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Abstract. We consider the semilinear parabolic system

u_{t}=\triangle u+v^{p} , v_{t}=\triangle v+u^{q} ,

where x\in R^{N}(N\geq 1) , t>0 and p , q\geq 1 . At t=0, nonnegative, bounded and

continuous initial values (u_{0}(x), v_{0}(x)) are prescribed. The main results are for the case
when (u0, v0) have polynomial decay near x=\infty . Assuming u_{0}\sim(\lambda|x|^{-a})^{1/(q+1)} ,
v_{0}\sim(\lambda|x|^{-a})^{1/(p+1)} with \lambda >0,0 \leq a<N\min\{p+1, q+1\} , we answer various
questions of global existence and nonexistence, large time behavior or life span of the
solutions in terms of simple conditions on \lambda , a , p , q and the space dimension N .

Key words: blow-up, life span, global existence, asymptotic behavior, semilinear parabolic
equation, slowly decaying initial value.

1. Introduction

We consider the initial value problem

\{

u_{t}=\triangle u+v^{p} . x\in R^{N} , t>0 ,
v_{t}=\triangle v+u^{q} , x\in R^{N} . t>0 ,

u(x, 0)=u_{0}(x) , x\in R^{N} ,

v(x, 0)=v_{0}(x) , x\in R^{N} .

(1)

where p , q\geq 1 , pq>1 , N\geq 1 and (u_{0}(x), v_{0}(x)) are nonnegative,
bounded and continuous functions. The problem provides a simple ex-
ample of a reaction-diffusion system. As a model of heat propagation in a
tw0-component combustible mixture, u , v represent the temperatures of the
interacting components. It is assumed that thermal conductivity is constant
and equal for both substance, and a volume energy release is given by some
powers of u and v .

It is well known that problem (1) has a unique, nonnegative and bounded
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solution at least locally in time. We define

T^{*}=T^{*}(u_{0}, v_{0})= \sup\{T>0;(u(t), v(t)) is bounded
and solves (1) in R^{N}\cross(0, T)\} .

T^{*} is called the life span of solutions (u(t), v(t)) . If T^{*}=\infty the solutions
are global. On the other hand, if T^{*}<\infty one has

\lim_{tarrow}\sup_{\tau*}||u(t)||_{\infty}=\infty or \lim_{tarrow}\sup_{T^{*}}||v(t)||_{\infty}=\infty (2)

since otherwise solutions could be extended beyond T^{*} . When (2) holds we
say that the solution blows up in finite time.

The blow-up and the global existence of solutions has been studied by
EscobedO-Herrero [3], and the following results are proved there.

(I) Suppose that 1<pq \leq 1+(2/N)\max\{p+1, q+1\} . Then T^{*}<\infty

for every nontrivial solution (u(t), v(t)) , and

\lim_{tarrow}\sup_{\tau*}||u(t)||_{\infty}=\lim_{tarrow}\sup_{\tau*}||v(t)||_{\infty}=\infty . (3)

(II) Suppose that pq>1+(2/N) \max\{p+1, q+1\} . Let

u_{0}\in L^{\infty}\cap L^{\alpha_{1}} , v_{0}\in L^{\infty}\cap L^{\alpha_{2}} ,

where \alpha_{1}=N(pq-1)/2(p+1) , \alpha_{2}=N(pq-1)/2(q+1) . If ||u_{0}||_{\alpha_{1}}+||v_{0}||_{\alpha_{2}}

is sufficiently small, then T^{*}=\infty .
(II) Suppose that pq>1+(2/N) \max\{p+1, q+1\} . Let

u_{0}(x)\geq Ce^{-\alpha|x|^{2}}

for some \alpha>0 and some C>0 large enough. Then T^{*}<\infty and (3) holds.
In this paper we shall study the behavior of solutions (u(t), v(t)) while

the initial values (u_{0}, v_{0}) have slow decay near |x|=\infty . For instance in
case

u_{0}\sim(\lambda|x|^{-a})^{1/(q+1)} . v_{0}\sim(\lambda|x|^{-a})^{1/(p+1)}

with \lambda>0 and 0 \leq a<N\min\{p+1, q+1\} , we are interested in the
question of global existence and nonexistence, large time behavior or life
span of solutions in terms of \lambda and a . These problems have been studied
by Lee-Ni [8] and Gui-Wang [6] for the Cauchy problem of single equation
u_{t}=\triangle u+u^{p} . Our results will partly extend theirs to the system of equations
(1). Note that similar results can be obtained also for the Cauchy problem of
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quasilinear equation u_{t}=\triangle u^{m}+u^{p} with p>m>1 (see Mukai-Mochizuki-
Huang [10] ) .

Throughout the rest of this paper we shall use the following notations.
We set C_{b}(R^{N}) to be the space of all bounded continuous functions in R^{N}

and, for \alpha\geq 0 ,

I^{\alpha}=\{\xi\in C_{b}(R^{N});\xi(x)\geq 0 and \lim\sup|x|arrow\infty|x|^{\alpha}\xi(x)<\infty\} ,

I_{\alpha}=\{\xi\in C_{b}(R^{N});\xi(x)\geq 0 and \lim\inf|x|arrow\infty|x|^{\alpha}\xi(x)>0\} .

For two functions f(r) and g(r) , we say that f\sim g near r=0(\infty re-
spectively) if there exists two positive constants C_{1} , C_{2} such that C_{1}f(r)\leq

g(r)\leq C_{2}f(r) near r=0 ( \infty respectively). The letter C denotes a positive
generic constant which may vary from line to line. We shall use the notation
S(t)\xi to represent the solution of the heat equation with initial value \xi(x) :

[S(t) \xi](x)=(4\pi t)^{-N/2}\int_{R^{N}}e^{-|x-y|^{2}/4t}\xi(y)dy .

Especially, we write [S(t)\xi](x)=W(x, t;A, \alpha) when \xi(x)=A|x|^{-\alpha} with
A>0 and 0\leq\alpha<N . W has the explicit form

W(x, t;A, \alpha)=At^{-\alpha/2}h_{\alpha}(x/t^{1/2}) ,

where

h_{\alpha}(x)=(4 \pi)^{-N/2}\int_{R^{N}}e^{-|y|^{2}/4}|x-y|^{-\alpha}dy .

In the following we assume

q\geq p\geq 1 and pq>1 . (4)

We put

(u_{0}(x), v_{0}(x))=(\lambda^{1/(q+1)}\varphi(x), \lambda^{1/(p+1)}\psi(x))

in (1), where \lambda>0 , and write

T_{\lambda}^{*}=T^{*}(\lambda^{1/(q+1)}\varphi, \lambda^{1/(p+1)}\psi) .
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Moreover, we let

a^{*}= \frac{2(p+1)(q+1)}{pq-1} .

Then our results of this paper will be summarized in the following four
theorems.

Theorem 1 Suppose \psi(x)\in I_{a/(p+1)} for some 0 \leq a<\min\{a^{*}, N(p+1)\} .
Then T_{\lambda}^{*}<\infty for any \lambda>0 , and for given \lambda_{0}>0 there exists C(\lambda_{0})>0

such that

T_{\lambda}^{*}\leq C(\lambda_{0})\lambda^{-2/(a^{*}-a)} for \lambda<\lambda_{0} . (5)

Theorem 2 Suppose that \varphi\in I^{a/(q+1)} and \psi\in I^{a/(p+1)}\cap I_{a/(p+1)} for
some 0 \leq a<\min\{a^{*}, N(p+1)\} . Then we have

T_{\lambda}^{*}\sim\lambda^{-2/(a^{*}-a)} near \lambda=0 . (6)

Theorem 3 Let pq>1+(2/N)(q+1) , or equivalently a^{*}<N(p+1) .
(i) Suppose that \varphi\in I^{a/(q+1)} , \psi\in I^{a/(p+1)} for some a^{*}<a<N(p+

1) . Then there exists \lambda_{1}>0 such that T_{\lambda}^{*}=\infty for \lambda<\lambda_{1} , and

||u(t)||_{\infty}\leq Ct^{-a/2(q+1)} , ||v(t)||_{\infty}\leq Ct^{-a/2(p+1)} (7)

as t-\infty .
(ii) Suppose that

lim |x|^{a/(q+1)}\varphi(x)=A_{1}>0 ,
|x|arrow\infty

lim |x|^{a/(p+1)}\psi(x)=A_{2}>0
|x|arrow\infty

for some a^{*}<a<N(p+1) . Then for \lambda<\lambda_{1} we have

t^{a/2(q+1)}|u(x, t)-W(x, t;A_{1}\lambda^{1/(q+1)}, a/(q+1))|arrow 0 ,

t^{a/2(p+1)}|v(x, t)-W(x, t;A_{2}\lambda^{1/(p+1)}, a/(p+1))|arrow 0 (8)

as tarrow\infty uniformly in R^{N}

Theorem 4 Suppose that \varphi , \psi\in C_{b}(R^{N}) and \varphi(0)\psi(0)>0 . Then there
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exists \lambda_{2}\geq 0 such that T_{\lambda}^{*}<\infty for any \lambda>\lambda_{2} , and

T_{\lambda}^{*}\sim\lambda^{-2/a^{*}} as \lambdaarrow\infty . (9)

Comparing Theorem 1 and (II) stated above (or Theorem 3 (i)), we
see that the number a^{*} gives another cutoff between the blow-up case and
the global existence case. Theorem 3 (ii) is not treated in Lee-Ni [8]. The
corresponding results for single equation have been obtained by Kamin-
Peletier [7] in case of the heat equation with absorption. To show the
theorems we shall frequently use a standard comparison principle. We refer
Protter-Weinberger [11] and Bebernes-Eberly [1] on this principle. The
condition p\geq 1 which guarantees the uniqueness of solutions to (1) is
mainly required to verify this principle. In this paper we did not enter into
the case a\geq N(p+1) . For single equation, this case is contained in [8], and
some of their results can be extended also to our system. Finally, note that
the critical exponent a=a^{*} is expected to belong to the global existence
case. In fact, if N\geq 3 and pq>1+(2/(N-2)) \max\{p+1, q+1\} , the
functions

\Phi(x)=A|x|^{-a^{*}/(q+1)} , \Psi(x)=B|x|^{-a^{*}/(p+1)}

become a stationary solution to (1) under suitably chosen positive constants
A , B . We shall discuss these results elswhere.

The rest of the paper is organized as follows: Theorems 1 amd 2 are
proved in the next \S 2, Theorems 3 and 4 are proved in \S 3 and \S 4, respec-
tively. To show Theorem 2 we construct a super-solution to the system of
equations (1). Its special form and estimate will also be used in \S 3 and \S 4.

2. Proof of Theorems 1 and 2

In order to obtain an estimate of T_{\lambda}^{*} from above, the following lemma
due to EscobedO-Herrero [3; Lemma 4.1] plays a key role in our proof.

Lemma 1 Assume that q\geq p\geq 1 and pq>1 , and let (u(t), v(t)) be the
solution of (1) in some strip S_{T}=R^{N}\cross[0, T) with 0<T\leq\infty . Assume
also that u(t) and v(t) are bounded in S_{T} . Then there exists a constant
C>0 , depending on p , q but not on u_{0} , v_{0} , nor T. such that

\lambda^{1/(p+1)}t^{(q+1)/(pq-1)}||S(t)\psi||_{\infty}\leq C for any t\in[0, T) . (10)
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Proof of Theorem 1. Since \psi\in I_{a/(p+1)} , we can choose a bounded contin-
uous function \tilde{\psi}(x) in R^{N} such that

\overline{\psi}(x)=m|x|^{-a/(p+1)} for |x|>R and \tilde{\psi}(x)\leq\psi(x) for x\in R^{N} .

where m>0 is sufficiently small and R>0 is sufficiently large. Let
t_{0}=t_{0}(\lambda)>0 be a small number such that t_{0}<T_{\lambda}^{*} . Then we have for
t>t_{0} ,

S(t) \psi\geq S(t)\tilde{\psi}\geq(4\pi t)^{-N/2}\int_{|x-y|>R}e^{-|y|^{2}/4t}m|x-y|^{-a/(p+1)}dy

\geq t^{-a/2(p+1)}(4\pi)^{-N/2}m\int_{|xt^{-1/2}}-y|>Rt_{0}^{-1/2}e^{-|y|^{2}/4}|x/t^{1/2}-y|^{-a/(p+1)}dy

\equiv t^{-a/2(p+1)}k_{t_{0}}(x/t^{1/2})>0 .

Therefore,

||S(t)\psi||_{\infty}\geq t^{-a/2(p+1)}||k_{t_{0}}||_{\infty} .

Substituting this in (10), we see that the inequality

t^{(q+1)/(pq-1)}t^{-a/2(p+1)}\leq C\lambda^{-1/(p+1)}||k_{t_{0}}||_{\infty}^{-1}

holds for any t\in(t_{0}, T_{\lambda}^{*}) .
This proves that T_{\lambda}^{*}<\infty for any \lambda>0 . Inequality (5) also follows

from this since we can choose t_{0}=t_{0}(\lambda_{0}) for any 0<\lambda\leq\lambda_{0} . \square

In order to obtain an estimate of T_{\lambda}^{*} from below, we shall construct a
suitable supersolution of (1).

Let (x(t), y(t)) be a solution of the ordinary differential equation

\{

x’=f(t)y^{p} , t>0 ,
y’=f(t)x^{q} , t>0 ,
x(0)=x_{0}>0 , y(0)=y_{0}>0 ,

(12)

where pq>1 and f(t)>0 is a bounded continuous function of t\geq 0 .

Lemma 2 Assume that

(q+1)^{-1}x_{0}^{q+1}\leq(p+1)^{-1}y_{0}^{p+1} (12)
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Then we have

y(t) \leq\{y_{0}^{-(pq-1)/(q+1)}-\frac{pq-1}{q+1}(\frac{q+1}{p+1})^{q/(q+1)}\int_{0}^{t}f(s)ds\}^{-(q+1)/(pq-1)}

(13)

Proof. From equation (11) it follows that x^{q}dx=y^{p}dy . Integrate both
sides from 0 to t . Then by virtue of (12)

x(t) \leq f(t)(\frac{q+1}{p+1})^{1/(q+1)}y(t)^{(p+1)/(q+1)} .

Substitute this in the second eqution of (11). Then we have

y^{-q(p+1)/(q+1)}y’ \leq(\frac{q+1}{p+1})^{q/(q+1)}f(t) .

Integrating this again from 0 to t , we obtain (13). \square

We put

W_{1}(x, t)=W(x, t+t_{1} ; M_{1}\lambda^{1/(q+1)}, a/(q+1)) ,

W_{2}(x, t)=W(x, t+t_{1} ; M_{2}\lambda^{1/(p+1)}, a/(p+1)) , (14)

where M_{1} , M_{2} and t_{1} are positive constants. Note that for \varphi\in I^{a/(q+1)} ,
\psi\in I^{a/(p+1)} with 0\leq a<N(p+1) , we can choose M_{1} , M_{2} large enough
to satisfy

W_{1}(x, 0)\geq\lambda^{1/(q+1)}\varphi(x) , W_{2}(x, 0)\geq\lambda^{1/(p+1)}\psi(x) . (15)

Lemma 3 (i) W_{j}(x, t)>0(j=1,2) and |x|^{a/(q+1)}W_{1}(x, t) ,
|x|^{a/(p+1)}W_{2}(x, t) are bounded in R^{N}\cross[0, \infty) .

(ii) There exists a constant C>0 such that for any t\geq 0 ,

||W_{1}(\cdot, t)||_{\infty}\leq C(t+t_{1})^{-a/2(q+1)} ,

||W_{2}(\cdot, t)||_{\infty}\leq C(t+t_{1})^{-a/2(p+1)} .

(iii) There exists a constant C_{1}>0 such that for any t\geq 0 ,

||W_{2}(\cdot, t)^{p}/W_{1}(\cdot, t)||_{\infty}\leq C_{1}\lambda^{2/a^{*}}(t+t_{1})^{-a/a^{*}}

||W_{1}(\cdot, t)^{q}/W_{2}(\cdot, t)||_{\infty}\leq C_{1}\lambda^{2/a^{*}}(t+t_{1})^{-a/a^{*}}
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Proof. For any 0\leq\alpha<N and x\in R^{N} , we have (cf., Rapnikov-Eidelman
[12] ) h_{\alpha}(x)>0 , and

lim |x|^{\alpha}h_{\alpha}(x)=1 .
|x|arrow\infty

Since W(x, t+t_{0}; A, \alpha)=A(t+t_{0})^{-\alpha/2}h_{\alpha}(x(t+t_{0})^{-1/2}) , these properties
of h_{\alpha}(x) prove the assertions of the lemma. \square

Now, let (\alpha(t), \beta(t)) be the solution of

\{

\alpha’=||W_{2}(\cdot, t)^{p}/W_{1}(\cdot, t)||_{\infty}\beta^{p} , t>0
\beta’=||W_{1}(\cdot, t)^{q}/W_{1}(\cdot, t)||_{\infty}\alpha^{q} , t>0
\alpha(0)=\beta(0)=1 ,

(16)

and let us define (\overline{u}(x, t),\overline{v}(x, t)) as follows:

\overline{u}(x, t)=\alpha(t)W_{1}(x, t) , \overline{v}(x, t)=\beta(t)W_{2}(x, t) . (17)

Lemma 4 (i) (\alpha(t), \beta(t)) is a subsolution of (11) with f(t)=
C_{1}\lambda^{2/a^{*}}(t+t_{1})^{-a/a^{*}} and x_{0}=y_{0}=1 .

(ii) Suppose that \varphi\in I^{a/(q+1)} and \psi\in I^{a/(p+1)} . Then (\overline{u}(t),\overline{v}(t))

gives a supersolution of (1).

Proof. (i) is obvious from Lemma 3 (iii). We have

\overline{u}_{t}=\alpha’(t)W_{1}(x, t)+\alpha(t)W_{1t}(x, t)

=||W_{2}^{p}/W_{1}||_{\infty}\beta^{p}W_{1}+\alpha\triangle W_{1}\geq\triangle\overline{u}+\overline{v}^{p} .

Similarly, we have \overline{v}_{t}\geq\triangle\overline{v}+\overline{u}^{q} . These inequalities and (15) show the
assertion (ii). \square

Proof of Theorem 2. It follows from Lemma 4 (ii) and a standard compar-
ison argument that

u(x, t)\leq\overline{u}(x, t) and v(x, t)\leq\overline{v}(x, t) . (18)

Then we see from (17) that T_{\lambda}^{*} is not less than the life span of (\alpha(t), \beta(t)) .
By means of Lemma 4 (i) and a comparison principle, we see from

Lemma 2 that
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\beta(t)\leq\{ 1– \frac{pq-1}{q+1}(\frac{q+1}{p+1})^{q/(q+1)}C_{1}\lambda^{2/a^{*}}

\cross\int_{0}^{t}(s+t_{1})^{-a/a^{*}}ds\}^{-(q+1)/(pq-1)} (19)

Remember that we have assumed 0\leq a<a^{*} . Then (19) implies that \beta(t)

remains finite at least for t satisfying

\frac{C_{1}(pq-1)a^{*}}{(q+1)(a^{*}-a)}(\frac{q+1}{p+1})^{q/(q+1)}\lambda^{2/a^{*}}t^{(a^{*}-a)/a^{*}}\leq 1 .

Integrating the first equation of (16) shows that \alpha(t) is finite in the same
interval. Thus, we obtain

T_{\lambda}^{*}> \frac{1}{2}C_{2}\lambda^{-2/(a^{*}-a)} for any \lambda>0 .

Combining this and (5) of Theorem 1, we conclude the assertion of
Theorem 2. \square

3. Proof of Theorem 3

In this section we restrict ourselves to the case a^{*}<N(p+1) , and
assume that a^{*}<a<N(p+1) .

We see from (19) that \beta(t) is global and bounded in t\geq 0 if \lambda<\lambda_{1} ,
where \lambda_{1}>0 is given by

\frac{C_{1}(pq-1)a^{*}}{(q+1)(a-a^{*})}(\frac{q+1}{p+1})^{q/(q+1)}\lambda_{1}^{2/a^{*}}t_{1}^{-(a-a^{*})/a^{*}}=1 .

Moreover, noting a>a^{*} . we see that the right side of the first equation of
(16) is integrable in t\in(0, \infty) . This implies that \alpha(t) is also global and
bounded in t>0 . Then we have (7) from (17) and Lemma 3 (ii). Theorem
3 (i) is thus complete.

To show Theorem 3 (ii) we put

u_{k}(x, t)=k^{a/(q+1)}u(kx, k^{2}t) , v_{k}(x, t)=k^{a/(p+1)}u(kx, k^{2}t)
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for k>0 . Then (u_{k}(t), v_{k}(t)) solves

\{

u_{kt}=\triangle u_{k}+k^{-2a/a^{*}+2}v_{k}^{p} ,
v_{kt}=\triangle v_{k}+k^{-2a/a^{*}+2}u_{k}^{q} ,
u_{k}(x, 0)=k^{a/(q+1)}\lambda^{1/(q+1)}\varphi(kx) ,
v_{k}(x, 0)=k^{a/(p+1)_{\lambda}1/(p+1)_{\psi(kx)}} .

(20)

It follows from (7) that

||u_{k}(t)||_{\infty}\leq k^{a/(q+1)}C(k^{2}t)^{-a/2(q+1)}=Ct^{-a/2(q+1)} .

Thus, \{u_{k}(x, t)\} is uniformly bounded in R^{N}\cross[\delta, \infty) for any \delta . As is easily
seen, the uniform boundedness implies the equicontinuity of \{u_{k}(x, t)\} in
any bounded set of R^{N}\cross[\delta, \infty) . Then using the Ascoli-Arzela theorem and
a diagonal sequence method in \delta , we see that for any sequence \{k_{j}\} – \infty ,
there exists a subsequence \{k_{j}’\} and a function w_{1}(x, t)\in C(R^{N}\cross(0, \infty))

such that

u_{k_{j}’}(x, t)arrow w_{1}(x, t) as k_{j}’arrow\infty

locally uniformly in R^{N}\cross(0, \infty) .
We shall show

w_{1}(x, t)=W(x, t;A_{1}\lambda^{1/(q+1)}, a/(q+1)) . (21)

It follows from the first equation of (20) that

\int_{R^{N}}u_{k}(x, t)\zeta(x, t)dx-\int_{R^{N}}u_{k}(x, O)\zeta(x, O)dx

= \int_{0}^{t}\int_{R^{N}}\{u_{k}\zeta_{t}+u_{k}\triangle\zeta+k^{-2a/a^{*}+2p}v_{k}\zeta\} dxdt (22)

for any t>0 and nonnegative \zeta(x, t)\in C_{0}^{\infty}(R^{N}\cross[0, \infty)) . By assumption
on the initial values

\int_{R^{N}}u_{k}(x, 0)\zeta(x, 0)dx=\int_{R^{N}}k^{a/(q+1)}\lambda^{1/(q+1)}\varphi(kx)\zeta(x, 0)dx

arrow A_{1}\lambda^{1/(q+1)}\int_{R^{N}}|x|^{-a/(q+1)}\zeta(x, O)dx as k=k_{j}’ – \infty .
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On the other hand,

\int_{0}^{t}\int_{R^{N}}k^{-2a/a^{*}+2}v_{k}^{p}\zeta dxdt

= \int_{0}^{k^{2}t}\int_{R^{N}}k^{a/(q+1)}v(kx, \tau)^{p}\zeta(x, k^{-2}\tau)dxd\tau .

Since \alpha(t) is bounded, it follows from Lemma 3 (i) that

k^{a/(q+1)}v(kx, \tau)^{p}\leq Ck^{a/(q+1)}W_{2}(kx, \tau)^{p}

\leq C\{(k|x|)^{a/(p+1)}W_{2}(kx, \tau)\}^{(p+1)/(q+1)}

\cross|x|^{-a/(q+1)}(W_{2}(kx, \tau))^{(pq-1)/(q+1)}

\leq CM_{2}^{p}\lambda^{p/(p+1)}|x|^{-a/(q+1)}(\tau+t_{1})^{-a/a^{*}}

\cross(h_{a/(p+1)}(kx/(\tau+t_{1})^{1/2}))^{(pq-1)/(q+1)}

Note here that a/(q+1)<N . a/a^{*}>1 and

h_{a/(p+1)}(kx/(\tau+t_{1})^{1/2}) –0 as k – \infty

for x\neq 0 . Then we can apply the Lebesgue dominated convergence theorem
to obtain

\int_{0}^{k^{2}t}\int_{R^{N}}k^{a/(q+1)}v(kx, \tau)^{p}\zeta(x, k^{-2}\tau)dxd\tauarrow 0 as k=k_{j}’ – \infty .

Thus, letting k=k_{j}’ – \infty in (22), we obtain

\int_{R^{N}}w_{1}(x, t)\zeta(x, t)dx-\int_{R^{N}}A_{1}\lambda^{1/(q+1)}|x|^{-a/(q+1)}\zeta(x, O)dx

= \int_{0}^{t}\int_{R^{N}}\{w_{1}\zeta_{t}+w_{1}\triangle\zeta\}dxdt .

The uniqueness of solutions of

u_{t}=\triangle u , u(x, 0)=A_{1}\lambda^{1/(q+1)}|x|^{-a/(q+1)} ,

then implies (21).
We have thus proved that

u_{k}(x, t)arrow W(x, t;A_{1}\lambda^{1/(q+1)}, a/(q+1)) as k – \infty (23)

uniformly in compact sets of R^{N}\cross(0, \infty) .
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Note again that (\alpha(t), \beta(t)) is bounded. Then it follows from (14) and
(17) that

u_{k}(x, t)\leq Ck^{a/(q+1)}W(kx, k^{2}t+t_{1} ; M_{1}\lambda^{1/(q+1)}, a/(q+1)) .

Let t=1 in this inequality. Then by use of the selfsimilarity of W(x, t;A, \alpha) :

W(x, t;A, \alpha)=k^{\alpha}W(kx, k^{2}t;A, \alpha) ,

we have

u_{k}(x, 1)\leq CW(x, 1+k^{-2}t_{1} ; M_{1}\lambda^{1/(q+1)}, a/(q+1)) .

This inequality implies with Lemma 3 (i) that for any \epsilon>0 there exists an
R>0 independent of k>(2t_{1})^{-2} such that \{u_{k}(x, 1)\} are uniformly less
than \epsilon in |x|>R . Therefore, we have from (23) that

u_{k}(x, 1)-W(x, 1;A_{1}\lambda^{1/(q+1)}, a/(q+1))arrow 0 as karrow\infty

uniformly in R^{N}

We let y=kx and s=k^{2} in this relation. Then noting again the
selfsimilarity of W(x, t;A, \alpha) , we conclude that

s^{a/2(q+1)}|u(y, s)-W(y, s;A_{1}\lambda^{1/(q+1)}, a/(q+1))|arrow 0 as sarrow\infty

uniformly in R^{N}

Relation (8) is now proved for u(x, t) . The same argument can be
applied also to v(x, t) , and Theorem 3 (ii) is complete.

4. Proof of Theorem 4

In this section we consider the case where \lambda goes to \infty .
In order to obtain an estimate of T_{\lambda}^{*} from below, we choose f(t)\equiv 1

and x_{0}=\lambda^{1/(q+1)}||\varphi_{0}||_{\infty} , y_{0}=\lambda^{1/(p+1)}||\psi_{0}||_{\infty} in (11). Then the solution
(x(t), y(t)) gives a supersolution of (1), and we have from Lemma 2

y(t) \leq\{y_{0}(pq-1)/(q+1)-\frac{pq-1}{q+1}(\frac{q+1}{p+1})^{q/(q+1)}t\}^{-(q+1)/(pq-1)}

if (q+1)^{-1}x_{0}^{q+1}\leq(p+1)^{-1}y_{0}^{p+1} Similarly, we can have

x(t) \leq\{x_{0}^{-(pq-1)/(p+1)}-\frac{pq-1}{p+1}(\frac{p+1}{q+1})^{p/(p+1)}t\}^{-(p+1)/(pq-1)}
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if (q+1)^{-1}x_{0}^{q+1}\geq(p+1)^{-1}y_{0}^{p+1} From these inequalities we conclude

T_{\lambda}^{*} \geq C[\max\{(q+1)^{-1}||\varphi||_{\infty}^{q+1}, (p+1)^{-1}||\psi||_{\infty}^{p+1}\}]^{-2/a^{*}}\lambda^{-2/a^{*}}

(24)

for any \lambda>0 , where C=a^{*}(p+1)^{p}(q+1)^{q}/2 .
To obtain an estimate of T_{\lambda}^{*} from above, we put

u_{\lambda}(x, t)=\lambda^{-1/(q+1)}u(\lambda^{-1/a^{*}}x, \lambda^{-2/a^{*}}t) ,

v_{\lambda}(x, t)=\lambda^{-1/(p+1)}v(\lambda^{-1/a^{*}}x, \lambda^{-2/a^{*}}t) .

Then (u_{\lambda}(t), v_{\lambda}(t)) solves

\{

u_{\lambda t}=\triangle u_{\lambda}+v_{\lambda}^{p} ,
v_{\lambda t}=\triangle v_{\lambda}+u_{\lambda}^{q} ,
u_{\lambda}(x, 0)=\varphi_{\lambda}(x)=\varphi(\lambda^{-1/a^{*}}x) ,
v_{\lambda}(x, 0)=\psi_{\lambda}(x)=\psi(\lambda^{-1/a_{X)}^{*}} .

(25)

Let \tilde{T}_{\lambda}^{*} be the life span of (u_{\lambda}(t), v_{\lambda}(t)) . Then obviously

T_{\lambda}^{*}=\lambda^{-2/a^{*}}\tilde{T}_{\lambda}^{*} . (26)

We define

F(t)= \int_{R^{N}}u_{\lambda}(x, t)\rho_{\epsilon}(x)dx , G(t)= \int_{R^{N}}v_{\lambda}(x, t)\rho_{\epsilon}(x)dx ,

where \rho_{\epsilon}(x)=(\pi^{-1}\epsilon)^{N/2}e^{-\epsilon|x|^{2}} (cf. e.g. , Mochizuki-Suzuki [9]). Then by
the Jensen inequality, the following inequalities hold for t>0 .

F’(t)\geq-2N\epsilon F(t)+G^{p}(t) , G’(t)\geq-2N\epsilon G(t)+F^{q}(t) .

Note that

lim F(0)=\varphi(0)>0 , lim G(0)=\psi(0)>0 .
\lambdaarrow\infty \lambdaarrow\infty

Then there exist \epsilon_{0}>0 and \lambda_{0}>0 such that when 0<\epsilon<\epsilon_{0} and \lambda>\lambda_{0} ,

-2N\epsilon F(0)+G^{p}(0)>0 , -2N\epsilon G(0)+F^{q}(0)>0 .

Thus, if we put

\Omega=\{(x, y);-2N\epsilon x+y^{p}>0, -2N\epsilon y+x^{q}>0\} ,
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then \Omega becomes an invariant set for (F(t), G(t)) .
As in Galaktionov-Kurdymov-Samarskii [4], [5] (cf., also Caristi-Mitidier

[2] ) , we let V(t)=F(t)G(t) , and differentiate it in t . Then by use of the
H\"older inequality, we obtain

V’(t)\geq-4N\epsilon V(t)+C(p, q)V(t)^{(p+1)(q+1)/(p+q+2)} (27)

where

C(p, q)=( \frac{p+q+2}{q+1})(p+1)/(p+q+2)(\frac{p+q+2}{p+1})^{(q+1)/(p+q+2)}

Since

lim V(0)=\varphi(0)\psi(0)>0
\lambdaarrow\infty

for 0<\epsilon<\epsilon_{0} , we have from (27)

\lim_{\lambdaarrow}\sup_{\infty}\tilde{T}_{\lambda}^{*}\leq\int_{\varphi(0)\psi(0)}^{\infty}\{C(p, q)\xi^{(p+1)(q+1)/(p+q+2)}-4N\epsilon\xi\}^{-1}d\xi .

Thus, V(t) blows up in a finite time. Moreover, letting \epsilonarrow 0 , we have

\lim sup \tilde{T}_{\lambda}^{*}\leq C\{\varphi(0)\psi(0)\}^{-(pq-1)/(p+q+2)} .
\lambdaarrow\infty

From this and (26) it follows that

lim sup \lambda^{2/a^{*}}T_{\lambda}^{*}\leq C\{\varphi(0)\psi(0)\}^{-(pq-1)/(p+q+2)} . (27)
\lambdaarrow\infty

Combinig (24) and (28), we conclude Theorem 4.
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