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On some generalized difference sequence spaces
and related matrix transformations

Rifat COLAK and Mikail ET
(Received October 12, 1995; Revised January 29, 1997)

Abstract. In this paper we introduce B-duals and ~-duals of the sequence spaces
loc (A™), ¢(A™), (m € N) where for instance lo(A™) = {z = (zx) : (A™ay) € loo},
and we characterize some matrix classes related with these sequence spaces. This study
generalizes some results of Kizmaz [4] in special cases.
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1. Introduction

Let [, ¢, and cp be the linear spaces of bounded, convergent and null
sequences T = (xj) with complex terms, respectively, normed by

l12loo = sup [a|
k

where k € N = {1,2,...}, the set of positive integers.
Kizmaz [4] defined the sequence spaces

lo(A) = {z = (z1) : Az € I},
c(A) = {z = (a1) : Az € ¢},
co(A) = {z = (xx) : Azx € o}

where Az = (Axzy) = (25 —2)41), and showed that these are Banach spaces
with norm

|2]] = |z1] + | A |-
After then Et [1] defined the sequence spaces

ZOO(AQ) = {x = (z) : A%z € o},
c(A?) = {z = (zx) : A%z € ¢},
co(A?) = {z = (z3): A%z € co}
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where A%z = (A%z;) = (Azg — Azgy1), and showed that these are Banach
spaces with norm

el = |z1] + o] + |A%2] oo
Recently Et and Colak |2] defined the sequence spaces

loo(A™) = {z = (z) : ATz € lo},

c(A™) = {z = (a) : Az € ¢},
co(A™) = {z = (z) : A™z € o}

where m € N, A%z = (zx), Az = (zp—Tpy1), Az = (AMzy) = (A™ =gy —

A™ g, 1) and so that

m

Az, =3 (~1) (:’j) Tho

v=0
and showed that these sequence spaces are Banach spaces with norm
m
lella =D il + ]| A z|o.
i=1

Further the inclusions co(A™) C co(A™Y), ¢(A™) C c(A™H),
loo (A™) C 1o (A™TH) ) and co(A™) C ¢(A™) C lo(A™) are satisfied and
strict.

The operator

D : loo(A™) = loo(A™)

defined by Dz = (0,0,..., i1, Tmio,-..), where z = (x1,x9,23,...) is a
bounded linear operator on [, (A™). Furthermore the set

Dllo(A™)] = Ding(A™
={z=(ap): 7€l x(A"),21 =22 =+ =T, =0}
is a subspace of Io(A™), and ||z||a = ||A™Z||eo In Dl (A™).
Now let us define
A™ : DI (A™) — loo,
AT =y = (Am—lxk — Am_lxk+1). (1.1)

It can be shown that A™ is a linear homeomorphism. Hence DI, (A™) and
I, are equivalent as topological spaces. Also Dc(A™) and ¢, Dcyg(A™) and
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co are equivalent as topological spaces and [Dc(A™)) = [Deo(A™)] = [4
in [2], where [Dc(A™)]" and [Dco(A™)] denote the continuous duals of
Dc(A™) and Dco(A™) respectively, and I; = {z = () : g|xk| < 00}.

2. Dual spaces

In this section we give 8- and y-duals of [, (A™) and ¢(A™). Also we
show that these spaces are not normal and not monotone spaces.
Throughout the paper we write ¥ for > 72, and lim, for lim, ..

Lemma 2.1 ([4]). Let (p,) be a sequence of positive numbers increasing
momnotonically to infinity.

i) If sup, | y=1 Puay| < 00, then sup, |p, ZI?;TH—I ag| < oo,
ii) If Ygpray is convergent, then limy, pn Y 72,11 ax = 0.

Lemma 2.2 ([2]). z € l(A™) implies sup; k™™ |xi| < oo.
Definition 2.3 ([3]). Let X be a sequence space and define

XY = {a = (ag) : Zglagzr| < 00, for all z € X},

X? = {a = (ap) : Spagzy is convergent, for all z € X},

n
Z ATk

k=1

n

X7 = {a: (ax) : sup

< oo, for all xGX}.

Then X, X?, X7 are called a-, -, v- dual spaces of X, respectively.
It is easy to show that ¢ C X® C X°P Cc X7. If X C Y, then Y7 C X" for

77:@,577-

Definition 2.4 ([3]). Let X be a sequence space. Then X is called
i) Perfect if X = X,
ii) Normal if y € X whenever |yx| < |zk|, £ > 1, for some z € X,
iii) Monotone provided X contains the canonical preimages of all its
stepspaces.

Lemma 2.5 ([3]). Let X be a sequence space. Then we have
i) X is perfect = X is normal = X is monotone,
ii) X is normal = X% = X7,
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iii) X is monotone = X* = X5,

Lemma 2.6 i) [DIo(A™))° = {a = (ar) : Spk™ay is convergent,
Yek™ Y Ry| < oo},

i) [Dlo(A™)]" = {a = (ag) : sup,, | S.1_1 k™ax| < 00, Lpk™ 1| Ry| <
oo},
where Ry, =3 07111 Go.

Proof. 1) LetU = {a = (ag) : Xxk™ay is convergent, L k™ Ry | < oc}.
Ifze DZOO(A’”) then there exists one and only one y = (yx) € I such that

( 2w

k+m—-—v-—1
_1 yv—m7

T —

Y1-m =Yo-m = "=y =10
for sufficiently large k, for instance k > 2m by . Let a € U, and suppose
—1
that ( 1) =1 (in some literature it is assumed that (Z) =0 for k < 0).

Then we may write

B = Lo (Lo (*273) )

v=1

= (—l)m nf(k‘ +m — l)m—le+m_l
k=1
k+m—v—2
((k+m mlz< )y>

—n"Ryn" "y, (2.1)

Since Lpk™ 1| Ri| < oo, the series Yg(k 4+ m — 1)™ 'Ry im_12 is ab-
solutely convergent, where

Z:(Zk):((k—}—m mlz<k+m—v—2>yv)-

Moreover we have R,n™ — 0 as n — oo (Lemma 2.1), sup,, n™"|z,| <
oo (Lemma 2.2), hence Yiarzy is convergent for all x € DI (A™), so
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a € [Dly(A™)]5.
Let a € [Dls(A™)]°. Then Sgayzy is convergent for each & € Dloo(A™).
For the sequence = = (z) defined by

0, kE<m
T =
K™, k>m

we may write

m
YikMay = Z k"ay + YpapTk.
k=1

Thus the series X3k™ay is convergent. This implies that R,n™ = o(1) by
(ii).

Now let a € [Dly(A™))° — U. Then L,k™ 1Ry| is divergent, that is,
Sik™ YRy = co. We define the sequence = = (z) by

0, kE<m
— k—1
T =
Z v sgnR,, k>m
v=1

where a > 0 for all k or a;, < 0 for all k. Since |[A™(z)| = (m — 1)! for
k > m, it is trivial that z = (zy) € DI(A™). Then we may write for
n>m

n m
Y apzy = - > Reo1lAzy,
k=1 k=1

n—m

- Z Rk+m—1A$k—+—m—1 —n"Ryn” M,
k=1

Now letting n — oo we get
Yrapry = —XpRpim 1ATkym—1
= Sk(k+m—1)""YRysm_1| = oo.

This contradicts to a € [Diy(A™)]?. Hence a € U.
ii) can be proved by the same way as above, using lemma 2.1 (i). This
completes the proof. []

Lemma 2.7 [Dloo[{gm)]" = [Dc(A™)]" for n =3 or v
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Proof is trivial.
Lemma 2.8 i) [loo(A™)]" = [Dlso(A™)]"
i) [e(A™)]" = [De(A™)]7
for n =0 or .
Proof. i) We give the proof for n = 3 only. It can be proved in a similar

way for 7 = 4. Since Dloo(A™) C loo(A™), then [l (A™)]? C [Dlso(A™)]P.
Let a € [Dlo(A™))P. If z = (1) € lo(A™),

T, k<m
Ty = , (2.2)
Ty, k>m

where ' = (2},) € Dlo(A™), then we may write for n > m

m

n n
Z ApTp = Z apTr + Z ak:cﬁc.
k=1 k k=1

=1

Now letting n — oo, we get the series in the same way as the proof of
Lemma 2.6 i),

YrapTy = Z apTp + (—1)m2k(k§ +m — l)m“le+m_1zk
k=1

is convergent. This implies that a € [l (A™)].

ii) can be proved by the same way as above. L]

Theorem 2.9 ([2]). Let X stand for I or c. Then

(X (A™)]* = {a = (ak) : Bpk™|ax| < oo}.

Now we give the main result.

Theorem 2.10 Let X stand for lo or c. Then
) [X(A™))P = {a = (ag) : Zpk™ay, is convergent, Spk™ | Ry| < oo},

i) [X(A™)] = {a = (ak) : sup, | >k=1 k™ay| < oo, Zkkm_l\RH < oo},
where R =Y 02 11 Go-

Proof.  Proof follows from Lemma 2.6, Lemma 2.7 and Lemma 2.8.
L]

It is known that [oo(A™), ¢(A™) are not perfect in [2]. Combining
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Lemma 2.5, (['heorem 2.9 and [Theorem 2.10, we get:

Corollary 2.11 i) [(A™), ¢(A™) are not normal,
i) loo(A™), c(A™) are not monotone.

If we take m = 1 in [Theorem 2.9 and in [Theorem 2.10|, then we obtain
the following result.

Corollary 2.12 ([4]). i) [X(A)]* = {a = (ak) : Lgkl|ak| < oo},
i) [X(A)P ={a=(a): Zpkay, is convergent, $i|Ry| < oo},
iii) [ X(A)]Y ={a = (ag) : sup,, | > p_; kag| < 0o, Xp|Rk| < oo},
where Ry = 3 02 11 Gy.

3. Matrix transformations

In this section we characterize some matrix classes. Let G denote one of
the sequence spaces I, and ¢, and H denote l. Let us consider G(A™) =
{z = (zx) : A™z € G}. We denote the set of all matrices from sequence
space X to sequence space Y by (X,Y).

Theorem 3.1 A = (ank) € (G(A™), H) if and only if
i) (apj)n€ H (j=1,2,...,m) and (A, (k™)) € H,

i) Rp=(E""try) € (G, H),

where Ap (k™) = EpkMany and rop =D 00 141 Gno-

Proof. Let A € (G(A™), H), then the series A,(z) = LranxTk is conver-
gent for each n € N and (A,(x)) € H for all z € G(A™). []

If we take x = (z)) = (0,0,...,0,1 (j.th place), 0,...) (1 < j < m) and
r = (zp) = (k™), then we get the necessity of (i). If R, = (k™ lryi) ¢
(G, H), then there exist subsequences (n;) and (k;) of positive integers such
that

ki
Z K™ ekl — 0o as i — oo, (3.1)
k=1
From [I'’heorem 2.10 we have
Sek™ Hrok| < oo, (3.2)

for each n € N. By [3.2), there exists M > 0 such that
K™ k| < M, (3.3)
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for all k£ and for all n. By (3.1), choose n = ny and k = s; such that

S1
> K™ ] > L (3.4)
k=1

Having fixed ny, by [3.2), choose k; > s1 such that

o0
S Kl < e (3.5)
k=k1+1

If we take, for all n

k—1
T = Z vm_lsgnrm,, for 1 <k <k and k; 1 <k <k,

v=1

(i=2,3,...), z1=0, (3.6)

where a,; > 0 for all n, k (or a, < 0 for all n, k), then we have z € G(A™).
On the other hand, if we consider Lemma 2.1 and Lemma 2.2, then we

have

oo o0
Z kTl = — Z roxArg, 1 =0. (3.7)
k=1 k=1

Hence

kl o0
[Any (@)] 2 Y K" Hrngel = D K" gl > 1-¢
k=1

k=ki1+1
using [3.4), [3.5), [3.6) and [3.7).
From (3.3), we have for all n,
ki k;
Y K ekl < YoM = kM = Cy,. (3.8)

k=1 k=1

By (3.1), choose n = ny > ny and sy > k; such that

S2

Z km_l‘Tnzkl > 2 4 Ci, (3.9)
k=ki+1

Having fixed ny, by , choose kg > s9 such that

> K gkl <e. (3.10)
k=ko+1
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Then we have

ko k1
‘Anz (m)l > Z km_llrn2k| - Z km_1|T7L2k’
k=ki+1 k=1
00
— Z km_l‘rn2k| >2—¢€
k=ko+1

using (3.6), {3.7), (3.8), (3.9) and (3.10).

Proceeding like this, by (3.1), we can choose n; > n; | and s; > k;_;
(so it is clear that s1 < k1 < s9 < kg < -+- < 8;_1 < kj_1 < 5; < k;...) such
that

S;
Z km—1|7’nik| > 14 Cy,_,. (3.11)
k=k;11+1

Having fixed n;, by [3.2), choose k; > s; such that

o ¢}
> K ] <e (3.12)
k=k;+1

We can show as above |A,, (z)| > i — e. Since ¢ is arbitrary, |A,, (z)| — oo
as 1 — oo. Hence (A, (z)) ¢ H. This is a contradiction to A € (G(A™), H).
Hence R,, = (k™ !r,.) € (G, H).

Now suppose that i) and ii) hold. We define the sequence z = (z},) €
G(A™) by

xp, k<m
Tk =

T, k>m

where ' = (z}) € DG(A™). Then we may write for m < ¢ in the same way

as the proof of [Lemma 2.6,

Ap(t,m,x) = Zankxk.

k=1
m t—m

= Ak Tk + (_1)m (]f +m — 1)m_17“n7k+,m_12k
k=1 k=1

—2
where z = (2i) = (W 5:1 < - — 9 )yv> and y € G.
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If we consider [Lemma 2.1 and Lemma 2.2, then we have
li{nAn(t,m,x) = A,(z)

m
= Z ankzr + (=1)"Sk(k +m — )™ ey pimo12k
k=1

for the sequence x = (x3) € G(A™). This implies that (A,(z)) € H for
each x € G(A™), and A € (G(A™), H).
If we take m = 1 in [Theorem 3.1, then we obtain the following result.

Corollary 3.2 ([4]). A= (ank) € (G(A), H) if and only if
i) (an1) € H and (A,(k)) € H,

i) Re(G,H),

where Ap(k) = Erkan, and R = (rpr) = (oo pp1 Ono)-
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