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A characteristic initial boundary value problem
for a symmetric positive system
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Abstract. We study the simplest maximal positive boundary value problem for sym-
metric positive systems in a bounded open set for which the boundary matrix is not of
constant rank. To be precise, the boundary matrix changes the definiteness simply cross-
ing an embedded manifold in the boundary which is the intersection of the boundary
with a non-characteristic hypersurface. Assuming that the flow passing the hypersurface
compensates for the degeneracy of the boundary matrix on the embedded manifold, we
discuss the existence of regular solutions to the boundary value problem.

Key words: Symmetric positive boundary value problem, characteristic boundary, not of
constant rank, maximal positive boundary condition.

1. Introduction

Let \Omega be a bounded open subset of R^{n} with smooth boundary \partial\Omega . In
\Omega , we consider a first order symmetric system

Lu= \sum_{j=1}^{n}A_{j}(x)\partial_{j}u+B(x)u ,

A_{j}(x) , B(x)\in C^{\infty}(\overline{\Omega}) , A_{j}^{*}(x)=A_{j}(x)

with u= (u_{1}, \ldots, u_{N}) and \partial_{j}=\partial/\partial x_{j} . For x\in\partial\Omega we denote by

A_{b}(x)= \sum_{j=1}^{n}\nu_{j}A_{j}(x)

the boundary matrix where lJ = (\nu_{1}, \ldots, \nu_{n}) is the unit outward normal to
\Omega .

In this paper we concerned with the case that A_{b}(x) changes the defi-
niteness simply crossing an embedded n-2 dimensional submanifold \gamma of \partial\Omega

defined as \gamma=\partial\Omega\cap\{h(x)=0\} where h(x) is a smooth function in a neigh-
borhood of \partial\Omega . Let us make our assumptions precise. Take r(x)\in C^{\infty}(R^{n})
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with dr(x)\neq 0 on \partial\Omega so that \Omega=\{r(x)>0\} and let

A_{r}(x)= \sum_{j=1}^{n}(\partial_{j}r)(x)A_{j}(x) .

Our first assumption of this paper is stated as

A_{r}(x)=-h(x)A(x) in V\cap\Omega (1.1)

with a smooth definite A(x) where V is a neighborhood of \partial\Omega .
Since A_{b}(x)=-A_{r}(x)/|dr(x)| on \partial\Omega , it is clear that A_{b}(x) has the same

definiteness as A(x) on \Gamma^{+}=\partial\Omega\cap\{h(x)>0\} and the opposite definiteness
on \Gamma^{-}=\partial\Omega\cap\{h(x)<0\} .

The boundary condition takes the form

u(x)\in M(x) for x\in\partial\Omega

where M(x)(x\in\partial\Omega) is a linear subspace of C^{N} We suppose that M is
maximal positive in the sense that

\langle A_{b}(x)v, v\rangle\geq 0 , \forall x\in\partial\Omega , \forall v\in M(x) ,

dim M(x)=\#\{nonnegative eigenvalues of A_{b}(x)

counting multiplicity}.

Then (1.1) and the maximality condition imply that

M(x)=\{
C^{N} if x\in\Gamma^{+}\cup\gamma (resp. \Gamma^{-}\cup\gamma )

{0} if x\in\Gamma^{-} (resp. \Gamma^{+} )

if A(x) (resp. -A(x) ) is positive definite.
We study the following boundary value problem

(BVP) \{

(L+\lambda)u=f in \Omega

u\in M at \partial\Omega .

When dimKerA_{b}(x) is constant on \partial\Omega , in Rauch [8], we can find de-
tailed studies of boundary value problems for symmetric positive boundary
conditions, including refined and simplified standard classical results ([2],
[4] ) . See also the references given there.

When dimKerA_{b}(x) is not constant on \partial\Omega , Rauch [9] studied the L^{2}
-

structure of the problem (BVP) and proved that weak is strong assuming
that, locally, in each component of \partial\Omega\backslash \gamma the boundary space M(x) coincides
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with a smooth linear subspace N_{sma11}(x) or N_{big}(x) (of fixed dimensions)
with N_{sma11}(x)\subset N_{big}(x) and KerA_{b}(x)\subset N_{big}(x) (see also [5], [6], [7]).

Since our case is a special one studied in [9] it follows that weak solutions
are strong. However our main concern is H_{s} regularity of solutions u to
(BVP) with smooth f , which serves to study non linear perturbations. As
is easily seen, strong solutions u to (BVP) need not be regular for smooth

f even in our simple case (see Example 2.1 below). Hence, to get regularity
results, we introduce another condition. Let us set

A_{h}(x)= \sum_{j=1}^{n}(\partial_{j}h)(x)A_{j}(x) .

Then our second assumption is:

A_{h}(x) has the same definiteness as A(x) on \gamma . (1.2)

To visualize the meaning of this condition see Example 2.1 below.
Under the conditions (1.1) and (1.2) we discuss the existence of regular

solutions to (BVP). Main results are described in section 2 and proved in
section 4. Section 3 is devoted to some preliminaries. In section 5 we discuss
the initial boundary value problem

(IBVP) \{

\partial_{t}u+Lu=f(t, x) in (0, \infty) \cross\Omega

u(0, x)=u_{0}(x) in \Omega

u(t, x)\in M(x) for (t, x)\in[0, \infty)\cross\partial\Omega

and prove the existence of regular solutions to (IBVP) assuming (1.1) and
(1.2) again (Theorem 5.5).

The authors thank A. Matsumura for directing thier attentions to this
problem and for several stimulating discussions related to this subject.

2. Main results

To fix the idea, in what follows, we assume that

A(x) is positive definite.

Otherwise it is enough to take-h(x) for h(x) . We denote the formal adjoint
of L by L^{*}
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L^{*}u=- \sum_{j=1}^{n}\partial_{j}A_{j}(x)u+B^{*}(x)u .

For u , v\in C^{1}(\overline{\Omega}) , Green’s identity yields

((L+ \lambda)u, v)_{L^{2}(\Omega)}=(u, (L^{*}+\overline{\lambda})v)_{L^{2}(\Omega)}+\int_{\partial\Omega}\langle A_{b}u, v\rangle d\sigma .

The adjoint boundary space M^{*}(x) is defined by

M^{*}(x)=[A_{b}(x)M(x)]^{\perp} .

From (1.1) it is clear that

M^{*}(x)=\{
{0} if x\in\Gamma^{+}

C^{N} if x\in\Gamma^{-}\cup\gamma .

We recall the following definition (see [1], [2]).

Definition For f\in L^{2}(\Omega) , u\in L^{2}(\Omega) is a weak solution to (L+\lambda)u=f

in \Omega , u\in M at \partial\Omega if and only if the identity

(u, (L^{*}+\overline{\lambda})\psi)_{L^{2}(\Omega)}=(f, \psi)_{L^{2}(\Omega)}

holds for all \psi\in C^{\infty}(\overline{\Omega}) with \psi\in M^{*} at \partial\Omega .

We now introduce some function spaces. By D_{\infty}(\Omega, \Gamma^{-}) we denote
the set of all functions u\in C^{\infty}(\overline{\Omega}) satisfying suppu\cap(\Gamma^{-}\cup\gamma)=\emptyset . By
X_{r}(\Omega, \Gamma^{-}) , r\in Z_{+} , we denote the completion of D_{\infty}(\Omega, \Gamma^{-}) under the
H_{r}(\Omega) norm where H_{r}(\Omega) is the usual Sobolev space of order r . The space
D_{\infty}(\Omega, \Gamma^{+}) and X_{r}(\Omega, \Gamma^{+}) are defined similarly. It is clear that

\dot{H}_{r}(\Omega)\subset X_{r}(\Omega, \Gamma^{\pm})\subset H_{r}(\Omega)

for r\in Z_{+} where \dot{H}_{r}(\Omega) is the completion of C_{0}^{\infty}(\Omega) under the H_{r}(\Omega) norm.
We now have

Theorem 2.1 For r\in Z_{+} there is a \Lambda(r)\in R verifying the following
properties: Let u\in L^{2}(\Omega) , f\in X_{r}(\Omega, \Gamma^{-}) , {\rm Re}\lambda>\Lambda(r) and assume that u
is a weak solution to (L+\lambda)u=f in \Omega , u\in M at \partial\Omega . Then it follows that
u\in X_{r}(\Omega, \Gamma^{-}) and

({\rm Re}\lambda-\Lambda(r))||u||_{H_{r}(\Omega)}\leq||(L+\lambda)u||_{H_{r}(\Omega)} .
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This theorem is an immediate consequence of the following two results.

Theorem 2.2 For r\in Z_{+} there is a \Lambda(r)\in R verifying the following
properties: Let f\in X_{r}(\Omega, \Gamma^{-}) and {\rm Re}\lambda>\Lambda(r) . Then t/iere exists a solution
u\in X_{r}(\Omega, \Gamma^{-}) to (BVP) satisfying

({\rm Re}\lambda-\Lambda(r))||u||_{H_{r}(\Omega)}\leq||f||_{H_{r}(\Omega)} .

If r\geq 1 , we can really take the trace of u to the boundary so that the
trace verifies the boundary condition.

Proposition 2.3 There is a \Lambda\in R verifying the following properties: Let
f\in L^{2}(\Omega) and {\rm Re}\lambda>\Lambda . Then weak solution u\in L^{2}(\Omega) to (BVP) is
unique.

To get regularity results, the assumption (1.2) could not be dropped in
general. Indeed we have

Example 2.1. We work in R^{2} . Let r(x)=(4-|x|^{2})(|x|^{2} - 1) and let
h(x)\in C^{\infty}(R^{2}) be so that

h(x)=-x_{1} if |x|<4/3 , h(x)=x_{1} if |x|>5/3 .

Recall that \Omega=\{1<|x|<2\} , \gamma=\{(0, \pm 1), (0, \pm 2)\} and \Gamma^{-}=\{|x|=

1 , x_{1}>0\}\cup\{|x|=2, x_{1}<0\} . Let us consider L=\partial_{1} . Since A_{r}=

-2x_{1}(|x|^{2} - 1) +2x_{1}(4-|x|^{2}) , (1.1) is fulfilled. But since A_{h}=-1 at
(0, \pm 1) and A_{h}=1 at (0, \pm 2) , (1.2) is not. We now take g\in C_{0}^{\infty}(\Omega) so that

g(x)\geq 0 , g(x)\not\equiv 0 if x_{1}\leq 0 , x_{2}=1

and define v(x) in \Omega as

v(x)=\{
\int_{0}^{x_{1}}g(s, x_{2})ds if x_{1}>0 , |x_{2}|<1

\int_{-\infty}^{x_{1}}g(s, x_{2})ds otherwise.

Let \lambda\in C and set u(x)=e^{-\lambda x_{1}}v(x) and f(x)=e^{-\lambda x_{1}}g(x) . Then it is easy
to see that f\in C_{0}^{\infty}(\Omega) , (L+\lambda)u=f in \Omega and u=0 on \Gamma^{-} , so that u is a
weak solution to (BVP). On the other hand, working near (0, 1) , it is clear
that u\not\in H_{1}(\Omega) .

We make a comment on the space X_{r}(\Omega, \Gamma^{-}) . To obtain regularity
results we could not replace X_{r}(\Omega, \Gamma^{-}) by H_{r}(\Omega) in Theorem 2.1 in general.
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Example 2.2. As in Example 2.1 we work in R^{2} . Let r(x)=1-|x|^{2} and
h(x)=x_{1} so that \Omega=\{|x|<1\} , \gamma=\{(0, \pm 1)\} and \Gamma^{-}=\{|x|=1, x_{1}<0\} .
Take L=\partial_{1} . Since A_{r}=-2x_{1} and A_{h}=1 then (1.1) and (1.2) are
fulfilled. Let \lambda\in C and set \phi(x)=(1-x_{2}^{2})^{1/2}+x_{1} , u(x)=e^{-\lambda x_{1}}\phi(x) and
f(x)=e^{-\lambda x_{1}} . Noting that L\phi=1 in \Omega and \phi=0 on \Gamma^{-} it is clear that
u is a weak solution to (BVP). On the other hand, we have u\not\in H_{2}(\Omega) in
spite of f\in C^{\infty}(\overline{\Omega}) .

3. Preliminaries

In this section we introduce a weight function \phi(x) which plays a crucial
role in proving the existence of smooth solutions to (BVP). Let

m(x)=(h(x)^{2}+2\mu r(x))^{1/2} , \phi(x)=m(x)+h(x)

where \mu is a small positive constant which will be determined in Lemma 3.4
below. Note that \phi=0 on \Gamma^{-} and \phi>0 on \Gamma^{+}\cup\Omega . Let us set

\phi_{\eta}(x)=\phi(x)-\eta , \Omega_{\eta}=\Omega\cap\{\phi_{\eta}>0\}

L_{(\eta,s)}=\phi_{\eta}^{-s}L\phi_{\eta}^{s} , L_{(\eta,s)}^{*}=\phi_{\eta}^{s}L^{*}\phi_{\eta}^{-s}

for \eta\geq 0 and s\in R . Note that \Omega\cap\{\phi_{\eta}=0\} is a union of smooth surfaces
if \eta>0 is small enough.

We write (\cdot, \cdot)_{\Omega_{\eta}} and ||\cdot||_{\Omega_{\eta}} for the inner product and the norm in L^{2}(\Omega_{\eta})

respectively. By D_{r}(\Omega, \Gamma^{-}) , r\in Z_{+} , we denote the set of all functions u\in

H_{r}(\Omega) with suppu\cap(\Gamma^{-}\cup\gamma)=\emptyset . The spaces D_{r}(\Omega, \Gamma^{+}) are defined similarly.
The following two lemmas are easily checked by standard arguments.

Lemma 3.1 If u\in D_{0}(\Omega, \Gamma^{-}) and (L+\lambda)u\in L^{2}(\Omega) , then we can choose
a sequence \{u_{\epsilon}\}\subset D_{\infty}(\Omega, \Gamma^{-}) such that u_{\epsilon}arrow u , (L+\lambda)u_{\epsilon} – (L+\lambda)u in
L^{2}(\Omega) .

Lemma 3.2 Let u\in D_{0}(\Omega, \Gamma^{-}) , f\in L^{2}(\Omega) and assume that (L+\lambda)u=f

in \Omega . Then u is a weak solution to (BVP).

We now set

G(x)= \sum_{j=1}^{n}(\partial_{j}\phi)(x)A_{j}(x) .

Then we have
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Lemma 3.3 Let G(x) be as above. Then
(i) G(x)=m(x)^{-1}(\mu A_{r}(x)+\phi(x)A_{h}(x)) . In particular,

G(x)=m(x)^{-1} (-\mu h(x)A(x)+\phi(x)A_{h}(x)) in V\cap\Omega .

(ii) G(x) is bounded in \Omega .
(iii) L_{(\eta,s)}=L+s\phi_{\eta}^{-1}G .

Proof. Since \partial_{j}\phi=m^{-1}(\mu\partial_{j}r+\phi\partial_{j}h) , the first assertion of (i) is clear.
The second assertion of (i) follows from (1.1). Since \phi/m and h/m are
bounded in V\cap\Omega , G is also bounded there. The assertion (iii) is clear.

\square

Our assumptions imply that G(x) is positive definite near \Gamma^{-} Indeed

Lemma 3.4 We can choose \mu>0 and a neighborhood W of \Gamma^{-}\cup\gamma so
that

G(x)>>\delta I in W\cap\Omega

with some \delta>0 .

Proof. By (1.2) we can choose a small neighborhood W_{1}\subset V of \gamma such
that A_{h}(x) is positive definite in \overline{W_{1}\cap\Omega} . Then we can find \mu>0 so that

\delta_{1}A_{h}(x)<<\mu A(x)<<\delta_{2}A_{h}(x) in W_{1}\cap\Omega

with some 0<\delta_{1}<\delta_{2}<1 . If x\in W_{1}\cap\Omega and h(x)\geq 0 , then we have

G(x)>>m^{-1} (-\delta_{2}h+\phi)A_{h}>>A_{h}>>\delta I

with some \delta>0 . On the other hand, if x\in W_{1}\cap\Omega and h(x)<0 , then we
have

G(x)>>m^{-1} (-\delta_{1}h+\phi)A_{h}>>\delta_{1}A_{h}>>\delta I .

This proves that G(x)>>\delta I in W_{1}\cap\Omega .
Since A_{r} is positive definite on \Gamma^{-} and \phi=0 on \Gamma^{-} . we can choose a

neighborhood W_{2} of \Gamma^{-}\backslash W_{1} so that G(x)>>\delta I in \overline{W_{2}\cap\Omega} . Thus W=
W_{1}\cup W_{2} is a desired neighborhood of \Gamma^{-}\cup\gamma . \square
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4. Proof of main results

To prove main results we first show that for every f\in D_{r}(\Omega, \Gamma^{-}) there
exists a u\in D_{r}(\Omega, \Gamma^{-}) which solves (BVP). We start with

Lemma 4.1 We can choose a \lambda_{0}\in R verifying the following properties:
Let \eta\geq 0 , s\in R , \lambda\in C and u\in C^{1}(\overline{\Omega}_{\eta}) with u=0 on \overline{\Omega}\cap\{\phi_{\eta}=0\} .
Then we have

{\rm Re}((L_{(\eta,s)}+\lambda)u, u)_{\Omega_{\eta}}\geq({\rm Re}\lambda-\lambda_{0})||u||_{\Omega_{\eta}}^{2}+s(u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}} .

Proof. Let us set Z(x)= \frac{1}{2}\{(B+B^{*})-\sum_{j=1}^{n}(\partial_{j}A_{j})\} . Then it is clear
that Z(x)>>-\lambda_{0}I in \Omega with some \lambda_{0}\in R . Now Green’s identity yields

(Lu, u)_{\Omega_{\eta}}=(u, L^{*}u)_{\Omega_{\eta}}+ \int_{\partial\Omega_{\eta}}\langle A_{\eta b}u, u\rangle d\sigma

where A_{\eta b} denotes the boundary matrix in \Omega_{\eta} . It follows from L^{*}=-L+2Z
and Lemma 3.3 that

{\rm Re}((L_{(\eta,s)}+\lambda)u, u)_{\Omega_{\eta}}=(u, Zu)_{\Omega_{\eta}}+s(u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}

+{\rm Re} \lambda||u||_{\Omega_{\eta}}^{2}+\frac{1}{2}\int_{\partial\Omega_{\eta}}\langle A_{\eta b}u, u\rangle d\sigma .

Since the boundary term is non negative, the proof is complete. \square

Corollary 4.2 There is a \Lambda\in R such that if \lambda\in C and u\in C^{1}(\overline{\Omega}) with
u\in M at \partial\Omega then it follows that

({\rm Re}\lambda-\Lambda)||u||_{\Omega}\leq||(L+\lambda)u||_{\Omega} .

Proof. Lemma 4.1 with \eta=0 , s=0 gives

({\rm Re}\lambda-\lambda_{0})||u||_{\Omega}^{2}\leq{\rm Re}((L+\lambda)u, u)_{\Omega}\leq||(L+\lambda)u||_{\Omega}||u||_{\Omega}

which proves the assertion. \square

Lemma 4.3 For any r\in Z_{+} there is a \Lambda(r)\in R such that if u\in
D_{r}(\Omega, \Gamma^{-}) , (L+\lambda)u\in H_{r}(\Omega) and \lambda\in C then we have

({\rm Re}\lambda-\Lambda(r))||u||_{H_{r}(\Omega)}\leq||(L+\lambda)u||_{H_{r}(\Omega)} .

Proof. We proceed by induction on r . We first consider the case r=0.
Using Lemma 3.1 we choose \{u_{\epsilon}\}\subset D_{\infty}(\Omega, \Gamma^{-}) such that u_{\epsilon}arrow u , (L+
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\lambda)u_{\epsilon}arrow(L+\lambda)u in L^{2}(\Omega) . Since we have u_{\epsilon}\in C^{1}(\overline{\Omega}) with u_{\epsilon}\in M at \partial\Omega ,
it follows from Corollary 4.2 that

({\rm Re}\lambda-\Lambda)||u_{\epsilon}||_{\Omega}\leq||(L+\lambda)u_{\epsilon}||_{\Omega} .

Letting \epsilon\downarrow 0 we get the assertion for r=0.
Inductively assume that the statement is true up to r-1 . Let u\in

D_{r}(\Omega, \Gamma^{-}) and (L+\lambda)u\in H_{r}(\Omega) . Since \partial_{k}u\in D_{r-1}(\Omega, \Gamma^{-}) and

(L+ \lambda)\partial_{k}u=\partial_{k}(L+\lambda)u-\sum_{j=1}^{n}(\partial_{k}A_{j})\partial_{j}u-(\partial_{k}B)u\in H_{r-1}(\Omega) ,

it follows from the inductive hypothesis that

({\rm Re}\lambda-\Lambda(r-1))||\partial_{k}u||_{H_{r-1}(\Omega)}\leq||(L+\lambda)\partial_{k}u||_{H_{r-1}(\Omega)}

\leq||\partial_{k}(L+\lambda)u||_{H_{r-1}(\Omega)}+c||u||_{H_{r}(\Omega)}

with some c>0 . These estimates prove the assertion for r . \square

Lemma 4.4 We can choose \eta_{0}>0 , c_{0}>0 and c_{1}>0 verifying the
following properties: For any s>1/4 there is a c(s)\in R such that if
0\leq\eta\leq\eta 0 , {\rm Re}\lambda>c(s) and u\in C_{0}^{\infty}(\Omega_{\eta}) then we have

({\rm Re}\lambda-c(s))||u||_{\Omega_{\eta}}^{2}+c_{0}(s-1/4)||\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}^{2}

\leq c_{1}||\phi_{\eta}^{1/2}(L_{(\eta,s)}^{*}+\overline{\lambda})u||_{\Omega_{\eta}}^{2} .

Proof Take a neighborhood W of \Gamma^{-}\cup\gamma as in Lemma 3.4. Then we have
\Omega\cap\{\phi_{\eta^{*}}<0\}\subset W with some \eta^{*}>0 . Choose \psi_{i}\in C_{0}^{\infty}(R^{n}) , i=1,2 such
that

0\leq\psi_{i}\leq 1 , \psi_{1}+\psi_{2}=1 in \Omega ,
supp\psi_{1}\subset W, \psi_{2}=0 in \Omega\cap\{\phi_{\eta}*<0\} .

From Lemma 4.1 we obtain

({\rm Re}\lambda-\lambda_{0})||u||_{\Omega_{\eta}}^{2}+s\{(\psi_{1}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}+(\psi_{2}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}\}

(4.1)
\leq{\rm Re}((L_{(\eta,s)}+\lambda)u, u)_{\Omega_{\eta}} .

It follows from Lemma 3.4 that

(\psi_{1}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}\geq\delta||\psi_{1}^{1/2}\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}^{2} .
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We turn to (\psi_{2}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}} . Since G is bounded in \Omega , we get

(\psi_{2}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}\geq-c_{2}||\psi_{2}^{1/2}\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}^{2}

with some c_{2}>0 . Note that if x\in supp\psi_{2}\cap\Omega and 0\leq\eta\leq\eta^{*}/2 then we
have \phi_{\eta}(x)\geq\eta^{*}/2 . Thus it follows that

c_{3}^{-1}||\psi_{2}^{1/2}u||_{\Omega_{\eta}}\leq||\psi_{2}^{1/2}\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}\leq c_{3}||\psi_{2}^{1/2}u||_{\Omega_{\eta}}(0\leq\eta\leq\eta^{*}/2)

with some c_{3}>0 which is independent of u and \eta and hence

(\psi_{2}u, \phi_{\eta}^{-1}Gu)_{\Omega_{\eta}}\geq\delta||\psi_{2}^{1/2}\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}^{2}-c_{4}||\psi_{2}^{1/2}u||_{\Omega_{\eta}}^{2}

with some c_{4}>0 . Thus the second term of the left-hand side of (4.1) is
bounded from below by

\delta||\phi_{\eta}^{-1/2}u||_{\Omega_{\eta}}^{2}-c_{4}||u||_{\Omega_{\eta}} . (4.2)

Now noting that

{\rm Re}((L_{(\eta,s)}+\lambda)u, u)_{\Omega_{\eta}}={\rm Re}(u, (L_{(\eta,s)}^{*}+\overline{\lambda})u)_{\Omega_{\eta}}

\leq\frac{1}{4}\delta||\phi_{\eta}^{1/2}u||_{\Omega_{\eta}}^{2}+\delta^{-1}||\phi_{\eta}^{1/2}(L_{(\eta,s)}^{*}+\overline{\lambda})u||_{\Omega_{\eta}}^{2}

(4.1) and (4.2) prove the assertion. \square

Applying the Hahn-Banach theorem we get

Lemma 4.5 We can choose \eta_{0}>0 and \Lambda\in R verifying the following
properties: Let 0\leq\eta\leq\eta_{0} and {\rm Re}\lambda>\Lambda . If f\in L^{2}(\Omega_{\eta}) then there is a
u\in\phi_{\eta}L^{2}(\Omega_{\eta}) such that (L+\lambda)u=f in \Omega_{\eta} .

Proof. Let us set

E=\{\phi_{\eta}^{1/2}(L_{(\eta,1/2)}^{*}+\overline{\lambda})\psi;\psi\in C_{0}^{\infty}(\Omega_{\eta})\}

and study the map

T : E\ni\phi_{\eta}^{1/2}(L_{(\eta,1/2)}^{*}+\overline{\lambda})\psi\mapsto(\phi_{\eta}^{-1/2}\psi, f)_{\Omega_{\eta}}\in C .

From Lemma 4.4 with s=1/2 we get

|(\phi_{\eta}^{-1/2}\psi, f)_{\Omega_{\eta}}|^{2}\leq||\phi_{\eta}^{-1/2}\psi||_{\Omega_{\eta}}^{2}||f||_{\Omega_{\eta}}^{2}

\leq 2c_{0}^{-1}c_{1}||\phi_{\eta}^{1/2}(L_{(\eta,1/2)}^{*}+\overline{\lambda})\psi||_{\Omega_{\eta}}^{2}||f||_{\Omega_{\eta}}^{2}
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for \psi\in C_{0}^{\infty}(\Omega_{\eta}) . By the Hahn-Banach theorem there is a w\in L^{2}(\Omega_{\eta}) such
that

(\phi_{\eta}^{-1/2}\psi, f)_{\Omega_{\eta}}=(\phi_{\eta}^{1/2}(L_{(\eta,1/2)}^{*}+\overline{\lambda})\psi, w)_{\Omega_{\eta}}

for every \psi\in C_{0}^{\infty}(\Omega_{\eta}) . Set u=\phi_{\eta}w . Then we have u\in\phi_{\eta}L^{2}(\Omega_{\eta}) and

(\phi_{\eta}^{-1/2}\psi, f)_{\Omega_{\eta}}=(\phi_{\eta}^{1/2}(L_{(\eta,1/2)}^{*}+\overline{\lambda})\psi, \phi_{\eta}^{-1}u)_{\Omega_{\eta}}

=(\psi, (L_{(\eta,1/2)}+\lambda)\phi_{\eta}^{-1/2}u)_{\Omega_{\eta}} .

Thus we obtain (L_{(\eta,1/2)}+\lambda)\phi_{\eta}^{-1/2}u=\phi_{\eta}^{-1/2}f in \Omega_{\eta} . Since L_{(\eta,1/2)}\phi_{\eta}^{-1/2}=

\phi_{\eta}^{-1/2}L it follows that (L+\lambda)u=f in \Omega_{\eta} which is the desired assertion.
\square

Proposition 4.6 There is a \Lambda\in R verifying the following properties: Let
f\in D_{0}(\Omega, \Gamma^{-}) and {\rm Re}\lambda>\Lambda . Then there exists a u\in D_{0}(\Omega, \Gamma^{-}) such that
(L+\lambda)u=f in \Omega .

Proof. It follows from f\in D_{0}(\Omega, \Gamma^{-}) that suppf\subset\overline{\Omega}_{\eta} with some \eta>0 .
Using Lemma 4.5 we find u\in\phi_{\eta}L^{2}(\Omega_{\eta}) satisfying (L+\lambda)u=f in \Omega_{\eta} . Let
u^{0} be u in \Omega_{\eta} and zero elsewhere. We prove that (L+\lambda)u^{0}=f in \Omega that
shows the assertion since it is clear that u^{0}\in D_{0}(\Omega, \Gamma^{-}) . To do so it is
sufficient to show that

(u^{0}, (L^{*}+\overline{\lambda})\psi)_{\Omega}-(f, \psi)_{\Omega}=0

for every \psi\in C_{0}^{\infty}(\Omega) . Choose \chi(t)\in C_{0}^{\infty}(R) so that supp\chi\subset(-1,1) and
\chi=1 near t=0 and set \chi_{\epsilon}(t)=\chi(\epsilon^{-1}t) for \epsilon>0 . Let \psi\in C_{0}^{\infty}(\Omega) . Then
we get

(u^{0}, (L^{*}+\overline{\lambda})\psi)_{\Omega}-(f, \psi)_{\Omega}=(u, (L^{*}+\overline{\lambda})\psi)_{\Omega_{\eta}}-(f, \psi)_{\Omega_{\eta}}

=(u, (L^{*}+\overline{\lambda})(1-\chi_{\epsilon}(\phi_{\eta}))\psi)_{\Omega_{\eta}} (4.3)
-(f, \psi)_{\Omega_{\eta}}+(u, (L^{*}+\overline{\lambda})\chi_{\epsilon}(\phi_{\eta})\psi)_{\Omega_{\eta}} .

Since (1-\chi_{\epsilon}(\phi_{\eta}))\psi\in C_{0}^{\infty}(\Omega_{\eta}) , the right-hand side of (4.3) is

(f, (1-\chi_{\epsilon}(\phi_{\eta}))\psi)_{\Omega_{\eta}}-(f, \psi)_{\Omega_{\eta}}+(u, (L^{*}+\overline{\lambda})\chi_{\epsilon}(\phi_{\eta})\psi)_{\Omega_{\eta}}

=-(f, \chi_{\epsilon}(\phi_{\eta}))\psi)_{\Omega_{\eta}}+(u, \chi_{\epsilon}(\phi_{\eta})(L^{*}+\overline{\lambda})\psi)_{\Omega_{\eta}}

-
\sum_{j=1}^{n}(u, \partial_{j}(\chi_{\epsilon}(\phi_{\eta}))A_{j}\psi)_{\Omega_{\eta}}
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=I_{1}+I_{2}+I_{3} .

The Dominated convergence theorem shows that I_{1} and I_{2} go to zero when
\epsilon\downarrow 0 . We turn to I3. Note that

I_{3}=- \sum_{j=1}^{n}(u, \epsilon^{-1}\chi’(\epsilon^{-1}\phi_{\eta})(\partial_{j}\phi)A_{j}\psi)_{\Omega_{\eta}}

=-(u, \epsilon^{-1}\chi’(\epsilon^{-1}\phi_{\eta})G\psi)_{\Omega_{\eta}} .

Since u=\phi_{\eta}w with some w\in L^{2}(\Omega_{\eta}) , it follows that

I_{3}=-(w, \epsilon^{-1}\phi_{\eta}\chi’(\epsilon^{-1}\phi_{\eta})G\psi)_{\Omega_{\eta}} .

Noticing that |t\chi’(t)|\leq c with some c>0 and G is bounded in \Omega the
Dominated convergence theorem again proves that I_{3}arrow 0 as \epsilon\downarrow 0 . This
completes the proof. \square

Proposition 4.7 For any r\in Z_{+} there is a \Lambda(r) verifying the following
properties: Let u\in D_{0}(\Omega, \Gamma^{-}) , f\in D_{r}(\Omega, \Gamma^{-}) , {\rm Re}\lambda>\Lambda(r) and assume
that (L+\lambda)u=f in \Omega . Then we have u\in D_{r}(\Omega, \Gamma^{-}) .

Proof. Let u\in D_{0}(\Omega, \Gamma^{-}) . Then we have suppu\subset\Omega_{\eta 0} with some \eta_{0}>0 .
Note that \overline{\Omega}_{\eta 0}\cap(\Gamma^{-}\cup\gamma)=\emptyset . Thus we can repeat the same reasoning as in
Tartakoff [11] to conclude the assertion. \square

We now give the proofs of Theorem 2.2 and Proposition 2.3.

Proof of Theorem 2.2. We first suppose that f\in D_{r}(\Omega, \Gamma^{-}) . By Pro of
sition 4.6 there is a u\in D_{0}(\Omega, \Gamma^{-}) satisfying (L+\lambda)u=f in \Omega . It follows
from Proposition 4.7 that u\in D_{r}(\Omega, \Gamma^{-}) , in particular, u\in X_{r}(\Omega, \Gamma^{-}) . In
view of Lemma 3.2 u is a weak solution to (BVP). Moreover by Lemma 4.3
we get

({\rm Re}\lambda-\Lambda(r))||u||_{H_{r}(\Omega)}\leq||(L+\lambda)u||_{H_{r}(\Omega)}=||f||_{H_{r}(\Omega)} .

Let f\in X_{r}(\Omega, \Gamma^{-}) . Since D_{r}(\Omega, \Gamma^{-}) is dense in X_{r}(\Omega, \Gamma^{-}) , the assertion
can be proved by standard limiting arguments. \square

Proof of Proposition 2.3. Assuming that u\in L^{2}(\Omega) is a weak solution
to (BVP) with f=0 we show u=0. Let g\in D_{0}(\Omega, \Gamma^{+}) . Repeating
the same arguments in Proposition 4.6 we can find v\in D_{0}(\Omega, \Gamma^{+}) such
that (L^{*}+\overline{\lambda})v=g in \Omega . We choose \{v_{\epsilon}\}\subset D_{\infty}(\Omega, \Gamma^{+}) satisfying v_{\epsilon}

–
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v , (L^{*}+\overline{\lambda})v_{\epsilon}arrow g in L^{2}(\Omega) . Note that v_{\epsilon}\in M^{*} at \partial\Omega and hence

(u, (L^{*}+\overline{\lambda})v_{\epsilon})_{\Omega}=0 .

Letting \epsilon\downarrow 0 we get (u, g)_{\Omega}=0 . Since D_{0}(\Omega, \Gamma^{+}) is dense in L^{2}(\Omega) , we
conclude that u=0 and hence the assertion. \square

5. Initial boundary value problem

Let \Omega , L and M be as described in the preceding sections. We consider
the following initial boundary value problem

(IBVP) \{

\partial_{t}u+Lu=f(t, x) in (0, \infty) \cross\Omega

u(0, x)=u_{0}(x) in \Omega

u(t, x)\in M(x) for (t, x)\in[0, \infty)\cross\partial\Omega .

To solve this initial boundary value problem (IBVP) we apply the Hille-
Yosida theorem. Let us regard L as a linear operator L : X_{r}(\Omega, \Gamma^{-}) -

X_{r}(\Omega, \Gamma^{-}) with domain

D(L)=\{u\in X_{r}(\Omega, \Gamma^{-});Lu\in X_{r}(\Omega, \Gamma^{-}) and
(u, L^{*}\psi)_{\Omega}=(Lu, \psi)_{\Omega} for every \psi\in C^{\infty}(\overline{\Omega}) with \psi\in M^{*} at \partial\Omega }.

We write simply X_{r} for X_{r}(\Omega, \Gamma^{-}) .

Proposition 5.1 Let r\in Z_{+} . Then-L generates a C_{0} semi-group.

For the proof we note that

Lemma 5.2 Let u\in X_{r} and f\in X_{r} . In order that u\in D(L) and (L+
\lambda)u=f it is necessary and sufficient that u is a weak solution to (BVP).

Proof. Since

(u, (L^{*}+\overline{\lambda})\psi)_{\Omega}-(f, \psi)_{\Omega}=(u, L^{*}\psi)_{\Omega}-(Lu, \psi)_{\Omega}

for every \psi\in C^{\infty}(\overline{\Omega}) with \psi\in M^{*} at \partial\Omega and hence the assertion. \square

Proof of Proposition 5.1. In view of the Hille-Yosida theorem (see [10] for
example), it is enough to check the following two conditions:
(1) L is a closed operator with domain D(L) dense in X_{r} .
(2) There is a \Lambda(r)\in R such that if {\rm Re}\lambda>\Lambda(r) then we have -\lambda\in\rho(L)
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and

({\rm Re}\lambda-\Lambda(r))||(L+\lambda)^{-1}||\leq 1

where \rho(L) denotes the resolvent set of L .
Since D_{\infty}(\Omega, \Gamma^{-})\subset D(L) then D(L) is dense in X_{r} . Now let \{u_{n}\}\subset

D(L) , u\in X_{r} , f\in X_{r} and assume that u_{n}arrow u , Lu_{n} – f in H_{r}(\Omega) .
Since u_{n}\in D(L) , it follows from Lemma 5.2 that u_{n} is a weak solution to
(BVP) with the right-hand side f_{n}=Lu_{n} and \lambda=0 . It is clear that u is
a weak solution to (BVP) and hence, in view of Lemma 5.2, we conclude
that u\in D(L) and Lu=f which proves (i).

We turn to the assertion (ii). Assume that v\in D(L) verifies (L+
\lambda)v=0 . From Lemma 5.2 v is a weak solution to (BVP) with f=0. By
Proposition 2.3 we have v=0. This proves the injectivity of the mapping
(L+\lambda) : D(L) – X_{r} . Let f\in X_{r} . From Theorem 2.2 there exists a weak
solution u\in X_{r} to (BVP) such that

({\rm Re}\lambda-\Lambda(r))||u||_{H_{r}(\Omega)}\leq||f||_{H_{r}(\Omega)} . (5.1)

From Lemma 5.2 it follows that u\in D(L) and (L+\lambda)u=f . Hence the
mapping (L+\lambda) is surjective. The desired estimate follows from (5.1).

\square

Let \{T(t)\}_{t\geq 0} be a C_{0} semi-group with generator -L obtained by
Proposition 5.1. Then we have

Proposition 5.2 Let r\in Z_{+} and T>0 . Assume that u_{0}\in D(L) , f\in

C^{0}([0, T];X_{r}) , f(t)\in D(L)(0\leq t\leq T) and Lf\in C^{0}([0, T];X_{r}) . Then
(IBVP) has a unique solution u\in C^{1}([0, T];X_{r}) which is given by

u(t)=T(t)u_{0}+ \int_{0}^{t}T(t-s)f(s)ds (0\leq t\leq T) . (5.2)

Corollary 5.1 Let r\in Z_{+} and T>0 . Assume that u_{0}\in X_{r+1} , f\in
C^{0}([0, T];X_{r+1}) . T/ien (IBVP) has a unique solution u\in C^{1}([0, T];X_{r})

which is given by (5.2). Furthermore, u satisfies
||u(t)||_{H_{r}(\Omega)}\leq e^{\Lambda(r)t}||u_{0}||_{H_{r}(\Omega)}

+ \int_{0}^{t}e^{\Lambda(r)(t-s)}||f(s)||_{H_{r}(\Omega)}ds (0\leq t\leq T) (5.3)

where \Lambda(r)\in R is independent of u_{0} , f and T
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Proof. Since X_{r+1}\subset D(L) then the first part is clear. To get the estimate
(5.3) it suffices to note that ||T(t)||\leq e^{\Lambda(r)t}(t\geq 0) follows from the Hille-
Yosida theorem and the proof of Proposition 5.1. \square

Theorem 5.5 Let r\in Z_{+} , r\geq 1 . Assume that u_{0}\in X_{r} , f\in C^{0}([0, \infty) ;
X_{r}) . Then there is a unique solution u\in C^{0}([0, \infty);X_{r})\cap C^{1}([0, \infty);X_{r-1})

to the initial boundary value problem (IBVP).

Proof. Fix T>0 . Since X_{r+1} , C^{0}([0, T];X_{r+1}) are dense in X_{r} , C^{0}([0, T] ;
X_{r}) respectively, we can choose \{u_{0n}\}\subset X_{r+1} and \{f_{n}\}\subset C^{0}([0, T];X_{r+1})

so that

u_{0n}arrow u_{0} in H_{r}(\Omega) , f_{n}arrow f in C^{0}([0, T];X_{r}) .

By Corollary 5.4 there is a solution u_{n}\in C^{1}([0, T];X_{r}) to (IBVP) replaced
u_{0} , f by u_{0n} , f_{n} . Applying the estimate (5.3) to u_{n}-u_{m} we find that \{u_{n}\}

is a Cauchy sequence in C^{0}([0, T];X_{r}) . Let u\in C^{0}([0, T];X_{r}) be the limit
of \{u_{n}\} . Now u_{n} satisfies

u_{n}(t)=u_{0n}+ \int_{0}^{t}\{-(Lu_{n})(s)+f_{n}(s)\}ds (0\leq t\leq T) .

Letting n - \infty we obtain

u(t)=u_{0}+ \int_{0}^{t}\{-(Lu)(s)+f(s)\}ds (0\leq t\leq T)

which shows that u\in C^{0}([0, T];X_{r})\cap C^{1}([0, T];X_{r-1}) is a solution to
(IBVP). The uniqueness follows from Corollary 5.4. Since T>0 is ar-
bitrary we get the desired assertion. \square
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