Orthogonal (g, f)-factorizations of bipartite graph

Yan Guiying*, Jiaofeng Pan, Wang Jianfang and C.K. Wong (Received August 27, 1996; Revised April 14, 1997)

Abstract. We consider a simple graph. Let g(x) and f(x) be integer-valued functions defined on V(G) with $f(x) \geq g(x) \geq 1$ for all $x \in V(G)$. A (g, f)-factor of a graph G is a spanning subgraph F of G such that $g(x) \leq d_F(x) \leq f(x)$ for each vertex x of F. In this paper, we mainly discuss the problem of orthogonal (g, f)-factorizations of bipartite graph. Furthermore, we generalized some predecessor's result.

Key words: bipartite graph, factor, factorization, orthogonal.

1. Introduction

All graphs under consideration are simple. Let G be a graph with vertex set V(G) and edge set E(G). An edge joining vertices u and v is denoted by uv. For a vertex $v \in V(G)$, we denote by $d_G(v)$ the degree of v in G. Let g(x) and f(x) be integer-valued functions defined on V(G) with $f(x) \geq g(x)$ for all $x \in V(G)$. A graph G is called a (g, f)-graph if $g(v) \leq d_G(v) \leq f(v)$ for each vertex $v \in V(G)$, and a (g, f)-factor of a graph G is a spanning (g, f)-subgraph of G. A (g, f)-factorization $\mathcal{F} = \{F_1, F_2, \ldots, F_t\}$ of a graph G is a partition of E(G) into edge-disjoint spanning (g, f)-subgraphs. A subgraph G of G is orthogonal to G if G is denoted by G if G with partite sets G and G is denoted by G is denoted by G and its edge set is denoted by G.

Now, we consider the following problem:

Given a graph G and its subgraph H, how many edge disjoint factors containing exactly one distinct edge of H are contained in G?

If G has a factorization $\mathcal{F} = \{F_1, F_2, \dots, F_t\}$ such that $|E(H) \cap E(F_i)| = 1$ $(1 \leq i \leq t)$, we obtain a solution to the following problem [2]:

Given a subgraph H of G, does there exist a factorization $\mathcal F$ of G orthogonal to H?

¹⁹⁹¹ Mathematics Subject Classification: 05C75.

^{*}Supported by Chuang-Xin Foundation of Academia Sinica, Croucher Foundation of Hong Kong and Shandong Youth Science Foundation.

In this paper, we will prove the following theorem:

Theorem Let m and r be integers such that $1 \le r < m$. Let G be a (mg + m - r, mf - m + r)-bipartite graph (i.e. $mg(x) + m - r \le d_G(x) \le mf(x) - m + r$) for all $x \in V(G)$), and H a subgraph of G with edge set $\{e_1, e_2, \ldots, e_m\}$. Then G has m-r+1 edge disjoint (g, f)-factors containing $e_1, e_2, \ldots, e_{m-r+1}$, respectively, and excluding $e_{m-r+2}, e_{m-r+3}, \ldots, e_m$.

When r = 1, from the proof of the above theorem we have the following

Corollary Every (mg(x) + m - 1, mf(x) - m + 1)-bipartite graph has a (g, f)-factorization orthogonal to a given subgraph with m edges.

2. The Proof of the Theorem

Given a subset $X \subseteq V(G)$, we write $f(X) = \sum_{x \in X} f(x)$, $d_G(X) = \sum_{x \in X} d_G(x)$. G[S] denotes the subgraph of G induced by S. A vertex set $S \subseteq V(G)$ is called independent if G[S] has no edges. For $E' \subseteq E(G)$, G[E'] denotes the subgraph of G induced by E' and G - E' = G[E - E']. If S and T are disjoint subsets of V(G), then $e_G(S,T)$ denotes the number of edges of G joining S and T. Other notation and definition in this paper can be found in [1].

In [3] Liu Guizhen got a necessary and sufficient condition for a bipartite graph to have a (g, f)-factor containing a given edge:

Lemma 2.1 [3]. Let G = (X, Y; E(G)) be a bipartite graph and g(x) and f(x) be two positive integer-valued function defined on V(G) such that $g(x) \leq f(x)$ for all $x \in V(G)$. Then for any given edge e of G, G has a (g, f)-factor containing e if and only if for all $S \subseteq X$ and $T \subseteq Y$,

$$\delta_G(S,T) = f(S) + d_G(T) - g(T) - e_G(S,T) \ge \varepsilon_1(S,T)$$

and

$$\delta_G(T,S) = f(T) + d_G(S) - g(S) - e_G(T,S) \ge \varepsilon_2(T,S)$$

where $\varepsilon_1(S,T) = 1$ if $e \in E_G(S,Y-T)$, otherwise, $\varepsilon_1(S,T) = 0$ and $\varepsilon_2(T,S) = 1$ if $e \in E_G(T,X-S)$, otherwise $\varepsilon_2(T,S) = 0$.

Let G be a graph. Hereafter m and r denote integers such that $1 \le r < m$, and g(x) and f(x) denote two positive integer-valued functions defined on V(G).

Lemma 2.2 Let G be an (mg, mf)-bipartite graph. Then G has a (g, f)-factor containing any given edge e of G.

Proof. The Claim clearly holds when m = 1. In the following we assume that $m \geq 2$. Put

$$p(x) = \max\{g(x), d_G(x) - ((m-1)f(x) + 1)\}$$

$$q(x) = \min\{f(x), d_G(x) - ((m-1)g(x) - 1)\}.$$

We shall prove that G has a (p, q)-factor containing e, which is obviously a required (g, f)-factor of G. Put

$$\Delta_1(x) = \frac{1}{m} d_G(x) - p(x), \quad \Delta_2(x) = q(x) - \frac{1}{m} d_G(x).$$

If p(x) = g(x), then $\Delta_1(x) = \frac{d_G(x)}{m} - g(x) \ge \frac{mg(x)}{m} - g(x) \ge 0$; if $p(x) = d_G(x) - (m-1)f(x) - 1$, then $\Delta_1(x) = \frac{d_G(x)}{m} - d_G(x) + (m-1)f(x) + 1 \ge \frac{1-m}{m}[mf(x)] + (m-1)f(x) + 1 = 1$.

Thus

$$\Delta_1(x) \ge 0.$$

Similarly we have

$$\Delta_2(x) \geq 0$$

Now let $S \subseteq X$ and $T \subseteq Y$, we now prove that $\delta_G(S,T) \geq \varepsilon_1(S,T)$ for q and p. Since $d_G(T) - d_{G-S}(T) = d_G(S) - d_{G-T}(S) = e_G(T,S)$, we have

$$\delta_{G}(S,T) = q(S) + d_{G}(T) - p(T) - e_{G}(S,T)$$

$$= \left(\frac{d_{G}(T)}{m} - p(T)\right) + \left(q(S) - \frac{d_{G}(S)}{m}\right)$$

$$+ \left(1 - \frac{1}{m}\right) d_{G-S}(T) + \frac{d_{G-T}(S)}{m}$$

$$= \Delta_{1}(T) + \Delta_{2}(S) + \left(1 - \frac{1}{m}\right) d_{G-S}(T) + \frac{d_{G-T}(S)}{m}.$$

If $e \in E_G(S, Y - T)$, then $d_{G-T}(S) \ge 1$, and $\delta_G(S, T) \ge \frac{1}{m} d_{G-T}(S) \ge \frac{1}{m}$, that is $\delta_G(S, T) \ge 1$ because $\delta_G(S, T)$ is a integer. Otherwise, we have $\delta_G(S, T) \ge \Delta_1(T) \ge 0$. Similarly, we have $\delta_G(T, S) \ge \varepsilon_2(T, S)$, therefore the proof is completed by lemma 2.1.

Lemma 2.3 Let G be an (mg+m-r, mf-m+r)-bipartite graph. Then for any given subgraph H with m edges e_1, e_2, \ldots, e_m of G, the graph G has a (g, f)-factor containing e_1 and excluding e_2, e_3, \ldots, e_m .

Proof. Put

$$p(x) = \max\{g(x), d_G(x) - ((m-1)f(x) - m + r + 1)\}$$

$$g(x) = \min\{f(x), d_G(x) - ((m-1)g(x) + m - (r+1))\}.$$

Set $G' = G - \{e_2, e_3, \dots, e_m\}$ and $e_1 = uv$. Then G' is a (mg - r + 1, mf - m + r)-graph. Since $mg(x) + m - r \le mf(x) - m + r$, we have $f(x) \ge g(x) + 2 - \frac{2r}{m}$ and thus $g(x) \le p(x) < q(x) \le f(x)$. We shall prove that G' has a (p, q)-factor containing e_1 , which is obviously a required (g, f)-factor of G. Put

$$\Delta_1(x) = \frac{1}{m} d_{G'}(x) - p(x), \quad \Delta_2(x) = q(x) - \frac{1}{m} d_{G'}(x).$$

1. If p(x) = g(x) and $x \in \{u, v\}$, then $\Delta_1(x) = \frac{d_{G'}(x)}{m} - g(x) \ge \frac{mg(x) + m - r - d_H(x) + 1}{m} - g(x) \ge 1 - \frac{r + d_H(x) - 1}{m}$; and if p(x) = g(x) and $x \notin \{u, v\}$, then $\Delta_1(x) \ge \frac{d_{G'}(x)}{m} - g(x) \ge \frac{d_G(x) - d_H(x)}{m} - g(x) \ge \frac{mg(x) - m + r - d_H(x)}{m} - g(x) = 1 - \frac{r + d_H(x)}{m}$.

We next assume that $p(x) = d_G(x) - (m-1)f(x) + m - r - 1$.

(i) If $d_G(x) = mf(x) - m + r$, then p(x) = f(x) - 1.

Thus $\Delta_1(x) = \frac{d_G(x) - d_H(x)}{m} - f(x) + 1 = \frac{r - d_H(x)}{m}$ or $\Delta_1(x) \ge \frac{r - d_H(x) + 1}{m}$ according to $x \notin \{u, v\}$ or $x \in \{u, v\}$.

(ii) If $d_G(x) \leq mf(x) - m + r - 1$, and $x \notin \{u, v\}$, then $\Delta_1(x) = \frac{d_G(x) - d_H(x)}{m} - d_G(x) + (m-1)f(x) - m + r + 1 \geq \frac{1-m}{m}(mf(x) - m + r - 1) + (m-1)f(x) - m + r + 1 - \frac{d_H(x)}{m} = 1 + \frac{r - d_H(x) - 1}{m}$, and if $d_G(x) \leq mf(x) - m + r - 1$ and $x \in \{u, v\}$, then $\Delta_1(x) \geq 1 + \frac{r - d_H(x)}{m}$.

Thus

$$\Delta_1(x) \ge \begin{cases} \frac{r - d_H(x)}{m} & \text{if } m \ge 2r \\ 1 - \frac{r + d_H(x)}{m} & \text{if } m < 2r. \end{cases}$$

2. If q(x) = f(x), and $d_G(x) = mf(x) - m + r$, then $\Delta_2(x) = q(x) - \frac{d_{G'}(x)}{m} \ge q(x) - \frac{d_{G}(x)}{m} \ge f(x) - \frac{1}{m}(mf(x) - m + r) = 1 - \frac{r}{m}$; otherwise,

$$d_G(x) \le mf(x) - m + r - 1$$
, then $\Delta_2(x) = q(x) - \frac{d_{G'}(x)}{m} \ge f(x) - \frac{1}{m}(mf(x) - m + r - 1) = 1 - \frac{r - 1}{m}$.

Next we assume that $q(x) = d_G(x) - (m-1)g(x) - m + r + 1$, then $\Delta_2(x) = d_G(x) - (m-1)g(x) - m + r + 1 - \frac{d_{G'}(x)}{m} \ge (1 - \frac{1}{m})d_G(x) - (m-1)g(x) - m + r + 1 \ge \frac{r}{m}$.

So we have

$$\Delta_2(x) \ge \begin{cases} \frac{r}{m} & \text{if } m \ge 2r \\ 1 - \frac{r}{m} & \text{if } m < 2r, \ d_G(x) = mf(x) - m + r \\ 1 - \frac{r-1}{m} & \text{otherwise.} \end{cases}$$

Now let $S \subseteq X$ and $T \subseteq Y$, we now prove that $\delta_{G'}(S,T) \geq \varepsilon_1(S,T)$ for q and p. Similarly, we have

$$\delta_{G'}(S,T) = \Delta_1(T) + \Delta_2(S) + \left(1 - \frac{1}{m}\right) d_{G'-S}(T) + \frac{d_{G'-T}(S)}{m}$$

Case 1: $T = \emptyset$.

In this case $\delta_{G'}(S,T) = q(S)$. Thus $\delta_{G'}(S,T) = 0$ if $S = \emptyset$; $\delta_{G'}(S,T) \ge 1$ if $S \ne \emptyset$. So $\delta(S,T) \ge \varepsilon_1(S,T)$.

Case 2: $T \neq \emptyset$ and $e_1 = uv \in E(S, Y - T)$, in particular $S \neq \emptyset$. In this case we have $\varepsilon_1(S, T) = 1$. We consider two subcases.

Subcase 2.1 r < m < 2r.

(i) $d_{G'-S}(T) \geq 1$.

$$\delta_{G'}(S,T) \geq \Delta_{1}(T) + \Delta_{2}(S) + \left(1 - \frac{1}{m}\right) d_{G'-S}(T) + \frac{1}{m} d_{G'-T}(S)$$

$$\geq \sum_{x \in T} \left(1 - \frac{r + d_{H}(x)}{m}\right) + 1 - \frac{r}{m} + 1 - \frac{1}{m} + \frac{1}{m}$$

$$> -\frac{(r-1)}{m} + 2 - \frac{r}{m} > 0.$$

- (ii) $d_{G'-S}(T) = 0$.
- (a) If |T| = 1, then $d_{G'-T}(S) \ge mg(x) + m r 1$ for $x \in T$, and thus.

$$\delta_{G'}(S,T) \ge \Delta_1(T) + \Delta_2(S) + \frac{1}{m} d_{G'-T}(S)$$

$$\geq 1 - \frac{r + (m-1)}{m} + 1 - \frac{r}{m} + \frac{1}{m} (mg(x) + m - r - 1)$$
$$= g(x) + 2 - \frac{3r}{m} > 0.$$

(b) $|T| \ge 2$. Set $B = \{x | d_H(x) > 0, x \in T\}$. If $|B| \le 1$, then $|S| \ge mg(x) + m - r$ for $x \in T - B$, and thus

$$\delta_{G'}(S,T) \geq \Delta_{1}(T) + \Delta_{2}(S) + \frac{1}{m}d_{G'-T}(S)$$

$$\geq -1 + \frac{1}{m} + \left(1 - \frac{r}{m}\right)(mg(x) + m - r) + \frac{1}{m}$$

$$\geq -1 + \frac{1}{m} + \left(1 - \frac{r}{r+1}\right)[(r+1)g(x) + 1] + \frac{1}{m}$$

$$(m \geq r+1)$$

$$= g(x) + \frac{1}{r+1} + \frac{3}{m} - 1 > 0.$$

If $|B| \ge 2$ and there exists vertex $x \in T$ such that $d_G(x) = mf(x) - m + r$, then $|S| \ge mf(y) - m + r - \frac{m-1}{2}$ for some $y \in T$.

$$\delta_{G'}(S,T) \geq \Delta_{1}(T) + \Delta_{2}(S) + \frac{1}{m}d_{G'-T}(S)$$

$$\geq -1 + \frac{1}{m} + \left(1 - \frac{r}{m}\right) \left(mf(y) - \frac{3m}{2} + r + \frac{1}{2}\right) + \frac{1}{m}$$

$$\geq -1 + \frac{1}{m} + \frac{1}{m} \left(mf(y) - \frac{3m}{2} + r + \frac{1}{2}\right) + \frac{1}{m}$$

$$(r \leq m - 1)$$

$$= -1 + \frac{1}{m} + f(y) - \frac{3}{2} + \frac{r}{m} + \frac{3}{2m}$$

$$\left(f(x) \geq g(x) + 2 - \frac{2r}{m} > 1\right)$$

$$\geq -1 + \frac{1}{m} + \frac{1}{2} + \frac{2r + 3}{2m}$$

$$= -\frac{1}{2} + \frac{2r + 5}{2m}$$

$$> -\frac{1}{2} + \frac{1}{2} + \frac{5}{2m}$$

$$0. \qquad (m < 2r)$$

Otherwise, $d_G(x) \leq mf(x) - m + r - 1$ for all $x \in V(S)$. $|S| \geq mg(y) + r - 1$

 $m-r-\frac{m-1}{2}=mg(y)+\frac{m}{2}-r+\frac{1}{2}$ for some $y\in T$ and thus

$$\delta_{G'}(S,T) \geq \Delta_{1}(T) + \Delta_{2}(S) + \frac{1}{m}d_{G'-T}(S)$$

$$= -1 + \frac{1}{m} + \left(1 - \frac{r}{m} + \frac{1}{m}\right) \left(mg(y) + \frac{m}{2} - r + \frac{1}{2}\right) + \frac{1}{m}$$

$$\geq -1 + \frac{1}{m} + \frac{2}{m} \left(mg(y) + \frac{m}{2} - r + \frac{1}{2}\right) + \frac{1}{m} \quad (m > r)$$

$$= 2g(y) - \frac{2r}{m} + \frac{3}{m} > 0.$$

Subcase 2.2 m > 2r.

(i) $d_{G'-S}(T) \geq 1$.

$$\delta_{G'}(S,T) = \Delta_{1}(T) + \Delta_{2}(S) + \left(1 - \frac{1}{m}\right) d_{G'-S}(T) + \frac{1}{m} d_{G'-T}(S)$$

$$\geq \sum_{x \in T} \frac{r - d_{H}(x)}{m} + \frac{r}{m} + 1 - \frac{1}{m} + \frac{1}{m}$$

$$= \frac{r - (m - 1)}{m} + \frac{r}{m} + 1$$

$$= \frac{2r + 1}{m} > 0.$$

- (ii) $d_{G'-S}(T) = 0$.
- (a) If $|T| \leq m-1$, then we have the following inequalities by $d_{G'-T}(S) \geq mg(x) + m-r (m-1) = mg(x) + 1 r$ for $x \in T$.

$$\delta_{G'}(S,T) = \Delta_1(T) + \Delta_2(S) + \frac{1}{m}d_{G'-T}(S)$$

$$\geq \sum_{x \in T} \frac{r - d_H(x)}{m} + \frac{r}{m} + \frac{1}{m}(mg(x) + 1 - r)$$

$$\geq -1 + \frac{r+1}{m} + \frac{r}{m} + g(x) + \frac{1}{m} - \frac{r}{m}$$

$$= g(x) - 1 + \frac{r+1}{m} > 0.$$

(b) If $|T| \geq m$, then

$$\delta_{G'}(S,T) \ge \Delta_1(T) + \Delta_2(S) + \frac{1}{m} d_{G'-T}(S)$$

$$\geq \sum_{x \in T} \frac{r - d_H(x)}{m} + \frac{r}{m} + \frac{1}{m}$$
$$\geq \frac{r|T| - (m-1)}{m} + \frac{r}{m} + \frac{1}{m}$$
$$= r - 1 + \frac{r+2}{m} > 0.$$

So, $\delta_{G'}(S,T) \geq 1$ because $\delta_{G'}$ is an integer. Namely, $\delta_{G'}(S,T) \geq \varepsilon_1(S,T)$.

Case 3: $\varepsilon_1(S,T) = 0$, then $\delta_{G'}(S,T) \geq \Delta_1(T) \geq \sum_{x \in T} \frac{r - d_H(x)}{m} \geq -1 + \frac{r+1}{m} > -1$ if r < m < 2r and then $\delta_{G'}(S,T) \geq \sum_{x \in T} (1 - \frac{r + d_H(x)}{m}) \geq \sum_{x \in T} \frac{d_H(x)}{m} \geq -1 + \frac{1}{m} > -1$ if $m \geq 2r$. So, $\delta_{G'}(S,T) > 0$.

Similarly, we can show that $\delta_{G'}(S,T) \geq \varepsilon_2(T,S)$.

By Lemma 2.1, G has a (p,q)-factor F_0 containing e_1 but not containing e_2, e_3, \ldots, e_m . The proof is completed.

From the above proof, we see that if p(x) = g(x), clearly, $p(x) \ge d_G(x) - (m-1)f(x) + m - r - 1$, then $d_G(x) - d_{F_0}(x) \le d_G(x) - (d_G(x) - (m-1)f(x) + m - r - 1) = (m-1)f(x) - (m-1) + r$; if $p(x) = d_G(x) - (m-1)f(x) + m - r - 1$, then $d_G(x) - d_{F_0}(x) \le d_G(x) - (d_G(x) - (m-1)f(x) + m - r - 1) = (m-1)f(x) - (m-1) + r$.

Similarly, we have $d_G(x) - d_{F_0}(x) \ge (m-1)g(x) + (m-1) - r$. Therefore, $G - E(F_0)$ is a ((m-1)g + (m-1) - r, (m-1)f - (m-1) + r)-graph. Finally, we give the proof of the theorem.

Proof. Set $G_0 = G$, $G_1 = G_0 - E(F_0)$, G_1 is a ((m-1)g + (m-1) - r, (m-1)f - (m-1) + r)-graph. If m-1 > r, then G_1 has a (g, f)-factor F_2 containing e_2 and excluding e_1, e_3, \ldots, e_m whose proof is similar to Lemma 2.3. On the analogy of this, set $G_i = G_{i-1} - E(F_{i-1})$, $(2 \le i \le m-r)$, then G_i has a (g, f)-factor F_i containing e_i and excluding $e_1, e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_m$, therefore, G has m-r (g, f)-factors $F_1, F_2, \ldots, F_{m-r}$ containing $e_1, e_2, \ldots, e_{m-r}$, respectively, and excluding $e_{m-r+1}, e_{m-r+2}, \ldots, e_m$. Now, G_{m-r} is a (rg, rf)-graph, by lemma 2.2, G_{m-r} has a (g, f)-factor F_{m-r+1} containing e_{m-r+1} .

Thus $F_1, F_2, \ldots, F_{m-r+1}$ are the required factors. The proof is completed.

Acknowledgment The authors would like to thank the referees for their helpful comments and suggestions.

References

- [1] Bondy J.A. and Murty U.R., *Graph Theory with Applications*. The Macmillan Press LTD, 1976.
- [2] Heinrich B.A. and Guizhen L., Contemporary design theory A collection of surveys. John Wiley and Sons. Inc. (1992), 13-37.
- [3] Guizhen L., (g, f)-factorizations of graphs orthogonal to m-star. Science in China A1 (1995).

Yan Guiying
Institute of Applied Mathematics
Chinese Academy of Sciences
P.O.Box 2734, Beijing 100080, P.R. China
E-mail: yangy@amath3.amt.ac.cn

Jiaofeng Pan
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N., T.
E-mail: jfpan@cse.cuhk.edu.hk

Wang Jianfang
Institute of Applied Mathematics
Chinese Academy of Sciences
P.O.Box 2734, Beijing 100080, P.R. China
E-mail: jfwang@amath3.amt.ac.cn

C.K. Wong
Department of Computer Science and Engineering
The Chinese University of Hong Kong
Shatin, N., T.
on leave from IBM T.J. Watson Research Center
P.O.Box 218, Yorktown Heights, N.Y., U.S.A.
E-mail: wongck@cse.cuhk.edu.hk