conditions, which can be unifiable, on v and p in order that (v, u)-Carleson
inequalities of (g, p) are satisfied when 0 < p < g < oo and 0 < ¢ < p < o0.

The author wishes to thank Professor Takahiko Nakazi for his advice
and indispensable help while this work was in progress.

2. (v, p)-Carleson inequality

Let w 2 0 be an integrable function on D. For 1 < p < oo, we say that
w satisfies an (Ap)-condition if there exist 0 < r, C' < oo such that

O (a)(w VPN (@)P < C

for all @ in D (This condition is often called condition C,, [7].). Moreover, for
a > —1, put dm, = (1—|2|?)%dm, and throughout, C will denote a positive
constant whose value is not necessarily the same at each occurrence; it may
vary even within a line. We give sufficient conditions on v and p which
satisfy the (v, p)-Carleson inequality of (q,p). The following lemma 1 is a
consequence of corollary 3.6 and corollary 3.8 in [7].

Lemma 1 Suppose that du = wdm, and w satisfies the (Ap)-condition
for some 0 < p < co. Then, for any 0 < r(1), r(2), 7(3) < oo, there is a
constant 0 < C' < oo such that C™'i,1)(a) £ fiy2)(2) £ Chiy1)(a) for all
a, z in D such that B(a,z) < r(3).

Lemma. 1 implies that the (A,)-condition is independent of choice of r
and W, (a) is equivalent to @ (z) for z € D,(a) when w satisfies the (4,)-
condition. The following proposition 1 gives sufficient conditions on v and
p which satisfy the (v, p)-Carleson inequality of (q,p). In order to prove
them we use ideas in [8], [9] and [14; p109).

Proposition 1 Suppose that dp = wdm, and w satisfies the (Ag)-condi-
tion for some 1 < s < o0.

(1) Suppose that 0 < p < q < co. If there exists 0 < r < co such that
(1 — |a?)20=9/P)p, (a)/fir(a)¥/P is bounded for a € D, then v and p satisfy
the (v, u)-Carleson inequality of (q,p).
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(2) Suppose that 0 < g < p < co. If there exists 0 < r < 0o such that
Ur(a)/fir(a) is in L*(u), here 1/t + 1/(p/q) = 1, then v and p satisfy the
(v, u)-Carleson inequality of (q,p).

Proof. (1) Suppose that there exists 0 < r < oo such that (1 -
|a|?)2(1=9/P)p, (a) /fir (a)?/? is bounded for a € D. Proposition 4.3.8 in [14;
p62] and Holder’s inequality imply that there exists a constant C' > 0 such
that

e C /s
TP 2 C@) o 70

o , 1/s
= (D, @) (/M) 7l “’dm)

(s—1)/s
y ( / w‘l/(51)dm>
Dr(a)

for all fin H and a in D. Since m(Dy(a)) is equivalent to (1 — |a|?)?,
the function (1 — |z|*)* can be replaced by (1 — |a|?)® for 2 in D,(a),
and w satisfies the (A;)-condition, hence lemma 1 implies that |f(a)[? <
C(fDr(a) | FIPAp)9/Pi, (a)~9/P(1 — |a|?)=24/ for all f in H and a in D. Inte-
grating the inequality with respect to v over D, and by lemma 4.3.6 in [14;
p62], there is a positive integer N = N, such that there exists {\,} C D
satisfying that D = UD,()\,) and any z in D belongs to at most N of the
sets Do, (Ar,), therefore lemma 1 implies that

| \fpsav

q/p
ey [ ( JNLCTEORCE |a|2>2) dv(a)

q/p
<oy ( /D oy PR ()™ (1 - mr%*) v(Dr(An)),

since Dy(a) C Dar(An) for a in D,(A,) and (1 — |2|2)® can be replaced by
(1—la|*)* for z in D,(a). Hence the hypothesis and the choice of Bergman
disks imply that the (v, u)-Carleson inequality of (g, p) is satisfied, because
q/p 2 1.

(2) Suppose that there exists 0 < r < oo such that ,(a)/fi(a) is in
L*(p), where 1/t + 1/(p/q) = 1. At the first inequality in the proof of (1)
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of this proposition, we replace p by ¢, then we have that

f@)7 < C (m) [ o

s—1
X (/ wl/(81)dm>
D.(a)

for all f in H and a in D. Moreover, similar arguments in the proof of (1)
implies that |f(a)|? = C(fp_(4) |f|9dp)fir(a)" (1 ~]al?)"2 for all f in H and
a in D. Integrating the inequality with respect to v over D, and applying
Fubini’s theorem, then lemma 1 implies that

| ir@pav(@
<o 5] @)1~ o) dv(a)da(2)
<C [ @@ () du(2),

because Xp,(4)(2) = XD, (»)(a), and (1 — |2|?) is equivalent to (1 — |a|?) for
a in D,(z). Hence the hypothesis and Holder’s inequality imply that the
(v, u)-Carleson inequality of (g, p) is satisfied, because p/q > 1. ]

In the statements of (1) and (2) of proposition 1, if we replace fi,(a)
by (w™/(=)2(a)~(~1D, then we can omit the hypothesis of the (Aj)-
condition. Therefore, we can give more general sufficient conditions.

3. Interpolating sequences in LP,(u)

For any a in D, let K4(z) = (1 — a@z)~2 and kq(2) = Ku(2)/Kq(a)l/?
(z € D). For a > —1, put fig(a) = [ |kq|* ®du (a € D) which is called a
Berezin transform of u. If du = wdm,, then we write it w,, instead of .
For 1 < p < oo, we say that w satisfies an (Ap(a))s-condition if there exists
0 < C < oo such that

a(a)(w VP )3 £ C

for all a in D (The (Ap(a))s-condition is stronger than the (A,)-condition.).
For 0 < R < o0, put

cnlpa) =sup ([ Jkaf**du | fia(a) "
a€D \VD\Dg(a)
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Moreover, for 0 < R < oo and 6 is a real number, put
53(,&, «, 9)

~ sup ( AR AR |z|2>9du) {1 =l al@)} .
D\Dg(a)

a€eD

The quantity eg(u,0) was defined in [9] and was used for an obser-
vation of a uniformly absolutely integrability for some measures, here we
need it for our objects. Clearly, 0 < egr(u,a) < 1 and if # = 0 then
er(m,a) £ 2*7*p(u,,0) for all 0 < R < oo, because |kq|?t® = (1-—
|a|2)2+a{|Kail+a/2}2 <(1- ’a|2)2+a\Ka|1+a/2/(1 _ 'a‘)2+a.

Firstly, we show that the converse implication of (1) of proposition 1 is
true when er(u, @) < 1 for some 0 < R < co. Moreover, we also find that
the converse implication of (2) of proposition 1 is true when eg(u, a) — 0
(R — o0) and 0 < p < 1. In order prove it, we need a notion of interpolating
sequences in LP,(u), which was studied by Amar [1] when x = m. When
dp = wdmg and w satisfies a condition Bp(a), Luecking [7] studied a suffi-
cient condition for separated sequences in order to embed LP,(u) isometri-
cally as a closed subspace of [P, and hence obtained a representation formula
for LP,(u)-functions, which are closely related to interpolating sequences in
that space (The condition By(a) is stronger than the (A,)-condition, and
weaker than the (Ap(a))s-condition, the definitions of separated and in-
terpolating sequences are below.). Here, we give a sufficient condition for
separated sequences in order that the embedding map from LP,(u) to IP is
onto when du = wdm, w satisfies the (A;)-condition for some 1 < s < oo,
er(#,a) — 0 (R — o0), and 0 < p < 1. We also observe the interpolating
sequences in LP,(u), and obtain the characterization of the (v, u)-Carleson
inequality of (¢,p) when 1 < p < oo.

Theorem 2 Suppose that 0 < p < q < oo, du = wdmy, w satisfies the
(As)-condition for some 0 < s < oo and there exists 0 < R < oo such that
er(p,a) < 1. Then v and p satisfy the (v, p)-Carleson inequality of (¢, p) if
and only if there exists 0 < r < oo such that (1 —|a|?)21=9/P)p, (a)/fiy(a)9/P
15 bounded for a € D.

Proof. By (1) of proposition 1, it is enough to prove the “only if” part.
Therefore. we suppose that there exists a constant 0 < C' < oo such that

J1f19dv < C(f |f|Pdu)¥/? for all f in H. Here, put f = k,(27®/P_ by lemma
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4.3.3 in [14], we have that ([ |ko|>t@dp)?/? = C~! Ip, (@) ko |2Te)a/Pgy >
C'(1 — |a|?)?(t=9/P)=24/P5 (q) for all 0 < r < oo and a in D (Here, C’ is
depend only on v, p and r.). Moreover, a simple computation shows that
er(pu, ) < 1 if and only if there exists a constant 0 < C' < oo such that
[ |ka|*dp < C(1—1al?)*fir(a) for all a in D (See lemma 1 in [9].). Hence,
the desired result follows from lemma 1. ]

We observe interpolating sequences for LP,(u). Let A = {a;} be an
infinite sequence in D, and put R4 = 1/2inf{3(a;,a;); i # j}. A sequence
A is said to be separated if R4 > 0. For 0 < p < oo, let s(u,p,a) =
s(a) = inf{[|f|Pdy; f(a) = 1,f € H} (a € D), which is called a Riesz’s
function of p and was studied in [10]. We define a map T4 from LP,(u)
to IP by Taf = {s(a;)"/Pf(a;)}, and a separated sequence A is called an
interpolating sequence for LP,(u) if T4 is onto. If du = dmy, then s(a) =
(1—a|?)>**. When o = 0, our definition of interpolating sequences is same
to Amar’s one. Hence, using the Riesz’s function, a notion of interpolating
sequences can be defined for a general weighted Bergman space LP,(u).

Lemma 2 Suppose that 0 < p < oo, du = wdm,, w satisfies the (As)-
condition for some 1 < s < oo and there exists 0 < R < oo such that
er(p, @) < 1. If a sequence A is separated, then T4 is continuous.

Proof. Clearly, a simple computation and the hypothesis in lemma 2
imply that there exists a constant 0 < C' < oo such that s(a) = (1 —
|a|?)?*e [ |kq|*T@dp £ Cu(Drg(a)) for all @ in D (See lemma 1 in [9].).
Hence a continuity of T4 follows from theorem 3.12 in [7]. []

When D is a symmetric domain in C", Rochberg , using results in
to avoid direct and complicated computations, gave a sufficient condition
for A = {a;} in order that T4 is onto. In order to prove proposition 3, we
use ideas in [1] and [12], but for general weighted Bergman space LP,(p),
it may be hard to consider estimations of reproducing kernels in that space
which are used in [1] and [12]. We refer the problem to the quantity g and
Or. In order to prove theorem 4, the following proposition 3 is important
and essential.

Proposition 3 Suppose that p = wdm,,.
(1) If 0 <p<1, w satisfies the (A;)-condition for some 1 < s < oo
and eg(p,a) = 0 (R — o0). Then, there exist 0 < Ry, v < oo such that
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if a sequence A = {a;} is in D and Ry 2 Ry, then there is a map Sy
from P to LP,(u) so that TaSs = I and sup{[|Sa{c;}|Pdu;X|c;|P < 1,
{c;telP}=~.

(2) If 1 <p<oo,w satisfies the (A,(a))s-condition and there exists
6 such that (1 —p)(1+a) <8 <0, 6gp(u,a,0) — 0 (R — o). Then there
exist 0 < Ry, v < oo such that they satisfy the same properties in (1) of
proposition 3.

Proof. (1) It is enough to prove that there exists a sequence of functions
fi in Lpa(u) such that f |fzipd/_L § C' and Ej]s(aj)l/pfi(a,j) — 6ij|p § 1-— n
(¢ 2 1) for some 0 < C < oo and 0 < n < 1. In fact, suppose such a
sequence of functions exists. Let o; be a point mass of aj, and LP(D, o)
be a usual measure space on D. Put v;(a;) = 6;;, and we define Bv; = f;,
then B is continuously extendable to LP(D, ¥o,), because [ |f;|Pdu < C for
all i 2 1. Moreover, we have that

I(TaB = D(ZXiv) [F £ BIAPITaBvi — villp < (1= m)Z NP,

Therefore, put S4 = B(T4B) ™!, then S, satisfies the required property. We
will prove the existence of f;. Let fi(z) = s(a;) V/P{(1—|a;|?)k,, (2)}2+e)/p,
then f; is analytic on D and [|f;|Pdp = s(a;) "} (1 — |a;|2)?F [ |kq,|?>T%dp.
By the definition of s(a), making a change of variable, and Jensen’s inequal-
ity implies that

s(a) 2 C(1— \a’z)ainf{/D

C(1 = [a]2)2+*m (D, (0)) exp{ /D T <badm/m(Dr(O))}

2 C(1 - Jof?) (VD)3 a) 76D,

T

1f © GalPw o da|ka|?dms; f(a) = 1}
)

IV

where 0 < r < oo is arbitrary and C depends only on r. Since w satisfies
the (As)-condition and ep(u,a) < 1 for some R, lemma 1 implies that
J1filPdp < C (i 2 1). Next, the above results imply that for any fixed
0 < r < 0o, there exists a constant 0 < C = C, < oo so that

ils(a;) P fia;) — 6P
= ¥jzis(az)s(a;) " (1 — |a;[*) 2T kg, (a;) 2T

< Cs(a) 7 (1~ |ail?)* T N

r\Qj
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2+ad'u

< s(a) 7 (1= o) | ke
Uj;ﬁi Dr(a;)

< Cfia(a)™ | o[ (12 1)
D\D(2R ,—r)(as)

for all A = {a;} such that R4 > /2, since for any j # i if ( € D,(a;) then

2R4 < fB(as,a5) < B(asi, ¢) + (¢, a;) < B(ai, () + 7. Therefore, the desired

result follows from the hypothesis ep(y, @) — 0 (R — o0).

(2) Let gi(2) = s(a;)"VP{(1 — |ai|?) Kq,(2)/?}**® and {e;} be the
usual basis in [P. We can define a mapping L from [P to LP,(u) by L(X\;e;) =
Y Aigi. We claim that L is a continuous mapping. In fact, the (A,(a))s-
condition implies the condition Bp(«a), therefore by theorem 2.1 in [7],
we have that the dual of LP,(u) = LP,(wdmg) can be identified with
LI, (w=9Pdm,), where 1/p +1/q = 1 and the pairing is given by (g, h) =
[ ghdm,,. For any h in L9,(w™9Pdm,), we have that

[(L(ZAiei), b))
< BfAifs(ar) TVP(L — fag?)*

/ hf(”a.Ha/?de‘
< (BIAP)MP{Ss(a;) VP (1 — |ag2) 9@+ | h(ay) |9} 19

Since w satisfies the (A4,(a))s-condition, there exists a constant 0 < C < oo
such that

Ss(u, p, ai)—q/p(l _ [ai\Q)q(“a)lh(aiﬂq < CE/D . |h|qw_‘J/pdma,
R, (ai

here C' depends only on R4. Moreover, we may assume that R4 > 0, we
obtain that L is continuous. As in the proof of (1) of proposition 3, it is
enough to prove that an operator norm of T4y L — I can be less than 1 —n7 for
some 0 < 71 < 1. Let (a;;) be a matrix of T4L — I with respect to {e;}, then
we have that a; = 0 and a;; = {s(a;)/s(a;)}'/P{(1 - |a;|*) K, (a;)'/2}2He
(i # j). By theorem 3.2.2 in [14; p42|, we only prove that there exists
a non-negative sequence {h;} such that ¥;|a;;|h;7 < (1 —n)h? (i 2 1)
and ¥jla;jlh? £ (1 —n)hP (j 2 1). By the hypothesis, there exists 8
such that (1 —p)(1 +a) < 6 < 0 and ér(p,a,8) — 0 (R — o0). Let
hi = s(a;)/P2(1 = |a;|?)?/P, then for any fixed 0 < r < co lemma 4.3.3 in
[14; p60], proposition 4.3.8 in [14; p62], and above arguments in the proof
of (1) of proposition 3 imply that there exists a constant 0 < C = C, < oo
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such that
Yjlaij|h;Thi®
SC(1- \ai]2)"q9/p/ (1— |z|2)q9/p+a|1 — 2|~V

2RA—T(ai)C

and
Yilai;|hiPhs?

< C(1 = lay ) s(a,) ™ [ (1= 122)11 — @2l -+

2R 4 —r(a;)¢

< O lo ) lala)) ™ K [ o),
2R 4 —r\Qj

)

because 1—|a|? is equivalent to 1— 2|2 for z € D,(a). In the first inequality,
by making a change of variable, lemma 4.2.2 in [14; p53] and corollary 1.2 in
[3; p121] imply that the right hand side of the inequality can be sufficiently
small if R4 — oo. In the second inequality, the same assertion follows from
the hypothesis 6g(1, o, 0) — 0 (R — o0). ]

Using the results in proposition 3, we give a necessary and sufficient
condition in order to satisfy the (v, u)-Carleson inequality of (g,p) when
q < p. This condition is a generalization of Luecking’s result . The proof
of theorem 4 is similar to that in . But, in the proof of main theorem in
, it seems that a result which is concerned with interpolating sequences
is important. In weighted Bergman spaces, an interpolating theorem also
plays an important role, and proposition 3 enables us to prove theorem 4.
Moreover, we will show that the hypotheses ep(u, @) — 0 (R — oo) and
6r(p,0,8) — 0 (R — 00) in theorem 4 are valid for many functions which
are modulus of polynomials.

Theorem 4 Suppose that 0 < g < p < 0o and du = wdmy,.

(1) If0 < p £ 1, w satisfies the (As)-condition for some 1 < s <
oo and eg(p,a) — 0 (R — o00), then v and p satisfy the (v, p)-Carleson
inequality of (g, p) if and only if there exists 0 < r < oo such that U,(a) /fi,(a)
is in L*(u), here 1/t +1/(p/q) = 1.

(2) If1 <p < oo, w satisfies the (Ap(a))s-condition and there exists
6 such that (1-p)(1+a) <0 <0, ér(p,a,0) — 0 (R — 00), then the same
equivalence in (1) of theorem 4 is valid.
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Proof. (1) The “if” part is a consequence of (2) of proposition 1 and
hence we will show the “only if” part. For any 0 < 7 < 0o, by lemma
4.3.6 in [14; p62], there exists {\,} C D satisfying that D = UD, /2(An)
and D, 3(An) N Dy g(Am) = ¢ (n # m). Since {\,} is separated, Amar’s
theorem (See [1].) implies that {\,} is a finite union of A(l) (1 <1< N),
where A(l) is a separated sequence such that R A()) 1s sufficiently large for
1 =1 < N. Hence, by the hypothesis and (1) of proposition 3, we can assume
that Raq) 2 Ro 2 4r and sup{ [ |S4y{c;}Pdp; Zcj|P < 1, {c;} € P} < v
forall 1 = 1 < N. Put R = Ry/2. Here, it is enough to prove that
Y(Ur(aj)/lir(aj)) u(Dr(a;)) < oo, where {a;} is a one of the separated
sequences A(l) (1 =1 = N). In fact, since w satisfies the (A;)-condition,
lemma 1 implies that

@)/ p(2)) 0

< OS5 (An) /A /4(An))! /D o

< CE(r (M) /BR(A)) (DR(An)).-

Therefore, we will prove it. We replace v with XDk (0)V and put y; =

{m(Da(a))""v(Dy (a7))/Ain(a)}u(Dila;) ", where Xpy(o) is a charac.
teristic function of Dk (0). By the corollary of lemma 4.3.3 in [14; p60], it
is enough to prove that X|y;|* £ C, where C is independent of 0 < K < oo.
The (v, u)-Carleson inequality of (g, p) implies that

([ 15ran) "V

> 2/ |9
Dr(a;)

2 3 f(a;) (D () - £ [ o Fa5) = gl

for all f in H. Here, normal families arguments, Holder’s inequality, and
the (As)-condition imply that

@) = S(2)1* < Crs(o, 2)m(Dla)™ [ |10}V na)

Rr\Q

for all f in H and a, z € D such that 3(a,z) < r (See [8].). Hence, two



532 M. Yamada

Holder’s inequalities imply that

by | f(a;) — f|9dv

Dy (a;)
q/p
< cRrsz( /[ " £17dn) " W(Dr(a) (D, (ay))
m(Dr(a;))" /in(a;)
< Cgr? <2 lf P du> Q/p{Zu Dr(a;))v(Dr(aj))*
<DR<aJ>> t/manf}”t
< Cpr® ( /D |f|pdu> " (Sly; )"

for all f € H. Moreover, Hahn-Banach’s theorem shows that there ex-
ists a sequence {d;} such that Yy;d; = (X]y;|*)'/* and (Z|d |p/ayalr = 1.
Therefore, put |c;|? = |d;|s(a;)¥Pu(Dg(a;))tm m(Dg(a;)) " fir(a;)™!, then
we have that ¥|c;|P < Cg,. Hence, by (1) of proposition 3, there exist
0 <7yr <ooand fin LP,(u) such that f(a;) = ¢; and [|f[Pdu < g, and
they imply that S|f(a,)|%(D,(a;) = (Sly;l)% and [|fPdu < g (1
may not be different from above v.). Therefore, above inequalities and the
choice of f imply that C’,,,uq’yRQ/p = (1- CRTSWRQ/p)(E]ij)l/t, hence let r
be sufficiently small, the desired result follows.

(2) The proof is same to (1). []

We give some examples. Some results in example 1 and example 2
are more general than (1) of proposition 5, (5) of proposition 9 and (2) of
proposition 5, (6) of proposition 9 respectively.

Ezample 1. Let w(z) = (1 — |2|?)! such that [ is real and dy = wdm,.
Then, clearly w satisfies the (A4,)-condition for all 1 < p < co. Moreover, by
making a change of variable, lemma 4.2.2 in [14; p53] implies that W, (a) <
C(1—la]®),ifa+1>~1andl —a—2 < 0. Analogously, we have that
(w= VP (a)P~1 £ C(1 - |a>)7, if =1/ (p — 1)+a > —1and —1/(p —
1) —a—2<0. Hence, if 1 20, [l - 1/2| < a+3/2, and 1 +1/(1 + a) < p,
then w satisfies the (Ap(a))s-condition. If I < 0, |l — 1/2| < o + 3/2,
and 1 —1/(2 + a) < p, then w satisfies the (A,(a))s-condition. Similar
calculations, lemma 4.2.2 in [14; p53], and corollary 1.2 in [3; p121] show
that ep(p,a) = 0 (R — o00) if |l — 1/2] < a + 3/2, because for any fixed
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0 < r < oo we have that fig(a)™! £ Cpivp(a)~! £ C(1 — |a|?)~¢ for all a in
D. Similarly, we obtain that ég(p,,0) - 0 (R — o) if 6 > -1 —a — 1
and 8 < —I[. Since 0 > —1 — a, for any 1 < p < oo there is 6 such that
(1-p)(14+a) <6 <0and bp(p,0,8) >0 (R — 00),if —(1+a) <<
(- 1)(1+a)

Ezample 2. Let {b;} be a finite sequence of complex numbers with b; # b,
(t # 7) and {I(j)} be a finite sequence of non-negative real numbers. Put
w(z) =[]z - b;|'0) and du = wdm,. Set A = {j;b; € D} and T =
{7;b; € D}. For any 0 < r < 0o, lemma 2 in [9] asserts that C,~ '@, (a) <
[Lica la —b; i|1U) < Cidy(a) for all @ in D when I(j) > —2 (j € I) even if
{l( )} is not non-negative. Therefore, we have that @,(a) < C; [[;cpla —
b and (w™V/®V)3(a)P~ < Cr [ljep la— b 79, if ~1(5)/(p — 1) > =2
(j € T'). Hence, we obtain that w satisfies the (Ap)-condition for some
1 < p < oo. We claim that w satisfies the (A,(a))s-condition if I(j) < a+2
(j € A) and I(j)max{1,1/(1 + @)}/2+ 1 < p (j € TUA). In fact, let
w(z) = |z — b1 |'W|z — by|"® such that by is in D, by is in D, and I(1), [(2)
are non-negative, it is enough to prove that the assertion is true for such
a w. Since |z — blll(l) is a bounded function, making a change of variable,
and lemma 4.2.2 in [14; p53] imply that @a(a) £ 2"V C|1 —aby|"?)|| ¢, (bg) —
2|0ot® £ CJ1 — @beM?) if 1(2) < o + 2. Moreover, let U(1) and U(2) be
neighborhoods of b; and by in D U 8D such that U(1) NU(2) = ¢. Then,
we have that

(w —1/(p- 1)) (a)P~
</U(1 /U(2 / U(1)ul(2 )
< 710(|z — by [T/ ) (a)p"l

+ 221 (|z — by| TR/ P (q)P~1 4 22(P- 12,

where C is a constant such that |z—be| ™2 < Con U(1) and |z—b, |7V < C
on U(2). Here, for bin DU OD and [ 2 0 the similar calculation above for
o shows that (|z — b]7/*~1) 5 (a)P™" < |1 —ab|™!|I1 — @zle! (J |al(b) —
2|7/ PV dm,)P~1. Hence, if & > 0 and I/(p — 1) < 2, then [ |¢q(b) —
2| 7P Ndm, < [, 12|/ PVdm < oo, where 2D = {22;z € D}. More-
over, if 0 > o > —1 and I/{(1 4+ a)(p — 1)} < 2, then there exists 3 such
that 1 < 1/(1+ a) < 8 < 2(p—1)/Il. Therefore, Holder’s inequality implies
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that

/’qba(b) — 2| M@ D dm,
< (/ |pa(b) — z‘—ﬂl/(p_l)dm) 1/8

(8-1)/8
X (/(1 - |z|2)aﬁ/<ﬁ—1>dm) < 0,

because Bl/(p — 1) < 2 and af/(8 — 1) > —1. Hence, the desired result
follows for b = b; and | = I(j) (j = 1,2). Next, we assert that ep(y, a) —
0 (R— o0)ifl(j) < a+2 (5 € A), and for any 1 < p < oo there is
6 such that (1 — p)(1 + a) < 8 < 0 and ér(p,,6) — 0 (R — o0) if
() < (1+a)min{l,p—1} (j € A). Let w(z) = |z — by |'D]z — by|"?) such
that b; is in D and by is in dD. It is enough to prove that the assertions
are true for such a w. For any 1 < s < oo, we have that ep(p,a) <
sup(fDR(a)c ko |2 ¥dme ) (w™ /1) 5 (a)* . Hence, if s is sufficiently large
and [(2) < a + 2, then the above arguments for (A,(a))s-condition and
corollary 1.2 in [3; p121] imply that eg(u,a) — 0 (R — o0). Similarly, we
have that

5R(p’a a, 9)
< 9l(1) sup{<1 Pt = @bl (bs) — 2]lec®

y </ (1= |2[2)P)1 — Ez]—{2+(0+°‘)+(0+l(2))dm)}
Dg(0)°
x {(1 = |af*)~? (V)5 (a) ).

Hence, lemma 4.2.2 in [14; p53] and corollary 1.2 in [3; p121] imply that
bp(u,a,0) > 0 (R —o00)if6+a>—1and §+1(2) <0. Since 0 > -1 -«
and [(2) > 0, for any 1 < p < oo, there is 6 such that (1-p)(1+a) <0 <0
and 6p(u,a,8) — 0 (R — o0) if I(2) < (1 + &) min{l,p — 1}.

Ezample 3. We will observe that the hypotheses of ¢g and 6r in theorem
2 and theorem 4 are not sharp. We show that there are measures v and p
such that they satisfy the (v, u)-Carleson inequality of (g, ¢), (v, pu)-Carleson
inequality of (q,p), w satisfies the (As)-condition for some 1 < s < oo, and
w satisfies the (A4,(0))g-condition, but egp(p) and §r(u) do not converges to
0, where du = wdm. Let w(z) = |1 — z|!, dp = wdm and dv = |1 — z|¥dm
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such that £ > 1 > 0. For 0 < ¢ < p < oo, we have that ([|f|9v)/? <
2(=D/a( [ | fladu)'/a < 2k=D/ay(DY/a=1/p([ | £|Pdp) /P for all f in H. Here,
the last inequality follows from Hélder’s inequality. Therefore, v and pu
satisfy the (v, u)-Carleson inequality of (g, q) and (v, u)-Carleson inequality
of (g,p). Moreover, since Ur(a) and fi,(a) are equivalent to |1 — al¥ and
|1 — a|’ respectively, D,(a)/fir(a) is bounded and D, /fi, is in Lt(y), where
1/t+1/(p/q) = 1. By example 2, w satisfies the (A,)-condition for some
1 < s < 00, but we can prove that eg(u,0) =1 forall0 < R < oo if I 2 2.
Suppose that there exists 0 < R < oo such that eg(u,0) < 1. Then, we have
that fig(a) £ Criig(a) £ Cg|1 — a|' for all a in D. Hence, we obtain that
00 > CR 2 fig(a)|1—a|™! = [ |14z |1—az|ldm forall0 < a < 1. Let D, =
{z € D;Rez 2 0}, then Cr 2 [, [1+ 2|'|1 —az|'dm 2 [ |1 - az|~'dm.
And, hence we have that [}, |1 — az|"'dm < Cr+ [p,. |1 —az|ldm < C
for all 0 < a < 1. This contradicts lemma 4.2.2 in [14; p53]. Furthermore,
by example 2, w satisfies the (A4,(0))s-condition if [ < 2 and [ < 2(p — 1).
But, let p = 2, then we can prove that there is not # such that —1 =
(1-p)(1+0) <8 <0 and Sg(,0,6) - 0 (R — c0)if 1 <1< 2. We
suppose that there is § such that —1 < § < 0 and 6r(u,0,6) — 0 (R — o0).
Since 1 £ 1 < 2, example 2 implies that there exists 0 < 7 < oo such that
er(1,0) < 1. Hence, we have that fig(a) £ Crfir(a) £ Cr|1 — af for all
a in D. Therefore, there exists 0 < R < oo such that co > §gr(u,0,8) 2
Cr™! fDR(o)c 11+ 2)5(1 = |22)%)1 — az| 42 dm for all 0 < a < 1, because
6r(1,0,8) — 0 (R — 00). Hence, similar arguments imply that

/ (1 . lz|2)9|1 _ az|—(2+l+29)dm
D

< Cror(n,0,0) +/ (1 - |2[H1 — az|~ 2 g,

Dr(0

_|_/ (1 N ’Z|2)0|1 _ az\_(2+l+29)dm

(D+°)\Dg(0)

< C(1,0,6) + C’R/ (1-|2%)fdm £ C < oo
D

for all 0 < a < 1. Therefore, this contradicts lemma 4.2.2 in [14; p53],
because 6 + 1 > 0.
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