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Orthogonal (g, f)-factorizations of bipartite graph
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Abstract. We consider a simple graph. Let g(z) and f(z) be integer-valued functions
defined on V(G) with f(z) > g(z) > 1 for all x € V(G). A (g, f)-factor of a graph G is
a spanning subgraph F of G such that g(z) < dp(z) < f(x) for each vertex x of F. In
this paper, we mainly discuss the problem of orthogonal (g, f)-factorizations of bipartite
graph. Furthermore, we generalized some predecessor’s result.
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1. Introduction

All graphs under consideration are simple. Let G be a graph with vertex
set V(G) and edge set E(G). An edge joining vertices v and v is denoted by
wv. For a vertex v € V(G), we denote by di(v) the degree of vin G. Let g(z)
and f(z) be integer-valued functions defined on V(G) with f(z) > g(x) for
all z € V(G). A graph G is called a (g, f)-graph if g(v) < dg(v) < f(v) for
each vertex v € V(G), and a (g, f)-factor of a graph G is a spanning (g, f)-
subgraph of G. A (g, f)-factorization F = {F1, F,, ..., Fi} of a graph G is a
partition of E(G) into edge-disjoint spanning (g, f)-subgraphs. A subgraph
H of G is orthogonal to F if |E(H)NE(F;)| = 1 forall1 <4 <t. A bipartite
graph G with partite sets X and Y is denoted by G = (X,Y; E(G)) and its
edge set is denoted by E(G).

Now, we consider the following problem:

Given a graph G and its subgraph H, how many edge disjoint factors
containing ezactly one distinct edge of H are contained in G ?

If G has a factorization F = {Fy, Fs, ..., Fi} such that |E(H)NE(F;)| =
1 (1 < i <t), we obtain a solution to the following problem [2]:

Given a subgraph H of G, does there exist a factorization F of G
orthogonal to H?
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In this paper, we will prove the following theorem:

Theorem Let m and r be integers such that 1 < r < m. Let G be a
(mg +m — r,mf — m + r)-bipartite graph (i.e. mg(z) + m —r < dg(z) <
mf(zx) —m+r) for all z € V(G)), and H a subgraph of G with edge set
{e1,e9,...,em}. Then G has m—r+1 edge disjoint (g, f)-factors containing
€1,€2,...,€m_rt+1, respectively, and excluding em—r42, €m—ri3,...,€m.

When r = 1, from the proof of the above theorem we have the following

Corollary  Every (mg(z) + m — 1, mf(x) — m + 1)-bipartite graph has a
(g, f)-factorization orthogonal to a given subgraph with m edges.

2. The Proof of the Theorem

Given a subset X C V(G), we write f(X) = > ,cx f(2), da(X) =
> zex da(z). G[S] denotes the subgraph of G induced by S. A vertex set
S C V(Q) is called independent if G[S] has no edges. For E' C E(G), G[E']
denotes the subgraph of G induced by E' and G — E' = G[E — E']. If S and
T are disjoint subsets of V(G), then eg(S,T) denotes the number of edges
of G joining S and T. Other notation and definition in this paper can be
found in [1].

In [3] Liu Guizhen got a necessary and sufficient condition for a bipartite
graph to have a (g, f)-factor containing a given edge:

Lemma 2.1 [3]. Let G = (X,Y;E(G)) be a bipartite graph and g(z)
and f(z) be two positive integer-valued function defined on V(G) such that
g(z) < f(x) for all x € V(G). Then for any given edge e of G, G has a
(g, f)-factor containing e if and only if for all S C X and T CY,

0c(S,T) = f(S) +dg(T) — g(T) — ea(S,T) > e1(S,T)
and
6a(T,S) = f(T) + da(S) — g(S) — eq(T,S) > &2(T, S)

where €1(S,T) = 1 if e € Eg(S,Y — T), otherwise, €;(S,T) = 0 and
eo(T,S) =1 if e € Eg(T, X — S), otherwise (T, S) = 0.

Let G be a graph. Hereafter m and r denote integers such that 1 <r <
m, and ¢g(r) and f(z) denote two positive integer-valued functions defined

on V(G).
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Lemma 2.2 Let G be an (mg, mf)-bipartite graph. Then G has a (g, f)-
factor containing any given edge e of G.

Proof.  The Claim clearly holds when m = 1. In the following we assume
that m > 2. Put

p(z) = max{g(z),dg(z) — ((m — 1) f(z) + 1)}
q(x) = min{f(z),de(z) — ((m — L)g(z) - 1)}.
We shall prove that G has a (p, q)-factor containing e, which is obviously
a required (g, f)-factor of G. Put

Bala) = —da(®) = @), Nole) = a(x) ~ —da).

m

If p(x) = g(x), then Ay(z) = dGn(lx) —g(x) > mg(z) —g(x) > 0;if p(x) =
dg(z) — (m —1)f(z) — 1, then A (z) = %€ _ gg(z) + (m - 1) f(z) +1 >
LBImf(z)] + (m—-1)f(z) +1=1.

Thus

Similarly we have

Now let S C X and T C Y, we now prove that dg(S,T) > (S, T) for
q and p. Since dg(T) — dg-s(T) = dg(S) — dg_1(S) = eg(T, S), we have

0(S,T) = q(S) +dg(T) — p(T) — ec(S,T)
= (dG(T) —p(T)> + (q(S) - dG(S))

+m(1 - —%) dg—s(T) + ___dG—;rzS)

m
1

= AV(T) + Ag(S) + (1 - 5) do_s(T) +

dg-1(5)
—
Ifeec Eg(S,Y —T), then dg-1(S) > 1, and é¢(S, T) > %dG_T(S) >
L that is (S, T) > 1 because dg(S,T) is a integer. Otherwise, we have
0c(S,T) > Ay(T) > 0. Similarly, we have dg(T,S) > e3(T, S), therefore
the proof is completed by lemma 2.1. [
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Lemma 2.3 Let G be an (mg+m —r,mf —m+r)-bipartite graph. Then
for any given subgraph H with m edges ey, ez, ..., em of G, the graph G has
a (g, f)-factor containing e; and excluding ez, e3, ..., em.

Proof. Put

p(z) = max{g(z),dc(z) — ((m —1)f(z) —m +r+1)}
g(z) = min{f(z),dg(z) = ((m —1)g(z) + m = (r+1))}.

Set G' = G — {eg,e3,...,em} and e; = uv. Then G’ is a (mg —r +
1,mf — m + r)-graph. Since mg(z) + m —r < mf(xz) — m + r, we have
f(z) > g(z) + 2 — £ and thus g(z) < p(z) < g(z) < f(x). We shall
prove that G’ has a (p, q)-factor containing e;, which is obviously a required
(g, f)-factor of G. Put

Mile) = dar(a) ~ pla), Aale) = 4le) — —dor @)

1. If p(z) = g(x) and =z € {u,v}, then Ai(z) = d%i-x—) —g(x) >
mg(e)tm_r—dy(@)¥1_ 00y > 1_T+_(1H%$_)—_1; and if p(z) = g(z) and z ¢ {u, v},

m

then A (z) > %@_9("7) > ég%dff_(x)_g(x) > mg(m)*mT:r—dH(x) —g(z) =
1 — r+dH!:c).

We next assume that p(z) = dg(z) — (m —1)f(x) + m —r — L.

(i) Ifdg(x) = mf(x) — m+r, then p(z) = f(z) — L.

Thus A(z) = %M —flz)+1= T—_—drgil or Ay(z) > r—_—‘—i”m(x—m
according to z ¢ {u,v} or z € {u,v}.

(i) If dg(z) < mf(x) —m+r—1, and ¢ ¢ {u,v}, then Ai(z) =

d6@)=du@) _ go(z)+(m—1)f(z) —m+r+1> 2 (mf(z) —m+r—1)+

m

(m—1)f(z)—m+r+1—2ld =14 =@ anq if dg(z) < mf(z) -
m+7r—1and z € {u,v}, then Aj(z) > 1+ f—_—%’ﬂ.
Thus
—dH if m>2r
T+dH ) if m<2r.
2. Ifg(x f and dg(z) = mf(z) — m+r, then Aqg(z) = g(z) —
gﬁ'm(—) > q(x ) > f(x) - —(m () = m+7r) = 1 — ~; otherwise,
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dg(z) < mf(z)—m+r—1, then Ag(z) = g(z) — 2 > f(z) - L(mf(x) -
m+r—1)=1-12=L

Next we assume that ¢(z) = dg(z) — (m — 1)g(z) — m +r + 1, then
Ag(z) = dg(z) — (m — Dg(x) —m+7+1 - %D > (1 - Lydg(z) — (m -

Dg(x) —m+r+12> .
So we have
(L if m>2r
m
r .
Ao(z) > ¢ I—E if m<2r, dg(z)=mf(z)—m+r
—1
1-— r otherwise.
\ m

Now let S C X and T C Y, we now prove that ¢/ (S, T) > ¢1(S,T) for
g and p. Similarly, we have

1

5cr(8,T) = A (T) + Ao(S) + (1 _ ;n_) dor_o(T) 1 d=1(S)

m

Case 1: T = 0.
In this case 6g/ (S, T) = q(S). Thus é¢/(S,T) =0if S = 0; 6/ (S, T) > 1
if S #0. Sod(S,T) > e1(S,T).

Case 2: T # 0 and e; = uv € E(S,Y —T), in particular S # 0.
In this case we have €1(S,T) = 1. We consider two subcases.

Subcase 2.1 r <m < 2r.
(i) de-s(T) > 1.

(i) de-s(T)=0.
(a) If |T| =1, then dg'—7(S) > mg(z) + m —r — 1 for x € T, and
thus.

5 (S,T) > Mi(T) + 8a(8) + —dor-1(S)
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-1 1
> I—LﬂT—)+1—1+~(mg(x)+m~r—l)
m m  m
3
=g(x)+2——7:>0.
m

(b) |T| > 2. Set B = {z|dy(z) >0, x € T}. If |B| < 1, then
|S| > mg(z) + m —r for x € T — B, and thus

56r(S,T) 2 Ai(T) + Ag(8) + —der_r(S)

> ——1+%+(1—%> (mg(:z:)+m—r)+l

1
> —1+—+(1—

m r+1 m
(m>r+1)
3
= ——=1>0.
g($)+r+1+m

If |B| > 2 and there exists vertex z € T such that dg(z) = mf(z) —
m + 7, then S| > mf(y) —m +r — 251 for some y € T.

56/ (S,T) 2 Ai(T) + Aa(8) + —dgr_r(S)

1 3 1 1
> _1+_+(1__r_> (mf(y)——m+r+—>+—
m m 2 2 m
1 1 Im 1 1
> 4 - t —
- 1+m+m<mf(y) 2 +7~+2>+m
(r<m-1)

1 3 r 3
= -1+ — -+ —+—
+m+f(y) 2+m+2m

(f(w)Zg(x)+2—%>1)

1 1 2r+3
> 14 — 4 =
+m 2 2m

B 1 2r+5
92 2m
>—1+1+5

2 2 2m

0. (m < 2r)

Otherwise, dg(z) < mf(z) —m+r—1for allz € V(S). |S| > mg(y) +
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m—r—mT_l-—-mg(y)—i—%—?“F%forsomeyETandthus

56/ (S,T) > AL(T) + Ao(8) + —dgyr1(S)

1 r 1 m 1 1
:—1+—+(1———+—)<mg(y)+——r+—>+—
m m m 2 2 m
> 1+1—+2< (y) + = +1)+1 (m >r)
- m m mIay 2 " 2 m mer
2 3
= 29(y) - — + = > 0.
m m

Subcase 2.2 m > 2r.
(i) dg-s(T) > 1.

00r(8,T) = Au(T) + 80(8) + (1= =) dar-s(T) + —dar-r(8)

zeT m m m
r—(m-—1
= ( )+—+1
m m
2 1
o
m

(ii) dg-s(T)=0. |
(a) If [T| < m — 1, then we have the following inequalities by
dg_7(S) >mg(z) +m—r—(m—-1)=mg(z)+1—rforzeT.

56r(S.T) = Ai(T) + As(S) + —deyr(S)

r—d r 1
> Z——M+—+—(mg(x)+1—r)
m m m
zeT
r+1 r 1 '
> 1+~ = 4 g(z) +— — —
m m m
1
— g -1+ = >0
m

(b) If |T| > m, then

56:(5.T) > Mi(T) + Ao(8) + —dr 1 (S)



482 Y. Guiying, J. Pan, W. Jianfang and C.K. Wong

r—dy(x r
yrode@ r 1
T m m m
T| — -1
(T = n=1) 1

m m

r+ 2

—r—1+-1%50.
m

1
+__
m

So, 6¢/(S,T) > 1 because d¢ is an integer. Namely, 6q/(S,T) >
€I(S’ T)

Z T_M> -1+
Z ( _T+dH())>

Case 3: e1(S5,T) =0, then 6/ (S,T) > A(T)
% > —1if r < m < 2r and then ¢/ (S, T)
Seer 2 > 14 LS 1ifm > o

So, 6 (S, T) > 0.

Similarly, we can show that dg/ (S, T) > €2(T, S).

2
>

By Lemma 2.1, G has a (p, q)-factor Fy containing e; but not containing
€2,€3,...,em. The proof is completed. ]

From the above proof, we see that if p(x) = g(z), clearly, p(z) > dg(x)—
(m—1)f(z)+m—r—1, then dg(z)—dg,(z) < dg(z)—(dg(z)—(m—1)f()
m—r—1) = (m—1)f(z)—(m-1)+r; if p(z) = dg(x)—(m-1)f(x)+m—r—1,
then dg(z) — dpy(z) < dg(z) — (de(z) = (m = ) f(z) + m —r - 1) =
(m—-1f(x)— (m—1)+r.

Similarly, we have dg(z)—dp,(x) > (m—1)g(z)+(m—1) —r. Therefore,
G-E(Fy)isa((m-1)g+(m—1)—r,(m—-1)f — (m — 1) + r)-graph.

Finally, we give the proof of the theorem.

Proof. Set Go = G, G; = Gy — E(Fp), Gy is a ((m —1g+ (m — 1) -
r,(m —1)f — (m — 1) + r)-graph. If m — 1 > r, then G; has a (g, f)-
factor Fy containing es and excluding ey, es, ..., e, whose proof is sim-
ilar to Lemma 2.3. On the analogy of this, set G; = G;_1 — E(F;_1),
(2 < ¢ < m —r), then G; has a (g, f)-factor F; containing e; and ex-
cluding ey,eg,...,€;-1,€i41,...,€n, therefore, G has m — r (g, f)-factors
F\,Fy,...,Fp_, containing ej,eg,...,en_r, respectively, and excluding
€m—r41,€m—-r42y---,6m. Now, Gp_r is a (rg,rf)-graph, by lemma 2.2,
Gm-r has a (g, f)-factor Fy,_,4; containing e, .

Thus Fy, Fy, ..., Fyn_r41 are the required factors. The proof is com-
pleted. [

+
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