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Hyperbolic Besov functions and Bloch-to-Besov
composition operators
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Abstract. Compactness of composition operators from the Bloch space B into the
analytic Besov spaces B_{p} is characterized by the behavior of the hyperbolic derivative of
self-maps of the unit disk D .
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1. Introduction

Let H(D) be the space of analytic functions on the unit disk D=\{z :
|z|<1\} . The function f\in H(D) is called a Bloch function if

||f||_{B}= \sup_{z\in D}(1-|z|^{2})|f’(z)|<\infty .

This defines a semi-norm. The Bloch functions form a Banach space B

with the norm ||f||=|f(0)|+||f||_{B} .
The function f is called a little Bloch function, i.e . f\in B_{0} , if

lim (1-|z|^{2})|f’(z)|=0 .
|z|arrow 1

The analytic Besov functions are defined as follows

B_{p}=\{f\in H(D) :

||f||_{B_{p}}=( \int\int_{D}((1-|z|^{2})|f’(z)|)^{p}d\lambda(z))^{\frac{1}{p}}<\infty\} ,

where d \lambda(z)=\frac{dA(z)}{(1-|z|^{2})^{2}} is the hyperbolic area measure on D and dA(z)=
\frac{1}{\pi}dxdy . The analytic Besov functions form a Banach space B_{p} , 1<p<\infty ,
with the norm ||f||=|f(0)|+||f||_{B_{p}} . (See e.g. [Z1].)

Let B be the set of holomorphic self-maps \varphi : D – D and \varphi^{*}(z)=
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\frac{|\varphi’(z)|}{1-|\varphi(z)|^{2}} is the hyperbolic derivative of \varphi . By the Schwarz-Pick lemma
\sup_{z\in D}(1-|z|^{2})\varphi^{*}(z)\leq 1 .

We say that \varphi\in B_{0} if \lim_{|z|arrow 1}(1-|z|^{2})\varphi^{*}(z)=0 .
Every \varphi\in B induces a linear composition operator C_{\varphi} from H(D) into

itself as follows: C_{\varphi}f=f\circ\varphi , whenever f\in H(D) . Let X be a Banach space
of holomorphic functions in D . By the definition, composition operator
C_{\varphi} : B arrow X is compact on B if it takes the unit ball b(B) of B into a set
whose closure is compact.

Composition operators on the Bloch space B were studied from the
general positions by K. Madigan and A. Matheson [MMa]. They proved
that a holomorphic mapping \varphi of the unit disk D into itself induces a
compact composition operator C_{\varphi} : B – B if and only if for every \epsilon>0

there exists r , 0<r<1 , such that (1-|z|^{2})\varphi^{*}(z)<\epsilon whenever |\varphi(z)|>r .
They also proved that C_{\varphi} is compact on the little Bloch space B_{0} if and
only if \varphi belongs to the class B_{0} .

J. Arazy, S.D . Fisher and J. Peetre [AFP] considered composition oper-
ators which map B_{p} into B_{p} for p\geq 2 . They proved that holomorphic map-
ping \varphi of D into D induces a bounded composition operator C_{\varphi} : B_{p}arrow B_{p}

if there is an integer number N such that the cordinality of \varphi^{-1}(w) is N or
less for all w\in D .

In section 2 we consider the composition operators from the Bloch space
B to the spaces of analytic Besov functions B_{p} , 1<p<\infty . We prove that
C_{\varphi} maps the Bloch space B in the Besov space B_{p} if and only if \varphi belongs to
the hyperbolic Besov class B_{p}^{h} and that every such C_{\varphi} is always a compact
composition operator. The class B_{p}^{h} is defined as follows:

Definition The hyperbolic analytic Besov class B_{p}^{h} , 1<p<\infty , contains
such functions \varphi\in B that

|| \varphi||_{B_{p}^{h}}=(\int\int_{D}(1-|z|^{2})^{p}\varphi^{*}(z)^{p}d\lambda(z))^{\frac{1}{p}}<\infty .

For p=\infty we set B_{\infty}^{h}=B .
In section 3 we give a necessary and sufficient condition for hyperbolic

Besov functions and prove that these classes satisfy the nesting property.
Examples of hyperbolic Besov functions are given in the end of this section.

In section 4 we consider the meromorphic (spherical) Besov classes B_{p}^{\neq}
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These classes were defined by R. Aulaskari and G. Csordas [AuCs]. We
prove that \varphi\in B_{p}^{h} also induce composition operators from the class of
normal functions into the meromorphic Besov class B_{p}^{\neq} .

Now we consider examples of functions which are in B_{p}^{h} or are not in
B_{p}^{h} .

1. Let S_{\alpha}=\{z=x+iy : |x|^{\alpha}+|y|^{\alpha}<1\} , 0<\alpha\leq 1 , and \varphi_{\alpha} be a
conformal mapping of D into S_{\alpha} , then \varphi_{1}\not\in B_{2}^{h} . If \alpha<1 then \varphi_{\alpha}(z)\in B_{2}^{h} .

2. Let \varphi be bounded holomorphic function in D with ||\varphi||_{\infty}\leq k<1 .
If \varphi is continuous in \overline{D} and \varphi(e^{i\theta})\in\Lambda_{\alpha} , 0<\alpha\leq 1 , then by the Hardy-
Littlewood Theorem ([D], Theorem 5.1)

(1-|z|^{2})|\varphi’(z)|=O((1-|z|^{2})^{\alpha}) as |z|arrow 1 ,

and also

(1-|z|^{2})\varphi^{*}(z)=O((1-|z|^{2})^{\alpha}) as |z|arrow 1 .

Thus \varphi\in B_{p}^{h} for p> \frac{1}{\alpha} . See also [Y].

2. Composition operators on the Bloch space

Our main result is the following:

Theorem 1 Let 1<p<\infty . The following conditions are equivalent
(1) \varphi\in B_{p}^{h} ;
(2) C_{\varphi} takes the Bloch space B into the analytic Besov space B_{p} ;
(3) C_{\varphi} : B arrow B_{p} is compact.

Proof. (1)\Rightarrow(2) . Let \varphi be arbitrary function of B_{p}^{h} , 1<p<\infty , and f
be arbitrary Bloch function. Estimate the p-Besov norm of f\circ\varphi .

||f o\varphi||_{B_{p}}^{p}=\int\int_{D}(1-|z|^{2})^{p}|f’\circ\varphi(z)|^{p}|\varphi’(z)|^{p}d\lambda(z)

= \int\int_{D}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}(1-|\varphi(z)|^{2})^{p}|f’\circ\varphi(z)|^{p}d\lambda(z)

\leq||f||_{B}^{p}||\varphi||_{B_{p}^{h}}^{p}<\infty .

To prove (2)\Rightarrow(1) we use a trick in [CRU]. Pick such Bloch functions
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f and g that

|f’(z)|+|g’(z)| \geq\frac{1}{1-|z|^{2}}

(existence of such functions was proved in [RU]). Then for every p>1

|f’(z)|^{p}+|g’(z)|^{p} \geq\frac{2^{1-p}}{(1-|z|^{2})^{p}}

and hence

2^{1-p}||\varphi||_{B_{p}^{h}}^{p}\leq||fo\varphi||_{B_{p}}^{p}+||go\varphi||_{B_{p}}^{p}<\infty .

(1)\Rightarrow(3) . Let b(B) be the unit ball in B and \{f_{n}\}\subset b(B) . Sequence
\{f_{n}\} is a normal family in D and therefore there is such subsequence \{f_{n_{k}}\}

that it converges uniformly on every compact subset of D to f\in b(B) . Then
the sequence \{g_{k}\} , g_{k}(z)=f_{n_{k}}(z)-f(z) , converges uniformly to 0 on every
compact subset of D . Thus for compactness of operator C_{\varphi} : B – B_{p} it is
enough to prove that if \{g_{k}\}\in b(B) and \{g_{k}\} converges to 0 uniformly on
every compact subset of D then \lim_{karrow\infty}||g_{k}\circ\varphi||_{B_{p}}=0 .

Let \{g_{k}\}\in b(B) and \{g_{k}\} converges to 0 uniformly on every compact
subset of D . Since \varphi\in B_{p}^{h} , for every \epsilon>0 there exists such a compact
K\subset D that

\int_{D}\int_{\backslash K}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}d\lambda(z)<\epsilon

and there exists a number N such that

sup (1-|w|^{2})|g_{k}’(w)|<\epsilon^{\frac{1}{p}}

w\in\varphi(K)

for any k\geq N . Then

||g_{k}o\varphi||_{B_{p}}^{p}

= \int\int_{D}(1-|z|^{2})^{p}|(g_{k}o\varphi)’(z)|^{p}d\lambda(z)

= \int\int_{K}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}(1-|\varphi(z)|^{2})^{p}|g_{k}’\circ\varphi(z)|^{p}d\lambda(z)

+ \int_{D}\int_{\backslash K}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}(1-|\varphi(z)|^{2})^{p}|g_{k}’\circ\varphi(z)|^{p}d\lambda(z)
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\leq\in\int\int_{K}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}d\lambda(z)

+1
\int_{D}\int_{\backslash K}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}d\lambda(z)

\leq\epsilon||\varphi||_{B_{p}^{h}}^{p}+\epsilon=\epsilon const.

The implication (3)\Rightarrow(2) is obvious. \square

3. Hyperbolic Besov functions

In this section we obtain some properties of hyperbolic Besov functions.
Let T_{a}(z)= \frac{a-z}{1-\overline{a}z} , a\in D , and \varphi_{a}(z)=\varphi(T_{a}(z)) .
For every \varphi\in B_{p}^{h} and every a\in D functions T_{a}\circ\varphi(z) and \varphi\circ T_{a}(z)

belong to B_{p}^{h} .
Denote by \rho(a, b) the pseudohyperbolic distance on D

\rho(a, b)=|\frac{a-b}{1-a\overline{b}}|

and by \sigma(a, b) the hyperbolic distance on D

\sigma(a, b)=\frac{1}{2}\ln\frac{|1-a\overline{b}|+|a-b|}{|1-a\overline{b}|-|a-b|} , a , b\in D .

Denote by K(z, w) the Bergman kernal of D

K(z, w)= \frac{1}{(1-z\overline{w})^{2}} .

Then the Jacobian of T_{w} transformation at z is

J_{T_{w}}(z)= \frac{(1-|w|^{2})^{2}}{|1-z\overline{w}|^{4}}=\frac{|K(z,w)|^{2}}{K(w,w)} . (3.1)

The following theorem is an analogy to the corresponding result for the
Besov space B_{p} [Z2]. For the proof of necessity we need a different idea to
estimate the hyperbolic distance by the hyperbolic Besov norm because of
their non-linearity.

Theorem 2 Let \varphi be holomorphic self-map of the unit disk D. Then
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\varphi\in B_{p}^{h} , 1<p<\infty , if and only if

\iint_{D}\iint_{D}\frac{\sigma(\varphi(z),\varphi(w))^{p}}{|1-z\overline{w}|^{4}} dA(z) dA (w)<\infty .

Proof Necessity. At first we estimate the hyperbolic distance between
\varphi(z) and \varphi(0) .

\sigma(\varphi(z), \varphi(0))

\leq\int_{0}^{1}\varphi^{*}(tz)|z|dt=\int_{0}^{1}\frac{|z|}{(1-t|z|)^{\frac{1}{2}}}(1-t|z|)\varphi^{*}(tz)\frac{dt}{(1-t|z|)^{\frac{1}{2}}}

\leq(\int_{0}^{1}\frac{|z|^{q}}{(1-t|z|)^{\frac{1+q}{2}}}dt)^{\frac{1}{q}}(\int_{0}^{1}\frac{(1-t|z|)^{p}\varphi^{*}(tz)^{p}}{(1-t|z|)^{\frac{1}{2}}}dt)^{\frac{1}{p}}

=( \frac{2|z|^{q-1}}{q-1}(\frac{1}{(1-|z|)^{\frac{q-1}{2}}}-1))^{\frac{1}{q}}(\int_{0}^{1}\frac{(1-t|z|)^{p}\varphi^{*}(tz)^{p}}{(1-t|z|)^{\frac{1}{2}}}dt)^{\frac{1}{p}}

\leq C(\frac{|z|}{\sqrt{1-|z|}}\int_{0}^{1}\frac{(1-t|z|)^{p}\varphi^{*}(tz)^{p}}{\sqrt{1-t|z|}}dt)^{\frac{1}{p}} ,

where C=( \frac{2}{q-1})^{1/q}=(2p-2)^{p/(p-1)} . Thus, setting C_{1}=(2p-2)^{p^{2}/(p-1)}

we have

\sigma(\varphi(z), \varphi(0))^{p}\leq\frac{C_{1}|z|}{\sqrt{1-|z|}}\int_{0}^{1}\frac{(1-t|z|)^{p}\varphi^{*}(tz)^{p}}{\sqrt{1-t|z|}}dt , p>1 .

Then

\iint_{D}\sigma(\varphi(z), \varphi(0))^{p} dA(z)

\leq C_{1}\int\int_{D}dA(z)\int_{0}^{1}\frac{|z|(1-t|z|)^{p}\varphi^{*}(tz)^{p}}{\sqrt{1-|z|}\sqrt{1-t|z|}}dt

=C_{1} \int_{0}^{1}\int_{t}\int_{D}\frac{|z|(1-|z|)^{p}\varphi^{*}(z)^{p}}{\sqrt{1-|z|}}
\frac{dA(z)\frac{dt}{t^{3}}}{\sqrt{1-\frac{|z|}{t}}}

=C_{1} \int\int_{D}\frac{|z|(1-|z|)^{p}\varphi^{*}(z)^{p}}{\sqrt{1-|z|}}dA(z)\int_{|z|}^{1}\frac{dt}{t^{2}\sqrt{t^{2}-|z|t}} .
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Since

\int_{|z|}^{1}\frac{dt}{t^{2}\sqrt{t^{2}-|z|t}}=\frac{2}{3}(\frac{1}{|z|t^{2}}+\frac{2}{|z|^{2}t})\sqrt{t^{2}-t|z|}|_{|z|}^{1}\leq\frac{2\sqrt{1-|z|}}{|z|^{2}}

we conclude that

\iint_{D}\sigma(\varphi(z), \varphi(0))^{p} dA (z) \leq 2C_{1}\iint_{D}\frac{(1-|z|^{2})^{p}\varphi^{*}(z)^{p}}{|z|} dA(z). (3.2)

Now we apply (3.2) to function \varphi\circ T_{w}(z) . Then

\iint_{D}\iint_{D}\frac{\sigma(\varphi(w),\varphi(z))^{p}}{|1-w\overline{z}|^{4}} dA (w) dA(z)

= \iint_{D}\iint_{D}\sigma(\varphi\circ T_{w}(z), \varphi(w))^{p} dA(z) d\lambda(w)

\leq 2C_{1}\iint_{D}d\lambda(w)\iint_{D}\frac{(1-|z|^{2})^{p}((\varphi\circ T_{w})^{*}(z))^{p}}{|z|} dA(z)

=2C_{1} \iint_{D}d\lambda(w)\iint_{D}\frac{(1-|T_{w}(z)|^{2})^{p}\varphi^{*}(T_{w}(z))^{p}}{|z|} dA(z)

by (3. 1) and noting T_{w}^{-1}=T_{z}

=2C_{1} \iint_{D}d\lambda(w)\iint_{D}\frac{(1-|z|^{2})^{p}\varphi^{*}(z)^{p}}{|T_{z}(w)|}\frac{|K(w,z)|^{2}}{K(w,w)} dA(z)

=2C_{1} \iint_{D}(1-|z|^{2})^{p}\varphi^{*}(z)^{p} dA (z) \iint_{D}\frac{|K(w,z)|^{2}}{|T_{w}(z)|} dA(w).

Note that

|K(z, T_{z}(w))|= \frac{K(z,z)}{|K(z,w)|}

for any z , w\in D . Since |K(z, w)|=|K(w, z)| and |T_{z}’(w)|^{2}= \frac{|K(w,z)|}{K(z,z)} , we
have



706 S. Makhmutov

\iint_{D}\frac{|K(w,z)|^{2}}{|T_{z}(w)|} dA (w)= \iint_{D}\frac{|K(z,w)|^{2}}{|T_{z}(w)|} dA(w)

(change of variable w:=T_{z}(w) )

= \iint_{D}\frac{|K(z,T_{z}(w))|^{2}}{|w|}\frac{|K(z,w)|^{2}}{K(z,z)} dA (w)

=K(z, z) \int\int_{D}\frac{dA(w)}{|w|}

2
=\overline{(1-|z|^{2})^{2}}

.

Thus we obtain

\iint_{D}\iint_{D}\frac{\sigma(\varphi(z),\varphi(w))^{p}}{|1-z\overline{w}|^{4}} dA(z) dA (w)

\leq 4C_{1}\int\int_{D}(1-|z|^{2})^{p}\varphi^{*}(z)^{p}d\lambda(z) .

Sufficiency. Let g(z) be holomorphic in D and g(0)=0 , then

|g’(0)|=2| \iint_{D}\overline{z}g(z) dA (z)| . (3.3)

We apply (3.3) to function T_{\varphi(w)}\circ\varphi\circ T_{w}(z)=g(z) . Then for any z , w\in D

|g(z)|=\rho(\varphi\circ T_{w}(z), \varphi(w))

and we have

(1-|w|^{2})^{p} \varphi^{*}(w)^{p}\leq 2^{p}\iint_{D}\rho(\varphi\circ T_{w}(z), \varphi(w))^{p} dA (z).

Thus

\int\int_{D}(1-|w|^{2})^{p}\varphi^{*}(w)^{p}d\lambda(w)

\leq 2^{p}\iint_{D}d\lambda(w)\iint_{D}\rho(\varphi\circ T_{w}(z), \varphi(w))^{p} dA(z)
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=2^{p} \iint_{D}\iint_{D}\frac{\rho(\varphi(z),\varphi(w))^{p}}{|1-z\overline{w}|^{4}} dA(z) dA(w)

<2^{p} \iint_{D}\iint_{D}\frac{\sigma(\varphi(z),\varphi(w))^{p}}{|1-z\overline{w}|^{4}} dA(z) dA (w)<\infty .

\square

Denote by D(a, r) the pseudohyperbolic disk

D(a, r)=\{z\in D : \rho(a, z)\leq r\}

with center at a\in D and radius r , 0<r<1 .

Lemma Let 0<p<\infty , 0<r<1 and \varphi\in B . Then \varphi\in B_{0} if and only
if

|a| arrow 1\lim\int\int(1-|z|^{2})^{p}\varphi^{*}(z)^{p}d\lambda(z)=0 .

D(a,r)

Proof. The necessity is obvious.
Conversely, suppose that \varphi\not\in B_{0} . Then there exists such a sequence

\{a_{n}\},\lim_{narrow\infty}|a_{n}|=1 , that

\lim_{narrow\infty}(1-|a_{n}|^{2})\varphi^{*}(a_{n})>0 .

Let g_{n}(z)=T_{\varphi(a_{n})}\circ\varphi\circ T_{a_{n}}(z) . Then \{g_{n}(z)\} is a normal family in D .
Choosing a subsequence if necessary we may suppose that \lim_{narrow\infty}g_{n}(z)=

g(z) .
Since

|g’(0)|= \lim_{narrow\infty}|g_{n}’(0)|=\lim_{narrow\infty}(1-|a_{n}|^{2})\varphi^{*}(a_{n})>0

g(z) is a non-constant function. Noting

\iint (1-|z|^{2})^{p} \varphi^{*}(z)^{p}d\lambda(z)=\iint(1-|z|^{2})^{p-2}g_{n}^{*}(z)^{p} dA(z)
D(a_{n},r) D(0,r)

\geq(1-r^{2})^{p-2}\iint_{D(0,r)}g_{n}^{*}(z)^{p}
dA(z).

The last integral converges to a positive number and it contradicts our
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hypothesis. \square

Theorem 3 B_{p}^{h}\subset B_{q}^{h}\subset B_{0} for any 1<p<q<\infty

Proof If \varphi\in B_{p}^{h} then for every \epsilon>0 there exists R , 0<R<1 , such
that

\int\int (1-|z|^{2})^{p}\varphi^{*}(z)^{p}d\lambda(z)<\epsilon .
R\leq|z|<1

Hence for every r>0

|| arrow 1\lim_{a}\int_{D(a}\int_{r)},(1-|z|^{2})^{p}\varphi^{*}(z)^{p}d\lambda(z)=0
.

and by the Lemma \varphi\in B_{0} .
The classes B_{p}^{h} satisfy the nesting property B_{p}^{h}\subset B_{q}^{h} for 1<p<q .

This follows from the Schwarz-Pick lemma and the inequality

\iint_{D}(1-|z|^{2})^{q-2}(\varphi^{*}(z))^{q} dA(z)

= \iint_{D}((1-|z|^{2})\varphi^{*}(z))^{q-p}(1-|z|^{2})^{p-2}(\varphi^{*}(z))^{p} dA(z)

\leq\iint_{D}(1-|z|^{2})^{p-2}(\varphi^{*}(z))^{p} dA(z).

\square

4. Normal functions

Let f be a meromorphic function in the unit disk D and f^{\neq}(z) be the
spherical derivative

f^{\#}(z)= \frac{|f’(z)|}{1+f(z)|^{2}} .

R. Aulaskari and G. Csordas [AuCs] defined the meromorphic (spherical)
Besov classes B_{p}^{\neq} , 1<p<\infty . By the definition

B_{p}^{\#}=\{f- meromorphic in D : \iint_{D}(1-|z|^{2})^{p}f^{\#}(z)^{p}d\lambda(z)<\infty\} .
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We can assume that B_{\infty}^{\neq}=N . where

N =\{f- meromorphic in D : \sup_{z\in D}(1-|z|^{2})f^{\neq}(z)<\infty\} .

The class N is the family of normal functions in the unit disk D . It was
defined by K.Noshiro [N]. R. Aulaskari and G. Csordas proved [AuCs] that
B_{p}^{\neq}\subset N_{0},2\leq p<\infty , where N_{0} is the class of little normal functions and
contains meromorphic functions which satisfy the condition

lim (1-|z|^{2})f^{\#}(z)=0 .
|z|arrow 1

Theorem 4 If \varphi\in B_{p}^{h} , 1<p<\infty , then the composition f\circ\varphi belongs
to the class B_{p}^{\neq}for every f\in N

Proof. Let f be normal function and \sup_{z\in D}(1-|z|^{2})f^{\neq}(z)=K_{f} . Let
||\varphi||_{B_{p}^{h}}=M_{\varphi} . Then

\int\int_{D}(1-|z|^{2})^{p}(fo\varphi)^{\#}(z)^{p}d\lambda(z)

= \int\int_{D}(1-|z|^{2})^{p}(f^{\#}o\varphi)(z)^{p}|\varphi’(z)|^{p}d\lambda(z)

= \int\int_{D}(1-|z|^{2})^{p}(\varphi^{*}(z))^{p}(1-|\varphi(z)|^{2})^{p}(f^{\#}o\varphi)(z)^{p}d\lambda(z)

\leq K_{f}^{p} M_{\varphi}^{p}<\infty .

\square

Let \chi(A, B) be the chordal distance between points A and B of the
extended complex plane \overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\} .

F.Colonna [Col] proved

Theorem A Let f be meromorphic function in D. Then f is a normal
function in D if and only if there exists such a constant C that

\chi(f(z), f(w))\leq C\sigma(z, w)

whenever z , w\in D .

Basing on Theorem 2, Theorem 4 and Theorem A we have
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Corollary Let g\in B_{p}^{\neq} . 1<p<\infty , and g=f\circ\varphi , where f is a normal
function, and \varphi\in B_{p}^{h} . Then

\iint_{D}\iint_{D}\frac{(\chi(g(z),g(w)))^{p}}{|1-z\overline{w}|^{4}} dA(z) dA (w)<\infty .

Addendum Professor T. Gamelin informed the author that Maria
Tjani [T] independently obtained similar results to the Theorem 1.

Professor R. Aulaskari informed the author that his student Ruhan
Zhao [Zh] also obtained similar results to the Theorem 1. All these proofs
are different.
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