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Stability of optical caustics with r-corners

Takaharu TSUKADA
(Received August 25, 1997)

Abstract. In this papar, we investigate the stability of the optical caustic generated by
a light source hypersurface with an r -corner in a smooth manifold under a fixed Hamil-
tonian system. Main results are the stability of optical caustics under the perturbation
of hypersurfaces and a realization of a caustic as a stable optical caustic generated by
some hypersurfaces.
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1. Introduction

In [5] K. J\"anich explained the wavefront propagation mechanism on a
manifold which is completely described by a positive and positively hom0-
geneous Hamiltonian function on the cotangent bundle and investigated the
local gradient models given by the ray length function. He considered the
case when the initial wave front is a smooth hypersurface without bound-
ary. This case is corresponding to the theory of Lagrangian singularities
(cf., [1]).

In this paper we consider the case when the initial wave front is a hy-
persurface with an r -corner (\S 1). The rays incident to conormal directions
from each edges of the hypersurface gives a regular r -cubic configuration
(cf., Section 3) at a point in the cotangent bundle, which is a generalized
notion of Lagrangian submanifolds. The optical caustic with an r-corner
generated by the hypersurface is given as the caustic of the regular r-cubic
configuration. The notion of regular r-cubic configurations in complex an-
alytic category has been introduced in [3], [4] and the real version has been
developed in [8]. In [8] we have shown that any regular r-cubic configuration
(at least locally) has a generating family which is a kind of families of func-
tions. We also have shown that the stability of regular r-cubic configuration
corresponds to the stable generating family.

In this paper we consider the following problems, extending of the inves-
tigations by K. J\"anich [5] and G. Wassermann [10]: For a fixed Hamiltonian
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function on the cotangent bundle;
(1) Is the stability of the optical caustic with the r-corner under per-

turbations of the hypersurface equivalent to the stability of a generating
family of the corresponding regular r-cubic configuration?

(2) For a given function germs, when does there exist a light source hy-
persurface germ with an r-corner which satisfy the following conditions (a)
(b)?: a) A generating family of the corresponding regular r-cubic config-
uration is an unfolding of the given function germ, b) The optical caustic
with the r-corner generated by the hypersurface is stable.

The answer of (1) is ‘Yes’ This means that the classification stable
optical caustics with r-corners is reduced to the classification of stable gen-
erating family under the reticular R^{+} -equivalence (cf., Section 3).

We give a partial answer to the probrem (2). The answer of (2) gives
us a method to decide when the caustic defined by a function germ in the
classification list can be realized as a stable optical caustic with an r-corner
for a fixed Hamiltonian function.

In the investigations by K. J\"anich and G. Wassermann the R-L-equiva-
lence was used as the equivalence relation of function germs. Instead, we
use the reticular R^{+} -equivalence as the equivalence relations because the
R^{+} -equivalence among generating families is naturally used in the theory of
Lagrangian singularities (cf., [1]) and the reticular R^{+} -equivalence relation
is its extension.

In \S 1, we introduce the basic notations and setting of this paper. In
\S 2, we give a brief summary of the theory of regular r-cubic configurations.
In \S 3, we recall the deformation theory of function germs with respect to
the reticular R^{+} -equivalence. The main Theorem 5.2, which solves the first
probrem in Introduction, is formulated and proved in \S 4. In the last section
we solve the second probrem under some conditions on the Hamiltonian
function.

2. Preliminaries

Fix non-negative integers r and k . Let M be an m(=r+k+1)-

dimensional differentiate manifold and H : T^{*}M\backslash 0 -arrow R be a C^{\infty} function
called a Hamiltonian function. We suppose that H is everywhere positive
and positively homogeneous of degree one, that is H(\lambda\xi)=\lambda H(\xi) for all \lambda>

0 and \xi\in T^{*}M\backslash 0 . Let X_{H} denote the corresponding Hamiltonian vector
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field on T^{*}M\backslash 0 . Then X_{H} is given locally by the Hamiltonian equations:

\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} , \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} ,

where (q,p) are local canonical coordinates of T^{*}\Lambda l1

We set E=H^{-1}(1) and consider the following canonical projections
\pi_{M} : T^{*}M – M , \pi_{E} : R\cross E -arrow E , \pi_{R} : R\cross Earrow R. We denote by E_{q}t_{)}hc

fiber of the spherical cotangent bundle \pi|_{E} at q\in\Lambda l .
Let q_{0}\in i1l , t_{0}\geq 0 , \xi_{0}\in E_{q0} and \eta_{0} the image of the phase flow of

X_{H} at (t_{0}, \xi_{0}) . Since the phase flow of X_{H} preserves values of H , the local
phase flow \Psi : (R\cross T^{*}M\backslash 0, (t_{0}, \xi_{0})) - (T^{*}M\backslash 0, \eta_{0}) of X_{H} induces the map
\Phi : (R\cross E, (t_{0}, \xi_{0})) – (R\cross E, (t_{0}, \eta 0)) given by \Phi(t, \xi)=(t, \Psi(t, \xi)) .

We set \exp=\pi_{M}\circ\Phi : (R\cross E, (t_{0}, \xi_{0})) – (\Lambda I, u_{0}) , \exp_{q0}=\exp|_{R\cross\Gamma_{/_{q_{0}}}}\sqrt ,
\exp^{-}=\pi_{M}0\Phi^{-1} : (R\cross E, (t_{0}, \eta_{0})) -arrow(\Lambda l, qo) , \exp_{u_{0}}^{-}=\exp^{-}|_{R\cross E_{v_{0}}} , \phi_{1}=

(\pi_{M}, \exp) : (R\cross E, (t_{0}, \xi_{0})) -(M\cross lll, (q_{0}, u_{0})) , \phi_{2}=(\exp^{-}, \pi_{M}) : (R\cross

E, (t_{0}, \eta_{0})) – (M\cross M, (q_{0}, u_{0})) , where u_{0}=\pi_{M}(\eta_{0}) . Then the following
diagram is commutative:

(R\cross E, (t_{0}, \xi_{0}))
\underline{\Phi}

(R\cross E, (t_{0}, \eta 0))

\swarrow\exp \phi_{1}\searrow \swarrow\phi_{2} \exp^{-}\searrow

(M, u_{0}) \underline{\pi_{2}} (M\cross M, (q_{0}, u_{0})) arrow\pi_{1}
(\Lambda I, q0)

By [5, 2.2] we have the following proposition

Proposition 2.1 If \exp_{q0} is regular then \phi_{1} and \phi_{2} are diffeomorphisms.

If \exp_{q0} is regular, then we define the function germ

\tau=\pi_{R}\circ\phi_{1}^{-1}=\pi_{R}0\phi_{2}^{-1} : (M\cross M, (q0, u_{0})) -(R, t_{0}) .

We call \tau the ray length function associated with the regular point
(t_{0}, \xi_{0}) of \exp_{q0} . Set \xi=\pi_{E}\circ\phi_{1}^{-1} : (M\cross M, (q_{0}, u_{0})) - (E, \xi_{0}) , \eta=

\pi_{E}\circ\phi_{2}^{-1} : (M\cross M, (q_{0}, u_{0})) -arrow(E, \eta 0) . By [5, Lemma 2] we have

d_{q}\tau(q, u)=-\xi(q, u) , d_{u}\tau(q, u)=\eta(q, u)

for (q, u)\in(M\cross M, (q_{0}, u_{0}))

Let H^{r}= \{(x_{1}, \ldots , x_{r})\in R^{r}|x_{1}\geq 0, . . , x_{r}\geq 0\} be an r-corner.
Let V^{0} be the hypersurface germ in (M, q_{0}) satisfying \xi_{0}|_{T_{q_{0}}V^{0}}=0 with an
r-corner defined as the image of an immersion \iota : (H^{r}\cross R^{k}, 0) – (M, q_{0}) .



636 T. Tsukada

We parameterize V^{0} by \iota .
From now on, we fix an m(=r+k+1)-dimensional manifold M , a

Hamiltonian function H : T^{*}M\backslash 0 -arrow R , q_{0}\in M , \xi_{0}\in E_{q0} and t_{0}\geq 0 . We
suppose that (t_{0}, \xi_{0}) be a regular point of the ray length function \tau of \exp_{q0}

and put \eta_{0}=\pi_{E}\circ\Phi(t_{0}, \xi_{0}) , u_{0}=\pi_{M}(\eta 0) .

3. Regular r-cubic configuration associated with a light source
hypersurface with an r-corner

We now give a brief summary of the theory of regular r-cubic configu-
rations which has been developed in [8].

Set \Lambda_{\sigma}^{0}=\{(q,p)\in(T^{*}R^{m}, 0)|q_{\sigma}=p_{I_{r}-\sigma}=q_{r+1}= =q_{m}=0 ,
q_{I_{r}-\sigma}\geq 0\} for \sigma\subset I_{r}=\{1, \ldots, r\} , where (q,p) are canonical coordinates
of (T^{*}R^{m}, 0)

Definition 3.1 Let \eta\in T^{*}M\backslash 0 and \Lambda_{\sigma} be a lagrangian submanifold of
(T^{*}M\backslash 0, \eta) for \sigma\subset I_{r} . We call \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} a regular r -cubic confifiguration if
there exists a symplectomorphism germ S : (T^{*}R^{m}, 0) - (T^{*}M\backslash 0, \eta) such
t_{)}hat\Lambda_{\sigma}=S(\Lambda_{\sigma}^{0}) for \sigma\subset I_{r} . The caustic of \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} is defined by the union
of the critical values of \pi|\Lambda_{\sigma} for \sigma\subset I_{r} and \pi(\Lambda_{\sigma}\cap\Lambda_{\tau}) for \sigma\neq\tau\subset I_{r} .

Equivalence relations of regular r-cubic configurations: Let \eta_{1} , \eta_{2}
\in

T^{*}\Lambda l\backslash 0 and \{\Lambda_{\sigma}^{i}\}_{\sigma\subset I_{r}} be a regular r-cubic configuration in (T^{*}M\backslash 0, \eta_{i})

for i=1,2 . We say that \{\Lambda_{\sigma}^{1}\}_{\sigma\subset I_{r}} and \{\Lambda_{\sigma}^{2}\}_{\sigma\subset I_{r}} are lagrangian equivalent
if there exists a lagrangian equivalence \Theta : (T^{*}M\backslash 0, \eta_{1}) – (T^{*}M\backslash 0, \eta_{2})

such that\ominus(\Lambda_{\sigma}^{1})=(\Lambda_{\sigma}^{2}) for \sigma\subset I_{r} .

\underline{Generating}families: Let \mathcal{E}(r;s) be the set of smooth function germs on
(H^{r}\cross R^{s}, 0) and let m(r;s)=\{f\in \mathcal{E}(r;s)|f(0)=0\} be its maximal
ideal. Let \eta\in T^{*}M\backslash 0 . We say that F(x, y, u)\in m(r;s+m) , where
x\in H_{7}^{r}y\in R^{s} and u\in R^{m} . is a generating family of a regular r-cubic
configuration \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} in (T^{*}i1l\backslash 0, \eta) if F is non-degenerate, that is

rank (\begin{array}{ll}\frac{\partial^{2}F}{\partial x\partial y} \frac{\partial^{2}F}{\partial x\partial u}\frac{\partial^{2}F}{\partial y\partial y} \frac{\partial^{2}F}{\partial y\partial u}\end{array})

0=r+s
,

and F|_{x_{\sigma}=0} is generating family of \Lambda_{\sigma} under an identification of (M, \pi(\eta))
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and (R^{m}, 0) , that is

\Lambda_{\sigma}=\{d_{u}F(x, y, u)\in(T^{*}M\backslash 0, \eta)|

x_{\sigma}=d_{x_{J_{r}-\sigma}}F(x, y, u)=d_{y}F(x, y, u)=0\}

for suitable coordinates (u_{1}, \ldots, u_{m}) of (\Lambda I, \pi(\eta)) .

Equivalence relations of generating families: We denote B(r;l) the set of
diffeomorphism germs on (H^{r}\cross R^{l}, 0) which preserve (H^{r}\cap\{x_{\sigma}=0\})\cross R^{l}

for all \sigma\subset I_{r} . We say that function germs f, g\in m(r;s) are reticular
R-equivalent if there exists \phi\in B(r;s) such that g=f\circ\phi . We say that
function germs F(x, y, v) , G(x, y, v)\in m(r;s+n) , where x\in H^{r} . y\in R^{s}

and v\in R^{n} , are reticular R^{+} -equivalent (as n-dimensional unfoldings) if
there exist \Phi\in B(r;s+n) and \alpha\in m(n) satisfying the following:

(1) \Phi=(\phi, \psi) , where \phi : (H^{r}\cross R^{s+n}, 0) -arrow(H^{r}\cross R^{s}, 0) and \psi :
(R^{n}, 0)-arrow(R^{n}, 0) .

(2) G(x, y, v)=F(\phi(x, y, v), \psi(v))+\alpha(v) for (x, y, v)\in(H^{r}\cross R^{s+n}, 0) .
We say that function germs F(x, y_{1}, . . , y_{s_{1}}, v) \in m(r;s_{1}+n) and
G(x, y_{1}, \ldots, y_{s_{2}}, v)\in m(r;s_{2}+n) are stably reticular R^{+} -equivalent if F and
G are reticular R^{+} -equivalent after the addition of non-degenerate quadratic
forms in the variables y .

Theorem 3.2 [8] Two regular r -cubic confifigurations defifined at some
points in T^{*}Al\backslash 0 are lagrangian equivalent if and only if their generating
families are stably reticular R^{+} -equivalent.

For each \sigma\subset I_{r} we define L_{\sigma}^{0} by the set of conormal vectors of V_{\sigma}^{0}:=

V^{0}\cap\{x_{\sigma}=0\} in (E, \xi_{0}) as the initial rays incident from V_{\sigma}^{0} . Then we
regard the set \Lambda_{\sigma} the image of covectors in L_{\sigma}^{0} by \pi_{E}\circ\Phi around time t_{0} ,
that is

\Lambda_{\sigma}=\{\pi_{E}\circ\Phi(t, \xi)\in(E, \eta_{0})|(t, \xi)\in(R, t_{0})\cross L_{\sigma}^{0}\} .

Then we regard \Lambda_{\sigma} as the set of rays incident from V_{\sigma}^{0} at time t_{0} . We also
regard the union of \Lambda_{\sigma} for all \sigma\subset I_{r} as the set of rays incident from the
hypersurface V^{0} at time t_{0} .

We now prove that, if \exp_{q0} is regular, then a hypersurface germ in
(1)qo) with an r-corner normally oriented by \xi_{0} , defines a regular r-cubic
configuration in (T^{*}M\backslash 0, \eta_{0}) .

Proposition 3.3 Let V^{0} be the hypersurface germ with an r -corner in
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(M, q_{0}) satisfying \xi_{0}|_{T_{q_{0}}V^{0}}=0 defifined as the image of an immersion \iota :
(H^{r}\cross R^{k}, 0) -arrow(M, q_{0}) . Let \Lambda_{\sigma} be the set of rays incident from V_{\sigma}^{0}:=

V^{0}\cap\{x_{\sigma}=0\} at time t_{0} for \sigma\subset I_{r} . Then F:=\tau\circ(\iota\cross id_{u})-t_{0}\in m(r;k+

m) is a generating family of the regular r -cubic confifiguration \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} in
(T^{*}\Lambda I\backslash 0, \eta 0) .

In this case we call \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} the regular r -cubic confifiguration associated
with V^{0} at time t_{0} and we call the caustic of \{\Lambda_{\sigma}\}_{\sigma\subset I_{r}} the optical caustic
with the r -corner associated with V^{0} at time t_{0} .

Proof. By [5, p. 171 Sublemma] we have

(\begin{array}{l}d_{u}d_{x}Fd_{u}F\end{array}) : T_{u_{0}}Marrow T_{q0}^{*}V^{0}\oplus R

is an isomorphism. This means that

rank (\begin{array}{l}\frac{\partial^{2}F}{\partial x\partial u}\frac{\partial^{2}F}{\partial y\partial u}\end{array})

0=r+k
.

Hence F is non-degenerate.
Let \sigma\subset I_{r} and \eta_{u}\in(E, \eta_{0}) . Then \eta_{u}\in\Lambda_{\sigma} if and only if \eta_{u}=

\pi_{E}\circ\Phi(t, \xi_{q}) for some \xi_{q}\in E_{q} and t\in(R, t_{0}) satisfying q\in V_{\sigma}^{0} and
\xi_{q}|_{T_{q}V_{\sigma}^{0}}=0 , if and only if \eta_{u}=d_{u}\tau(q, u) for some q\in V_{\sigma}^{0} and u\in(M, u_{0})

satisfying d_{q}\tau(q, u)|_{T_{q}V_{\sigma}^{0}}=0 , and this holds if and only if \eta_{u}=d_{u}F(x, y, u)

for some (x, y, u)\in(H^{r}\cross R^{k+m}, 0) satisfying x_{\sigma}=0 and d_{x_{I_{\Gamma}-\sigma}}F(x, y, u)=

d_{y}F(x, y, u)=0 . Hence F|_{x_{\sigma}=0} is a generating family of \Lambda_{\sigma} . \square

4. Stability of unfoldings

In order to investigate stabilities of an optical caustic with an r-corner,
we require some results of the singularity theory of function germs with
respect to reticular R^{+} -equivalence. Basic techniques we used in this paper
depend heavily on the results in this section, however the all arguments are
almost parallel along the ordinary theory of the right-equivalence (cf., [2],
[9] ) , so that we omit the detail.

We denote by J^{l}(r+k, 1) the set of l-jets at 0 of germs in m(r;k) and
by \pi_{l} : m(r;k) -arrow J^{l}(r+k, 1) the natural projection. We denote by j^{l}f(0)
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the l-jet of f\in m(r;k) .

Lemma 4.1 Let f\in m(r;k) and O_{rR}^{l}(j^{l}f(0)) be the submanifold of
J^{l}(r+k, 1) consist of the image by \pi_{l} of the orbit of reticular R-equivalence

of f , Put z=j^{l}f(0) . Then

T_{z}(O_{rR}^{l}(z))= \pi_{l}(\langle x_{1}\frac{\partial f}{\partial x_{1}},
\ldots , x_{r} \frac{\partial f}{\partial x_{r}}\rangle_{\mathcal{E}(r;k)}

+ m(r;k)\langle\frac{\partial f}{\partial y_{1}} , \ldots . \frac{\partial f}{\partial y_{k}}\rangle) .

We say that a function germ f\in m(r;k) is reticular R-l-determined if
all function germ which has same l-jet of f is reticular R-equivalent to f .

Lemma 4.2 If f\in m(r;k) and if

m(r;k)^{l+1}\subset m(r;k)(\langle x_{1}\frac{\partial f}{\partial x_{1}},
\ldots , x_{r} \frac{\partial f}{\partial x_{r}}\rangle

+ m(r;k)\langle\frac{\partial f}{\partial y_{1}} , \ldots , \frac{\partial f}{\partial y_{k}}\rangle)+m(r;k)^{l+2} ,

then f is reticular R-l-determined. Conversely if f\in m(r;k) is reticular
R-l-determined, then

m(r;k)^{l+1}\subset\langle x_{1^{\frac{\partial f}{\partial x_{1}}}} , . . , x_{r} \frac{\partial f}{\partial x_{r}}\rangle_{\mathcal{E}(r;k)}+m(r;k)\langle\frac{\partial f}{\partial y_{1}} , . , \frac{\partial f}{\partial y_{k}}\rangle

For each f(x, y)\in m(r;k)^{2} we define the corank of f by the corank of

the matrix ( \frac{\partial^{2}f}{\partial y^{2}}(0)) .

Lemma 4.3 (Splitting lemma) Let f\in m(r;k)^{2} and l be the corank of
f , Then there exist a function germ f_{0}\in m(r;l)^{2} and a non-degenerate
quadratic form Q(y_{l+1}, \ldots , y_{k}) such that f_{0}|_{x=0}\in m(0;l)^{3} and f is reticular
R-equivalent to f_{0} (x_{1}, . . ’ x_{r}, y_{1}, \ldots, y_{l})+Q(y_{l+1}, \ldots, y_{k}) .

Let F\in m(r;k+n_{1}) , G\in m(r;k+n_{2}) be unfoldings of f\in m(r;k) .

We say that F is reticular R^{+} -f-induced from G if there exist smooth map
germs \phi : (H^{r}\cross R^{k+n_{2}},0) – (H^{r}\cross R^{k}, 0) , \psi : (R^{n_{2}},0) – (R^{n_{1}},0) and
\alpha\in m(0;n_{2}) satisfying the following conditions:

(1) \phi((H^{r}\cap\{x_{\sigma}=0\})\cross R^{k+n_{2}})\subset(H^{r}\cap\{x_{\sigma}=0\})\cross R^{k} for \sigma\subset I_{r} .

(2) G(x, y, v)=F(\phi(x, y, v), \psi(v))+\alpha(v) for x\in H^{r} , y\in R^{k} and
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v\in R^{n_{2}} .

Definition 4.4 Here we define several notions of stabilities of unfoldings.
Let f\in m(r;k) and F\in m(r;k+n) be an unfolding of f .

We define a smooth map germ

j_{1}^{l}F : (R^{r+k+n}, 0) – (J^{l}(r+k, 1),j^{l}f(0))

as follows: Let \tilde{F} : U – R be a representative of F For each (x, y, u)\in
U, We define F_{(x,y,u)}\in m(r;k) by F_{(x,y,u)}(x’, y’)=F(x+x’, y+y’, u) -

F(x, y, u) . Now define j_{1}^{l}F(x, y, u) as the l-jet of F_{(x,y,u)} . j_{1}^{l}F depends
only on the germ at 0 of F . We say that F is reticular R^{+} -l-transversal if
j_{1}^{l}F|_{x=0} is transversal to O_{rR}^{l}(j^{l}f(0)) . It is easy to check that F is reticular
R^{+}- l-transversal if and only if

\mathcal{E}(r;k)=\langle x_{1}\frac{\partial f}{\partial x_{1}} , . . , x_{r} \frac{\partial f}{\partial x_{r}} , \frac{\partial f}{\partial y_{1}} , . . . , \frac{\partial f}{\partial y_{k}}\rangle_{\mathcal{E}(r;k)}+V_{F}+m(r;k)^{l+1} ,

where V_{F}=L_{R} \langle 1, \frac{\partial F}{\partial u_{1}}|_{u=0}, \ldots.\frac{\partial F}{\partial u_{n}}|_{u=0}\rangle .
We say that F is reticular R^{+} -stable if the following condition holds: For

any neighborhood U of 0 in R^{r+k+n} and any representative \tilde{F}\in C^{\infty}(U, R)

of F. there exists a neighborhood N - of \tilde{F} such that for any element \tilde{G}\in N -

the germ \tilde{G}|_{H^{r}\cross R^{k+n}} at (0, y_{0}, u_{0}’) is reticular R^{+} -equivalent to F for some
(0, y_{0}, u_{0}’)\in U .

We say that F is reticular R^{+} -versal if F is reticular R^{+}- f-induced
from all unfolding of f .

We say that F is reticular R^{+} -infifinitesimal versal if

\mathcal{E}(r;k)=\langle x_{1}\frac{\partial f}{\partial x_{1}} , . , x_{r} \frac{\partial f}{\partial x_{r}} , \frac{\partial f}{\partial y_{1}} , \ldots , \frac{\partial f}{\partial y_{k}}\rangle_{\mathcal{E}(r;k)}+V_{F} .

Theorem 4.5 Let F\in m(r;k+n) be an unfolding of f\in m(r;k) . Then
the following are equivalent.

(1) F is reticular R^{+} -stable.
(2) F is reticular R^{+} -versal.
(3) F is reticular R^{+} -infifinitesimal versal.

For f\in m(r;k) , we define the reticular R-codimension of f by the
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R-dimension of the vector space

\mathcal{E}(r;k)/\langle x_{1}\frac{\partial f}{\partial x_{1}} , . . . , x_{r} \frac{\partial f}{\partial x_{r}} , \frac{\partial f}{\partial y_{1}} , \ldots , \frac{\partial f}{\partial y_{k}}\rangle_{\mathcal{E}(r_{j}k)}

By the above theorem, if 1 and a_{1} , \ldots , a_{n}\in m(r;k) is a representative of a
basis of the vector space, then f+a_{1}v_{1}+\cdots a_{n}v_{n}\in m(r;k+n) is a reticular
R^{+} -stable unfolding of f .

In [8], we have given the classification of unimodular function germs
under the reticular R-equivalence. This classification includes the classi-
fication of function germs whose reticular R-codimensions are lower than
8.

5. Stability of optical caustics with r-corners

In this section we shall investigate the stability of an optical caustic
with an r-corner under perturbations of a light source surface with respect
to a fixed Hamiltonian function.

Definition 5.1 Let V^{0} be the hypersurface germ in (M, qo) satisfying
\xi_{0}|_{T_{q_{0}}V^{0}}=0 defined by an immersion \iota : (H^{r}\cross R^{k}, 0) – (\Lambda l, q_{0}) . We say
that V^{0} produces a stable optical caustic with an r -corner at time t_{0} if the
following condition holds:

For any open neighborhood X of q_{0} in M , U of u_{0} in M. W of 0 in R^{r+k} .
any representative \tilde{\tau} : X\cross U -arrow R of \tau and any representative immersion
\tilde{\iota} : W – X of \iota , there exists an open neighborhood N- of \tilde{\iota} in the space of
immersions from W to X with C^{\infty}-topology such that for every \tilde{\kappa}\in N- the
regular r-cubic configuration associated the light source surface defined by
\tilde{\kappa}|_{H^{r}\cross R^{k}} at (0, y_{0}) is lagrangian equivalent to one associated with V^{0} for
some (0, yo)\in W

We remark that, by Theorem 3.2, the condition defined by changing
the part ‘the regular r-cubic \cdot . for some (0, y_{0}) \in W ’ in Definition 5.1
to ‘ (\tilde{\tau}\circ(\tilde{\kappa}\cross id_{u})-t_{0})|_{H^{r}\cross R^{k+m}} at (0, y_{0}, u_{0}’) is reticular R^{+} equivalent to
\tau o(\iota\cross id_{u})-t_{0} for some (0, y_{0}, u_{0}’)\in W\cross U

’ is equivalent to the original.
Let V be an open set in R^{r+k+m} with the coordinates (x_{1} , , x_{r} ,

y_{1} , \ldots , y_{k} , u_{1} , \ldots , u_{m} ). We define the map

j_{1}^{l} : C^{\infty}(V, R) -arrow C^{\infty}(V, J^{l}(r+k, 1))

by setting j_{F}^{l}(x, y, u) as the l-jet at 0 of the map (x’, y’)\}arrow(F(x+x’, y+



642 T. Tsukada

y’ , u)-F(x, y, u)) for F\in C^{\infty}(V, R) .

Now we give the affirmative answer to the probrem (1).

Theorem 5.2 Let M be an m(=r+k+1) -dimensional differentiate
manifold, H : T^{*}M\backslash 0 - R a positive and positively homogeneous Hamilton
function, q_{0}\in M , \xi_{0}\in E_{q0} , t_{0}\geq 0 and \tau the ray length function associated
with the regular point (t_{0}, \xi 0) of \exp_{q0} . Let V^{0} be the hypersurface germ in
(M, qo) satisfying \xi_{0}|_{T_{q_{0}}V^{0}}=0 defifined by an immersion \iota : (H^{r}\cross R^{k}, 0) -

(M, q_{0}) . Then V^{0} produces a stable optical caustic with an r -corner at time
t_{0} if and only if F:=\tau\circ(\iota\cross id_{u})-t_{0} is a reticular R^{+} -versal unfolding of
F|_{u=u_{0}} .

By the above remark, this theorem asserts that the stability of F with
respect to perturbations of \iota is sufficient to one of F as an ra-dimensional
unfolding. However generally these stabilities are not equivalent. Since
the stability as an unfolding means the stability with respect to both of
perturbations of the corresponding light source surface and the Hamiltonian
funct ion.

Proof. (\Leftarrow) Let \tilde{\iota} : W -arrow X be a representative immersion of \iota and
\tilde{\tau} : X\cross U - R be a representative of \tau . By shrinking X and U if necessary,
we may assume that \tilde{\tau}|_{X\cross u} is submersion for every u\in U . We denote
Imm(VF, X ) the set of immersions from W to X and define the continuous
map

\Phi : Imm(M^{\gamma}, X) -arrow C^{\infty}(W\cross U, R)

\tilde{\kappa} \mapsto \tilde{\tau}\circ(\tilde{\kappa}\cross id_{u})-t_{0} .

Set \tilde{F}=\Phi(\tilde{\iota}) . Since F is a reticular R^{+} -stable unfolding of f . there ex-
ists a neighborhood N_{\overline{F}} of \tilde{F} such that, for every function \tilde{G}\in N -, the
germ \tilde{G}|_{H^{r}xR^{k+m}} at (0, y_{0}, u_{0}’) and F are reticular R^{+} -equivalent for some
(0, y_{0}, u_{0}’)\in W\cross U . Then \Phi^{-1}(N - ) is a neighborhood of \tilde{\iota} for which the
condition in Definition 5.1 holds.

(\Rightarrow) We suppose Lemma 5.3. Let \iota^{\tilde{\prime}} : W’ – X be a representative
immersion of \iota and \tilde{\tau} : X\cross U -arrow R be a representative of \tau . Choose a
relative compact neighborhood W of 0 in R^{r+k} such that \overline{W}\subset W’ and
choose a neighborhood N- of \tilde{\iota}:=\iota^{\tilde{\prime}}|_{W} for which the condition in Definition
5.1 holds. We define
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B_{l}=\{\tilde{\kappa}\in C^{\infty}(W’, X)|j_{1}^{l}(\tilde{\tau}\circ(\tilde{\kappa}\cross id_{u})-t_{0})|_{x=0}

is transversal to O_{rR}^{l}(j^{l}f(0))\}

for each l\in N , Then B_{l} is a residual set in C^{\infty}(W’, X) by Lemma 5.3.
Since C^{\infty}(W’, X) is a Baire space, B:= \bigcap_{l\in N}B_{l} is dense.

Set the open set O= { \kappa\sim\in C^{\infty} ( W’ , X ) |\tilde{\kappa}|_{\overline{W}} is an immersion}. Then
the map O -arrow Imm(M\nearrow ,X) given by \tilde{\kappa}

– \tilde{\kappa}|_{W} is continuous. Therefore the
inverse image N_{\iota}-, of N- by the above map is open neighborhood of \iota^{\tilde{\prime}} .

Fix \tilde{\kappa}\in N_{\iota}-, \cap B sufficiently close to \iota^{\tilde{\prime}} such that ( \tau\sim\circ(\tilde{\kappa}\cross id_{u}) -

t_{0})|_{H^{r}\cross R^{r+k}} at (0, y_{0}, u_{0}’) and F are reticular R^{+} -equivalent at (0, y_{0}, u_{0}’)\in

W\cross U . Define G\in m(r;k+m) by G(x, y, u) :=\tilde{\tau}(\tilde{\kappa}(x, y+y_{0}), u+u_{0}’)-l_{0} .
Then G is reticular R^{+}- l-transversal unfolding of g:=G|_{u=0} for all l\in N .
Hence G is a reticular R^{+} -versal unfolding of g . Therefore F is also a retic-
ular R^{+} -versal unfolding of f . \square

The following completes the proof the Theorem 5.2.

Lemma 5.3 Let W, X and U be neighborhoods of 0 in R^{r+k} , R^{m} and R^{n}

respectively and we denote their coordinates (x_{1}, . , x_{r}, y_{1}, . , y_{k}) ,
(q_{1}, . . ’ q_{m}) and (u_{1}, . . ’ u_{n}) respectively. Let H : X\cross U – R be a smooth
map such that H|_{X\cross u} is a submersion for all u\in U and A be a submanifold
of J^{l}(r+k, 1) . Then the set

B= { f\in C^{\infty} ( W, X ) |j_{1}^{l}H\circ(f\cross id_{u})|_{x=0} is transversal to A }

is residual.

Proof. Let V=W\cap\{x=0\} . Then the map

\gamma : C^{\infty}(W, X) - C^{\infty}(V\cross U, J^{l}(r+k, 1))

(f-* j_{1}^{l}(H\circ(g\cross id_{u}))|_{x=0})

is continuous. If K\subset A is a compact subset, then C=\{F\in C^{\infty}(V\cross

U, J^{l}(r+k, 1))|F is transversal to A on K } is open. Therefore B=\gamma^{-1}(C)

is open.
Choose relatively compact open covering \{W_{i}\}_{i\in N} and \{W_{i}’\}_{i\in N} of W

such that \overline{W_{\iota}}\subset IW_{i}’ for i\in N . For each i\in N set

B_{i}=\{f\in C^{\infty}(W, X)|j_{1}^{l}H\circ(f\cross id_{u})|_{x=0}

is transversal to A on \overline{W}_{i}\cap\{x=0\}\} .
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Since B= \bigcap_{i\in N}B_{i} and each B_{i} is open by an analogous proof of the above,

it is enough to prove that every B_{i} is dense in order to complete the proof.
The proof is analogous to that of ordinary transversal lemma. Fix i\in N

and f\in C^{\infty}(W, X) . Let P be the set of all n-tuples of polynomial maps
of degree \leq l on x , y . Choose a smooth function \rho : Warrow[0,1] such that
\rho=1 on \overline{W_{i}} and \rho=0 on W-W_{i}’ . Put P’=\{\alpha\in P|(f+\rho\cdot\alpha)(W)\subset X\} .
Since P’=\{\alpha\in P| (f+\rho \alpha)(W_{i}’)\subset X\} and \overline{T\Psi}_{i} is compact, P’ is a
neighborhood of 0. We define the following maps for \alpha\in P’ :

\iota_{\alpha} : V\cross Uarrow W’\cross U\cross P’((y, u)\vdasharrow(y, u, \alpha))

\mu : V\cross U\cross P’ – J^{l}(r+k, 1)

((y, u, \alpha) - j_{1}^{l}(H\circ((f+\rho\cdot\alpha)\cross id_{u}))(0, y, u))) .

Let \alpha\in P’ . Then (f+\rho\cdot\alpha)\in B_{i} if and only if j_{1}^{l}(H\circ((f+\rho\cdot\alpha)\cross id_{u}))|_{x=0}

is transversal to A on \overline{W_{i}}\cap\{x=0\} , and this holds if and only if \mu\circ\iota_{\alpha}

is transversal to A on \overline{W_{i}}\cap\{x=0\} , Since \rho=1 on W_{i} and H|_{X\cross u} is
a submersion, \mu is submersion and hence this holds if \iota_{\alpha} is transversal to
A’:=\mu^{-1}(A) . Hence \iota_{\alpha} is transversal to A at (0, y, u, \alpha)\in V\cross U\cross P’

if and only if (0, y, u, \alpha)\not\in A’ or the projection \pi : A’ – P’ is regular at
(0, y, u, \alpha) .

Since the set of critical values of \pi has measure 0 in P’ by the Sard-
Brown theorem, there exists \alpha arbitrarily near 0 such that j_{1}^{l}(H\circ((f+\rho\cdot

\alpha)\cross id_{u}))|_{x=0} is transversal to A on \overline{W}_{i}\cap\{x=0\} . This means that there
exists g\in C^{\infty}(W, X) arbitrarily close f such that j_{1}^{l}(H\circ(g\cross id_{u}))|_{x=0} is
transversal to A on \overline{W}_{i}\cap\{x=0\} . Hence B_{i} is dense. \square

6. Versality of optical caustics with r-corners

In this section we shall investigate our second problem. Recall that
\tau : (M\cross M, (q_{0}, u_{0})) -arrow(R, t_{0}) denotes the ray length function. We say
that a function germ f\in m(r;k)^{2} occur as an organizer of a reticular
versal caustic at (t_{0}, \xi_{0}) if there exists the hypersurface germ V^{f} in (\mathbb{J}I, q_{0})

satisfying \xi_{0}|_{T_{q_{0}}V^{0}}=0 defined by an immersion \iota_{f} : (H^{r}\cross R^{k}, 0) -arrow(M, q_{0})

such that \tau\circ(\iota_{f}\cross id_{u})-t_{0} is a reticular R^{+}Reversal unfolding of f .

Lemma 6.1 Let a function germ f\in m(r;k)^{2} occur as an organizer of
a reticular versal caustic at (t_{0}, \xi_{0}) . If a function germ g\in m(r;k)^{2} is
reticular R-equivalent to f , then g also does occur as an organizer of a
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reticular versal caustic at (t_{0}, \xi_{0}) .

Proof. By the hypothesis, there exists a hypersurface germ V^{[} and an im-
mersion \iota_{f} to which above condition holds. Since f is reticular R-equivalent
to g , there exists \phi\in B(r, k) such that g=f\circ\phi . Consider the coordinate
change (x, y)\vdash\Rightarrow\phi^{-1}(x, y) on V^{f} Let V^{g} be the hypersurface ge rm of
(M, q_{0}) parameterized by \iota_{g} :

\swarrow\iota_{g}

V^{g}

\searrow g

M \downarrow\phi R
\nwarrow \nearrow

\iota_{f}

V^{f} f
By the above diagram we have

G(x, y, u):=\tau(\iota_{g}(x, y), u)-t_{0}=\tau(\iota_{f}(\phi(x, y)) , u)-t_{0}

=F(\phi(x, y) , u) .

Since F is reticular R^{+} -versal unfolding of f , G is reticular R^{+} versal un-
folding of G|_{u=0}=f\circ\phi=g . \square

Definition 6.2 [5, 3.2] Let u\in M and \eta\in E_{u} . Then we say that the
Hamiltonian function H has rank s at u in direction \eta if the following
condition holds: Let L_{\eta} be the line in T_{u}^{*}\Lambda I spanned by \eta . If we introduce
affine coordinates v_{1} , . . , v_{m} in T_{u}^{*}M such that T_{\eta}E_{u} is given by v_{m}=1 , the
v_{m}-axis is L_{\eta} , and if we represent E locally at \eta as v_{m}=1+h(v_{1}, \ldots , v_{m-1}) ,
then the Hessian of h at \eta has rank s .

Theorem 6.3 Let M be an m(=r+k+1) -dimensional differentia te

manifold, H : T^{*}M\backslash 0 -arrow R a positive and positively homogeneous Hamilton
function, q_{0}\in M , \xi_{0}\in E_{q0} and t_{0}\geq 0 . Assume that (t_{0}, \xi_{0}) is a regular
point of \exp_{q0} , put u_{0}=\exp_{q0}(t_{0}, \xi_{0}) and suppose \eta_{0}\in E_{u_{0}} be the image of
\xi_{0} under the local flow of H at time t_{0} . Then each of following conditions
(1), (2) is sufficient for f\in m(r;k)^{2} to occur as an organizer of a reticular
versal caustic at (t_{0}, \xi_{0}) :

(1) The reticular R-codimension f\leq m .
(2) The reticular R-codimension f=m+1 , corank f\geq 1 and the

rank s of H at u_{0} in direction \eta_{0}\geq 1 .
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Proof. Choose coordinates (u_{1}, \ldots, u_{m}) of M at u_{0} such that, with
respect to the corresponding fiber coordinates (v_{1}, . , v_{m}) in T_{u_{0}}^{*}M , H
satisfies the conditions in Definition 6.2. By a linear coordinate change
of (u_{1}, \ldots, u_{m-1}) , we may assume that h has the form h(v_{1}, \ldots, v_{m})=

\sum_{i=1}^{r}\epsilon_{i}v_{i}^{2}+\sum_{j=1}^{k}\delta_{j}v_{r+j}^{2}+a , where \epsilon_{i} , \delta_{j}=0or\pm 1 , a\in m(r;k)^{3} and in the
case (2) \delta_{1}\neq 0 .

Let f\in m(r;k)^{2} satisfy the condition (1) or (2). By Splitting Lemma
4.3, there exists a function germ f_{0}\in m(r;l)^{2} such that f is reticular R-
equivalent to f_{0} (x_{1}, \ldots, x_{r}, y_{1}, . , y_{l})\pm y_{l+1}^{2}\pm\cdots\pm y_{k}^{2} and f_{0}|_{x=0}\in m(0;l)^{3} .
We may assume that f=f_{0}\pm y_{l+1}^{2}\pm\cdots\pm y_{k}^{2} by Lemma 6.1. Then we have
\mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\rangle=\mathcal{E}(r;l)/\langle x[mathring]_{\frac{\partial f}{\partial x}}, [mathring]_{\frac{\partial f}{\partial y}}\rangle .

First, we prove that x_{1} , . , x_{r} , y_{1} , . , y_{l} are linearly independent in
\mathcal{E}(r;l)/\langle x[mathring]_{\frac{\partial f}{\partial x}},\partial_{0}\perp\partial y\rangle over R. Let \alpha_{1}x_{1}+ , . +\alpha_{r}x_{r}+\beta_{1}y_{1}+\cdot 1+\beta_{l}y_{l}=

O\in \mathcal{E}(r;l)/\langle x[mathring]_{\frac{\partial f}{\partial x}}, _{\partial y}^{\partial_{0}}\perp\rangle for \alpha_{1} , \ldots , \alpha_{r} , \beta_{1} , \ldots , \beta_{l}\in R . Since \langle\beta, y\rangle=0 in
\mathcal{E}(0;l)/\langle[mathring]_{\frac{\partial f}{\partial y}}|_{x=0}\rangle and f_{0}|_{x=0}\in m^{3}(0;l) , we have \beta=0 . Suppose that \alpha_{1}\neq 0 .
Then there exist \gamma_{0} , \ldots , \gamma_{l}\in m(1;l) such that

x_{1}+ \gamma_{0}(x_{1}, y)x_{1}\frac{\partial f_{0}}{\partial x_{1}}(x_{1},0, y)+\gamma_{1}(x_{1}, y)\frac{\partial f_{0}}{\partial y_{1}}(x_{1},0, y)

+ \gamma_{l}(x_{1}, y)\frac{\partial f_{0}}{\partial y_{l}}(x_{1},0, y)=0 .

Therefore we have \gamma_{i}(0)\neq 0 for some i\geq 1 , for x_{1}[mathring]_{\frac{\partial f}{\partial x_{1}}}(x_{1},0, y)\in m(1;l)^{2} .

We may assume that i=1 . Then this means that [mathring]_{\frac{\partial f}{\partial y_{1}}}|_{x=0}\in\langle[mathring]_{\frac{\partial f}{\partial y_{2}}}|_{x=0} , \ldots ,
[mathring]_{\frac{\partial f}{\partial y_{l}}}|_{x=0}\rangle and contradicts that \dim_{R}m(0;l)/\langle[mathring]_{\frac{\partial f}{\partial y}}|_{x=0}\rangle<\infty .

Consider the case (2). The vector space

m(r;l)/(\langle x\frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\rangle+L_{R}\langle x, y\rangle+m(r;l)^{3})

must have a positive dimension because if not we have reticular R-codimen-
sion f\leq m . Therefore we may assume by Lemma 6.1 and Lemma 6.4 below
that

b_{k+1}:= \sum_{i=1}^{r}\epsilon_{i}x_{i}^{2}+\sum_{j=1}^{l}\delta_{jy_{j}}^{2}\neq 0 in

m(r;l)/(\langle x\frac{\partial f_{0}}{\partial x}, \frac{\partial f_{0}}{\partial y}\rangle+L_{R}\langle x, y\rangle)
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Now choose b_{l+1} , \ldots , b_{t}\in m(r;l)^{2} and b_{t+1} , \ldots , b_{k}\in m(r;l)^{3} such that
x_{1} , . , x_{r} , y_{1} , . . ’ y_{l} , b_{l+1} , \ldots , b_{t} , b_{k+1} is a basis of m(r;l)/(\langle x[mathring]_{\frac{\partial f}{\partial x}} , [mathring]_{\frac{\partial f}{\partial y}}\rangle+

m(r;l)^{3}) and x_{1} , . . ’ x_{r} , y_{1} , . , y_{l} , b_{l+1} , \ldots . b_{k+1} is a basis of rn(r;l)/
\langle x[mathring]_{\frac{\partial f}{\partial x}}, [mathring]_{\frac{\partial f}{\partial y}}\rangle .

In the case (1), choose b_{l+1} , \ldots , b_{k} such that x_{1} , \ldots , x_{r} , y_{1} , \ldots , y_{l} ,
b_{l+1} , \ldots , b_{k} generate m(r;l)/\langle x[mathring]_{\frac{\partial f}{\partial x}}, [mathring]_{\frac{\partial f}{\partial y}}\rangle over R.

Now define \phi\in B(r;k) by

\phi(x_{1}, \ldots, x_{r}, y_{1}, . , y_{k})

= (x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{l}, y_{l}+1+b_{l+1}, . . ’ y_{k}+b_{k}) .

Since \exp_{u0}^{-} is invertible, the map \iota_{f} : (H^{r}\cross R^{k}, 0) -arrow(M, q0) given by
\iota_{f}(x, y)=\exp_{u0}^{-}(f(x, y)+t_{0}, (\phi(x, y), 1+h\circ\phi(x, y))) defines a hypersurface
germ V_{f} in (M, qo) . Then we have

F(x, y, 0):=\tau(\iota_{f}(x, y), u_{0})-t_{0}=(f(x, y)+t_{0})-t_{0}=f(x, y) ,

\xi(q_{0}, u_{0})|_{T_{q_{0}}V^{f}}=-d_{(x,y)}(\tau\circ\iota_{f})((0,0), u_{0})=-d_{(x,y)}f(0,0)=0 ,

d_{u}F(x, y, 0)

=d_{u}\tau(\iota_{f}(x, y) , u_{0})=\eta(\iota_{f}(x, y), u_{0})=(\phi(x, y) , 1+h\circ\phi(x, y))

= (x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{l}, y_{l+1}+b_{l+1}, . , y_{k}+b_{k}, b_{k+1}+a+1) ,

where a\in m(r;k)^{3} .
In the case (1), we have

\mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}\rangle

=L_{R}\langle 1, x_{1}, . . , x_{r}, y_{1}, . , y_{l}, b_{l+1}, \ldots, b_{k}\rangle

=L_{R}\langle 1, x_{1}, . . ’ x_{r}, y_{1}, . , y_{l}, y_{l+1}+b_{l+1}, \ldots, y_{k}+b_{k}\rangle .

Hence the proof of the case (1) is completed.
In the case (2). since 1, x_{1} , \ldots , x_{r} , y_{1} , \ldots , y_{l} , b_{l+1} , \ldots , b_{k} , b_{k+1} is a basis

of \mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\rangle , there exist \alpha_{0} , \alpha_{1} , \ldots , \alpha_{r} , \beta_{1} , . . , \beta_{k+1}\in R such that

a\equiv\alpha_{0}+\alpha_{1}x_{1}+ +\alpha_{r}x_{r}+\beta_{1}y_{1}+ \cdot+\beta_{l}y_{l}+\beta_{l+1}b_{l+1}

+\cdot\cdot+\beta_{k+1}b_{k+1} mod \mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}\rangle
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Hence

0\equiv\alpha_{0}+\alpha_{1}x_{1}+ , . +\alpha_{r}x_{r}+\beta_{1}y_{1}+ \cdot . +\beta_{l}y_{l}+\beta_{l+1}b_{l+1}

+ +\beta_{t}b_{t}+\beta_{k+1}b_{k+1}

mod \mathcal{E}(r;k)/(\langle x\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\rangle+m(r;k)^{3}) .

Since x_{1} , . . ’ x_{r} , y_{1} , \ldots , y_{l} , b_{l+1} , . , b_{t} , b_{k+1} is a basis of \mathcal{E}(r;k)/(\langle X_{x\partial y}^{\frac{\partial}{\partial}\zeta\lrcorner\partial},\rangle+

m(r;k)^{3}) ,

\alpha_{0}=\alpha_{1}= . . =\alpha_{r}=\beta_{1}= . . =\beta_{t}=\beta_{k+1}=0 .

Hence a\in L_{R}\langle b_{t+1}, \ldots, b_{k}\rangle in \mathcal{E}(r;k)/\langle x_{\partial x\partial y}^{\lrcorner\partial\lrcorner\partial},\rangle . This means that

\mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}\rangle

=L_{R}\langle 1, x_{1}, . . ’ x_{r}, y_{1}, . , y_{l}, b_{l+1}, \ldots , b_{k}, b_{k+1}+a\rangle .

Therefore

\mathcal{E}(r;k)/\langle x\frac{\partial f}{\partial x} , \frac{\partial f}{\partial y}\rangle

=L_{R}\langle 1 , x_{1} , \ldots , x_{r} , y_{1} , \ldots , y_{l} , y_{l+1}

+b_{l+1} , \ldots , y_{k}+b_{k} , b_{k+1}+a+1\rangle .

Hence the proof for the case (2) is completed, supposing Lemma 6.4. \square

It remains to show:

Lemma 6.4 LelA= diag (\epsilon_{1}, \ldots, \epsilon_{r}, \delta_{1}, . . , \delta_{l})\in M(r+l, r+l;R) ,
\epsilon_{1} , \ldots , \epsilon_{r} , \delta_{1} , \ldots , \delta_{l} are 0 or \pm 1 and \delta_{1}\neq 0 . Then the set \mathcal{F} of matri,-

ces linearly generated by D\phi(0)^{t}AD\phi(0) for all \phi\in B(r;l) is equal to that
of symmetric matrices in \Lambda l(r+l, r+l;R) .

Proof. We denote \epsilon=diag(\epsilon_{1}, . , \epsilon_{r}) and \delta=diag(\delta_{1}, \ldots, \delta_{l}) . At first
we remark that

\{B\delta C\in M(s, t;R)|B\in M(s, l;R), C\in M(l, t;R)\}=i1l(s, t;R)

for any integer s and t . Let \phi\in B(r;l) be given. We denote \phi(x, y)=

(x_{1}a_{1}(x, y) , \ldots . x_{r}a_{r}(x, y) , b_{1}(x, y) , \ldots , b_{l}(x, y)) . Then we have by immedi-
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ately calculation that

D\phi(0)^{t}AD\phi(0)=

(\begin{array}{lll}diag(a_{1}^{2}(0)\epsilon_{1},. .,a_{r}^{2}(0)\epsilon_{r})+2(\frac{\partial b}{\partial x}(0))^{t}\delta(\frac{\partial b}{\partial x}(0)) 2(\frac{\partial b}{\partial x}(0))^{t}\delta(\frac{\partial b}{\partial y}(0)) 2(\frac{\partial b}{\partial y}(0))^{t}\delta(\frac{\partial b}{\partial x}(0)) 2(\frac{\partial b}{\partial y}(0))^{t}\delta(\frac{\partial b}{\partial y}(0))\end{array})

By considering the case \frac{\partial b}{\partial x}(0)=0 we have

\{ (\begin{array}{lll}diag(a_{1}^{2}(0)\epsilon_{l},. ,a_{r}^{2}(0)\epsilon_{r}) 00 B\end{array})

\in M(r+l, r+l;R)|B\in M(l, l;R)\}\subset \mathcal{F} .

This means that

\{ (\begin{array}{ll}0 00 B\end{array})\in M(r+l, r+l;R)|B\in M(l, l;R)\}\subset \mathcal{F} .

Let \phi , \phi’\in B(r;l) satisfy the conditions that a(0)=a’(0) , \frac{\partial b}{\partial x}(0)=\frac{\partial b’}{\partial x}(0) ,
where \phi(x, y) = (x_{1}a_{1}(x, y) , \ldots , x_{r}a_{r}(x, y) , b_{1}(x, y) , . , b_{l}(x, y)) and
\phi’(x, y)=(x_{1}a_{1}’(x, y) , \ldots , x_{r}a_{r}’(x, y) , b_{1}’(x, y) , . , b_{l}’(x, y)) . Then

D\phi(0)^{t}AD\phi(0)-D\phi’(0)^{t}AD\phi’(0)

=(2( \frac{\partial b}{\partial y}(0)-\frac{\partial b’}{\partial y}(0))^{t}\delta(\frac{\partial b}{\partial x}(0))0

2
( \frac{\partial b}{\partial x}(0))^{t}\delta(\frac{\partial b}{\partial y}(0)*-\frac{\partial b’}{\partial y}(0)))

Therefore

\{ (\begin{array}{ll}0 BB^{t} 0\end{array})\in M(r+l, r+l;R)|B\in\Lambda l(r, l;R)\}\subset \mathcal{F} .

Similarly we have

\{ (\begin{array}{ll}B 00 0\end{array})\in \mathbb{J}I(r+l, r+l;R)|B\in M(r, r;R) , B^{t}=B\}\subset \mathcal{F} .

\square
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