Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values

(Dedicated to Professor Rentaro Agemi on his 60th birthday)

Qing Huang, Kiyoshi Mochizuki and Kentaro Mukai (Received February 13, 1997; Revised April 22, 1997)

Abstract. We consider the semilinear parabolic system

$$u_t = \Delta u + v^p, \quad v_t = \Delta v + u^q,$$

where $x \in \mathbf{R}^N$ $(N \ge 1)$, t > 0 and $p, q \ge 1$. At t = 0, nonnegative, bounded and continuous initial values $(u_0(x), v_0(x))$ are prescribed. The main results are for the case when (u_0, v_0) have polynomial decay near $x = \infty$. Assuming $u_0 \sim (\lambda |x|^{-a})^{1/(q+1)}$, $v_0 \sim (\lambda |x|^{-a})^{1/(p+1)}$ with $\lambda > 0$, $0 \le a < N \min\{p+1, q+1\}$, we answer various questions of global existence and nonexistence, large time behavior or life span of the solutions in terms of simple conditions on λ , a, p, q and the space dimension N.

Key words: blow-up, life span, global existence, asymptotic behavior, semilinear parabolic equation, slowly decaying initial value.

1. Introduction

We consider the initial value problem

$$\begin{cases} u_{t} = \Delta u + v^{p}, & x \in \mathbf{R}^{N}, \ t > 0, \\ v_{t} = \Delta v + u^{q}, & x \in \mathbf{R}^{N}, \ t > 0, \\ u(x, 0) = u_{0}(x), & x \in \mathbf{R}^{N}, \\ v(x, 0) = v_{0}(x), & x \in \mathbf{R}^{N}, \end{cases}$$
(1)

where $p, q \ge 1, pq > 1, N \ge 1$ and $(u_0(x), v_0(x))$ are nonnegative, bounded and continuous functions. The problem provides a simple example of a reaction-diffusion system. As a model of heat propagation in a two-component combustible mixture, u, v represent the temperatures of the interacting components. It is assumed that thermal conductivity is constant and equal for both substance, and a volume energy release is given by some powers of u and v.

It is well known that problem (1) has a unique, nonnegative and bounded

solution at least locally in time. We define

$$T^* = T^*(u_0, v_0) = \sup\{T > 0; (u(t), v(t)) \text{ is bounded}$$

and solves (1) in $\mathbf{R}^N \times (0, T)$.

 T^* is called the life span of solutions (u(t), v(t)). If $T^* = \infty$ the solutions are global. On the other hand, if $T^* < \infty$ one has

$$\limsup_{t \to T^*} \|u(t)\|_{\infty} = \infty \quad \text{or} \quad \limsup_{t \to T^*} \|v(t)\|_{\infty} = \infty \tag{2}$$

since otherwise solutions could be extended beyond T^* . When (2) holds we say that the solution blows up in finite time.

The blow-up and the global existence of solutions has been studied by Escobedo-Herrero [3], and the following results are proved there.

(I) Suppose that $1 < pq \le 1 + (2/N) \max\{p+1, q+1\}$. Then $T^* < \infty$ for every nontrivial solution (u(t), v(t)), and

$$\lim_{t \to T^*} \sup \|u(t)\|_{\infty} = \lim_{t \to T^*} \sup \|v(t)\|_{\infty} = \infty.$$
(3)

(II) Suppose that
$$pq > 1 + (2/N) \max\{p+1, q+1\}$$
. Let $u_0 \in L^{\infty} \cap L^{\alpha_1}, \quad v_0 \in L^{\infty} \cap L^{\alpha_2},$

where $\alpha_1 = N(pq-1)/2(p+1)$, $\alpha_2 = N(pq-1)/2(q+1)$. If $||u_0||_{\alpha_1} + ||v_0||_{\alpha_2}$ is sufficiently small, then $T^* = \infty$.

(III) Suppose that
$$pq > 1 + (2/N) \max\{p + 1, q + 1\}$$
. Let $u_0(x) \ge Ce^{-\alpha|x|^2}$

for some $\alpha > 0$ and some C > 0 large enough. Then $T^* < \infty$ and (3) holds. In this paper we shall study the behavior of solutions (u(t), v(t)) while the initial values (u_0, v_0) have slow decay near $|x| = \infty$. For instance in case

$$u_0 \sim (\lambda |x|^{-a})^{1/(q+1)}, \quad v_0 \sim (\lambda |x|^{-a})^{1/(p+1)}$$

with $\lambda > 0$ and $0 \le a < N \min\{p+1, q+1\}$, we are interested in the question of global existence and nonexistence, large time behavior or life span of solutions in terms of λ and a. These problems have been studied by Lee-Ni [8] and Gui-Wang [6] for the Cauchy problem of single equation $u_t = \Delta u + u^p$. Our results will partly extend theirs to the system of equations (1). Note that similar results can be obtained also for the Cauchy problem of

quasilinear equation $u_t = \Delta u^m + u^p$ with p > m > 1 (see Mukai-Mochizuki-Huang [10]).

Throughout the rest of this paper we shall use the following notations. We set $C_b(\mathbf{R}^N)$ to be the space of all bounded continuous functions in \mathbf{R}^N and, for $\alpha \geq 0$,

$$I^{\alpha} = \Big\{ \xi \in C_b(\mathbf{R}^N); \xi(x) \ge 0 \text{ and } \limsup_{|x| \to \infty} |x|^{\alpha} \xi(x) < \infty \Big\},$$

$$I_{\alpha} = \left\{ \xi \in C_b(\mathbf{R}^N); \xi(x) \ge 0 \text{ and } \liminf_{|x| \to \infty} |x|^{\alpha} \xi(x) > 0 \right\}.$$

For two functions f(r) and g(r), we say that $f \sim g$ near r = 0 (∞ respectively) if there exists two positive constants C_1 , C_2 such that $C_1f(r) \leq g(r) \leq C_2f(r)$ near r = 0 (∞ respectively). The letter C denotes a positive generic constant which may vary from line to line. We shall use the notation $S(t)\xi$ to represent the solution of the heat equation with initial value $\xi(x)$:

$$[S(t)\xi](x) = (4\pi t)^{-N/2} \int_{\mathbf{R}^N} e^{-|x-y|^2/4t} \xi(y) dy.$$

Especially, we write $[S(t)\xi](x) = W(x,t;A,\alpha)$ when $\xi(x) = A|x|^{-\alpha}$ with A > 0 and $0 \le \alpha < N$. W has the explicit form

$$W(x,t;A,\alpha) = At^{-\alpha/2}h_{\alpha}(x/t^{1/2}),$$

where

$$h_{\alpha}(x) = (4\pi)^{-N/2} \int_{\mathbf{R}^N} e^{-|y|^2/4} |x - y|^{-\alpha} dy.$$

In the following we assume

$$q \ge p \ge 1$$
 and $pq > 1$. (4)

We put

$$(u_0(x), v_0(x)) = (\lambda^{1/(q+1)}\varphi(x), \lambda^{1/(p+1)}\psi(x))$$

in (1), where $\lambda > 0$, and write

$$T_{\lambda}^* = T^*(\lambda^{1/(q+1)}\varphi, \lambda^{1/(p+1)}\psi).$$

Moreover, we let

$$a^* = \frac{2(p+1)(q+1)}{pq-1}.$$

Then our results of this paper will be summarized in the following four theorems.

Theorem 1 Suppose $\psi(x) \in I_{a/(p+1)}$ for some $0 \le a < \min\{a^*, N(p+1)\}$. Then $T_{\lambda}^* < \infty$ for any $\lambda > 0$, and for given $\lambda_0 > 0$ there exists $C(\lambda_0) > 0$ such that

$$T_{\lambda}^* \le C(\lambda_0) \lambda^{-2/(a^*-a)} \quad for \quad \lambda < \lambda_0.$$
 (5)

Theorem 2 Suppose that $\varphi \in I^{a/(q+1)}$ and $\psi \in I^{a/(p+1)} \cap I_{a/(p+1)}$ for some $0 \le a < \min\{a^*, N(p+1)\}$. Then we have

$$T_{\lambda}^* \sim \lambda^{-2/(a^*-a)} \quad near \quad \lambda = 0.$$
 (6)

Theorem 3 Let pq > 1 + (2/N)(q+1), or equivalently $a^* < N(p+1)$.

(i) Suppose that $\varphi \in I^{a/(q+1)}$, $\psi \in I^{a/(p+1)}$ for some $a^* < a < N(p+1)$. Then there exists $\lambda_1 > 0$ such that $T_{\lambda}^* = \infty$ for $\lambda < \lambda_1$, and

$$||u(t)||_{\infty} \le Ct^{-a/2(q+1)}, \quad ||v(t)||_{\infty} \le Ct^{-a/2(p+1)}$$
 (7)

as $t \to \infty$.

(ii) Suppose that

$$\lim_{|x| \to \infty} |x|^{a/(q+1)} \varphi(x) = A_1 > 0,$$

$$\lim_{|x| \to \infty} |x|^{a/(p+1)} \psi(x) = A_2 > 0$$

for some $a^* < a < N(p+1)$. Then for $\lambda < \lambda_1$ we have

$$t^{a/2(q+1)}|u(x,t) - W(x,t;A_1\lambda^{1/(q+1)},a/(q+1))| \to 0,$$

$$t^{a/2(p+1)}|v(x,t) - W(x,t;A_2\lambda^{1/(p+1)},a/(p+1))| \to 0$$
 (8)

as $t \to \infty$ uniformly in \mathbf{R}^N .

Theorem 4 Suppose that φ , $\psi \in C_b(\mathbf{R}^N)$ and $\varphi(0)\psi(0) > 0$. Then there

exists $\lambda_2 \geq 0$ such that $T_{\lambda}^* < \infty$ for any $\lambda > \lambda_2$, and

$$T_{\lambda}^* \sim \lambda^{-2/a^*} \quad as \quad \lambda \to \infty.$$
 (9)

Comparing Theorem 1 and (II) stated above (or Theorem 3 (i)), we see that the number a^* gives another cutoff between the blow-up case and the global existence case. Theorem 3 (ii) is not treated in Lee-Ni [8]. The corresponding results for single equation have been obtained by Kamin-Peletier [7] in case of the heat equation with absorption. To show the theorems we shall frequently use a standard comparison principle. We refer Protter-Weinberger [11] and Bebernes-Eberly [1] on this principle. The condition $p \geq 1$ which guarantees the uniqueness of solutions to (1) is mainly required to verify this principle. In this paper we did not enter into the case $a \geq N(p+1)$. For single equation, this case is contained in [8], and some of their results can be extended also to our system. Finally, note that the critical exponent $a = a^*$ is expected to belong to the global existence case. In fact, if $N \geq 3$ and $pq > 1 + (2/(N-2)) \max\{p+1, q+1\}$, the functions

$$\Phi(x) = A|x|^{-a^*/(q+1)}, \quad \Psi(x) = B|x|^{-a^*/(p+1)}$$

become a stationary solution to (1) under suitably chosen positive constants A, B. We shall discuss these results elswhere.

The rest of the paper is organized as follows: Theorems 1 amd 2 are proved in the next §2, Theorems 3 and 4 are proved in §3 and §4, respectively. To show Theorem 2 we construct a super-solution to the system of equations (1). Its special form and estimate will also be used in §3 and §4.

2. Proof of Theorems 1 and 2

In order to obtain an estimate of T_{λ}^* from above, the following lemma due to Escobedo-Herrero [3; Lemma 4.1] plays a key role in our proof.

Lemma 1 Assume that $q \ge p \ge 1$ and pq > 1, and let (u(t), v(t)) be the solution of (1) in some strip $S_T = \mathbf{R}^N \times [0, T)$ with $0 < T \le \infty$. Assume also that u(t) and v(t) are bounded in S_T . Then there exists a constant C > 0, depending on p, q but not on u_0 , v_0 , nor T, such that

$$\lambda^{1/(p+1)} t^{(q+1)/(pq-1)} ||S(t)\psi||_{\infty} \le C \quad \text{for any } t \in [0, T).$$
 (10)

Proof of Theorem 1. Since $\psi \in I_{a/(p+1)}$, we can choose a bounded continuous function $\tilde{\psi}(x)$ in \mathbf{R}^N such that

$$\tilde{\psi}(x) = m|x|^{-a/(p+1)}$$
 for $|x| > R$ and $\tilde{\psi}(x) \le \psi(x)$ for $x \in \mathbf{R}^N$,

where m > 0 is sufficiently small and R > 0 is sufficiently large. Let $t_0 = t_0(\lambda) > 0$ be a small number such that $t_0 < T_{\lambda}^*$. Then we have for $t > t_0$,

$$S(t)\psi \ge S(t)\tilde{\psi} \ge (4\pi t)^{-N/2} \int_{|x-y|>R} e^{-|y|^2/4t} m|x-y|^{-a/(p+1)} dy$$

$$\ge t^{-a/2(p+1)} (4\pi)^{-N/2} m \int_{|xt^{-1/2}-y|>Rt_0^{-1/2}} e^{-|y|^2/4} |x/t^{1/2} - y|^{-a/(p+1)} dy$$

$$\equiv t^{-a/2(p+1)} k_{t_0}(x/t^{1/2}) > 0.$$

Therefore,

$$||S(t)\psi||_{\infty} \ge t^{-a/2(p+1)} ||k_{t_0}||_{\infty}.$$

Substituting this in (10), we see that the inequality

$$t^{(q+1)/(pq-1)}t^{-a/2(p+1)} \leq C\lambda^{-1/(p+1)} ||k_{t_0}||_{\infty}^{-1}$$

holds for any $t \in (t_0, T_{\lambda}^*)$.

This proves that $T_{\lambda}^* < \infty$ for any $\lambda > 0$. Inequality (5) also follows from this since we can choose $t_0 = t_0(\lambda_0)$ for any $0 < \lambda \le \lambda_0$.

In order to obtain an estimate of T_{λ}^* from below, we shall construct a suitable supersolution of (1).

Let (x(t), y(t)) be a solution of the ordinary differential equation

$$\begin{cases} x' = f(t)y^p, & t > 0, \\ y' = f(t)x^q, & t > 0, \\ x(0) = x_0 > 0, & y(0) = y_0 > 0, \end{cases}$$
 (11)

where pq > 1 and f(t) > 0 is a bounded continuous function of $t \ge 0$.

Lemma 2 Assume that

$$(q+1)^{-1}x_0^{q+1} \le (p+1)^{-1}y_0^{p+1}. (12)$$

Then we have

$$y(t) \le \left\{ y_0^{-(pq-1)/(q+1)} - \frac{pq-1}{q+1} \left(\frac{q+1}{p+1} \right)^{q/(q+1)} \int_0^t f(s) ds \right\}^{-(q+1)/(pq-1)}$$
(13)

Proof. From equation (11) it follows that $x^q dx = y^p dy$. Integrate both sides from 0 to t. Then by virtue of (12)

$$x(t) \le f(t) \left(\frac{q+1}{p+1}\right)^{1/(q+1)} y(t)^{(p+1)/(q+1)}.$$

Substitute this in the second eqution of (11). Then we have

$$y^{-q(p+1)/(q+1)}y' \le \left(\frac{q+1}{p+1}\right)^{q/(q+1)}f(t).$$

Integrating this again from 0 to t, we obtain (13).

We put

$$W_1(x,t) = W(x,t+t_1; M_1\lambda^{1/(q+1)}, a/(q+1)),$$

$$W_2(x,t) = W(x,t+t_1; M_2\lambda^{1/(p+1)}, a/(p+1)),$$
(14)

where M_1 , M_2 and t_1 are positive constants. Note that for $\varphi \in I^{a/(q+1)}$, $\psi \in I^{a/(p+1)}$ with $0 \le a < N(p+1)$, we can choose M_1 , M_2 large enough to satisfy

$$W_1(x,0) \ge \lambda^{1/(q+1)} \varphi(x), \quad W_2(x,0) \ge \lambda^{1/(p+1)} \psi(x).$$
 (15)

Lemma 3 (i) $W_j(x,t) > 0$ (j = 1,2) and $|x|^{a/(q+1)}W_1(x,t)$, $|x|^{a/(p+1)}W_2(x,t)$ are bounded in $\mathbf{R}^N \times [0,\infty)$.

(ii) There exists a constant C > 0 such that for any $t \ge 0$, $||W_1(\cdot,t)||_{\infty} \le C(t+t_1)^{-a/2(q+1)}$, $||W_2(\cdot,t)||_{\infty} \le C(t+t_1)^{-a/2(p+1)}$.

(iii) There exists a constant $C_1 > 0$ such that for any $t \ge 0$, $\|W_2(\cdot,t)^p/W_1(\cdot,t)\|_{\infty} \le C_1 \lambda^{2/a^*} (t+t_1)^{-a/a^*},$ $\|W_1(\cdot,t)^q/W_2(\cdot,t)\|_{\infty} \le C_1 \lambda^{2/a^*} (t+t_1)^{-a/a^*}.$ *Proof.* For any $0 \le \alpha < N$ and $x \in \mathbf{R}^N$, we have (cf., Rapnikov-Eidelman [12]) $h_{\alpha}(x) > 0$, and

$$\lim_{|x| \to \infty} |x|^{\alpha} h_{\alpha}(x) = 1.$$

Since $W(x, t + t_0; A, \alpha) = A(t + t_0)^{-\alpha/2} h_{\alpha}(x(t + t_0)^{-1/2})$, these properties of $h_{\alpha}(x)$ prove the assertions of the lemma.

Now, let $(\alpha(t), \beta(t))$ be the solution of

$$\begin{cases}
\alpha' = \|W_2(\cdot, t)^p / W_1(\cdot, t)\|_{\infty} \beta^p, & t > 0 \\
\beta' = \|W_1(\cdot, t)^q / W_1(\cdot, t)\|_{\infty} \alpha^q, & t > 0 \\
\alpha(0) = \beta(0) = 1,
\end{cases}$$
(16)

and let us define $(\bar{u}(x,t),\bar{v}(x,t))$ as follows:

$$\bar{u}(x,t) = \alpha(t)W_1(x,t), \quad \bar{v}(x,t) = \beta(t)W_2(x,t).$$
 (17)

Lemma 4 (i) $(\alpha(t), \beta(t))$ is a subsolution of (11) with $f(t) = C_1 \lambda^{2/a^*} (t + t_1)^{-a/a^*}$ and $x_0 = y_0 = 1$.

(ii) Suppose that $\varphi \in I^{a/(q+1)}$ and $\psi \in I^{a/(p+1)}$. Then $(\bar{u}(t), \bar{v}(t))$ gives a supersolution of (1).

Proof. (i) is obvious from Lemma 3 (iii). We have

$$\bar{u}_t = \alpha'(t)W_1(x,t) + \alpha(t)W_{1t}(x,t) = \|W_2^p/W_1\|_{\infty}\beta^pW_1 + \alpha\Delta W_1 > \Delta \bar{u} + \bar{v}^p.$$

Similarly, we have $\bar{v}_t \geq \Delta \bar{v} + \bar{u}^q$. These inequalities and (15) show the assertion (ii).

Proof of Theorem 2. It follows from Lemma 4 (ii) and a standard comparison argument that

$$u(x,t) \le \bar{u}(x,t)$$
 and $v(x,t) \le \bar{v}(x,t)$. (18)

Then we see from (17) that T_{λ}^* is not less than the life span of $(\alpha(t), \beta(t))$. By means of Lemma 4 (i) and a comparison principle, we see from Lemma 2 that

$$\beta(t) \leq \left\{ 1 - \frac{pq - 1}{q + 1} \left(\frac{q + 1}{p + 1} \right)^{q/(q+1)} C_1 \lambda^{2/a^*} \right.$$

$$\times \int_0^t (s + t_1)^{-a/a^*} ds \right\}^{-(q+1)/(pq-1)}.$$
(19)

Remember that we have assumed $0 \le a < a^*$. Then (19) implies that $\beta(t)$ remains finite at least for t satisfying

$$\frac{C_1(pq-1)a^*}{(q+1)(a^*-a)} \left(\frac{q+1}{p+1}\right)^{q/(q+1)} \lambda^{2/a^*} t^{(a^*-a)/a^*} \le 1.$$

Integrating the first equation of (16) shows that $\alpha(t)$ is finite in the same interval. Thus, we obtain

$$T_{\lambda}^* > \frac{1}{2} C_2 \lambda^{-2/(a^* - a)}$$
 for any $\lambda > 0$.

Combining this and (5) of Theorem 1, we conclude the assertion of Theorem 2.

3. Proof of Theorem 3

In this section we restrict ourselves to the case $a^* < N(p+1)$, and assume that $a^* < a < N(p+1)$.

We see from (19) that $\beta(t)$ is global and bounded in $t \geq 0$ if $\lambda < \lambda_1$, where $\lambda_1 > 0$ is given by

$$\frac{C_1(pq-1)a^*}{(q+1)(a-a^*)} \left(\frac{q+1}{p+1}\right)^{q/(q+1)} \lambda_1^{2/a^*} t_1^{-(a-a^*)/a^*} = 1.$$

Moreover, noting $a > a^*$, we see that the right side of the first equation of (16) is integrable in $t \in (0, \infty)$. This implies that $\alpha(t)$ is also global and bounded in t > 0. Then we have (7) from (17) and Lemma 3 (ii). Theorem 3 (i) is thus complete.

To show Theorem 3 (ii) we put

$$u_k(x,t) = k^{a/(q+1)}u(kx,k^2t), \quad v_k(x,t) = k^{a/(p+1)}u(kx,k^2t)$$

for k > 0. Then $(u_k(t), v_k(t))$ solves

$$\begin{cases}
 u_{kt} = \Delta u_k + k^{-2a/a^* + 2} v_k^p, \\
 v_{kt} = \Delta v_k + k^{-2a/a^* + 2} u_k^q, \\
 u_k(x,0) = k^{a/(q+1)} \lambda^{1/(q+1)} \varphi(kx), \\
 v_k(x,0) = k^{a/(p+1)} \lambda^{1/(p+1)} \psi(kx).
\end{cases} (20)$$

It follows from (7) that

$$||u_k(t)||_{\infty} \le k^{a/(q+1)}C(k^2t)^{-a/2(q+1)} = Ct^{-a/2(q+1)}.$$

Thus, $\{u_k(x,t)\}$ is uniformly bounded in $\mathbf{R}^N \times [\delta, \infty)$ for any δ . As is easily seen, the uniform boundedness implies the equicontinuity of $\{u_k(x,t)\}$ in any bounded set of $\mathbf{R}^N \times [\delta, \infty)$. Then using the Ascoli-Arzela theorem and a diagonal sequence method in δ , we see that for any sequence $\{k_j\} \to \infty$, there exists a subsequence $\{k_j'\}$ and a function $w_1(x,t) \in C(\mathbf{R}^N \times (0,\infty))$ such that

$$u_{k'_i}(x,t) \to w_1(x,t)$$
 as $k'_i \to \infty$

locally uniformly in $\mathbf{R}^N \times (0, \infty)$.

We shall show

$$w_1(x,t) = W(x,t; A_1 \lambda^{1/(q+1)}, a/(q+1)).$$
(21)

It follows from the first equation of (20) that

$$\int_{\mathbf{R}^{N}} u_{k}(x,t)\zeta(x,t)dx - \int_{\mathbf{R}^{N}} u_{k}(x,0)\zeta(x,0)dx$$

$$= \int_{0}^{t} \int_{\mathbf{R}^{N}} \left\{ u_{k}\zeta_{t} + u_{k}\Delta\zeta + k^{-2a/a^{*}+2}v_{k}^{p}\zeta \right\} dxdt \tag{22}$$

for any t > 0 and nonnegative $\zeta(x,t) \in C_0^{\infty}(\mathbf{R}^N \times [0,\infty))$. By assumption on the initial values

$$\int_{\mathbf{R}^N} u_k(x,0)\zeta(x,0)dx = \int_{\mathbf{R}^N} k^{a/(q+1)}\lambda^{1/(q+1)}\varphi(kx)\zeta(x,0)dx$$

$$\to A_1\lambda^{1/(q+1)} \int_{\mathbf{R}^N} |x|^{-a/(q+1)}\zeta(x,0)dx \quad \text{as} \quad k = k_j' \to \infty.$$

On the other hand,

$$\int_0^t \int_{\mathbf{R}^N} k^{-2a/a^*+2} v_k^p \zeta dx dt$$

$$= \int_0^{k^2 t} \int_{\mathbf{R}^N} k^{a/(q+1)} v(kx, \tau)^p \zeta(x, k^{-2}\tau) dx d\tau.$$

Since $\alpha(t)$ is bounded, it follows from Lemma 3 (i) that

$$k^{a/(q+1)}v(kx,\tau)^{p} \leq Ck^{a/(q+1)}W_{2}(kx,\tau)^{p}$$

$$\leq C\left\{(k|x|)^{a/(p+1)}W_{2}(kx,\tau)\right\}^{(p+1)/(q+1)}$$

$$\times |x|^{-a/(q+1)}\left(W_{2}(kx,\tau)\right)^{(pq-1)/(q+1)}$$

$$\leq CM_{2}^{p}\lambda^{p/(p+1)}|x|^{-a/(q+1)}(\tau+t_{1})^{-a/a^{*}}$$

$$\times \left(h_{a/(p+1)}(kx/(\tau+t_{1})^{1/2})\right)^{(pq-1)/(q+1)}$$

Note here that a/(q+1) < N, $a/a^* > 1$ and

$$h_{a/(p+1)}(kx/(\tau+t_1)^{1/2}) \to 0$$
 as $k \to \infty$

for $x \neq 0$. Then we can apply the Lebesgue dominated convergence theorem to obtain

$$\int_0^{k^2 t} \int_{\mathbf{R}^N} k^{a/(q+1)} v(kx,\tau)^p \zeta(x,k^{-2}\tau) dx d\tau \to 0 \text{ as } k = k'_j \to \infty.$$

Thus, letting $k = k'_j \to \infty$ in (22), we obtain

$$\int_{\mathbf{R}^{N}} w_{1}(x,t)\zeta(x,t)dx - \int_{\mathbf{R}^{N}} A_{1}\lambda^{1/(q+1)}|x|^{-a/(q+1)}\zeta(x,0)dx
= \int_{0}^{t} \int_{\mathbf{R}^{N}} \{w_{1}\zeta_{t} + w_{1}\Delta\zeta\}dxdt.$$

The uniqueness of solutions of

$$u_t = \Delta u, \quad u(x,0) = A_1 \lambda^{1/(q+1)} |x|^{-a/(q+1)},$$

then implies (21).

We have thus proved that

$$u_k(x,t) \to W(x,t; A_1 \lambda^{1/(q+1)}, a/(q+1))$$
 as $k \to \infty$ (23)

uniformly in compact sets of $\mathbf{R}^N \times (0, \infty)$.

Note again that $(\alpha(t), \beta(t))$ is bounded. Then it follows from (14) and (17) that

$$u_k(x,t) \le Ck^{a/(q+1)}W(kx,k^2t+t_1;M_1\lambda^{1/(q+1)},a/(q+1)).$$

Let t=1 in this inequality. Then by use of the selfsimilarity of $W(x,t;A,\alpha)$:

$$W(x, t; A, \alpha) = k^{\alpha}W(kx, k^{2}t; A, \alpha),$$

we have

$$u_k(x,1) \le CW(x,1+k^{-2}t_1;M_1\lambda^{1/(q+1)},a/(q+1)).$$

This inequality implies with Lemma 3 (i) that for any $\epsilon > 0$ there exists an R > 0 independent of $k > (2t_1)^{-2}$ such that $\{u_k(x,1)\}$ are uniformly less than ϵ in |x| > R. Therefore, we have from (23) that

$$u_k(x,1) - W(x,1; A_1\lambda^{1/(q+1)}, a/(q+1)) \to 0$$
 as $k \to \infty$

uniformly in \mathbf{R}^N .

We let y = kx and $s = k^2$ in this relation. Then noting again the selfsimilarity of $W(x, t; A, \alpha)$, we conclude that

$$s^{a/2(q+1)}|u(y,s) - W(y,s;A_1\lambda^{1/(q+1)},a/(q+1))| \to 0 \text{ as } s \to \infty$$

uniformly in \mathbf{R}^N .

Relation (8) is now proved for u(x,t). The same argument can be applied also to v(x,t), and Theorem 3 (ii) is complete.

4. Proof of Theorem 4

In this section we consider the case where λ goes to ∞ .

In order to obtain an estimate of T_{λ}^* from below, we choose $f(t) \equiv 1$ and $x_0 = \lambda^{1/(q+1)} \|\varphi_0\|_{\infty}$, $y_0 = \lambda^{1/(p+1)} \|\psi_0\|_{\infty}$ in (11). Then the solution (x(t), y(t)) gives a supersolution of (1), and we have from Lemma 2

$$y(t) \le \left\{ y_0^{-(pq-1)/(q+1)} - \frac{pq-1}{q+1} \left(\frac{q+1}{p+1} \right)^{q/(q+1)} t \right\}^{-(q+1)/(pq-1)}$$

if $(q+1)^{-1}x_0^{q+1} \leq (p+1)^{-1}y_0^{p+1}$. Similarly, we can have

$$x(t) \le \left\{ x_0^{-(pq-1)/(p+1)} - \frac{pq-1}{p+1} \left(\frac{p+1}{q+1} \right)^{p/(p+1)} t \right\}^{-(p+1)/(pq-1)}$$

if $(q+1)^{-1}x_0^{q+1} \ge (p+1)^{-1}y_0^{p+1}$. From these inequalities we conclude

$$T_{\lambda}^{*} \ge C \left[\max \left\{ (q+1)^{-1} \|\varphi\|_{\infty}^{q+1}, (p+1)^{-1} \|\psi\|_{\infty}^{p+1} \right\} \right]^{-2/a^{*}} \lambda^{-2/a^{*}}$$
(24)

for any $\lambda > 0$, where $C = a^*(p+1)^p(q+1)^q/2$.

To obtain an estimate of T_{λ}^* from above, we put

$$u_{\lambda}(x,t) = \lambda^{-1/(q+1)} u(\lambda^{-1/a^*} x, \lambda^{-2/a^*} t),$$

$$v_{\lambda}(x,t) = \lambda^{-1/(p+1)} v(\lambda^{-1/a^*} x, \lambda^{-2/a^*} t).$$

Then $(u_{\lambda}(t), v_{\lambda}(t))$ solves

$$\begin{cases}
 u_{\lambda t} = \Delta u_{\lambda} + v_{\lambda}^{p}, \\
 v_{\lambda t} = \Delta v_{\lambda} + u_{\lambda}^{q}, \\
 u_{\lambda}(x, 0) = \varphi_{\lambda}(x) = \varphi(\lambda^{-1/a^{*}}x), \\
 v_{\lambda}(x, 0) = \psi_{\lambda}(x) = \psi(\lambda^{-1/a^{*}}x).
\end{cases} (25)$$

Let \tilde{T}_{λ}^* be the life span of $(u_{\lambda}(t), v_{\lambda}(t))$. Then obviously

$$T_{\lambda}^* = \lambda^{-2/a^*} \tilde{T}_{\lambda}^*. \tag{26}$$

We define

$$F(t) = \int_{\mathbf{R}^N} u_{\lambda}(x, t) \rho_{\epsilon}(x) dx, \quad G(t) = \int_{\mathbf{R}^N} v_{\lambda}(x, t) \rho_{\epsilon}(x) dx,$$

where $\rho_{\epsilon}(x) = (\pi^{-1}\epsilon)^{N/2}e^{-\epsilon|x|^2}$ (cf. e.g., Mochizuki-Suzuki [9]). Then by the Jensen inequality, the following inequalities hold for t > 0.

$$F'(t) \ge -2N\epsilon F(t) + G^p(t), \quad G'(t) \ge -2N\epsilon G(t) + F^q(t).$$

Note that

$$\lim_{\lambda \to \infty} F(0) = \varphi(0) > 0, \quad \lim_{\lambda \to \infty} G(0) = \psi(0) > 0.$$

Then there exist $\epsilon_0 > 0$ and $\lambda_0 > 0$ such that when $0 < \epsilon < \epsilon_0$ and $\lambda > \lambda_0$,

$$-2N\epsilon F(0) + G^{p}(0) > 0, \quad -2N\epsilon G(0) + F^{q}(0) > 0.$$

Thus, if we put

$$\Omega = \{(x, y); -2N\epsilon x + y^p > 0, -2N\epsilon y + x^q > 0\},\$$

then Ω becomes an invariant set for (F(t), G(t)).

As in Galaktionov-Kurdymov-Samarskii [4], [5] (cf., also Caristi-Mitidier [2]), we let V(t) = F(t)G(t), and differentiate it in t. Then by use of the Hölder inequality, we obtain

$$V'(t) \ge -4N\epsilon V(t) + C(p,q)V(t)^{(p+1)(q+1)/(p+q+2)}$$
(27)

where

$$C(p,q) = \left(\frac{p+q+2}{q+1}\right)^{(p+1)/(p+q+2)} \left(\frac{p+q+2}{p+1}\right)^{(q+1)/(p+q+2)}.$$

Since

$$\lim_{\lambda \to \infty} V(0) = \varphi(0)\psi(0) > 0$$

for $0 < \epsilon < \epsilon_0$, we have from (27)

$$\limsup_{\lambda \to \infty} \tilde{T}_{\lambda}^* \le \int_{\varphi(0)\psi(0)}^{\infty} \left\{ C(p,q) \xi^{(p+1)(q+1)/(p+q+2)} - 4N\epsilon \xi \right\}^{-1} d\xi.$$

Thus, V(t) blows up in a finite time. Moreover, letting $\epsilon \to 0$, we have

$$\limsup_{\lambda \to \infty} \tilde{T}_{\lambda}^* \le C\{\varphi(0)\psi(0)\}^{-(pq-1)/(p+q+2)}.$$

From this and (26) it follows that

$$\limsup_{\lambda \to \infty} \lambda^{2/a^*} T_{\lambda}^* \le C\{\varphi(0)\psi(0)\}^{-(pq-1)/(p+q+2)}.$$
 (28)

Combining (24) and (28), we conclude Theorem 4.

References

- [1] Bebernes J. and Eberly D., Mathematical problems from combustion theory. Springer-Verlag, New York, 1989.
- [2] Caristi G. and Mitidieri E., Blow-up estimate of positive solutions of a parabolic system. J. Diff. Eqns 113 (1994), 265–271.
- [3] Escobedo M. and Herrero M.A., Boundedness and blow up for a semilinear reaction-diffusion system. J. Diff. Eqns. 89 (1991), 176–202.
- [4] Galaktionov V.A., Kurdyumov S.P. and Samarskii A.A., A parabolic system of quasilinear equations I. Differential Equations 19 (1983), 2133–2143.
- [5] Galaktionov V.A., Kurdyumov S.P. and Samarskii A.A., A parabolic system of quasilinear equations II. Differential Equations 21 (1985), 1544–1559.
- [6] Gui C. and Wang X., Life span of solutions of the Cauchy problem for a semilinear heat equation. J. Diff. Eqns 115 (1995), 166–172.

- [7] Kamin S. and Peletier L.A., Large time behaviour of solutions of the heat equation with absorption. Ann. Scu. Norm. Sup. Pisa XII (1985), 393-408.
- [8] Lee T. and Ni W., Global existence, largetime behavior and life span on solutions of a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc. **333** (1992), 365–378.
- [9] Mochizuki K. and Suzuki R., Critical exponent and critical blow-up for quasilinear parabolic equations. Israel J. Math. 98 (1997), 141–156.
- [10] Mukai K., Mochizuki K. and Huang Q., Large time behavior and life span for a quasilinear parabolic equation with slow decay initial values. Nonlinear Anal. TMA, to appear.
- [11] Protter M.H. and Weinberger H.F., Maximum principles in differential equations. Springer-Verlag, New York, 1984.
- [12] Repnikov V.D. and Eidelman S.D., A new proof of the theorem of the stbilization of the solutions of the Cauchy problem for the heat equation. Math. Sb. **73** (1967), 155–159.

Qing Huang Department of Mathematics Tokyo Metropolitan University Hachioji, Tokyo 192-0397, Japan

Kiyoshi Mochizuki Department of Mathematics Tokyo Metropolitan University Hachioji, Tokyo 192-0397, Japan E-mail: mochizuk@math.metro-u.ac.jp

Kentaro Mukai Department of Mathematics Tokyo Metropolitan University Hachioji, Tokyo 192-0397, Japan