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On the basis of twisted de Rham cohomology

Kenji MORITA
(Received May 12, 1997; Revised December 3, 1997)

Abstract. The study of logarithmic form is essential to compute the cohomology group.
First we will show the condition to represent (homogeneous) logarithmic (n — 1)-forms
by the logarithmic forms of type %. By using this result, we can choose a basis for the
twisted rational de Rham cohomology.
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Introduction

Let D; C C", 1 < j < m be a divisor defined by a polynomial P;(u) €
Clui,.--,un), 1 <j < m,andset D as the union of these. Define a covariant
derivative

= dP;
Vo=d+ ) —=*A

on M := C" — D. The kernel of V,, is the set of V,-horizontal sections.
It defines a rank one local system £,. A general theory provided a
nice interpretation of several integral representation of special function by
means of duality between de Rham cohomology of V,, and certain twisted
cycles. In case that Pj(u), 1 < j < m, are all linear and in general position,
[AT], [K] give beautiful representation of a basis for the top-dimensional de
Rham cohomology group by logarithmic forms. The purpose of this article
is to extend this study to our setting. The goal of this paper is Theorem
7.3.1 which gives a method to find an explicit basis of the top-dimensional
twisted de Rham cohomology group. This is a natural generalization of a
theorem of . In this paper, we employ the condition Assumption 1.1.1 on
D :={P,--- P, =0} and Assumption 1.2.1 on D as in [KN]. It is shown in
that there exists a gap, which is essential to our study, between the space
of Saito’s logarithmic forms QP (log D) and the space of ordinary logarithmic
forms QP (D). Let QP(xD) be the space of rational p-forms with poles along
D. The Grothendiek-Deligne comparison theorem asserts that there exists
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568 K. Morita

a canonical isomorphism
HP(M, L,) ~ HP (S (D), V)

forp=0,1,.... showed that the natural inclusion (2 (log D), V,,) —
(Q(xD), V) induces an isomorphism of the cohomology of these complexes.
To know the structure of logarithmic complex, we shall study the gap be-
tween Saito’s logarithmic complex and ordinary logarithmic complex by us-
ing the degree filtration on these complexes, which leads to determination
of the structure of H"(Q(log D), V).

From §4 and on, we consider the case that Pj(u), 1 < j < m -1
are linear and P, (u) is a non-constant polynomial of degree ¢ +1 > 0
which satisfy Assumptions 1.1.1 and 1.2.1. Our aim is to find a basis for
H™ (Y (log D), V,,). The process to get a basis is analogous to [AKOT §9].
Let G = {H,..., Hn—1} be an affine n-arrangement in general position and
H;j ={P; =0},1<j3<m—1. Let G denote the arrangement obtained by
parallel translation of each hyperplane of G to the origin. Let Lt denote the
set of intersections of elements of G of positive dimension. Given X € L™,
let X denote its parallel translate to the origin. Let n > 2. We say that
a polynomial f € S of positive degree is G-transverse if the restriction f|¢
of f to X is not constantly equal to 0 and has no critical point outside the
origin for any X € L.

Our basis for H™( (log D), V.,) is a certain subset B’ of Q*(log D). For
X =H;Nn---NH; € L*(G), we define Qx = Pj, --- Pj,. Let A(Pp,) denote
the Jacobi ideal of P,; A(Py) = (6Pm Qfﬂ). The quotient S/A(Py,)is

Oup ’ ’ Oun
called the associated Milnor algebra. Let X € L(G) be the parallel translate
of X containing the origin, I the ideal in S consisting of the polynomials
vanishing on X, and Sy := S/I; the coordinate ring of X. The Milnor
algebra of the restriction P,,| 5 of Py, to X is equal to Sg/A(Pm|g). There
is a natural surjective map ¢x : S — Sg/A(Pn|g). Let MBx C S be
a set of homogeneous polynomials on which ¢x is injective and so that

éx(MBx) is a basis for S5 /A(Ppy|x). We call M Bx a Milnor basis at X.
Let 7 be the volume form duj A - - - A du,,. Define

ﬁx’Z{Qb; ibEMBX}
XI'm
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for X € L*(G) and P = Uxer+ Py . Define

T

Pj "'Pjn—1Pk"'Pm—1Pm

wpr = {

n<k<m-1, 1§j1<---<jn_1§k—1}.

Let B = P' UNP'. Then we obtain Main theorem:

Main Theorem (Theorem 7.3.1) Let G be an affine n-arrangement in
general position with m — 1 hyperplanes defined by H; = {Pj(u) = 0},
1<j<m-—1. Let Py(u) be a G-transverse polynomial of degree ¢+ 1 > 0.
Suppose that Assumption 1.2.1 holds for P;, 1 < j < m. If Z;‘n:1 Lo # 1,
[l—1,..., then

(1) The set B' gives a basis for H™(S (log D), V)

(2) dimH™(Q(logD),V,) =" (m N 1) g

i=o \"" 7 ?
Consider the case ¢ = 0, that is, P;(u), 1 < j < m are all linear and

the arrangement {P; = 0}1<;<, is in general position. we can easily check

that P’ = §. By using the trick of partial fractional decomposition (see [K,
pp. 74-75]), we can rewrite NP’ as

{de1 Ao p Wi
P; P;

i< cinme1)

which is the same result as shown in [A1], [K].

In §§1-2, we will study the representation theorem for logarithmic
forms. In §3, we have a refined result about its representation the one than
shown in [KN], and we will show the representation theorem for the Euler
form pg. From §4 and on, our situation is that G = {Hy,...,Hy,—1} is in
general position and P, is a G-transverse polynomial of degree ¢ + 1. The
argument to get a basis for H" ({2 (log D), V,,) is analogous to the method
of [AKOT].

We set
C™: complex n-dimensional affine space with coordinates
u=(ug,...,un)

S: the coordinate ring of C",

Pj(u), 1 < j < m: non-constant polynomials in u,
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D; : the divisor defined by P;(u),

D:={Dy,...,Dn},

D : the divisor defined by P := P, --- P,

U(u) := [1j%1 Pj(u)™,

wi=dUJU = Y7, ajd?’jf,

d: the exterior differentiation on C",

Ve :=d+ wA: the covariant differentiation with respect to w,
QP(C"): space of polynomial p-forms,

(
(P(xD): space of rational p-forms with poles along D,
QP(log D) : space of logarithmic p-forms with poles along D,
{

)

P(D) : space of logarithmic p-forms with respect to D.
g

1. The Kita-Noumi representation theorem for logarithmic forms

In this section, we shall study a representation theorem for logarithmic

forms in the sense of Saito . Define

OP(log D) := {p € QP(xD) | Py € QP(C")
and dP A € QPTH(CM)},

which is called the space of logarithmic p-forms with poles along D. Define

p
OP(D) := \ (dP/P,...,dPy/Pny,duy,. .., duy),

which is called the space of logarithmic p-forms with respect to D. Clearly,
QOP(D) C QP(log D), but the converse is not true in general. The gap is

essential in our application and influential for the top cohomology
H" (¥ (log D), Vo).

1.1. Let Pj(u), 1 < j < 'm, be non-constant homogeneous polynomials
in S. By abuse of notations we denote by (dPj A---AdP;,, Pj,...,P;)

the ideal of S generated by P;, ..., P;. and the minors M, 1<
119 Yy

. . . . OP .
11 < -+ < 1 < n of the Jacobian matrix (8;’“), 1<k<r,1<i<n.
Throughout this paper, we make the following assumption:

Assumption 1.1.1 (1) For 1 < r < min{m,n — 1}, the algebraic set
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defined by the ideal (dPj, A--- AdP; ,P;,...,P; ) is either empty or the
origin.
(2) Pj,...,P;, form a regular sequence in S for 1 < s < min{m,n}.

Under the assumption above, the following lemma is known (see [K],
for proof):

Lemma 1.1.2 (Representation theorem for logarithmic forms) Let P;(u),
1 <5 < m, be polynomials satisfying Assumption 1.1.1. Let 0 <p <n —2
and ¢ € QP(log D). Then ¢ can be written in the form

" dP;
S Dk I

=1
dP; dP;
kY Shaaa Ty (1.1.1)
1<j1 < <jp<m J1 Jr

where j,...;, € QP7V(C").
Remark. [Lemma 1.1.2 implies that QP (D) = QP(log D) for 0 < p < n — 2.

1.2. Let P;(u), 1 < j < m, be non-constant polynomials in S. We
make the following assumption:

Assumption 1.2.1 (1) For 1 < r < min{m,n}, the ideal (dPj, A--- A
dP; , P;,...,P; ) coincides with S.

(2) Pj,...,P;, form aregular sequence in S for 1 < s < min{m,n+1}
(In case s = n+1, we say that P;,,... , Pj, ., form a regular sequence when

Pj,..., P;, form a regular sequence and P;,__, is a unit of S/(Pj,,..., P;,)).
Then we have

Lemma 1.2.2 We suppose Assumption 1.2.1. Let v +p < n and let ¢ be
a polynomial p-form such that

dPj, N---NdPj, N =0 (mod le,...,PjT),
then

'l/)EO (mod del,...,de le""713j1')'

r?

Proof. We set
I := (del A"'/\derapj]?"”Pjr)’
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A= S/(Py, ..., P,),

a:=I/(Pj,...,Pj); anideal of A,

7 : S — A; the canonical homomorphism.

Then we have I = 77 !(a) and hence S/I ~ A/a. By Assumption
1.2.1 (1), I = S and hence a = A. Therefore we may apply [S1, THEO-
REM (i)] to this case and we obtain our assertion. O]

The following lemma is shown in without proof. We shall give a
proof which is useful to understand the proof of (’heorem 3.3.1l.

Lemma 1.2.3 (Representation theorem for logarithmic forms) Let Pj(u),
1 < j < m, be polynomials satisfying Assumption 1.2.1. Let 0 < p < n and
Y be a polynomial p-form such that

dPjAp =0 (mod Pj) for 1 <j<m. (1.2.1)

Then 1 can be written in the form

" dP;
Y = Pl"'Pm{%ﬁLz?j]/\de-l—“'
7=1

de de
oy 3 SEAA Pj: .¢jl,,,jp} (1.2.2)

1<j <---<jp§m J1

where j,...;, € QP~V(C").

Proof.  Since this lemma is trivially true for p = n by [S1, THEOREM (i)],
we may assume 0 < p < n—1. We shall prove this lemma, just the same way
of the proof of Lemma 1.1.3, by induction on the number m of polynomials
Pj,1<j<m. Incasem =1, by (1.2.1), 0 <p <n -1 and Lemma 1.2.2,
we have

1/) =0 (mod dP},Pl).

Hence 1 can be written as

¢:P1w0+dP1Aw1=P1{¢o+@w1}

Py
where 1 € QP(C") and ¥ € QP~1(C"), which means that Lemma 1.2.3
holds for m = 1. We assume Lemma 1.2.3 is true for m; let ¢ € QP(C")
such that dP; A =0 (mod P;) for 1 < j < m+ 1. By induction, ¥ can be
written in the form [1.2.2). Let N be be the largest integer for which there
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exists some v;,...;, # 0 in [1.2.2). By induction on N, we shall show that
¥ can be written in the form

'(p = Pl"'Pum+1{70+ Z -P—]/\f)/]+
dP; dP;

ot Z P‘Jl /\"'/\—}%-’yjl...]’p}. (1.2.3)
1<j1< - <gn—1<m+1 ~ N Jp

In case N =0, we have 1) = Py - - - P,tbg. Since dPy, 41 Ay =0 (mod Py 1),
we have

P Pmde+1 Ny =0 (mod Pm—H)-

Since 0 < p < n—1 and Assumption 1.2.1 (2) implies that {P}, P41} form
a regular sequence for 1 < j < m and hence 1y = 0 (mod dP,,;1, Ppny1) by
Lemma 1.2.2. Thus 9y can be written in the form

Yo = Pnyia+dPn A3, a€QP(C"), BeQPl(Ch),

and hence

dP,
Y=P - Ppy {a+ mtl /\5},
Pm+1

which means that Lemma 1.2.3 holds for N = 0. Suppose that the statement
is true for N — 1 and we shall show that it holds for N. We consider first
the index (1,..., N). Since we have ¢;,..;,, =0 for v > N + 1, from
we have

¥ — Pnt1- PndPi A---AdPy Ar..y =0 (mod P, ..., Py).

Since N < p < n — 1, Assumption 1.2.1 (2) implies that {P1,...,Pn, P},
P11} form a regular sequence for N +1 < j < m. Using dPp1 1 Ay =0
(mod Py,41), we have

dP, \--- NdPy NdPpia ANpr..yn =0 (mod Py, ... s Pny Pry).

Since ¥;..n € QP“N((C”) and N <p <n -1, by Lemma 1.2.2 we obtain

¢l---N =0 (mod dPl,.. .,dPN,de+1,P1,. . .,PN,Pm+1)
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and hence we can write ¥;..Ny as

N

P1..N = ZPjal...N;j + Prt101..N:m+1
j=1

N
+ 3 dP; A Brngg + APyt A B Nymt

j=1

where aj..n;; € QP~N(C") and By..nyj € QP-N-L(Cn).
By the same reasoning we have

N
Vivin = Y Pty + P10y jinm1
k=1
N
+ Z dek N ﬂjl"‘jN;jk + dPmi1 A 5j1'-'j1v;m+l (1-2-4)
k=1

where aj,..jyj. € P N(C") and Bj,..jy i € QP~N-1(C"). Substituting

(1.2.4) into (1.2.2), we get

N-1
dP; dP;
’(/)ZPl"'Pm{Z > —P%/\--./\ J"/\wjl...jy}

v=0 1<j1<<jp<m n P]u
dP; dP;
+P1...Pm{ Z it} Sy N i 1 8

1§j1<"'<jNSm jl PJ
N

A (Z ijajl"‘jN;jk + Pm+1aj1'--j1v;m+1) }
k=1

dP; dP;
1<j1<<jy<m = J

N
A (Z dP;, Bjy - jnije + dPm41 A /le---jzv;erl) }
k=1

(1.2.5)

Notice that the last term in the right hand side in (1.2.5) is equal to

dP; dP;
Pl-ﬂpm{ Z LA NI A dPp+1 /\ﬂj1---jN;m+1}'

1<ji<-~<jn<m ~J1 JN
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We set

dP; dP;
77:"/)“P1"'Pm+1{ Z 4/\"'/\—’5_’]1/\aj1~-j1v;m+1
1<j1 <<jn<m 1 J

dP; dP; dPp, 11
4 E _-]/\..-/\ P~JN A Pm+ /\/le"‘jN§m+1}'
1<j1<<gn<m = I} J m+1

(1.2.6)

By using (1.2.5), we can write 7 in the form

N-1
dP; dP;
J

v=0 1<j1<-<jp,<m ~ J1 v

(1.2.7)

Njr--j, € P7Y(C™). By (1.2.6) and dPjAY =0 (mod Pj), 1 < j <m+1, we
can easily see that dP; An =0 (mod P;) for 1 <3 <m + 1. Hence in view
of (1.2.7), n satisfies the assumption of induction and hence it is written in
the form

m+1
. dP; .
n = Pl“'Pum+l{770+ Z ——Pj‘] /\771+
i=1
dP; dP;
N ol NN JP/\ﬁ-...}. (1.2.8)
Z P] PJP S

1<j1 << gp<met1

Substituting (1.2.8) into (1.2.6), we see that i) can be written in the form
(1.2.3). This completes induction. ]

Remark. By [Lemma 1.2.3, we have QP (D) = QP(log D) for 0 < p < n.

2. Filtration of QP (log D) and QP (D)

Let Pj(u), 1 < j < m, be non-zero polynomials in S of which the
homogeneous part of maximal degree is denoted by Pj(u) and we set [; :=
degpj for1 <j5 <m.

2.1. We define an increasing filtration on the complex €2 (log D). Let
¢ € QP(log D), then by definition, ¢ is written as ¢ = a/P, a € QP(C"). If
each coeflicient of « is a polynomial of degree at most y — p, then we say
that the degree of a is < p and write deg o < pu. We may formally consider
the degree of 1/P as — := 37 [; and say that the degree p < pif dega <
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p+ 1. Let F,Q(log D) denote the subspace of {)”(log D) which consists of
the logarithmic p-forms ¢ of degree < p. Then the family F,QP(log D),
p > —l + p defines an increasing filtration F' of QP (log D).

Next, we define an increasing filtration on the complex Q (D). By
definition, a p-form ¢ in QP(D) can be written in the form

= dP;
p = s@o+z?,%A<pj+---

=1 17
dP; dP;
NRNNE Z —f—)—?—/\---/\ P‘J " P (2-1-1)
1§j1<...<jp§m J Ir

where ¢;,...;, € QP7Y(C"). Considering d%?— formally as a p-form of degree 0.
Let G,QP (D) denote the subspace of P (D) which consists of the logarithmic
p-forms that can be written in the form with ¢;,...j, of degree at most
pforl1 <jy <---<j, <mand 0 < v <p. Then the family G,QP(D),
p € Z>o defines an increasing filtration G of QP (D).

Define

Grfjﬂ'(log D) := F,QY(log D)/ F,,_1§Y (log D)
GrQ (D) := G, (D)/G,-1Q2(D)

The former (resp. latter) is an associated graded complex to the filtered
complex (F.Q (log D), V) (resp. (G.Q (D), V,)) equipped with the differ-
ential Grg(Vw) (resp. Grfj(Vw)) induced by V,,.

Let P;(u), 1 <j < m, be homogeneous polynomials in S and D; be the
divisors defined by P;. And weset D := {Dy,...,Dp}. Let D be the divisor
defined by P := P; - - - P,,,. Then QP(log D) and QP(D) are decomposed into
the direct sum as

2 (log D) = ) 97 (log D),
MEZ

(D) = (D).
UEZ

The space P(log D), (resp. QP(D),) is called the homogeneous part of
QP(log D) (resp. P(D),) of degree p.

2.2. Now we will see two canonical linear mappings of, and 7§ which
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are studied in [KN, pp. 141-142]. First we define of;:

. O F >
ol : Gr, P (log D) — QF(log D),

The mapping of is defined as follows:let ¢ € F,Q(log D); then ¢ = a/P,
a € QP(C") and dega < p+ 1. We denote by & the homogeneous part of «
of degree u1 + 1 and set ¢ := &@/P; then we see easily ¢ € 0 (log D),. We
define the the mapping of, as sending ¢ mod F,1Q”(log D) to ¢. Then by
definition of @, it is clear that of) is well-defined and injective.

Next, we turn to the filtration G.. Let ¢ be in G, (D). Then ¢ can be
expressed in the form where each ¢j, ..., is a polynomial (p —v)-form
of degree at most p. Setting ¢ = ¢/ P where ¢ is in QP(C"), we have

™ 4P,
Qp = Pl...Pm ¢O+Z_P_~/\¢]+..
=1 1

dP; dP;
Y 7 A A Pj: -wjl...jp}. (2.2.1)

1<j1 < <jp<mn

Let /'le‘“ju be the homogeneous part of degree p of ;,..;,. Taking the
homogeneous part of degree p + [ of the both sides of (2.2.1), we have

s &dP
¢ =Y/[P=go+) S N+
j=1 "
dP; dpP;, _
e Z 1311 Ao A p—]”— c By (2.2.2)
1< <<gp<m = N1 r

From the definition of QP(D),, it follows that ¢ is in QP(D),. Thus we can
define a natural surjective mapping:

2 : Gr$QP(D) — P(D),..

If ¢ is in QP(D),, then @ can be expressed in the form [2.2.2) where each
¢ is homogeneous of degree y for 1 < j; < -+ <3, <mand 0 < v < p.
Setting

_ ~dP; _
o =Po+) S NG+
j— J
7=1
dP; dbP;
NS Z P‘JI Ao A P-J T
1<j1 < <jp<m n Jp
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we obtain 7F(¢ mod G, 19P(D)) = ¢. The following lemma is essential.

Lemma 2.2.1 Under the Assumption (1.1.1) on the homogeneous parts
P; of Pj, 1 < j <m, we have
(1) of : GrEQp(log D) — QP(log D), is an isomorphism for p #
n—1andp€ 7.
(2) 7P Grﬁﬂp(’D) — QP(D), is an isomorphism for 0 <p <n -1

and p € Z.
Proof.  Assertions (1) and (2) are proved in [KN, LEMMA 9. ]
2.3. We set

NP(log D), := QP (log D), /Im on-
Since o) is injective,we have a short exact sequence of complexes:
0— Grij'(log D) — ' (log D), — N'(log D), — 0.  (2.3.1)

[K, THEOREM 3.4.1] showed that if 37", lja; # [, 1 —1,..., we have
H?(Q'(log D), Vz) = 0 and hence by passing to long exact sequence of
cohomology of (2.3.1),we obtain

HP~!(N'(log D),) ~ H?(Gr/Q (log D), G}, (V.,,)).

Under the Assumption 1.1.1, if a;j ¢ Zso for 1 <j <m and 377", lja; ¢ Z,
the following statements are known (see [K], [KN] for proofs):

H?(QV(xD),V,) =0 for p#n,
H"(Q (D), V) ~ H* (¥ (log D), V),
H™(Gr[ (2 (log D), Gry, (V,,)) ~ Grl (H™(€ (log D), V.,)).

Lemma 2.2.1 (1) yields that
NP(logD), =0 for p#n—1.

Hence in order to compute the twisted rational de Rham cohomology, our
main interest is in the isomorphism as follows:

N""(log D), ~ H"(Gr,,§ (log D), Gr}, (V.)).
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3. More investigation about a representation theorem for loga-
rithmic forms

In this section, we will explain a representation theorem of logarithmic
forms in terms of degree filtration. From this section, we shall assume that
Assumption 1.1.1 holds for the homogeneous parts Pj of Pj,1 <7 <mand
Assumption 1.2.1 holds for Pj, 1 < j < m. We set degP; = ¢; +1 > 0,
1 < 7 < m. We use the following notations:

QP(C"), : space of homogeneous polynomial p-forms of degree v

QP(C™)<, : space of polynomial p-forms of degree < v.

3.1. As a generalization of [Lemma 1.2.3, we will show the following
proposition about a representation theorem of logarithmic forms in the re-
lation about its degree.

Proposition 3.1.1 Let 0 < p < n -1 and ¢ € F,QP(logD). Suppose
>0, then ¢ can be written in the form

dP;
p = ¢o+2—/\%+
j=1 F;

3

1§j1<.,.<jp§m jl

ﬁ)j_l/\.../\dpjp
P]

Py “Jp (311)

r

where ©j,...;, € P~V (C*)<,. Moreover, if degy < —1, we have p = 0.

Proof. By [Lemma 1.2.3], the assertion of this proposition is that we can
replace each ;,...;, by its degree < p for arbitrary expression (3.1.1). Sup-

pose that ¢ € G\Q(D) and A > p. Taking the homogeneous part of degree
X of the both sides of (3.1.1), we have

SOO‘I'Z"—/\‘PJ

dP, dP;,
SE DY p,lf\"-/\——}—)jp * Py

1<j1 <<jp<m J1

This means that 7} (¢ mod G-192P(D)) = 0. Therefore by Lemma 2.2.1 (2),
we have ¢ = 0 in Gr$QP(D). And hence we have ¢ € G,_;9(D). Contin-
uing these computations (A — ) times, we obtain that ¢ € G,QP(D) which
is our desired result. O
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Clearly, we can see that G,Q(D) C F,QP(log D) for all p.
3.1.1 implies that F,QP(log D) C G,QP(D) for 0 < p < n — 1. Hence we

have
F, 0% (log D) = G,QP(D)

for 0 < p < n — 1. Therefore we obtain the following:

Theorem 3.1.2  Under Assumption 1.1.1 on the homogeneous parts P; of
Pj, 1 <3 <m, and Assumption 1.2.1 on P;, 1 < j < m, we have

F _ G
Gr, 2 (log D) = Gr,; QP(D)
for0<p<n-1.

3.2. From now, we will see the gap between Q" !(log D) and Q"~1(D)
which is essential to give a basis for H"(2' (log D), V,,). Let v = "% u; -2

be the Euler vector field on C" and i, the interior product with respectaqtlcl)
v. We can easily check that i, acts on the complex Q (log D). Remember
that 7, is a skew-derivation of degree —1. By definition, i, is an S-linear
operator such that

p
z’v(duil VANEERIVAN duip) = Z(—l)JqUideil VANREIRIVAY duij VANCIIAN duip.

j=1
Here dﬂ; denotes deletion of du;;. Let o1 = dPy/P;. Consider the mapping
9 : QP(log D) — QP (log D)
by d(p) = @1 A @ for p € QP(log D).
Lemma 3.2.1 The sequence
0 — Q°%(log D) N 0! (log D) SR Q"(logD) — 0 (3.2.1)
18 exact.

Proof.  Suppose that ¢ € QP(log D) satisfies 0 = 1 A ¢ = 0. Since i, is
a skew-derivation,

(1 A @) =iy (1) A — o1 Ady().
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Simple computation shows that i,(p1) = ¢1 + 1 # 0, therefore we have

1 .
= (o))

¥

Remember that i, acts on the complex Q (log D), hence i, () € 2P~ (log D).
O

The Euler form, or € Q" !(log D), is defined by

_ E?:1(—1)i_1uid?f1 A - " A c/l.u\z A Adug
p---P, '

PE -

Proposition 3.2.2 Q" !(log D) is spanned over Q"= 17¥(C") by the forms

d{_)jl /\.../\dpj
P; P;

v

for1 <jy <---<j, <m,0<v<n-—1, together with the Euler form pg
over S.

Proof.  Recall the exact sequence (3.2.1)
0 — 9°%(log D) N Q! (log D) N Q" (log D) — 0.

We can easily check that

dui A -+ ANduy

deE) = (@ +1) PP,

and notice that

duj A -+ - Aduy,

O"(log D) = !
(log D) = S 5D,

which is a free module of rank one. Hence we obtain a short exact sequence
0 — 80" 2(log D) — Q" !(log D) N Q"(log D) — 0
which splits. Therefore we have

Q" (log D) = 00" %(log D) ® S¢g.

This result, together with [Lemma 1.1.2, yields our assertion. l
Remark. Proposition 3.2.2 implies that Q" !(log D) = Q" YD) + Syg.



582 K. Morita

In order to have Proposition 3.2.5 which shows a representation theorem
for the Euler form, we prepare a tool. Let 1 < j1,...,jn§ < n be integers.
Assume that j, # j, for p # q. Let k1,...,ky be a permutation of j,’s,
1<v<Nask <---<kpy. Define

) . N(N+1) )7 -+ 9
*(duj, A -+ Ndujy,) = (—1)]1+"'+JN__T+_SgD (]1 ]N)
ki ky
X duy A Adugy A Adigy A A dug,.

Notice that del VAYEIRIVAN du]‘N A *(duh A A d’U,jN) =duy AN--- ANdu,. If
Jp = Jq for some p # g, we consider *(duj, A--- Aduj,) as 0. For example,

xdu; = (=17 Ydug A+ Adug A--- A dup,

x1 =duy A--- Aduy,

*(du; A du;) =0 etc.

Lemma 3.2.3 Let duj, A--- ANduj, # 0, then
duj, A+ Nduj, A+~ Ndujy Ax(dug, A--- A dujy)

= (—l)k_l * dek.

Proof. We shall prove this lemma by induction. In case N = 1, this
lemma is trivially true. We assume [Lemma 3.2.3 is true for N — 1. Then

duj, /\---/\da;,c/\---/\dujN/\>|<(duj1 A ANdujy)
= (duj, A=~ Aduj, A= Adujy_,) A dug,,

. . N(N+1) — —
A (=D HINTTT T gy A Adugy A Adugy A A dug,

) . N(N+1) —
= (=1 TN g A Adug, Ao Adugy,
A=) Ndug A Adujy A Adugy | A~ Adug)

= dujl /\---/\dujk A ---/\deN_] A *(du]‘I /\"'/\deN_l).

Therefore by the induction hypothesis, [Lemma 3.2.3 is true for NN, this
complete induction. [l

Lemma 3.2.4 Let Py,..., Py be polynomials in S. Then

%(__l)k_l a(Pl,...,E,...,PN)

*du;
— Dk
0(UJ'1,...,Ujk,...,UjN)

k=1
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s equal to

dPy A AdP, A+ NdPy A x(duj, A -+ A dujy).

Proof.  Simple computation shows that the latter is

N ——~
op,....,P,..., P —
Z ( 1 /‘l\ N) dujl/\"’/\dujk
k=1 8(uj1,...,ujk,...,ujN)
Ao Adugy Ax(dug, Ao Adugy).
By Lemma 3.2.3], this agrees with the former. [

By using Lemma 3.2.4, we will show a representation theorem for the
Euler form as follows:

Proposition 3.2.5 (Representation theorem for the Euler form) Let Pj,
1 < j < N, be homogeneous polynomials each degree of gj +1,1 < j < N

" uprdu Py
and g = ZJP%'):_E— the Euler form. Let gj;,..;5 be ‘aa(gi:::::%))’. Then

Gjrjn PE can be written in the form

N p— /} —_—
_ dP, dP, dPn
Y Y g A D) A A = A A —— A x(dug, A A du
dP dP
+ A ASEA S ik (du Aduj, A Adugy).

Proof. Note that > ., ui%% = (g; + I)Pj, for 1 < j < N. Therefore

n
gj1-jin Z Uy * dui

1=1
(9P1 w 6P1 8Pl
v | Ouy T TROuy, T Ougy
=y | : L |+ duy,

k=1 D D D
P, oP, oP

9 N cee o Ugy =N ... N

8uj1 ank anN

+ Gj1-jn Z u; * du;
i£J15 0N
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oP, op; oP,
(n +1)P U;
duj, B - Z% i) i 3UjN
: * dujk
k=1 D — _
aPN 6PN (9PN
(@ +1)Py - u;
ouj, Z;Jk ' Qu; oujy
+ 9j1-gn Z u; * du;
i#jl"“ajN
aPl = 8.P1
1)P
3“;'1 (QI + ) 1 anN
* du]‘k
k=1 D =
aPN aPN
+1)P
aujl (Ql ) a’u,jN
0P, 0P 0P, 0P,
N Bu, 8ujl 8ujk o anN
+2. ) : : z L |+ duy,
k=11#7g _ — — _
el 0Py 9Py 0Py 0Py
8ui 8u]‘1 (9Ujk o 8’U,jN
+ Gji..jn Z u; * du;
i#jla'",jN
N N = = _
o(P,,....B,... P
= > (1) g +1)P, (P, By w) * duj,
k=11=1 a(Uj],...,Ujk,...,UjN)
+ Z u{ O(P,.... Py) * du;
) )
iEG1 s JN Mgy, - ujy)
N — —
a(P,... P
+ Z(_ a ( ! — N) * du]'k}
k=1 (uivujlv"")ujk?""ujzv)
N N — — —
_ b,... .
Z l 1 q1+ PZ k 1 a( 1, 7/Pia 7PN) *dujk
k=1 a(Ujl,...,Ujk,...,UjN)

AN dPN A *(dul A dujl

Ao Adugy)
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N /}
=> (-1 DY g+ 1)PdPyA--- ANdP A -+
1=1

AdPy A *(duj, A+ Adujy)
+dP A AAPy A D g (dug Adugy A Adugy).
$FG1 e rJN
Thus we obtain the desired representation. 0
Remark. Proposition 3.2.5 implies that gj,...;, ¢ is in Q" 1(D).

3.3. Investigating in more detail the proof of [K, LEMMA 6.6.1], we
obtain the following:

Theorem 3.3.1 Let 3 € Q" !(log D), and q, = max{qi,...,qm}. If
p > (n—1)qr, then ¢ can be written in the form

" dP;
= @0+, ?? A@j+
j=1 17
dP; dP;, _
s Z p.Jl A A p,J = Pjrjuy (3:3.1)
1<j1 < <jn—1<m N In-1

where @j,...j, € Q17Y(C™),,.

Proof.  We shall prove Proposition 3.3.1 by induction on the number m of
polynomials 13]-, 1 < j < m. In case m = 1, by Proposition 3.1.1], it suffices
to show that every mapping aﬁ_l is an isomorphism for p > (n — 1)q;. Let
0 = Si, u; x du;/ P;. By Proposition 3.1.1 and Lemma 3.2.2, we have

_ _ dP: e

Gri "1 (log D) = Q"1 (C"),, + [Pll] A QP 2(CM),,

n-1 Ay on-1l/mn dP1 n—2/rm
Q" (log D)y = "7 (C") + ) ANQHC)y + ESutg+1-n-

By Proposition 3.2.5, we have
0P,
5—QOE = (q1 +1) xdu; + /\Zuz (du; A duj),
i i#]

for 1<73<n.
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This means that

(aﬁl oP,

i n-—1
8u1"“’8un) C Ann N""“(log D).

Conversely, let h € Ann N"~!(log D), then £ := h 3", u;*du; = 0 (mod Py,
dPy) and dP; A € =0 (mod PydP;). We can easily see that

dpl /\ﬁz(Q1 +1)131hdu1/\---/\dun.

This means that hduj A---Adu, =0 (mod dP;), hence h € (%, cees g—ﬁ“)'

Therefore we have

Ouy’ ' Ouy,

(apl apl) = Ann N"!(log D).

By Assumption 1.1.1 (1), the n partial derivatives of P; each homogeneous
of degree ¢q; form a regular sequence. Hence we obtain

Poin(N""!(log D), t)

= "=~ 'Poin (C[u]/ (gi, o gpl) ,t)
U1 Un

:tn—01—1(1+t+t2+...+t‘11_1)", (3.3.2)

And hence

N"'logD), =0 for u>(n-1)q.

This means that every mapping O'Z_l is an isomorphism for u > (n -
1)q1, which shows that Proposition 3.3.1 holds for m = 1. We assume
Proposition 3.3.1 is true for m and show that it is also true for m + 1. Let
@ € " (log D), with u > (n — 1)qr, where q;, := max{qq,...,qm;qm+1};
then we can write ¢ as ¢ = /P, --- P, P41 where tis a homogeneous
polynomial (n — 1)-form of degree yu +m + 1 + Y"1 q. We have, by
definition,

dP; A9 =0 (mod Pj) for1<j<m+1.
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Then by induction assumption, 15 can be written in the form

Y = {% + Z ak; A +
dP; dP; _
-+ Z 15-]1 A--- A % . 1/)j1---jn—1} (3.3.3)
1<j1 <+ <fn-1<m "~ J1 in—1

where 9;,...;, € Q" 1Y(C™)y4144,.,,- We will show the statement by in-
duction on the largest number N for which wjl jn # 0. In case N =0, we

have ¢ = P, - - - P1bg. Since dPpni1 A =0 (mod P,y1), we have
pl"'Pmde—{—l/\w()EO (mOde+1).

Since 0 < p < n and Assumption 1.1.1 (2) implies that { Py} form a
regular sequence for 1 < j < m we have

dPmi1 Ao =0 (mod Pryy).

This means that ¢o/Pnt1 € Q" !(log D),. Apply this to the case m = 1
we have

dP,
*1/10 _ g4 Wmi
Pm+1 m+1

AB, @€Q(C),, BeP 1T,

and hence

Yp=P - Ppnp {CY-I- dlme /\5}
m+1
which means that Proposition 3.3.1 holds for N = 0. If N < n — 2,
then the proof of [K, PROPOSITION 2.2.3] works in this case and hence
the statement is true for N < n — 2. In case N = n — 1, notice that
Vjrejnr € Q(C™) yt14gmsy- Since Pj,...,P; |, Pyyy form a regular se-
quence, it follows that

(le7""‘Pjn—l’Pm+l)U = (u1,...,un),,

forv>gqj +--4+¢,_, +gme1 +1. If u > (n—1)qy, we can easily check
that 4 + 1+ gny1 > g5, + -+ +qj,_, + gms1 + 1. Therefore we can write
wjl"'jn~l as

n—1

,lrbjl"'jn_] = Z ijdjl'“jn—l;jk + Pm+16‘j1---jn_1;m+l (334)
k=1



588 K. Morita

where Qjyjn_13jk € QO((Cn),H_qu_qjk, Qjyoju_1;m+l € QO(Cn)u. Substitute
(3.3.4) into (3.3.3); then from the same reasoning as in the proof of Lemmal
1.2.3 (in (1.2.4), set Bj,-j._1:x = Bjr-jn_1;m+1 = 0 and apply the reasoning
to our situation ), it follows that the statement is true for N = n — 1. This
complete induction. [

Remark. Proposition 3.3.1 implies that Q" (log D), = Q" YD), for p >
(n—1)qr.

Combining the results of Proposition 3.1.1 and Proposition 3.3.1, we
obtain

Theorem 3.3.2 Under Assumption 1.1.1 on the homogeneous parts 15j of
Pj, 1 < j <m, and Assumption 1.2.1 on Pj, 1 < j < m, if u > (n—1)qy,
then the mapping

aﬁ*l : GrEQ"‘l(log D) — Q" (log D),
1s surjective and hence

N""Ylog D), =0 for p>(n—1)qs.

We have shown in 2.3 that if 357" (q; + 1) ¢ Z>_ then
N""!(log D), ~ H"(Gr}, ¥ (log D), Gr/ (V..)).
Therefore we have
H"(Grij'(log D),Grf(vw)) =0 for u>(n—-1)qg.
Thus we obtain following:

Corollary 3.3.3 Under Assumption 1.1.1 on the homogeneous parts Pj
of Pj, 1 <j <m, and Assumption 1.2.1 on P;, 1 < j < m, then we have

H"(Q(logD),V,)~ €  H™(Gr} (2 (log D),Gr} (V.)).
p<(n—1)qr—1

4. Arrangement of hyperplanes and a G-transverse polynomial

From this section, we consider the case that Pj(u), 1 < j < m —1
are linear polynomials and P,,(u) is a polynomial of degree ¢ + 1. We
shall assume that Assumption 1.1.1 holds for the homogeneous parts Pj
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of Pj for 1 < j < m and Assumption 1.2.1 holds for P;, 1 < j < m.
In this section, we will show that Assumption 1.1.1 holds in our case if
G ={Hy,...,Hpn_1}, Hj = {Pj(u) =0} for 1 < j < m — 1, is in general
position and Pp,(u) is a G-transverse polynomial. First, we prepare some
key words about arrangements of hyperplanes which are explained explicitly

in [AKOT].

4.1. A hyperplane H is an affine linear subspace of codimension one.
An arrangement A is a finite collection of hyperplanes in C*. Let |A|
denote the number of hyperplanes in A. A subset of an arrangement is a
subarrangement.

Let A = {Hy,...,Hy} be an affine n-arrangement. We say that A
is an affine n-arrangement in general position if for any subarrangement
{Hi,...,H;,} of A, we have codim(H; N---NH;) = p for p < n and
Hiyn---NH;, =0 forp>n. Let n >2and G = {Hy,...,Hy} be an
affine n-arrangement with |G| = N hyperplanes in general position. The
centralization G of G is a central arrangement which consists of the parallel
translates of H; to the origin, H; for 1 < j < N.

Remark. Let Pj(u), 1 < j < m, be linear polynomials and H; = {P; = 0},
1 <7 < m. Then we can easily see that the arrangement of hyperplanes
A = {Hi,...,Hp} is in general position if and only if Assumption 1.1.1
holds for the homogeneous parts 13]- of P;, 1 <3 <m and Assumption 1.2.1
holds for Pj, 1 <5 < m.

4.2. Let L(A) be the set of all intersections of elements of 4. We
agree that L(A) includes C™ as the intersection of the empty collection of
hyperplanes. We define

L*(A) := {X € L(A) | dim X > 0}.

Let G be an affine n-arrangement of NV hyperplanes in general position.
Suppose n > 2 and let G be the centralization of G. For X € Lt(G), we
denote X € L*(G) as the parallel translate of X containing the origin.

Let n > 2. We call that a polynomial f € S of positive degree is G-
transverse if the restriction of the homogeneous part of maximal degree f
to X is not constantly equal to 0 and has no critical point outside the origin
for each X € L*(G). In particular, when X = C", the homogeneous part of
maximal degree f has no critical point outside the origin. When n = 1, we
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agree that every nonconstant polynomial of positive degree is G-transverse.

Proposition 4.2.1 Let G = {Hy,...,Hp_1} be an affine n-arrangement
in general position and H; = {Pj(u) = 0}, 1 < j < m — 1. Let Py(u)
be a polynomial in S of degree q + 1. Then the following conditions are
equivalent:

(1) For 0 < k < n — 2, the algebraic set defined by the ideal I =
(dpj1 A« ANdPj, A dP,y,, le, - I_’jk,}_’m) is either empty or the
oT1LgIn.

(2) Ppn(u) is G-transverse.

Proof.  Assume the condition (1). After a linear change of coordinates we
may think that P;, = u1,...,Pj, = ux. Then we have

0Py, oP,,
I = e, —— . 4.2.1
(aUk_H ) ’ aun y U1, auk> ( )

(Note that (g + 1)Pp = Y0, uiaa% and hence P, in the ideal of the right
hand side above). Set X = {u; = --- = ux = 0}. Then 2 < dim X < n. By
assumption, the algebraic set defined by the ideal I is either empty or the
origin. (4.2.1) implies that P,| ¢ has no critical point outside the origin for
each X € LT(G), 2 < dim X < n. Consider the case dim X = 1. Identify
Pp,| ¢ with a homogeneous polynomial of positive degree in polynomial ring
in one variable. Then we can easily see that P,|g has no critical point
outside the origin. Combining these facts, we have P,, is G-transverse.
Conversely, Assume the condition (2). After a linear change of coor-
dinates we may assume X = {u; = --- = ux = 0}. Let Jgy C S be the
ideal consisting of the polynomial vanishing on X and Sy = S/Jy is the
coordinate ring of X. Since Pp,|¢ has no critical point outside the origin,
the partial derivatives of P,| ¢ form a regular sequence in Sy. This means

that 8?5 FRRRERE %—IZTT%, ui,...,u, form a regular sequence in S. Therefore the
algebraic set defined by I is only the origin. [

5. Residue maps

The C-linear map res, called the residue map, was studied in [RT]. The
aim of this section is to apply the method of residue map to our situation.

5.1. Let Hj = {Pj(u) =0},1<j <m—1, Dy, = {Pyp(u) = 0}, and
D ={H,,...,Hpn_1,Dpn}. We assume that D\{Dy,} # 0. Fix a hyperplane



Twisted de Rham cohomology 591

Hl. Let
D' = D\{Hl}, D" = {Hﬂ H, | H ¢ D,}

Then D’ is an arrangement in C™ called the deletion of D. The arrangement
D" called the restriction of D to Hj, is an arrangement in H;. Let P’ =
P/Py,. Then P' defines D'. Denote the quotient algebra S/P1S by S§" and
identify S” with a polynomial algebra over C in n — 1 variables. For g € S,
let g" € S" denote the class represented by g. We set D" the divisor defined
by (P')"".
Let ¢ € OP(log D). Choose a rational (p — 1)-form ¢’ and a rational

p-form " such that

1) ¢= -C-l-l%/\so’ﬂa"

(2) neither ¢’ nor ¢" has a pole along H;.

For ¢ € QP(log D), the restriction of ' to H; is called the restriction of
¢ and is denoted by res(y). Since the restriction ¢'|y, depends only on ¢
and Hy, res(yp) is well-defined.

Then we can define a C-linear map just a same way of

res : P (log D) — Q" 1(log D").
Then we obtain following lemma:
Lemma 5.1.1 The sequence

0 — QP(log D'),, L5 QP (log D), ™% 0P~ tlog D), — 0
is exact for each 1 <p <n and p € Z.

Proof.  The same proof of [AKOT, Proposition 6.3] works in this case.
J

Let i : QP(log D') — QP(log D) be the inclusion map. It is clear that
both the residue map and 7 are compatible with the filtrations, we have the
sequence

F n _t F res. ~ Fp—1
0 — Gr,, W (log D) — Gr, Q" (log D) — Gr,, 2"~ (log D"y — 0.
(5.1.1)

Proposition 5.1.2 The sequence (5.1.1) is ezact for 1 < p < n and
p € Z.
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Proof.  The only non-trivial case happens when p # n — 1 by
2.2.1 (1) and Lemma 5.1.1. By the same reasoning of Lemma 5.1.1],

0 — QD) - QD) 15 2Dy, — 0 (5.1.2)

is exact for each p € Z. From Lemma 2.2.1 (2) and [Theorem 3.1.2, we have
Grij"‘1 (log D) ~ Q" ! (D),

for p € Z. This isomorphism and (5.1.2) complete the proof. U

Consider the commutative diagram

0 0 0

T T T

0 — NP(logD'), - NP(logD), % N"l(logD"), — 0

0— QP(logD’), - QP(logD), 5 Qr~l(logD"), — 0

A
p p p—1
3 Op Ou

0— GrEQp(log D" N Grfop(log D) %% Grfﬂp"l(log D"y —0

A~ ~ N

g

0 0 0

for 1 <p <nandp € Z. We know that all the columns are exact. The
following theorem is the key to obtain a basis for H"(Q2 (log D), V).

Theorem 5.1.3 The sequence
0 —s NP(log D'), - N?(log D), 25 N*"!(log D"), — 0
(5.1.3)

is exact for 1 <p<n and p € 7Z.

Proof. ~ The middle row is exact by Lemma 5.1.1 and the bottom row is

exact by Proposition 5.1.2. Therefore by the 9-lemma, the top row is exact.
]
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6. The Poincaré series of N" !(log D)

In this section we will show a Poincaré series of N"~!(log D) which
yields a Poincaré series of H"( (log D), V,,).

6.1. First, we define a Laurent polynomial as follows. Let n > 1,
m > 0, and q be non-negative integers, and let ¢ be an indeterminate. We
define

q

Algit) = Y =1+t +t 4+ + 19,
1=0
0 Z+m_‘1 . n m _
Tn,m, g;t) := t'+ [A(g; t) = 1]~
( ! ) i:nzm( n—1 > ;(n—z)[ (q ) ]

The first summand is considered as 0 when n — m > 0. Direct compu-
tation gives the following lemma:

Lemma 6.1.1 Let n>2 and m > 1. Then

T(nama qvt) - T(n7m - 17q7t) +T(Tl - lvm - 13Q7t)

Proof. It is shown in [AKOT, Proposition 7.2]. O

6.2. By using (5.1.3) in [Theorem 5.1.3, which is a very essential short
exact sequence, we have the following:

Proposition 6.2.1 Let G = {Hy,...,Hn_1} be a general position n-ar-
rangement with m — 1 hyperplanes defined by H; = {P;(u) =0}, 1 < j <
m — 1 and P, a G-transverse polynomial of degree ¢+ 1 > 0. Suppose that
Assumption 1.2.1 holds for P;, 1 < j <m. If 3370, lja; #1,1—1,..., then
we have

Poin(N" !(log D),t) = t 9 'T(n,m — 1,¢;1). (6.2.1)

Proof.  We shall prove Proposition 6.2.1 by induction on the number m
of polynomials Pj, 1 < j < m. We must check two initial conditions.

(i) m =1, m > 1. Write u = u;. Since we may choose Pj(u) = u — z;,
1 <j<m-—1,with z; # z; for i # j, we have Pj(u) =u,1 <j<m-1
And we may assume that P, = u?"!. By [Theorem 3.3.2, we know that
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N°(log D), = 0 for p > 0. If u < 0, we have

u* du
N°(log D), = mﬁc[u]ﬂ+m+q—l-

Therefore we have

Poin(N°(log D), t) = t™™ 9t y¢=m=a+2 4 .. 4 ¢7]
= t_qﬁl(tQ-m NP TS t9)
= 77T (1,m - 1,¢;1)

which shows that [Proposition 6.2.1 holds for n =1, m > 1.
(i) n» > 1, m = 1. By (3.3.2), in the proof of Proposition 3.3.1, we
know that

Poin(N""'(log D), t) = "9 (1 + t + £* + .- + 47 )",
We can easily check that

T(n,0,q;t) = (1+t+t2+...+tq~—l)n

which implies that [Proposition 6.2.1] is true for n > 1, m = 1.
(iii) For the induction step we use deletion and restriction. Suppose
n > 2 and m > 2. Recall the short exact sequence (5.1.3), in [Theorem 5.1.3),

0 — N”(log D'),, = NP(log D), ~%5 N?~'(log D"), —> 0.

(5.1.3)
The induction hypothesis applies to D’ and D”. Thus we have
Poin(N"'(log D'),t) = t 97 'T(n,m — 2, ¢; 1),
Poin(N"2(log D"),t) =t 9 'T(n — 1,m — 2, ¢; t).
By exactness of (5.1.3), we obtain
Poin(N""!(log D), t)
=t YT (n,m - 2,¢;t) + T(n— Lm - 2,¢;1)}.  (6.2.2)

The second factor of the right hand side of (6.2.2) is equal to T'(n,m—1, q; t)
by [Lemma 6.1.1. This completes induction. U

By setting t =1 in (6.2.1), we obtain



Twisted de Rham cohomology 595

Proposition 6.2.2

dim N""!(log D) = Z (m .)q’.

i—o \ v ¢

7. A basis for H"(Q (log D), V)

In this section we find a basis for H"(2 - (log D), V,,). To the end, we

give a basis for N"~1(log D). The argument to give a basis is analogous to
[AKOT section 9.

7.1. Let G = {Hy,...,Hn_1} be an affine n-arrangement in general
position with m — 1 hyperplanes defined by H; = {P;(u) =0}, 1 < j <
m — 1 and P,,(u) a G-transverse polynomial of degree ¢ + 1. Suppose that
Assumption 1.2.1 holds for P;, 1 < j < m. Let X € L*(G). There is a
unique set {Hj,...,H;,} C G with X = Hj; N---N H;,. Then we define
Qx =P - Pj,.

Let A(P,,) denote the Jacobi ideal of Pp,; A(Py,) := (%ﬁ’;’,...,%ﬁ’:).
The quotient S/A(Py,)is called the associated Milnor algebra.

Let X € L(G) be the parallel translate of X containing the origin and
Iz the ideal in S consisting of the polynomials vanishing on X. Then Sy :=
S/Ix is the coordinate ring of X. The Milnor algebra of the restriction Py, |5

of Py, to X is equal to S5 /A(Pnlx)-

Lemma 7.1.1 Let P,,(u) be a G-transverse polynomial of degree g+ 1 and
X € L*(G). Then we have

Poin(Sx /A(Pnlx),t) = A(g — 1;6)4™ ¥,

Proof. It is shown in [AKOT, Lemma 9.2]. O]

7.2. There is a natural surjective map ¢x : S — S5 /A(Pn|x). Let
MBx C S be a set of homogeneous polynomials on which ¢y is injective

and so that ¢x (M Bx) is a basis for Sg/A(Py|5). We call M By a Milnor
basis at X .

Let X € LT(G). Define

be ]\/[Bx}
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where o := Y| u;*du; and Qx is the homogeneous part of maximal degree
of Qx. And We denote P = Jyc1+ Px. Let

If n > m — 1, then we consider NP = (). Let
B=PUNTP.

The notation for P, NP, and B are defined in [AKOT section 9].
We define

~ 1 _
Px = {——«p \ @€ Px} c 0" !(log D),

P= U Px,

NP = {——— \(pENP} c Q" (log D),

B =PUNP c Q" (logD).

For ¢ € Q" '(log D), let [p], denote the element of N"~!(log D), =
Q"~!(log D), /Im a,’j‘l represented by . Define

~ b
[’PX]:{[_ il ] bEMBX}CNnvl(IogD)
Qx P ] deg b+dim X —(g+1)

for X € L*(G) and let [P] = Uxcp+[Px]- Define

- o
W]:{L z P _}
Pj---Pj,_ Py - Pn 1Py k—(m—1)-(g+1)

n<k<m-1, 1§j1<'°'<jn—1Sk—1}

C N"(log D)
and

[B] = [P]U[NP] Cc N*"(log D).
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Proposition 7.2.1 Let G = {H),...,Hpy_1} be a general position n-
arrangement with m — 1 hyperplanes defined by H; = {Pj(u) = 0}, 1 <
j <m—1 and P, a G-transverse polynomial of degree ¢ + 1 > 0. Suppose
that Assumption 1.2.1 holds for P;, 1 <j <m. If 350 Lo #1,1-1,...,
then the set [B] = [P]U[NP] is a basis for N*~!(log D).

Proof. First we show that
Z tdeed — == (n m — 1,¢; ).
beB
By Lemma 7.1.1, we know Poin(Sg/A(Pn| %)) = A(g—1;t)9™X. Therefore

thegz — Z Z tdegz

beP XeLt hepy

Z t—q—1+dimXA(q _ l;t)dimX
XeLt

= ¢ 91 i (”T: : zl) [A(g;t) — 1]
=1

From the definition, we have

Z tdegz — t—q—l ZO: (Z + (m - 1) - 1) ti.

Il

beNP i=n—(m-1) "

Therefore
$pderd — $7gderdb | §™ ydewb — y=a-Ip(p, m — 1,g;¢).
beB beP beN'P

It suffices to show that B generates N"~!(log D). We shall prove by induc-
tion on m as in [Proposition 6.2.1. We must check two initial conditions.

(i) n =1, m > 1. Write v = u;. Then 0 = u * du. We may choose
Pj(u) =u—-=zj,1<j <m-1, with z; # z; for i # j. Then P = u,
1 <j<m-—1. We may choose P, = u?t!. In the proof of [Proposition
6.2.1 we know that

o
N%log D), = { um-1. yotl
0 for pu>0.

C[U];H-m-l-q—l for n < 0,
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Therefore we can choose

o o o
umta’ ymtg=17""" 2

as a basis for N%(log D). We will show that the set above is equal to B.

The element of Lt is only C. The Milnor algebra of C is Clu]/(u?). It has
a natural basis MBc = {1,u,...,u?" !}, so

~ o o o
P— {W,E,,E}
Simple computation shows that

NP ={ g e 2.

O T

Therefore B = P UNP gives a basis for N%(log D). It shows that Theorem
7.2.1 holds forn =1, m > 1.
(ii) m>1,m=1. In case G is empty and X = C". Thus we have

~ o
P-—{b-ﬁ—

m

bEMB@n}, NP = 0.

In the proof of Proposition 3.3.1, we see that

Ann N""!(log D) = (g—?—,...,g—})—l) = A(P)).
1 Un

Therefore B = P gives a basis for N*~!(log D).

(iii) Let n > 2, m > 2. The same proof of [AKOT Theorem 9.6] works
in this case with the help of the short exact sequence (5.1.3) of Theorem
5.1.3. This completes induction. [

7.3. Now we will find a basis for H*(Gr""Q (log D), Gr¥'(V,)) and for
H™((log D), V). Let 7 := duj A --- A duy, be the volume form. Define

Py = {QbTP ‘beMBX} c Q" (log D)
XI'm

for X € Lt(G) and P' = Uyxep+ Px. Define

T

Pj,---P;, Py Pn_1Pn

/\//73':{ n<k<m-1,




Twisted de Rham cohomology 599

1<j1 << jnog < k—l} c 0 (log D).

If n > m — 1, then we consider NP’ =0. Let
B =P UNP'c Q" (logD).

For ¢ € F,Q"(log D), let [p], denote the element of Grgﬂn(log D)
represented by ¢. Define

~ b .
[Px]' = {l L } be MBX} c GrfQ*(log D)
QxPm deg b+dim X —(g+1)

for X € LT(G) and let [P]' = Uxcp+[Px]- Define

NP - T
NP] {[pjl...pjn_lpk...pm_lpm

n<k<m-l, 1Sj1<~--<jn—1§k—l}

k—(m-1)—(g+1)

c Gr'Q™(log D)
and
(B = [P) UINP) C Gr" Q™ (log D).
In 2.3, if 37, iy #1, 1 —1,... (where l; = deg Pj and [ = ) 7~ ),

we have the isomorphism:

gn1: N"Y(log D), —» H"(Gr), Q0 (log D),Gr/ (V).  (7.3.1)
We can easily see that

P = [P, NP = WPY
up to non-zero constant, and hence

o 1[ | = [B] (7.3.2)
Therefore we obtain the following:

Theorem 7.3.1 Let G be an affine n- arrangement in general position with

— 1 hyperplanes defined by H; = {Pj(u) =0}, 1 <j <m — 1. Let Py(u)
be a G-transverse polynomial of degree q + 1 > 0. Suppose that Assumption
1.2.1 holds for P;, 1 <j <m. If 37 Loy #1,1—1,..., then
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(1) The set [B]' gives a basis for H™(GrFQ (log D), GrF'(V,,)),
(2) The set B' gives a basis for H"(¥ (log D), V.,),
(3)
(4)

Poin(H™(GrF'Q (log D), GrF'(V,)),t) =t 1T (n,m — 1,¢; t),
dim H™(Q (log D), V.,) = Y0 ("1 g

n—i

~

Proof.  Since the set [B] gives a basis for N"~!(log D) by [Proposition 7.2.1,

we have (1) in view of (7.3.2). Assertion (1) implies (2). By
6.2.2 and (7.3.1), we obtain (3). By setting t = 1 in (3), we get (4). 0J

In case that Pp(u) is a G-transverse polynomial of degree two and
P;j, 1 < 7 < m satisfies Assumption 1.2.1, we can choose a basis for
H"(Q (log D), V,,) more explicitly. By setting ¢ = 1 in [Lemma 7.1.1, we
have

Poin(Sx /A(Pr%),t) = 1.

This means that M Bx = {1} for all X € L*(G). Therefore

75’:{13. ---TP-P ‘1§j1<---<j,n§m—1,()Srgn—l}.
¥) Jrtm

Next consider NP'. Since G = {Hy,...,Hp_1} is in general position, 1 is
written as 1 = ZZLI ¢y Pj, for some constants ¢, € C. By using the trick of
partial fractional decomposition (see [K, pp. 74-75]), we can rewrite NP’

as

-
1<ji < <jn<m—1%.
{Pj ...pjan‘ =7 = }

Therefore we obtain following:

Theorem 7.3.2 Let G be an affine n-arrangement in general position with
m — 1 hyperplanes defined by H; = {Pj(u) =0}, 1 <j <m—1. Let Pp(u)
be a G-transverse polynomial of degree two. Suppose that Assumption 1.2.1
holds for Pj, 1 < j <m. If Yiiljay #1,1—1,..., then we can choose

-
I1<in<---<jp<m-1,0<r<
{lepjvpm’ = Jr=m _r_n}
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as a basis for H"(2' (log D), V), and hence

dim H™(Q (log D), V,,) = i (m B 1)

1=0

Example 7.3.3 Consider the case n = 2, m = 4, and ¢ = 1. Then
T = duy Ndug. Let P, = uy, P» = ug, Py = uyp + ug — 1/2, Py = u%+
ui — 1. Let G = {H;, Hy, H3}, where H; = {P; =0},1<j <3. Then
Py is a G-transverse and Pi,..., Py satisfies Assumption 1.2.1. It follows
from [Theorem 7.3.1 (3) that dim H?(Q (log D), V,,) = 7 and from [Theoren
7.3.1 (2) that

Poin(H?(Grf Q¥ (log D), Grf'(V,,)),t) = t72T(2,3,1;t)
=t 342072437 4+ 1.

Then we can choose the following basis for H?(2 (log D), V,,) by
7.3.1 (1):

~ r T
Pa, PPy }
~ ;o T
P, P3Py }
A.ﬁ ;o { T | T ’ T } .
N PPsPy P,P3Py P PP Py
In view of [['heorem 7.3.2, we can choose
T T T T
Py’ PPy’ PP, P3P’
T T T

P\P,P;’ PP3P,’ P,P3Py
as a basis for H2(Q (log D), V).

Remark. Consider the case ¢ = 0, that is, P;(u), 1 < j < m are all linear
and the arrangement {P; = 0}1<;<m is in general position. By setting ¢ = 0



602 K. Morita

in [Lemma 7.1.1, we have
POln(Sx/A ml}\) —O
This means that P’ = (. By the same reasoning in case ¢ = 1, we have

T

NP = ll<' << i <m—1%.
{le---Pjan = Jno =0

Since {Hj,,...,H;,,Hp} is in general position, 1 is written as 1
Sn_y ¢ Pj, + cm Py for some constants ¢y, ¢, € C. Then

n
T CyT CmT
D I ey
: S "Pjan le"'Pjn

PJ
n C C
v . o . m . .
= olts ey Jure s dnam) + 01, )
dy d

m

where d,, d,, are non-zero constants as

p :\B(le,...,Pju,...,Pjn,Pm)\ p _’B(le,. P]n)
Y A(u,- .., up) om o(uy, ..., up)
and denote
. dP; dP;
Pty esdp) = S A A I
P le Pjp
Notice that
Vw(p(.jl"- . ajn“1> = ZakW(kajlv .. 'vjn—1>
and hence
— 0773
W(m?]‘b‘ '7.77L 1 Z &— k ]17"'&jn—1>

in H*(Q (log D), V,,). Therefore we can choose

{‘ﬂi Ao p in
Py, Pj,
as a basis for H"(Q (log D), V).

This result agrees with the formula for H"(Q (log D), V) shown in

(A1), [K].

1§j1<"'<jnSm—1}
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