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Irrational foliations of S° x S3

Takashi TSUBOI
(Received June 4, 1997)

Abstract. The Godbillon-Vey class is a characteristic cohomology class of dimension
3 for foliations of codimension 1 whose transition functions are transversely Lipschitz
and with derivatives of bounded variations. We show that for a foliation F of S3 x §3
of codimension 1, the ratio a/b of the Godbillon-Vey class GV(F) = (a,b) ¢ R® R =
H3(S® x S3; R) takes any real value. It has been known that this ratio is invariant under
the deformation of smooth foliations.
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Introduction

Let F be a codimension-one foliation of of S3 x $3. For a codimension-
one foliation, the Godbillon-Vey class is defined as a 3-dimensional cohomol-
ogy class ([6]). Hence in this case, GV (F) € H3(S? x S3;R) * R® R. We
call F rational if GV (F) = (a,b) € H3(S? x $3; R) satisfies a/b € QU{oo},
and call F irrational if a/b € R — Q. Gel'fand-Feigin-Fuks ([2]) noticed that
this ratio a/b is invariant under a deformation of codimension-one foliations.
Hence rationality or irrationality of foliations of S3 x S3 is invariant under
deformation.

This definition of rationality and irrationality imitates the one for the
linear foliations of the 2-dimensional torus T?2. (See [12], for the in-
teresting progress in piecewise linear foliations on T2.) A rational linear
foliation of T? is defined by a submersion to the circle S!. In a similar way,
we can construct examples of rational foliations of S3 x S® by defining a
Haefliger structure on S® x 3 as a pull-back by an appropriate map to S3
and using the theorem of existence of foliations ([16]). An irrational linear
foliation of T? is easy to construct. But it has not been known whether
there exist irrational foliations of S3 x S3. The question of the existence of
irrational foliations of S® x S* was raised in Gel’fand-Feigin-Fuks [2] and
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discussed in Morita [14]. Since rationality or irrationality of foliations of
53 x §3 is invariant under deformation, the existence of rational foliations
gives no insurance for the existence of irrational foliations.

The domain of definition of the Godbillon-Vey class has been enlarged
by several authors (see [5], [3], [10], [17]). Then the same question of the
existence of irrational foliations is raised for each class of foliations.

In the case of transversely piecewise linear foliations, we showed in
that all transversely piecewise linear foliations are rational with respect
to the discrete Godbillon-Vey class defined by Ghys and Sergiescu ([5], [3]).
The discontinuous invariants defined by Morita ([14]) and the description by
Greenberg ([7]) of the classifying space for the transversely piecewise linear
foliations were essential to prove the rationality of transversely piecewise
linear foliations.

In this paper we show the following theorem.

Theorem  For any (a,b) € H3(S® x S3;R), there ezists a foliation F of
class CYV1 such that GV (F) = k(a,b) for some positive integer k.

Foliations of class C»Y! ([21]) are transversely Lipschitz foliations such
that the derivatives of transition functions are with bounded variations.
These foliations were called of class P after . For these foliations, the
Godbillon-Vey class GV is still defined (see also [17]). This Godbillon-Vey
class is the sum GVieg + GVatom + G Vsing of the usual Godbillon-Vey class
GVieg ([6]), the discrete Godbillon-Vey class GVatom = GV ([5], [3]) and
the singular Godbillon-Vey class GVing ([17]). Our main theorem of course
says that there exist irrational foliations of class CLVr of §3 x §3. For our
examples, GV (F) = GVatom(F). The property of the Godbillon-Vey class
under the deformations of foliations of class CFV1 is not yet clear.

As we mentioned before, the existence of rational foliations is well
known. In order to show the existence of irrational foliations of S x S, we
need to use a result of Morita ([14]).

In fact, Morita translated the question of rationality into that of graded
commutativity of *-product defined on the homology of the group of diffeo-
morphisms of R with compact support ([14]). Thus we look at the homology
of the group G2V (R) of homeomorphisms of class V1 of R with compact
support, and we in fact show the graded commutativity for the x-product
on 2-dimensional homology classes coming from the homology of the group
PL.(R) of piecewise linear homeomorphisms of R with compact support.
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This paper is organized as follows.

In §1, we review the results of Morita ([14]) on the relationship between
the Whitehead products on the homotopy groups of the classifying space for
the codimension one foliations and the x-products on the homology groups
of the group of diffecomorphisms. Then we reduce the proof of our main
theorem to the commutativity of the x-product.

In §2, we review the fact that the second homology of the group PL.(R)
of piecewise linear homeomorphisms of R with compact support is isomor-
phic to R ®q R ([7]) and its image in the second homology of the group
GLY1(R) isomorphic to R ([18]). This fact was used in to show that
the foliated cobordism class as foliations of class C°Y! of transversely ori-
ented transversely piecewise linear foliations of closed oriented 3-manifolds
is characterized by its (discrete) Godbillon-Vey class.

§3 is the heart of this paper. Let BGLY1(R)? and BPL.(R)® denote
the classifying spaces for the groups GL-V1 (R) and PL.(R) with the discrete
topology, respectively. We show that the -product in H,(BGEV'(R)%; Z)
of elements of Hy(BPL.(R)%; Z) is commutative. This implies the existence
of the irrational foliations of class C™Y1 of §3 x §3. We use an explicit
construction similar to that used in [18].

This work was essentially done during my stay at Pontificia Univer-
sidade Catdlica do Rio de Janeiro in January 1992. I thank it for warm
hospitality.

I tried to construct smooth irrational foliations of S2 x §3 for several
years. But for this interesting question, we have made little progress.

1. Whitehead product and x-product

In order to construct an irrational foliation of S3 x $3, we can try the
following thing. Choose two foliations Fy and Fy of S® such that GV (Fy) =
a and GV (Fy) = b, respectively. In §3 x S3, we put F; and F; on S? x {*}
and on {*} x S3, respectively, and extend it as a Haefliger structure in a
regular neighborhood N of S% x {*} U {*} x S3. Now we try to extend the
Haefliger structure on N = S° to the rest which is diffeomorphic to a 6
dimensional disk. This is precisely the problem of calculating the Whitehead
product

71’3(BT1) X 7r3(Bfl) — 7T5(BT1)
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for the elements of 7w3(BI'1) represented by F; and F,. Here BT denotes
the classifying space for the transversely oriented codimension-one Haefliger
structures.

Let Diff.(R) denotes the group of diffeomorphisms of the real line
with compact support and let B Diff.(R)® denotes the classifying space
for the group Diff.(R) with the discrete topology. Under the isomorphism
H.(BDiff (R)’;Z) = H.(QBT'1;Z) due to Mather ([I1], see also [15], [5],
), the Whitehead product corresponds to the *-product defined in as
follows.

Let u : Diff.(R) x Diff((R) — Diff.(R) be the composition of two
isomorphisms Diff.(R) = Diff.((—o0,0)) and Diff.(R) = Diff.((0, 00)), and
the inclusion

Diff . ((—00, 0)) x Diff.((0, 00)) — Diff(R.).

Then p induces a product * on the homology of B Diff.(R)°.
Morita showed the following proposition ([14]).

Proposition 1.1 Let Fy and Fy be foliations of S3 and u, and ug, the
corresponding elements of Ho(B Diff.(R)%; Z) by Mather’s theorem. If u;
U = Ug * Uy, then the Whitehead product of the two elements of 7r3(Bfl)
represented by F| and Fy has finite order.

We will show that for transversely piecewise linear foliations F; and F5
of $3, the corresponding elements u; and ug in Ho(BGLV1(R)?; Z) satisfies
up * up = ug * u1. We know that the Godbillon-Vey class of PL foliations
of S3 takes any real value. Hence by Proposition 1.1, for any (a,b) €
H3(S3 x §3;R), there is a Haefliger structure # of class CX"1 on % x S®
such that GV (H) = k(a,b) for some positive integer k. Using the theorem
of existence of foliations ([16]), we obtain a foliation F of S3 x S3 such that
GV (F) = k(a,b). This proves our main theorem.

2. Second homology of the group of piecewise linear homeomor-
phisms

Let PL.(R) be the group of piecewise linear homeomorphisms of R with
compact support. We know that the second homology group of BPL.(R)®
is isomorphic to R ®q R ([7]). We also know the generators. Let f, be
a piecewise linear homeomorphism of R with support in [—1,0] such that
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log f1(—0) = a and let g, be a piecewise linear homeomorphisms of R with
support in [0, 1] such that log g, (+0) = b. Then (fq, gs) — (gs, fa) is a 2-cycle
of BPL.(R)® representing the element a ®qb € R®qR. We note that this
92-cycle corresponds to the the piecewise linear Reeb foliation of S® whose
compact toral leaf has the germs at 0 of f, and g, above as holonomies, and
the Godbillon-Vey invariant of this foliation is ab.

Let GIV1(R) denote the group of the Lipschitz homeomorphisms f of
R with compact support such that log f/(z — 0) exists and is a function of
bounded variation. Let ||log f'[|l; denote the total variation of log f.

If we look at piecewise linear homeomorphisms in the group
GLVi(R), we know the following ([I8]). The image of Ho(BPL.(R)’;Z)
in Hy(BGLV1(R)?;Z) is isomorphic to R and this isomorphism is given
by the Godbillon-Vey invariant. Hence as a foliation of class C»V', any
transversely piecewise linear foliation of a 3-manifold is foliated cobordant
to a single piecewise linear Reeb foliation of S3.

This was shown by using a kind of infinite juxtaposition construction
and the following proposition ([19]) which we also need in this paper. A
piecewise linear homeomorphism of R with compact support is said to be
elementary if it has at most 3 nondifferentiable points.

Proposition 2.1 ([19]) Let (a;,b;) (i = 1,2,---) be disjoint open inter-
vals whose union is bounded. Let f; be a piecewise linear homeomorphism
of R with support in [(Ta; + b;)/8, (a; + 7b;)/8] which is a composition
of at most k elementary piecewise linear homeomorphisms. Suppose that
S llog fiI111/? < 0o. Then f =T[1f; is written as a product (composition)
of 3k commutators of piecewise linear homeomorphisms of R as follows.

3k

f=1]lg2j-1,92],

j=1
where g; € GLY1(R), the supports of g; (i = 1,...,6k) are contained in the
closure Ulas, b;] of Ulas, bi].

Remark. In the above proposition, the condition on the support of f; can
be replaced, for example, by Supp f; C [(15a; + b;)/16, (a; + 15b;)/16].

Let ¢ = Zi(fl(i), e f,(f)) be an n-chain of BGXV1(R)’. The support
Supp c of the chain c is defined to be the union |J; ; Supp f ](z) of the supports
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of £V,

For an n-chain ¢ and an n'-chain ¢’ such that the elements of GL-V1(R)
appearing in ¢ commute with the ones appearing in ¢/, we have the Cartesian
product ¢ x ¢’ such that

(e x )= (dc) x ' +(=1)"c x ().

Hence if we have an n-cycle ¢ and an n'-cycle ¢’ such that Int Suppec U
Int Suppcd = 0, then we obtain the Cartesian product ¢ x ¢’ which is an
(n 4+ n')-cycle.

Corollary 2.2 Let (aj,b;), fi and f be as in Proposition 2.1. Let c be
an n-cycle of BGEVI(R) such that Int Suppc N U;(as,b;) = 0. Then the
(n + 1)-cycle (f) x ¢ is homologous to zero.

In the rest of this section, we prepare notations and give several simple
consequences.

When f and ¢ are commuting homeomorphisms of R of class C:V1,
we write the homology class of the 2-cycle (f) x (g9) = (f,g9) — (g, f) of
BGLY1(R) by {f, g}. This is represented by the homomorphism 7 (T?) =
Z? — GLV1(R), which sends the generators to f and g. It is easy to
see that {f,g} = —{g,f} and if f; (¢ = 1,...,k) commutes with g; (j =
..., f), then {Hz fis Hj gj} = Zi,j{fi7gj}’

Let h be a piecewise linear homeomorphism with support in [—2, 2] such
that h(z) = (x +2)/2 for z € [-1,2]. Put U = (-2/3,2/3). Then h/(U)
are disjoint.

For a real number u such that |u| < 1, let f, be an elementary PL
homeomorphism of R with support in [-1/2% 0] such that log f!(z) = u
for z € [-1/25,0) and ||log f.li < 4|u|. In the same way, for a real
number v such that |v| < 1, let g, be an elementary PL homeomorphism
of R with support in [0,1/2%] such that log g, (z) = v for = € (0,1/25] and
Il log gy [ll1 < 4]v]-

Let L denote the linear map defined by L(x) = 27!z. For a real number
w, let T denote the translation defined by T%(z) = z+ w. For a real num-
ber w such that |w| < 272 and a sequence of real numbers {c;},=0.12,... such
that |cj| < 27%, let Fluwico,c1,09,) 30d Gwico 1 cp,--) D€ the homeomorphisms
defined by
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00
F(w;co,c1,02»'“) = HhJTwLJijL—]T_wh—] and
j=0

o0
G lwicocr,eo0) = thT“’ngch_jT_“’h‘j,
7=0

respectively. Since the support of T% L fch_jT_“’ is contained in
[-1/2* + w,w] C U,

1og(WT™ I fo, TR Y [y = [ log(fe, 'l < 2722

and 327212 < oo, Flwieo,e1,e0,-) 15 an element of GLYI(R). In a similar
way, G(wico.c1,c0,--) 1 also an element of GLV1(R).
We show the following proposition which is similar to that in [18].

Proposition 2.3 {TYfiT ™V, TYg, T~ "} = {F(w;o,glg_, 1 ),G(w;o,clm,...)},

~ o0 C;
where ¢ = ) 521 5% -
Proof. Put
. — 92J =
85 = 2 Z 22i”
i=j+1
Then
. : 1
|51 <27 3 270 < o
i=j+1

and s; satisfies

— 92j+2 G+l

A 2
Sp = ¢C and 2 S5 = Sj+1 22j+2 = Cj+1-

We compute the second homology class { F] (w
ways.

1,k )y G(w;SO’sl,sz,...)} in two

First, we have the following lemma.

Lemma 2.4

{F(’w;l,glg,-?—%,...y G(w;so,m,sza'“)}

- 22{F(w;0 111 ) G(w§0,30,31,82,“')}'

152294796 )"

Proof.  Since F(w;l’glg_,_lz_‘ y and (Flu;

. w 1 1 1
aﬁa?a%a

.”))4 coincide near the points
2 )
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in {h/(w);j = 0,1,2,---}, the support of
)

is contained in {J; W ([—1/2%7 +w, ~1/25%7 +w]). Since it is a product of 5
elementary PL homeomorphisms on each h?([—1/241 + w, —1/26%7 4 y]).
Thus by [Proposition 2.1|, it is written as a product of commutators with
support in h?([—1/23%7 4+ w, w]), and as in [Corollary 2.2, we have

Flp, 2

t 1 1
(wv;fa?»@""

—4
Fwitgp o) Fludy g o) Glwisoss e} =0
That is,
2
{F(w;l,%z,?%,“-)’G(w?SO,Sl»Sm---)} — 2 {F(w,Q% _14_ LG ) G(w;50,81,82,---)}'
Since F( L % ) and h_lF(w 0,41 L )h coincides near the points in
) 2 192729726
{h(w);j =0,1,2,---}. Hence the support of
-1 ~1
F(w;;lz,;%;,m)(h Fluwo, 2. 4. d5.0M)

is contained in (J;2, W ([=1/2%%7 +w, —1/27+7 + w]) and it is a product of 2
elementary PL homeomorphisms on each A/ ([—1/2%7 4w, —1/27H + w)).
Again by [Proposition 2.1], it is written as a product of commutators with
support in A7 ([-1/23+7 + w,w]), and as in [Corollary 2.2, we have

{F .11 )(h/ilF(wO

-1 .
(w»EE»EYf’"' ) ’ff?i-’a%a"')h) 7G(w;50,81,$2,'-')} o 0
Thus
2 {F(w, ,2%.’21{-...)) G(w;30,81,52,'“)}

:2 {h IF( e T S h G(w 150,51,52," )}

22 24726

By a similar reason for

G(w;so,sl,s;g,-'-)(h’—IG(W;O’SOvsl752"“)h)_1’

the right-hand-side is equal to the following.
. hah_lG(w;O,So,sl,SQ,"')h}

) G(w;0,30,51,32,~--) }
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Here the equality holds because the conjugation acts as the identity on the
homology. U

Secondly, we have the following lemma.

Lemma 2.5

{F(u),l 1 1 ..)7G(w;so,51,52,“‘)}

aé‘f’;zfa'

_= {walT_w’ngs()T"w} + {F('lU,O,—l— 1 ), G(w;0,51’52,,__)}.

227947

Proof.  Since

F( 1 1 ) = walT_wF(w’O 1 1 ) and

w;la225241“ 32_2a2_41"'

_w —w
G(w;50781752a“') - T gsOT G(w;o,Sl,Sz,“')’
we have

{F{

w;l,z%,;llf,'")’ G(w;SO,Sl,SQ,"')}
= {walT_w, TwQSOT_w} + {walT_w, G(w;0,51,32,"')}
+ {F(w;()’ 1 ) ngSOT_w} + {F( 11 )? G(w;O,sl,SQ,'")}‘

1 :
570540 wi0, 53,57

Here by the perfectness of PL.(R) the second and the third summands are
Zero. U

By Lemmas 2.4 and 2.5,
= {walT_w7 ngSOT_w}
- 22{F( 1 ), G(w;O,SO,Sl’Sz’..‘)}

. 1 1
w’o’ﬁ’F’Q_G

— {F(w;O,—l— 2%,...), G(w;0,81,82a“')}

2

N

= {F(w;O L1 L.y G(w;0,22so—31,2231—52,2232—33,---)}

V3T 3E
= {F( ..)7 G(w;0,01,c2,03a“')}'

-
‘g

. 1
wyo)gfa 3

Here the third equality holds because the support of

4 -1 -1
(G(w;0,80,81,82,---)) (G(w;0,81,82,~--)) (G(w;0,2280—81,2281—Sz,2zsz~83,---))

is contained in U2, h7([—1/2*7 +w, —1/2%%7 + w]) and it is a product of 6
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elementary PL homeomorphisms on each h?([—1/24%7 + w, —1/25%7 4 w)).
Thus we have proved [Proposition 2.3, ]

3. Commutativity of the x-product

In this section, we show that the *-product in H,(BGIY1(R)%; Z) of
elements of Ho(BPL.(R)%; Z) is commutative.

When fi, f2, f3 and f4 are commuting elements of GLV1(R), we write
the homology class of the 4-cycle

(f1) x (f2) X (f3) x (fa) =D _sign(0)(fo(1), fo(2)s fo(3): Fo(a))

of BGEVYY(R)? by {f1, f2, f3, fa}. This is represented by the homomorphism
m(TY) = Z2* — GLY1(R), which sends the generators to fi, f2, f3 and
f1.

We know that the image of any element of Ho(BPL.(R)%Z) in
Hy(BGEVY(R)%; Z) is written as {f},g,} where a is the Godbillon-Vey
invariant. The commutativity of the x-product on the image of
Hy(BPL.(R)%;Z) in H,(BGLY1(R)?%; Z) is precisely the following proposi-
tion.

Proposition 3.1 For any real numbers a and b,

{T_1/22f1T1/22, T"1/22gaT1/22, T1/22flT—1/22T1/22ng—1/22}
_ {T—1/22 f1T1/22, T—1/22ng1/2‘2’ T1/22f1T_1/22, T1/2ZgaT—1/22}.

Here is a sequence of remarks on this proposition. First, the proposition
is easily proved if a/b is a rational number. Secondly, it is sufficient to prove
the proposition when 0 < a < 1 and 0 < b < 1. Thirdly, since we know
that {f1,9} = {fy1/2, 9,12}, it is sufficient to prove the proposition when
0 <a < 1andb= 1. This is because we can multiply the unit by b!/2
and the argument for b = 1 is translated to the general case. Finally, it is
enough to show the proposition for a which is written as

o0

a:Z% (a; € {0,1}).

1=1

This is because any real number a can be written as a sum of 28 — 1 real
numbers of the type above, considering the 28-adic expansion of a.
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We begin the proof of the proposition by computing the 4-dimensional

homology class

{F(— 1 -21_2 L4 .)7G(—2L2;p03p1)p27"')’ G(.ZLQ;QO,(II,(IZ»"')}

o
wl =

in two ways, where |p;| < 27% and lg;] < 22
First as in the proof of Lemma 2.4, we have the following equality.

|H

_Q%JJO:PMP%'“)’
)h,h_lG(__%,o Pg P1 %’...)h,

. 1
Loas

1
— 98(h" F(

[\

Lol 1 1
PYAMEPAPT RPN
1

h™'F, _ h,h—la(

-0 1 1 1 )
) 355’27'72_6"

Ry~

= 2%{F_

1 -0 1 1 1 G 1l .nPQ P1L P
gzi0gmogriger )’ (—ayi0aiahi gk

;11

©
wl"‘

L

194796

;0,

[\~]
wl"‘

Secondly, by decomposing the homeomorphisms into the parts sup-
ported on U and (2/3,2] and using the perfectness of PL.(R) as in the

proof of Lemma 2.5, we have the following equality.

U sriligzeaas -'-)’G(—z%;po,m,pz,-") (3z3L5551) G(212 G0,01,02,) |
—1/22 1/22 -1/22 1/22
{T / f T F(_'2L2» »%’%7 ) T ngT G(_Q_lf;oaphp?"")’
1/22 -1/2 2 1/22 —-1/2?
T f T (57’07;15’%3 ) T quT G(;lf;oaq%(l%"')}

_ {T_l/szlTl/zz,T_l/zzgpoTl/Qz,T1/22f1T_1/22,Tl/ngqu_l/Qz}
—1/22 1/22 —1/22 1/22
+ {T flT , T gpoT ’F('2'12§0a;12'35121‘a"')7 G(Elg;o,qlm’...)}
+ {F(__l_ L2 -1?,...)) G(—";?;O,Plapb“')’

T1/22f1T"1/22,T1/22gq0T“1/22}

+ {F _lf % % )’ G(_Elf;ovplvpza"')’ F(EIQ_’O’EIQ-’Z%-’)’ G(_Q-li’o’ql )q2,'")}.

2,72 Y

Here by using [Proposition 2.3 and the fact that conjugation acts as the
identity, the second summand and the third summand are computed as

follows.

—1/22 1/22 —1/22 1/22
{T / flT/ ,T / ngT / j}7(;12_;0 1 1 ...)7G(512_;0’q1,q2’...)}

’27,51',
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= {T 3f T3 T ngT F(_fa ’ ),G(

i? Lfl ‘21—2§0aQ1,42,"')}

= (T 1iT%, T2 g,, T°, TV 112 1112 6117y
_ 2 o 1/92 _ _1/92
={T 1/22f1T1/2 T 1/2 gpoTl/Qz,T1/22f1T 1/22,T1/229(3T 1/2 1,

where ¢ = ;’01 5355 -
1/22 ~1/22 p1/22 —1/22
{F(__%;nglfaglz’“')’a( ,PI,P2 ),T f T T / g T / }
3 3
- {F _12'v ,_17’513_’_”), G( 1p1ap2 )7T flT T quT }

_ 2 _ 2 2 — _
={T" V% TV T r gﬂ”2 T3 AT, T34, T}
— {Tl/szlT_1/22,T1/22gﬁT_1/22,T_1/22f1T1/22,T_1/22gq0T1/22}
_ {T‘1/22f1T1/22, T—1/22gq0T1/22, Tl/22flT—1/22 : T1/22g,3T_1/22},
where p = Y22, 2.
Thus we obtain the following lemma.

Lemma 3.2

{ ( 2277792994 26 ”), ( 22‘ 2 22" 22’“‘)’
F 1 1 1 1 G 1 91 49
(2_5;0’;2-’21—’21 27 2_2_’-517’_% }

Q

(_2%'§0,P1,P2y"‘)’

)’ G(2L210sq1 5(12,"‘)}

B {F(—;Er;O,—lz»-lzr")’
Fidog &

_ {T‘1/22f1T1/22, T—1/2ng0T1/22’ T1/22f1T‘1/22, T1/229q0T—1/22}
+ {T_1/22f1T1/22,T_1/22gp0T1/22, T1/22f1T_1/22,T1/229@T—1/22}

_ _ 2 _ _
+{T 1/22f1T1/22,T VQngOTl/?Z,Tl/Q AT 1/22,T1/229ﬁT 1/22}.

We will use this lemma to prove [Proposition 3.1. As we remarked
before, it is enough to show

{T"1/22f1T1/22,T“1/2291T1/22,T1/22f1T_1/22,Tl/QQgCOT_l/QQ}
_ {T”l/szlTl/QQ,T”I/QQQCOTUQQ, T1/22f1T_1/22, T1/2291T—1/22}
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for a real number ¢y such that
1
co=) o8 (a; € {0,1}).
i=1

Let c; be a sequence of real numbers such that |c;] < 1/2%.
Put p; = 1/2% and ¢; = ¢; in Lemma 3.2. Then by the argument as in
the proof of Lemma 2.4, we have the following equality.

F 1 1 1 1 G 1 1 1 1
{ (_2”2;0752'7?1%""’), (_’27;0,?’21':2_6,"')’

F(l 1 ),G(

3730555050556 5730,26c0—c1,28¢1 2,255, ) )

_ {T—1/22 f1T1/22, T“1/22ng1/22, T1/22 flT—1/22, Tl/ngCOT_1/22}
+ {T‘1/22f1T1/22, T_1/2291T1/22, T1/22f1T_1/22, T1/22géT—1/22}
+ {T"l/zzflTl/Qz,T_1/22gCOT1/22,

2 102 2 192
TV fy7= Y2 11/ gisT 2}

On the other hand, put p; = ¢; and ¢; = 1/2%, we have the following
equality.
) G

1 1 1 1 1
{F(—Efyoaﬂsﬂ,%a —"2_5;0,2600—61 )2601 —C2 a26c3_03)'“),

Fiig1 11

221 ’22a24726?

_ {T—1/22f1T1/22’ T—1/22gCOT1/2?’ T1/22f1T‘1/22,T1/2291T“1/22}
+ {T_1/22f1T1/22,T”l/ngcoTl/Qz,

2 1792 2 /92
TV [T T2 91151 125

),G(1 11 1 )}

2_2;072—2v2_4>2_6a"'

+ {T“1/22f1T1/22, T-1/2291T1/227 T1/22f1T_1/22, T1/22g@T_1/22}.

Now put
o0 Q:
67 )
¢;=2" 3 o
i=j+1

then we have
a _ 9

6.  _ . — 96j
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By the above equalities, we have the following equality.
{T—1/22f1T1/22’ T_1/2291T1/22,T1/22f1T_1/22,Tl/QQQCOT_l/ZQ}
_ {T_1/22f1T1/22, T_1/22gcoT1/22, T1/22f1T”1/22,T1/2291T’1/22}

Foi,1 1 1 G, 1.4 ag a

(5570’2_2a27'a27,'3 )’ (?57075%'72_212_3a )}
- F 1 1 1 1 G 1 -

{ (_2_2;(),5'2'9'2_17'2"6—;’"')’ (_2_27()5%,%%1%%5 )’
F 1 1 1 1 G 1 1 1 1 .
(57’07—2'7,27'12—61 )7 (271(]’2_2’2_4);6, )}

Since
G 1. 1 1 1 — G 1— 1-— 1— G 1 aj ag a
(£57:0,55 57756 ) (:I:ZLQ;O, 251, 222, 253,“) (i2—2;0,;2‘,2—§,5%,‘ )

(——O l-a; l—ag l-—ag “.)’
221)227247263

- F 1 1 1 1 G 1
{ (—52:0,5750055)"  (—5230,5%, 55,58 )
Foi o1 1 1 G l—a; l—ag 1— )
(52305251 56)" - (530,520 572, 233,-~-)}

By |Corollary 2.2, the right hand side is equal to the following.

,G( 1 O,I—al l—ag 1—a3,”'),

{F 1 -0 l-ay l—ag l-ag 1.
2277 22 7 94 0 96

(—2_2aa227247261)

a

F 2,2
oz gty Ohoshg o)

o {F(_ : ;Ov%a%ag_g'v"')’ G(_Elf;o’pl_,fag%"")’

.0,1—(11 l—a.2 l—a.3 )}

l—a; 1l—ag l—ag ,G 1
) (27» 22 2 o4 1 98

a>22)24326»'

,\
gs)
)

(_ -0 l-—a; l—ag l—ag ),G( 1 0 l-ay l—ag l—ag ),
?Zaa22a24a26, »T 92 T 94 T 96

Fiagap e ag
227 722724’26a

L. lzay 1-ay l-ag ..-)’G( 10,201 1202 143 Ly
5{»722’24’26’ ’ ’

F

__{F(

1 G, 1 .
_52_;0,%%’%‘%,%3_’...)’ (_2_2;0,21 22 23 )7}

Thus we have shown the following lemma.
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Lemma 3.3
{T'1/22f1T1/22,T"1/2291T1/22,T1/22f1T”1/22,Tl/QQgCOT_1/22}

. {T‘1/22f1T1/22, T_I/QQgCOTl/QQ,T1/22f1T_1/22,T1/2291T_1/22}
et {F(-—-I—O l-ay l—a9 1—a3,'_.),G

(—L‘O l-a; 1l-a9 l—ag ),
22 T2 a0 56 22152 v T4 T 56
F 1 a.l CL2 0-3 G 1 a)] ag a
(5520355,2—4,2—6,“')’ (55;057,51,;%,'“)
- {F( 1 .0 l-ay l—ag l—ag ),G 1. l—ay 1—a9 l-—ag ”_),
52" ) 22 3 24 3 26 3 22» ) 22 ) 24 L) 26 3
F 1 ay] a9 a G 1 ay a9 a .
(- 5:0,%,2,28,-) G 1:0,%4,23,28 -}

We are going to show the following lemma which together with the
previous lemma, implies [Proposition 3.1}, hence our main theorem.

Lemma 3.4

(_ 0 l-aj; l—a9 l—ag ),
571722’2472(‘),

F

1 .4 @] @2 @ G 1 ., 21 a2 a
2_25(),21',21?'72%'3'“)’ (5710,52_727?',;8'
G

n l=ay 1—a9 l-a 1 . l—a; 1- 1-
(;fa()’ 2217 242, 263""), (Z_Zaoa 2215 2;12’ 2((5137"')’
F

(

1 .21 a2 @ G 1., a1 a2 @
—52"0"2'2_”2%’%7"')’ (_277075%351% E%

Proof.  The restrictions of the 4-cycles

(F_ 1.9 1=y 1—ap 1-ag ) X (G

( 5§7a 52 2 94 T 96 7)

(=450 l-a) l-ag l-ag ))

22N T 52 T o4 T 56 sttt
X
X (Fiy0,5,2,5,-) X (G5 .%,.) and
F1 l—aj 1— 1— x (G 1 1— 1- l-a
( (;Z;Oa 2;11 2:[127 2(‘;3»“')) ( ('.é'f;oa 2§1a 2;12a 2(‘513»"'))

X (F(

~poghghgte) < (Cgros .5.-)

to h/(U) are degenerate chains which differ by the conjugation by a trans-
lation by £1/271!, the sign depending on whether a; = 0 or 1.

For the sequence {a;};=0,12,.. such that a; € {0,1}, let ﬁ(% ag 23 )
22724726
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jo¥}

=

(o
248
gk

) be the homeomorphisms of R defined by

27 -1

w - . " . N .
ﬁ(%,%’%%,...) = H hj( H T~i/2j+2L]faj/22jL_]TZ/2J+2)h‘]

J=1 i=—27+1

27 —1

G(%’%a%%"") = H h]( H Thi/2]+2L]ga]’/22J'L_JT1/2J+2> h_]’
J=1 i=—27+1

respectively. Then

)

l110g(Fzy o3 5.l < 303 og(fu, oYl
7 1

<) 2-2.4.27% <0
j

and F(a_l ag a3 ) is an element of GLY1(R). In a similar way, so is

@
pSS

For a real number w such that |w| < 1/23, let t,, denote a homeomor-
phism of R satisfying the following conditions:
the support of t,, is contained in U = (-2/3,2/3),
tw(z) =xz+w for =z €[-3/8,3/8], and
Il og(tw)'ll1 < 4lul.
Now let H(% ag 23 ) be a homeomorphism defined by

22724756

e ¢]
Higp op 25,y = 1L Wto, pprah ™.

J=1

= F(%%»;j?";_g, )F(;II,O ;—%,%%,;—g—, ) and
2 -1
(EEE BRI IES E BT T U CEE L
REEERECTET R
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We also have

Hoy ag ag (F\ 1 g1-a) 120y 1-a3 (Hay a3 ag ...))—1
22794796 (izﬂ_)oajr’?zvfa"') 2279496

=F 1 l-ay l—ag9 l—a and
(igﬁ"o’ 221, 242, 263,...)
—1
H aj a3 a G l-ay l—ag 1— Hiaj a3 «
(%.3.,%,-) (J—’sz;O» 2;1, 2:2, 2;3,...)( (53,5858 ))

— G(:tL'O l-aq 1—02 1—03 )
22T g 1T g6

Hence we have the following equality.

{F(_ 1 -0 l—aj l—ag l—ag )7G(—L0 l-a; 1l-—ag 1l—ag ),
227a22)24a26, 22)a22a24a26)

F a a a Fa a
(- 320,55, (5. %

22724

N ), G(_Elf;oag%7;%'a;—8"'")G(;_é-ﬂ%%’;_g)”')}

— {F( 1 -0 l-aj 1l—ag l-—ajg ), (—LO l-a; 1l-ag l-—ag ),
22aa22,24126’ 227722)24a267

Q%

~ ~

...)F( ay ap ag ‘_,),G(al

1.
5570,52_321'a267 277

,%8'7"')0(515;0’%1%%»%8,"‘)}
By the bilinearity, the both sides are decomposed into the sum of four 4-

dimensional homology classes.

{F 1 .o 1l—ay l—as G 1.

('—2_2"072_2) 24 "")’ (—2_2')07 22 ,'QTa"'),

F

RS

1 22 )aG(_ 1 ;0,"1 22 )}

1.
270_2 1247 227920940
+{F l-a; 1- G l—aj 1- F_15a1a G ay a3
{ (_512;0,7‘}1,_22_2,...)7 (_2_12_;0’7‘}1’?‘1_2,,,.)7 (_57’0’5%’5%"”)’ (_%,2 ,24,...)}

+{F 1 l—a G l-a; l-a Fiay ay G, 1.,a a
{ 212’ T;L,?Z’,,.)’ (__212’0’ ’_2:11_2_,,,,)7 (52_’51,...)7 ("577075%’5%"")}

+{F(_ 1.9 1za; l-ap )7G( 0. 1za1 l-ap ,_,))F(%’%%’...)vG(;_%_,%%’...)}

2_2aa 22 o4 7a_"2_aT>

= {F(,Elf;o,l_;éu’l_;‘;l,...)’ G(—Elg‘;o,lgal ,1;“ )
Fiypos g CGosg)

HF—Q—Q,O 1—“%,1—‘%‘—,--->’G(—; ;0,1—;;—1,%‘—2,~~)’F(gﬁ,o,g%,g%,‘--wé(%,%%, )}

HEC ot iz G o tsn sy Farstor Cpogh st

+{F 1.9 lzag 1-ap | G 7,0_7;1 a2 )7F(§_%,%§.,..)’G(;—%,%%,---)}

22T T d

Since the second terms and the third terms of the both sides are zero
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by [Corollary 2.2, and the fourth terms coincide, we obtain the following
equality.

F l-a; l-ag G 1- l1—a
{ _2_12_;0’ 2; ’ 24‘11 7"')’ (_'_1—_‘0_(1L _‘12'_.)7

F 1 a] ao G 1 a ao
(”?Z)Oagﬁ_)?a )’ (_2_21(),;127'21" )}
— F 1 1— 1— G 1— 1—
{ (_2 aO, 2015?‘_21 )’ (*21 a07_2arla 2:1123 )’
F G2 :
('2_5;0);7’%%, )’ (;2';07;1,32%3")}

{F(—E%;o,l—;;i,lﬁ;‘ﬁ,---r G(—gf;o,l;;” i)
Fgroststor O drogrson!
= F0kom om0 O o, o ez Ly
2 22 2 24 7 22777 22 7 94
Fegogppor Cegpog )
These equalities show Lemma 3.4. O
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