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Local solutions of fully nonlinear weakly hyperbolic
differential equations in Sobolev spaces

Michael DREHER and Michael REISSIG
(Received February 7, 1997)

Abstract. The goal of the present paper is to study fully nonlinear weakly hyperbolic
equations of second order with space- and time degeneracy. A local existence result in
Sobolev spaces under sharp Levi conditions of C*° type is proved. These Levi conditions
and the behaviour of the nonlinearities determine the required smoothness of the data
and the loss of Sobolev regularity.
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Introduction

In this paper we want to study fully nonlinear weakly hyperbolic differ-
ential equations in one space dimension with time- and spatial degeneracy.

We will prove a local existence result in Sobolev spaces for the Cauchy
problem

F(ugs, o ()Nt uge, 0(2)2A(t) * g, o ()N () g, ug, u, z, ) = 0,  (0.1)
u(z,0) = po(z), w(z,0)=pi(x). (0.2)

We assume that this Cauchy problem is strictly hyperbolic if o(z) = 1 and
A(t) = 1. The functions o(z) and A(t) describe the degeneration, which
occurs for o(x) = 0 (spatial degeneracy) and A(t) = 0 (time degeneracy).
The first question is that for classes of well-posedness with respect to . If
we restrict ourselves to Gevrey classes of order < 2, then we can use ideas

of [Kaj83| to prove a local existence result for
Fup, o ()Mt uer, 0(2)2 M) U, Uz, us, u, z, 1) = 0,
u(z,0) = po(z), u(z,0) = pi(x).

To overcome the critical order 2 we need so-called Levi conditions. In [RY96
a local existence result in all Gevrey spaces could be proved under special
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assumptions for

uy — (a(z, t)ug), = f(z, t,u, uy),

where the nonlinear Levi condition of C'*°-type
‘Gzl)f(:c,t,u,p)‘ < Cre M a(zx,t) (0.3)

is satisfied for all [ > 1 and all compact sets K C R, x [0,7] x R, x R,.
There are different results for local existence in C*° for special quasilin-
ear weakly hyperbolic model equations under quite different assumptions
[D’A93], [DT95], [Man96]. But in all these model equations the nonlin-
earities depend at most on u and w;. In the case of spatial degeneracy
(X'(t) and A(t) are absent in (0.1)), the C*- and Gevrey well posedness is
proved in . What about results for local existence of Sobolev solutions?
In one can find one of the first results for the time degeneracy case

Uy — A1) upe — a(x, t)ug — b(x, t)uy — c(z, t)u = f(x,t),
U(JZ,O) = 900(1')’ ut(l’v 0) = 901(x)

under the Levi condition

lim sup |a,(;”c,t)| <g<oo

The loss of regularity depends on ¢ and the Levi condition is sharp. Later
weakly hyperbolic Cauchy problems of the form

N N
Ut — Z (aij (377 t)uﬂcz‘)azj + Z bi(xv t)ufcz‘ + bo(x, t)ut + C(;E, t)u
ij=1 i=1
= f(z,t),

w(z,0) = po(z), w(z,0)=¢i(z)
were studied in [Ole70] under the Levi condition

N
ct (Z bi(z, t)fi)
i=1

In the case of time degeneracy this Levi condition is only sharp if we have a
degeneracy of finite order (compare with the Levi condition of Nersesian).

2

N N
<AD agz, )& +3t( > az’j(l‘,t)fiﬁj)-

i.j=1 i.j=1
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In it was shown for the model problem

ug — At)2 Au= f(z, t,u,u, N()Vu),
u(a:,O) = 900(56)7 ut(:U?O) = 991('T)

how to prove the local existence of Sobolev solutions. The difficulty is to
show how to overcome the quasilinear structure with the loss of Sobolev
regularity which appears even in the linear theory. In a local existence
result could be derived for a general quasilinear weakly hyperbolic equation
of higher order in the case of time degeneracy. To prove local existence of
Sobolev solutions we need C*-type Levi conditions. The special structure
of the arguments in (0.1) ensures the fulfilment of these conditions. There
are other ways to describe Levi conditions. The investigations in this paper
serve as a preparation for further studies which will be devoted to the ques-
tion for global existence. As usual, in those Cauchy problems the function
F depends only on the solution and some of its derivatives. In this case it is
necessary to use the functions ¢ and A to formulate the C*°-Levi conditions.
The study of a model equation

uy — o ()’ A(t)* Au= f(Vu)
under the assumption
10pf (P)] < Clo(z)N ()]

(similar to [0.3)) leads to spaces of solutions with asymptotics, which seem
to be extremely difficult to handle.
The aim of this paper is to prove

Theorem 0.1 We suppose:

Al The function F(un,U)\ulg,02)\2u22,a)\’u2,u1,u,:c,t) i1s defined on the
set M x P x I, where M is an open set in R®, P C R is a compact
interval and I = [0,T].

A2  The functions F, o, pg, @1 are P-periodic in z.

A3 The function X\ € C3([0,T)) fulfils the conditions

A0)=X(0)=0, At) >0, XN(E#)>0 (t>0). (0.4)

A4 Tt is assumed that o € HJT2(P), ¢y € HIT(P), o1 € HIL(P),

where N > 5 and HI])\;(P) denotes the functions from HY (R) which
are P-periodic.
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A5 The derivatives F,,,, ..., F; belong to C1([0,T],C>(R%) x Hé\ér(P)).

A6  With a suitable constant « it holds |Fy,,| > a >0 on M x P x I.
A7 Leton M x P x I be

Fa)vz/]g)Q Fa‘l)\?uu
_oA%I2 g2 > 0.
( Full F =7

uil

From condition A6 we conclude that the set in M x P x I which is given by
F =0 can be represented in the form

w1 = G(oAu1a, 02N U9, o N ug, uy, u, ., t).
A8 Let po(x) be the function which is defined by

992(33) = G(Ov 0,0, Qpl(x)a 990(3:)’ I’O)'

We assume that the set

K = {(p2(2),0,0,0,¢1(x), po(z),2,0) : © € P}

is contained in M x P x {0}.
Then there exist constants 7 € N and T* € (0,T] such that the Cauchy
problem (0.1), (0.2) has a solution u,
w, ug, oduy € C([0,T], HY-"(P))

per

if N —1r > 5. The constant r describes the loss of Sobolev regularity and
may depend on N. One can show that N —r > 5 for sufficiently large N.
This gquarantees the existence of a solution for large N.

For the convenience of the reader we give an overview of this paper:
In the first section we provide some tools which will be used in later sec-
tions. The second and third section deal with problems which have no time
degeneracy, whereas the fourth and fifth section include this degeneration.

We study linear equations in Section 2. At first we derive energy es-
timates. The existence of the solution is proved by applying a smoothing
technique and the abstract Theorem of Cauchy-Kowalewskaja. We can
prove convergence of a suitable sequence of solutions by our energy esti-
mates.

Quasilinear equations are studied in Section 3. We prove the existence
of a solution by linearization and standard iteration. The convergence of
this sequence is again shown by energy estimates. Although we consider



Local solutions of fully nonlinear weakly hyperbolic differential equations in Sobolev spaces 341

only scalar equations it is obvious that similar results can be proved for
quasilinear systems with diagonal principal part.

In Section 4 we consider quasilinear equations with both degeneracies.
We approximate the problem by problems without time degeneracy and
apply the results of Section 3.

We show how one can reduce fully nonlinear equations to a quasilinear
system with diagonal principal part in Section 5.

In Section 6 we study some examples. We can show that the loss of
Sobolev regularity predicted in Section 4 occurs, indeed. Additionally we
give some remarks which are of independent interest.

1. Evolution operators and energy estimates

In this section we assemble some tools which we need in later proofs.
We define the partial energies

o= (/p@iu(w,t»?dm)%

and the energies of finite order

N
En(u)(t) =) ej(u)(t).
j=0

It is worth to remark that En(u)(t) = |[u(t)||~p). These energies have
the properties

En(uv)(t) < Cprod, v En(u)(t) En(v)(t), N =1,
EO(“”)(t) < Cprod,OEl (u) (t)EO(v)(t)’
)

H@mu(x,t Hoo < CP€2(U)(t)7 u € H2

per(P)'

Proposition 1.1 Let N > 1, N' = max(2, N) and

X e C(0,T), HN.(P))

f € C(0,T), HY (P)) N LY([0,T), H (P)).

Let u(z,t) be a solution of

ut(x,t) — Mz, t)ug(z, t) = f(x,t), (x,t) € P x][0,T].
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(a) Ifue L>([0,T], H;(P)) and u, € L>=([0, T, Hrj)\gr(P)), then
En(u)(t) < CNEn(u)(t) + En(f)(t). (1.1)
(b) Ifue L*™([0,T], Hrj)\gr(P)) and uy € L*([0, T, Hé\ér_l(P)), then

En-1(u)(t) < Oxo1Ey—1(u)(t) + Ex—1(£)(t) (1.2)

and if 0 <ty <t<T, then it holds

Bx(u)(t) S Bx()(t0)e 1 [ Dpy(p)ryar. (13

to

The constants C,, depend on |I>‘”C([O T, HR ) (p))-
s+ [yper

Proof of (a) Let 0 < j < N. Then it holds
es(W(O)e(w)'() = [ (@u)(@ur) dr
P
_ /P (0Iu)3I(f + M) da

< e;(u)(B)e;(f)(t) + /P ()N ) da

+Z (2) [@mwomnei ) d.

The second integral of the right-hand side can be estimated after partial
integration by ||\, ||, e;(u)* < C ||>‘HHN’(P) e;j(u)?. We get for n = j in the
last integral the inequality

[ (@@ 0:0) do < ) [Nl sy el
< Cl M pspy ej(u)ez(u),
and forn <j—1
[ (@0@N@ ) de < €5(0) [N ¢ (a)
< ClMgv py €5()ejns ()

Summation (j =0, ..., N) yields the assertion. L]
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Proof of (b) It remains to prove the estimate (1.3). We approximate

HJL(P)

Wper(P) 2 u"(ty) — ulto),

L'([0,1],HY..(P))

C((0,T], Aper(P)) > f* f

c([0.1),HY,(P))
C([0, 7], %per (P)) > A" A

Here we denote by per(P) the space of functions which are analytic and
P-periodic.

Lemma 4.7 from shows that there exists a solution u"™ €
O™ ([to, ), Aper((P)) of

uy — AN"ul = f".

By Gronwall’s Lemma and (a) we obtain for every n

En(u™)(t) < Ex(u™)(to)eCNEto) 4 / t eENET B (MY (1) dr

to

From (a) and

(u—u)y—AMu—u")e=f—f" = (A" = Mu}

X

we conclude that [[u™ — ul| ynv-1(py — 0.

Furthermore, there exists a constant C with |[u"(¢)|| gnpy < C for all
n, t. We fix t > ty. There exists a subsequence u}(t) weakly converging in
HX (P) to some function w(t). The uniqueness of the limit yields u(t) =

per
w(t). Hence

En(u)(t)
< liminf En(u")(t)

n—oo

t
< lim inf <EN(un)(t0)eCN(t_t0) +/ N Br (7)) (1) d7'> :

n—oo tO
From this and the approximations we have (1.3). []

We will use these results to estimate the solutions of the weakly hyper-
bolic Cauchy problem

upe(2,t) + o (2)b(x, t)ug (2, t) — 0*(2)a(z, uee (2, t) = f(z,t), (14)
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u(z,0) = up(x), we(z,0)=ui(z), (1.5)
b?(x,t) + 4a(x,t) >y >0, (z,t)€ Px][0,T). (1.6)
We factorize the differential operator:

lia(x,t) = o(x)Bi2(z,t)

= Sol@)(~ble,0) £ b2(,0) + da(z, ),

O = O — lyo(x,t)0y,

01091 = ug + obugy — olauy, + (Lilag — lat)ug

and define the energy
En(u)(t) == En(u)(t) + En(91u)(t) + En(02u)(t).

Hence we obtain
(0102 + A1 (01 — B))u = f, (1.7)
(8201 + Az(82 — O))u = f, (1.8)

Ly, —1 loly o —1
A t) = SR Aol t) =

This factorization is the essential idea of the proof of the following

Proposition 1.2 We assume with N > 2

o€ H.(P), (1.9)
a,be CH[0,T), H\.(P)), (1.10)
f €C(0,T),HN.(P)). (1.11)

Let u be a solution of (1.4) with u,d1u, 8u € C([0,T], HL(P)).
(a) If0< M <N —1, then

Enr(u)(t) < eDM(t—tO)(EM(u)(to)ecM(t_to) (1.12)

+2 / t M= By () (T) dT) .

to

(b) If we assume additionally oa,cb € C([0,T),HYF(P)) and o €

per

HNFTY(P), then the estimate (1.12) holds for M = N, too.

per
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The constants Dy;, Cyr depend on

En (A ), ' =1,2, M =max(M,?2).

IlleC([o,T],Hgg;(P))’ J

Proof.  The assumptions guarantee A; € C([0,T], Hé\ér_ 1(P)). The appli-
cation of [Proposition 1.1] to

8182u = f - A1(81 - 82)’&

shows that
En(0au)(t) < Ear(Oqu)(te)eCMt-to)
t
[y - i

to

We can derive a similar estimate for Fj;(0;u)(t). Furthermore,

t
Enr(u)(t) < Eng(u)(to)eCr(i=to) 4 / eOME=T) B (Dyu) (1) dr-

to

We have
EM(Az-aju) S C],\,[E]\[/(Ai)E]\j(aju),

hence

Env(w)(t) < Enrlu)(to)eCMEt0) 4 2 / t M B (H) () dr

to
t
+ CXI/ eV =) gy () (7) d.
to
By Gronwall’s Lemma, it follows (1.12).
To prove (b), we only note that A; € C([0,T], HY (P)). ]

per

Remark 1.1. We can prove a similar result for systems
Ui (T, ) + obu; 4y (T, ) — 02au; po(x, t) = fi(z,t), i=1,...,n

and the energy Eps(U)(t) = >ty Enm(u;)(t). This is possible since the sys-
tem has diagonal structure.

The next lemma will be needed in Section 4. We define the energy

Fyv(u)(t) = Jé (/P +

. 2
Bu(w,t)|

. 2 \z &
a;ut(x,t)} da:) =5 1.
j=0
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Lemma 1.1 Let u € C?([0, T],HF])Y%F(P)) be a solution of the following
ordinary differential equation with parameter

ug + hy(x, t)ur + ho(z, t)u = g(z,t),

where hy, hy, g € L=([0,T], H.(P)).
Then it holds

P (u)(t) < Fy(u)(0)eC + /0 ) En(g)(r) dr.

Proof.  From the inequalities
Fi(u) (8)f5(u)(t) = /P((%U)(aiw)Jr(aiw)(aiwt))dw

< fi(u)(t)? + /P (8ue) (8 (g — hyus — hou))da

< S + £ (w)(0)(£(9) @)
+ CFn(u)(t)(Fn(h1)(t) + Fn(he)(t)))

we deduce that
Fyn(u)'(t) < En(g)(t) + (1 + C(En(h1)(t) + En(h2)(t))) Fx (u)(?).
Gronwall’s Inequality implies the assertion. ]

We will need the following generalization of the well-known Gronwall’s
Lemma.

Lemma 1.2 (Nersesjan) Let y(t) € C([0,T]) N CY(0,T) be a solution of
the differential inequality

y'(t) < K(t)y(t)+ f(t), 0<t<T,

where the functions K(t) and f(t) belong to C(0,T). We assume for every
t € (0,T) and every 6 € (0,t)

/O‘SK(T)dT — o, /STK(T)dT < o0,
lim ; exp (/: K(T) d7‘> f(s)ds exists,

6—+0

Jlim y(8) exp ( /5 "K(r) dT) —0.



Local solutions of fully nonlinear weakly hyperbolic differential equations in Sobolev spaces 347

Then it holds

o) < [ e ([ K@) s65)ds

2. Existence results for linear equations with spatial degeneracy

Lemma 2.1 We assume N > 3, (1.6), (1.9), (1.10), (1.11) and

ug € HYFY(P),  w; € HY

per per

(P). (2.1)

Then the weakly hyperbolic Cauchy problem (1.4), (1.5) has a uniquely de-
termined solution u € C([0,T], HI1(P)) with dju € C([0,T], H 1 (P))
and uy € C([O,T],HN—2(P))

per

Proof. We approximate

' ([0,1),HYN,.(P))

CH([0, T), Aper(P)) > a™,b" a, b,

HJL(P)

per

Uper(P) 2 0" — o,

c(0,7),HY,(P))
C([0,T], Aper (P)) > f" f,

o Heel'(P)
Q[per(P) 9 uo —— UO,

HY.(P)
Uper(P) 3 uf —— uy.

From [I’heorem 4.1 of we deduce that the Cauchy problem

ugt + 0" Uy — (0™)2a gy = [, (2.2)

u(z,0) = ug(z), w(z,0)=ul(x)

has a solution u"™ € Cz([O,T],leer(P))- The norms HZ?HC([

1A o o771 )

sition 1.2 gives

OvT]aH}])\ér(P)) and

are uniformly bounded with respect to n. The Propo-

£ _(WM)(t) < C, Vn,t. (2.3)

We show that (u™) is a Cauchy-sequence in suitable Banach spaces. Obvi-
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ously,

(un . um)tt + O_nbn(un . um)ﬂ . (O_n)Zan(un . Um)mx

(2.4)

Without loss of generality we may assume that

1 1
la® —all <= oy fluf —u] < -

n n
From this it follows that we can estimate the L?(P)-Norm of the right-hand
side of (2.4) by C(% + %) Here we used N > 3 and the uniform estimates

(2.3). Proposition 1.2 leads to

n m

1 1
Ey(u" —u™)(t) < C <— + -—) : (2.5)
Nirenberg-Gagliardo interpolation and (2.3), imply

1 1\*
EX "™ () <C| -+ — 0<6<1.
Ral w0 <0 (1 +o) . 0<<
Consequently, there exists a function u € C ([O,T],Hlj)\ér_ 2(P)) with dju €
C((0,T), HY2(P) and

per

C([0.T) Hyer *(P))
(u", Oru", dgu™) (u, Oru, Gau).

It is easy to show that u is a solution of (1.4), (1.5).

Now we show the better regularity of u. We fix ¢ty € [0,7]. From
Hu”(tO)HHN—l(P) < C we gain the existence of a subsequence u((ty) with
ul (tg) — wy, in HY.71(P). The embedding of the dual spaces (HY-2(P)) ¢

per per
(Hé\ér—l(P))’ is continuous and dense, hence u}(ty) — wy, in H&;Q(P).
On the other hand, we have u™(tg) — wu(tp) in H{)\[JQ(P)- This yields

the weak convergence of the whole sequence and wy, = u(tg), hence u €
L>([0, 1], HI])\Q;I(P)) (we do not study the question whether u is Bochner-
measurable). Similar arguments apply to d;u. It follows that

u(t) — u(ty), Ou(t) — du(ty) in HY-Y(P), t— to.

per

We consider the evolution equation

81(92U = f - A1(81 — ag)u - f
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The right-hand side belongs to L>([0, T7, Hé\ér L(P))nc([o,T], Hé\ér 2(P)),

and the “solution” dyu of v = f belongs to L>([0,T], H¥-1(P)), hence

per

(8au) € L>°([0, T, HY\72(P)). [Proposition 1.1 now shows that

En_1(0ou)(t) < En—1(0ou)(to)eCN-11t—t0)

+/t ON-1U=T) B (f — A1(81 — 8o)u)(7)drT.

to

This gives

limsup En_1(0ou)(t) < En_1(02u)(to) < li{n %nf En_1(02u)(t),

t—to+0 —to
and, in consequence, limi—¢+0[|02u(t)||gy-1py = |02ulto)llgy-1(p)- It
follows that dou(t) is Hljj\ér 1(P)-continuous from the right. Changing the
time direction gives continuity from the left. By the proof of Lemma 3.1 we
have u; € C([0,T], HIF(P)). []

The following proposition sharpens this result.

Proposition 2.1 Let the assumptions of the previous lemma be satisfied.
Additionally, we suppose

o € H)(P), (2.6)
oa,ob € C([0,T], HF1(P)). (2.7)

Then the solution u of (1.4), (1.5) satisfies
u € CH([0, T1, Hoer(P)) N C*([0, T}, Hper ' (P)),

d;u € C([0,T), HY (P)).

per

Proof.  Let h. be a Friedrichs Mollifier with support [—¢,¢e] and define
ac(z,t) := (a(.,t) * he(.))(x), be(z,t) := (b(.,t) * he(.))(x). Then we have

c ([0,7],HY..(P))

per

e, be a,b

and

HO‘aEHC([O,T],HI])\é;H(P)) y HO‘bEHC([O,T],H&}LI(P)) < C Ve> 07
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see Lemma A.2. It follows that
1Gle o m ) < C MA5leormpy,my) < €

for all e > 0. We set ugj := ug * he, u§ := uy * he, € := f * h. and consider
the Cauchy problem

Utt + Obeugy — o? Aelgy = f°,
u(z,0) = ug(x), w(z,0)=uj(x).

From the previous lemma we know that there exists a solution u® €

cl([o, 1], per( )) with 85u® € C([0,T], per(P)). We have
Ex(u®)(t) <C Ve >0.

The same arguments as in the previous lemma give strong convergence of

u®, O5uf in Hlj)\ér 1(P), weak convergence in Hrjj\ér(P) and regularity of the

hmlt []

Remark 2.1. These results can be generalized to systems, see Remark 1.1.

3. Quasilinear weakly hyperbolic equations with spatial degen-
eracy

We study the Cauchy problem (1.5),

uit + o(2)b(z, t, u)ug — 0 (z)a(z, t, Wuge = f(z,t,u, ur, o(z)ug)

(3.1)
under the assumptions N > 3, [1.6), [2.6), [2.1) and
a,b e C'([0,T],CNT1(K5)), (3.2)
f € C([0,T],C¥ (Ky)), (3-3)
a, b, f are P-periodic with respect to z, (3.4)

with
Ks = {(x U)ERQ::BEP\U—UO(JJ)\§6},

K(S = {(.CC Ul,vg,’l)?,) - R ($ ’Ul) € Kg, '?)2 — ’U,l( )I < (5,
v — o (@)ugz ()] < 6}
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To simplify notation we define

S(T*) = {ve CH[0,T*), HY.(P)) : o, € C([0,T*), H}..(P)),

(z,v(z,t),ve(x, 1), 0(x)v.(2,t)) € K5 V(z,t) € P x [0,T7],
v fulfils the initial conditions (1.5)}.

The aim of this section is to prove the

Theorem 3.1 We assume (1.6), (2.6), (2.1), (3.2)-(3.4) and N > 3.
Then there exists a T*, 0 < T* < T, such that (3.1), (1.5) has a solution
u € S(T*). This solution is unique in the set of P-periodic functions.

The uniqueness follows from Hadamard’s Formula and the energy esti-
mate (1.12).
We consider the linearized problem

L(v)u = f(v)7
L(v) = Ou + O’b(.’lﬁ,t, v)afvt - 02@(1:7 t U)aa:a;a
f(v) = f(il?,t,U(l?,t),Ut(ﬂ?,t),O'(ﬂ?)Ux(.CC,t))

with initial data ug,u; and study the mapping v — u.
The following, rather technical, lemma provides the equivalence be-
tween some norms.

Lemma 3.1 Write

Sn(v)(@t) = lv@®)l g~ py + vt ()l g (py + llova(E) | v (py -

Let h € S(T) and En(h)(t) < D for all t. Then there exists a constant
Cs N = Cgn(D) such that
1

=—5Sn(v)(1) < EY()(1) < CsnSn(v)(t) Vo € S(T).
S,N

Here we used the notation
EWV (0)(t) = En(v)(t) + En(8{"v)(t) + En(85"v)(t),
M () = (8 — lj(,t, h(z,1))d,)v.
A proof can be found in the appendix.

Proposition 3.1 There exist constants C*, 0 < T* < T, such that:
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If v e S(T*) and 81(\}))(1)) < C%, then there exists a solution of (3.1),
(1.5) with u € S(T*) and £\ (u) < C*.

Proof. We set C* = 25](\1,‘0+tu1)(u0 +tuq)(t =0). From v € S(T*) we get

a(z,t,v(z,t)), bz, t,v(z,t))€C([0,T*], HY (P)),

o(x )Ed:;a(a: t,u(z,t)), U(x)a%b(a:,t,v(:c,t)) e C([0, T™], Hé\ér(P)),

fv) € C([0,T*], Hi:(P))

per

and

147 @ Ol py < Can(19log > 1ot - lo0allo) (S (0) () + 1),

5 (xvt)HHN(P) < GNPl vtllos s llovell o) (Sn (v)(E) + 1),
1) (@ Ol v py < Crnlvllog s l1vellog s lovallog) (S (v)(2) + 1),

see Lemma Al1l. The norms |[v]y, [lv]lo, |lovsll,, are bounded, since
v € S(T*). Therefore we may assume that Ca,n, Ci N, Cy N are constants
depending on § and [[ugll, lu1 ]y, 0]

[Proposition 2.1 guarantees a solution u € C'([0,T*], H[\.(P)) with
dju € C([0,T*], HY (P)).

per

We next show that €J(V)(u)(t) < 2C* if t < T* and T* is sufficiently
small. We have

t
eV ()(1) < ePNHER @O +2 [ NI By (f)(7) ),
where Dy, Cy depend only on Cy v, Cp. v and C*. We deduce that
(v) Dn+Cpn)t 1 * t * 2 *
EN’ (u)(t) < ePNHEN) (50 +2/ CyN(CsC* +1)dr) < 5C
0
if T* is sufficiently small. From Eév) (u) < 2C* we conclude that

2 E 3
[utll oo + lutelloo + luealloe < Cllluell g2gpy + el gagpy) < gC'C :
hence

2 *
luetllog < (Nlollog [1Bllo + llorll3 lallo)3C°C* + 1 fw)lloo < €



Local solutions of fully nonlinear weakly hyperbolic differential equations in Sobolev spaces 353

The result is

lu(z,t) —uo(z)| <tC,  |u(z,t) —wi(z)| < tC,
lo(x)ug(x,t) — o(x)up ()| < tC.

It follows that u € S(T*) if T is sufficiently small.
It remains to show that EJ(\?)(u) < C*. Therefore we prove that

(.t () — Ly (o, £l ) el v ) < éc*_ (3.5)

We denote the left-hand side of by c;(x,t) and have

¢j(z,t) < Cproa,N ”Cl’j(iU,t)HHN(P) HU“:EHHN(P)
2

< SO CsC laste Ol

where o;(z,t) = Bj(z,t,v(z,t)) — B(z, t, u(zx,t)). From d; |[a(.,t)|\HN(P) <
”at(')t)HHN(P)a O‘(CU?O) - O’
ai(z,t) = Bz, t,v(z,t)) — Bz, t,u(z,t))
+ Bjo(x, t,v(z, t))v(z, t) — Bz, t,ulz, t))u(x, t)

and [[v]| g pys [[uell gv(py < CsC* we obtain

HO[ HHN / ”aT “HN (P) dt < Ct.

Thus we have [3.5). L]
From this lemma it may be concluded that there exists a sequence
(u™) C S(T*) with

n—l)

L(u u” = f(un—l).

Lemma 3.2 The sequences (u™), (u}), (oul) are Cauchy sequences in the
space C([0,T7], Hé\gr L(P)) if T* is sufficiently small.
Proof. It holds

n—l)

L(u (un i un—{—l) — f(un—l) _ f(u") + (L(u") _ L(UTL_l))un+1_

Using Hadamard’s Formula one can estimate the L?(P)-norm of the right-
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hand side by CSy(u™ — u™~1)(t). It follows that

(u" ™)

t
& (u™ —u"ThH(t) < C"/ So(u™ — u™ 1) (1) dr.
0
Hence we obtain

S n__ . n+tl ) < //T* S, n__ _n—1 .
nax. o(u" —u")(t) < C 2 o(u" —u")(t)

We apply the Interpolation Theorem of Gagliardo-Nirenberg and the proof
is complete. ]

Consequently, there exists a limit u € C([0,T*], HY1(P)) with 9;u €

per

c([o, T, Hé\é; 1(P)). It is immediate that u is a solution. The boundedness
in HY (P) implies

u"(.,t) = u(,t), uf(,t) = u(,t), ouy(.,t) — oug(.,t)

in Hé\ér(P). This clearly forces u,us, dju € L°°([0,T*], HY,.(P)), even u €

per

C([o, T, Hé\;r(P)). It remains to prove that d;u € C([0,T%], Hrl)\ér(P)). We

have
agu)aéu)u — f(u) _ A§u) (8§u) _ 8§u))u _. f

The right-hand side belongs to L ([0, T*], HY. (P))nC([0,T*], HN-1(P)),

per per

the “solution” agu)u of 8§u)v = f belongs to L>([0, T*],Hé\ér(P)) and we

have lgu)(a:,t) € C([O,T*],Hrj)\ér(P)). Hence we can apply [Proposition 1.1]

and obtain
En@$u)(t) < En (05" u)(ty)eCnN t=to)

t
- /t NI En (fry — A (O — 85" yu) (1) dr.
0
This gives

lim sup En (85 )(t) < En(8%u)(to) < liminf Ex (5" u)(t),
t—to+0 t—to

which implies the HY (P)-continuity from the right of aéu)u. Changing the

per

time direction completes the proof of [['heorem 3.1.
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Remark 3.1. One can prove a similar result for the system

Uit + O'(:l’:)b(CC, t, a)ui,mt - 02 (a:)a(:c, t, ﬁ)uz,wx
:f($at7ﬁaﬁt70($)ﬁx)7 i:1,...,n

’LT(.’I),O) = 60('73)7 ﬁt(x70) = ’&,’1(33),
if one uses the energy

g(v)( 7) = Zg(v)(ul)

1=1

4. Quasilinear weakly hyperbolic equations with time- and spa-
tial degeneracy

In this section we will derive an existence result for the quasilinear
Cauchy problem with spatial- and time-degeneracy (1.5),

ugg(z,t) + A(t)o(z)b(z, t, u(z, t))ug(z,t) (4.1)
= At)*o(2)*a(z, t, u(z, 1) Juce (=, )
= f(z,t,u(z, t), w(z, t), N (t)o(z)ug(z,t)).
Let A(t) € C'([0,T]) be a function satisfying [0.4).

The aim of this section is to prove the

Theorem 4.1 We suppose (2.1) and

b*(z,t,u) + da(z, t,u) > v >0, (z,t,u)€ Ks, (4.2)
o € HF*(P), (4.3)
a,b e C'([0,T],C™(Ry) x H (P)), (4.4)
ga,ab € C([0,T],C®(Ry) x HI(P)), (4.5)
f € C([0,T],C%(Ry uy xou,) X Hiur(P)). (4.6)

Then there exist constants T* > 0 and r € N, such that: If
N>r+3, (4.7)

then there exists a solution u with u,u;,ou, € C([0,T*], Hlj)\ér "(P)). The

number v describes the loss of Sobolev regularity and may depend on N. If
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N is sufficiently large, then (4.7) holds.

We divide the proof into three steps. At first we present a special
technique to transform the quasilinear problem to another problem whose
right-hand side has a suitable asymptotic. Then we consider linear weakly
hyperbolic problems with special right-hand side and show an existence
result and an a priori estimate. After that we study a linearized version of
the new quasilinear problem and construct a mapping of functions. Using
the results of the second step we construct a sequence of such functions and
prove the convergence to a solution.

4.1. The reduction process

Let u be a solution of [4.1}, (1.5). We study the system of ordinary

differential equations with parameter z
uy (2, 1) = f(@, t,u® (@, 1), uf (2,1), 0),

ulf (z,8) = gi(w, t, 0D (2, 1), ul" (2, 1))

1 1 ) -1
= f(a:, t Z w9 (z,1), ;)ul(tj)(x, t),o(x)N(t) Z ul(z, t))

7=0 J=0
1—1 1—1 1—2
— f (:c, t Z w9 (z,1), Z ugj) (z,t), 0 ()N (t) S uld) (z, t))
§=0 j=0 §=0
i-1
— Mt)o(@)bio1(z,8) Y ul) (2, )
j=0
i—2
Ao (@)bia(x, ) S ul) (2, 1)
j=0
i—1
+ A1) %0 (2) a1 (x,t) S wl)(z, 1)
7=0
1—2
- A(t)?0(2)2aia(z, 1) Y uf)(=,t),
j=0
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with the initial data

u(z,0) = up(z), u”(x,0) = uy(z),
ul(x,0) = ugi)(sc, 0) =0.

Here we used the notation

bi(z, 1) = b(x, ‘ éu(j)(x,t)), ar(@,t) = a(a:, : f: u(j)(x,t)>.

J=0

This system may be interpreted as a system of weakly hyperbolic equa-
tions with spatial degeneracy, whose degenerating function vanishes iden-
tically. MTheorem 3.1 implies, that these equations have solutions u(¥ €
C?([0, T3], HN-%(P)) with

per

1u(0)(x, t) — uo(:c)‘ + lu§0)($’t) _ ul(:r)‘
+} WO (z,t) — o(z )uox(x)‘ < e,

\<><xt1+\ut (2,6)] + |o(@uld (@ 1) <& (2 1),

Furthermore, there are constants C; with ||u(||

el ) < O

We want to show the following

Lemma 4.1 It holds

Frn_oi(u)(t) < CiA(t)*.

Proof.  The assertion is true for ¢ = 0.

Let FN_Q(i_l)(u(i_l))(t) < Ci_1 A1) 1. We want to apply
and for this purpose we study the right-hand side g;: From Hadamard’s
Formula we see that

gi(z,t, u(i), ugz))
= fri(z, )u® + foi(z, Ol + o (@)X (t) fai(z, ul™
+ o(2) A )by (z, tuls™ (:z:))\( Yboi (2, )Y
+ o(2)2A(t)%ay (2, )uls Y + o (2)?A(t) 2agi (z, t)uli~Y.



358 M. Dreher and M. Reissig

Hence we obtain

t .
<C [ XOIREDE g

+ A2l ()| gvsa-aipy dr

<c/ N(OAE) 4 A+ AF)2A(F) L dr
< Gt
We define u =: 37_ ul) + v and

k k
bi(z,t,v) = b(:c,t,Zu(j) -+—v>, ar(z,t,v) = a(:c,t, Zu(j) +’U).

=0 j=0

From we see that

v + A(t)o(2)bp(z, t, v) v — A(t)20(2)2ap (2, t, v)Vgs

-—~f<:r,t,zp:u +v, Zut + vg, A (Zu +vm)>

7=0

P -1
—f (w t, Z w3 u? N (t)o(2) Z uzi”)
j=0 §=0 §=0

— At)o(x)bp(z,t,v) zp: ugft) + A(t)o(z)bp_1(z,t,0) Ii u:(gt)

=0
p . p_ .
+ A(t)%0(z)%ay(z, t,v) Z uld) — A(t)?o(x)%ap—1(z,t,0) Z uld)
j=0 =

=: Fy(z,t,v,v, N (t)o(x)vg).
The purpose for these considerations is the following

Proposition 4.1 [t holds

”Fp(xa t, 0,0, O>||HN—2—2P(P) < C)‘(t)p
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Proof.  We write Fy(x,t,0,0,0) = Dy + Dy + D3, with

D, = f(xtfjf}i) - (w t Z i pZI)
Dy := —Xoby(z,t,0) <zpj)m + Aobp_1(z,t,0) (I)f)mt

p p—1

D3 = Mo?ay(z,t,0) (Z = ) — Xo?a,_(z,t,0) (Z o ) :
From Hadamard’s Formula, [Lemma 4.1 and

Dy = —Xobp(z,t, O)ug)

p—1
— Ao (by(x,t,0) — bp—1(z,t,0)) (Z . ) :
rt
D3 = Mo2ay(z,t,0)ulp)

(p—1)

+ 202 (ap(,,0) — ap—l(%t’o))( 2 ):c

one has the assertion. [

4.2. Linear theory for equations with special right-hand side
Now we are able to derive an existence result and an a priori estimate
for linear equations with spatial- and time-degeneracy.

Proposition 4.2 Let A(t) € C([0,T]) be a function satisfying (0.4). We
assume N > 3, (1.6), (4.3), (1.10), (2.7),

f

)\d 1)/ € C([O T] per(P))>

d>Q:= sup
(z,)ePx[0,T] | V0 (x 4a(z,t)

Then there exists a solution u of
ug + o ()N )b(z, t)ugs — o2 ()N (t)a(z, t)uze = f(z,t), (4.8)
u(z,0) = uy(z,0) =0 (4.9)

with u € C([0,T], HY.(P)) and A\~%u,ou, € C([0,T], HJ.(P)). The fol-
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lowing estimates hold:

En(w) () < (CM 1 Q i’((f))) En(w)(t) + 2Ep () (D),
M=0,...,N—1,

Alt)

eon (- (————-)Q/lﬂw(f?(T)dT,

En(u)(t) < 2 [ e

0

where Q < Q' < d. The constants Cy; depend on

“l ” ([OT max21\1)( ))7

Ha’Hcl([O T).H max(l M)(P)) ) Hb“CI([O,T],Hg:x(l’M)(P)) 3

HO-G’CC“ (OT] Hmax(l AI)( )) ) Ho—bxHC({O,T],H&?X(LA”(P)) .

Proof. ~ We approximate

X Nio c'([o,1,HY.(P))
C ([0, T], Hpej (P)) > ae,b. a,b,

c(o1).HY(P) ¢

C(l0.T), H) (P)) > f. —

per

such that

Haas,x”HN(P) ) Habe,xHHN(P) <C, bg +4a. > % vV 0 <e < e,

see Lemma A.2. We set b, := be(A +¢€), @ := a.(\ + ¢)? and obtain
b2 + 4a. > %527 > (. Due to [Proposition 2.1| there exists a solution u® of

us, + obous, — ola.us, = NN,
u®(x,0) = uj(z,0) = 0

with u®, uf, ous € C([0,T], HNF1(P)). It follows that

per

& = 0, — I5(x,1)d,,

f2(2,0) = 0@ + ) (=bel, 1) £ 1B(a,0) + dac(a,1)),
(9505 + 4595 — 95))u” = AN,

N(t)

i - € 7t
Af(z,t) = c1e(x )+)\(t)+€

C?,s(xa t)a
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_be + S{-: (bs + Se)t
E = T 5 _bs_Se x)\t T a0
be + 5.
Coe =
% 25,

with Se = /b2 + 4a.. We have

5,00 € CY([0,T), HYT2(P)), c1. € C([0,T), HXFY(P))

per per

and

Hlsucl( 0,77, HN ))7 HCL&”C([O,T],HI{VH(P))’ “0276”01([0,’1“]’]_]5)\;(}3))

<C Ve
Now we can derive estimates for u*. Obviously,
95 05u" = NI . — A5 (55 — 05)u,

where the right-hand side belongs to C([0,T], HY1(P)) and the solution

per

o05u® belongs to C([0,T], H[])\(Q;FI(P)). From [Proposition 1.1 we get for 0 <
M<N

En(03u)'(t) < CnEar(85u)(t)
+ Epp(ZTIN £ — A5(85 — 85)ul)(t).

We estimate the second energy on the right:

102" (AT(85 — 95)u),

13 & g )\,t /. 154 13 [
< 02", 0F = 50, + 5 - llen.0 (05 — ),
M-1 A, ) . .
+0 X S VO eac)2oE gl
)\/(t) Q+e o M
< g £ g, , €
< Cey (u ><t>+w)+€ (162 @), + 102 (950 )
VO e o
+ Cm—e\\(al — 03)u’ || gar-1py
V() Qe

(102" (5u)l, + 182" (B5u)l,)-
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The result is

Enr(5u) (t) < CuEiy(B5u) () + A ()N (D) En (f)(1)
)

We can prove a similar inequality for Eys(07u®)'(t), if we use

0505u" = XTI f. — A5(05 — 95w’
We have to replace ¢y . = ba;rSESE by b;gff . By standard technique one shows
an estimate for Ej;(u)’(t). Combining these inequalities we obtain

£ (W) (1) < CuER(u)(t) + 227 (ON () En(f)(2)

X (t)

/ —___55 3 t .

We may assume that g¢ is so small that Q + ¢’ < Q' < d for 0 < ¢ < .
We want to apply the Lemma of Nersesjan. Before we can do this, we have
to check whether £5,(u®)(t) < C.A(t)%. Therefore, we apply Gronwall’s
Lemma to

5,00 (1) < €5, (0) + OX )X (1
and get

E5;(us)(t) < g /0 t e CINL N (1)dr < CoA(t)4 (4.10)
So we can apply Nersesjan’s Lemma with

Vit)i= E5)(O. K() = Q@ d + o

f=2XT ON () Em(f) (@)
and deduce that

€ (,,E f & < Crp(t—7)yd—1 AN (T 3 dr
E)0) < 2 [ (F5) €N N (BN (£ ()
< CA(t)4. (4.11)

This inequality holds for all € in contradistinction to (4.10). We conclude

lu (Ol vy + g (Ol vy + 1) + )z ()l py < CAR)Y,
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hence
62Ol (py + 15 0Ly + AW + VU (W) vy < CARY

for 0 < €’ < ¢, which implies £5(u®)(t) < CA(t)%.
We next claim that the sequence (u®) converges in suitable Sobolev
spaces. By definition of u®,

LSUE — )\d—lA/f'-'E’

LF(u® —uf) = XW(fo — fo) + (LF = L )uf = Ge e (,1).

From [[ug|| gn-1(p) < CA(t)? and Uzl pr—2(p) < CA(t)? we deduce that
| ge < }HN_Q(P) < CA)® + CA()¥ 1N (t). Without loss of generality we
obtain for 0 < &’ < e the estimate £5_,(u® — u®)(t) < C(e + /) A(¢)<.

It follows that the sequences (u®), (uf), (Aous) converge to limits u, uy,
Aou, in C([0,T], Hr])\gr_Q(P)). By the Interpolation Theorem of Nirenberg—
Gagliardo we have convergence even in C([0, T}, H¥-!(P)). The weak con-

per
vergence of this sequences in Hé\ér(P) implies

u, ur, ouy € L2([0,T), HYL(P)), En(u)(t) < CA(t)?.

By standard arguments one obtains for ¢y > 0

lim sup || (9;u)(¢) HHN(P) < [[(8ju)(to) HHN(P)
t—tg+0

< 1itrgitglf 1@5w) )l v (py
hence H(P)-continuity from the right. The continuity from the left is
proved by the same technique after changing the time-direction.

The continuity for to = 0 is trivial, since lu() | g py + [ue ()| g py +
HUU:c(t)“HN(p) is obviously continuous for tg = 0.

Finally, from it follows that
En(u)(t) < limiglfé'fv(ug)(t)
£—

=2 / (AAT(QQQ N By (f)(r)dr.
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4.3. Quasilinear equations

Proof of [Theorem 4.1 First, we have to compute the number of required
reduction steps. Set

b(:r:,t,u)
Q = sup
(x,t,u)€Ksx[0,T) Vb(z,t,u)? + da(z,t, u)

and choose Q' > Q. We define

+1

Ql = sup |85f($,t,U1,U2, U3)l 3
(z,t,u1,u2,u3) €Ky x[0,T]

where 05 denotes the derivative with respect to the 5th argument. It is
worth pointing out that

Os Fp(x,t,v vt,o)\’vx)

p
_85f(ac t Zu + v, Zut +vt,o)\’(2u3)+v ))
Now we choose p € N, p > Q' with

2Q1Cs N—2-2p <!

p-Q T4

It may happen that for given N such a number p does not exist. But it is

possible to find p if N is large. Namely, we fix ¢ € 2N, ¢ > 4. For even

N we define p := (N — 2 — g). The condition is fulfilled, if N (and

hence p) is large. The number p is the number of steps in the reduction

process. We set r :=2p+3, M := N —r +1 > 4, where N and r are the
constants from [T’heorem 4.1].

(4.12)

We choose 6o > 0 such that, if Sg(v) = HUHHK + vl g py +
loAve|| g (py < 60 and K 2> 1, then 0]l o < g, ve]] o < Ha)\va g
Let T, > 0 be a constant such that

P
Zu(j)( — ug(x

p

: o
o X (Z uld) (z,t) — uo,m(x)ﬂ <5 teT)]
We study the reduced problem [4.9),

ZBt —ul()

L;(ov)u = Ugt + OAbp(T, 1, V) Uet — TN ap (2, t, 0) ity (4.13)
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= Fp(z,t,v,vt, 0N vy)

with Syr(v)(t) < & for t € [0, T, and v(z,0) = v¢(x,0) = 0.
We will prove the

Lemma 4.2 There exists a constant 0 < Ty < T), with:
If Spr(v)(t) < A()P, then Spr(u)(t) < A(t)P for 0 <t < Ty.

Proof. Let Cps be the constant from [Proposition 4.2, such that for
Sy(v) < 8 and Lu = g it holds

t Q'
70 <2 [ (S0 Bulg)ryar

We choose constants C'r; and Cra with

[Fp(2,2,0,0,0)[| garpy < CraA(t)?,
||Fp(177ta917U2,03)HHM(P)
< CF,2(||U1HHM(p) + “UZHHM(p) + HUSHHM’*l(P))
+ Qul|0z vsly + CraA(t)

g, see [Proposition 4.1 and Lemma A.1. Let Tg satisfy the

following conditions

for [lvjl,, <

A(Tp) < b,

)
CPAT ol ¥ < 2,
Cpa-1 “UHHM—l(P) ||)‘,”oo <1,
eCmTo <2,

1
2(2CF2+ CFp1)Cs 1o < 7

where Cp and Cp /1 are the imbedding constants from Section 1. Now
we show that Sys(u)(t) < A(¢)P for t < Tp.

The vector (z,t,v,vs, 0N v;) lies in the domain of F,, since [oll grar py <
8o, [[vell g (py < b0 and

loX vallog < Mol N [l CPIIV [l 2 py

< Cplloflo [N looSns (v) <

N O
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Hence we obtain

From
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HFP(CC, t, U, V¢, O'/\”Ua;)HHM(P)

< CF,2(HUHHM(1>) + HUtHHM(P)

+ ||a)\'v$]|HM_

+ Q1102 (X vg) |l + CriA(t)P.

”U)‘/UI||HM~1(P)

192" (o X vl

we deduce that

By E]V[(- .

IAIA

V]l g2 )
N(2)
)

IA

”Fp(':U?t7v7vt>a)‘,vz)”HM(p)
< (2CF2 + Cr)AME)P + QN (H)A()P~L.

) =1

HH]W

Cs.mELY (u)(t)

1(p))

Cra-1lloll g (pyIN |0 10l grar py

HO’)\’UQUHHM (P) < /\(t) SM(U)(t)

and the choice of p and Tj, we can assert that

b oem A \Y
< 2C5,M/ eCm(t=T) (——) Er(Fy(z, 7,001, 0N vg))dr
0

A7)

< CS,MGCMTO)\ t / A(T)
+ QN (T)A(T)PVdr

< CS,MGCMTO)\(t)p2(QCF,2 + CFJ)t —+ C'S’]\,/IGCMTO)\(t)p

< A(t)P.

2CF2 + CFl)/\( )p

201
p—@Q’

The assertion follows from Sys(u) < Cgé'](\f[)(u). The Lemma is proved.

Thus, we can define a sequence (v;) C C*([0,Tp], HY

C([07 TO]

HM (P)) such that

per

)
L,()Ui)viﬂ
v;(x,0)

0,

/
= Fp(z,t, 0,054, 0N 0 ¢),

= Ui’t(J?,O) =0.

per

[

(P)) with d,v; €
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These functions satisfy Sys(v;)(t) < A(¢t)P. We will prove a convergence
result.

Lemma 4.3 The sequence (v;) is a Cauchy sequence in the Banach space
CY([0, To], Hpey *(P))-

Proof. = We define w; = v;+1 — v; and have

Wi gt + Aob(x, t,vi_1 )W 4 — Mola(z,t, Vim1) Wiz
= Fp(x,t, 05,051, 0N v 2) — Fp(z, t,vi1,vi—14, 0N v;_1 1)
+ Ao (bp(z,t,vi—1) — bp(x, T, v;)) Vi1 2t
— )\202(%(1:, t,vi—1) — ap(z,t, ;) ) Vit 1 20
= Fp(z,t,vi, vit, 0N v 1) — Fp(z, t,vim1,vim14, 0N vi—1 1)
+ Ao (2, w1041 2t + A202ai (2, 1) Wi 10541 2o
=: gi(z, t).

By Hadamard’s Formula and the choice of Q)1 we have

HFp(m) t7 Vi, Ui—l,h O-)‘,vi—l,l‘) - Fp($7 ta Vi—1, vi—l,t, O-A,Ui—l,x) HQ
+ || Fp(z, t, iy vig, o N Vi1 ) — Fp(z,t,vi,vi—1¢, 0N vi—1 2) |5
< C¢So(wi-1),

HFp(m7 t? Uy, Vi t, UA/IUi,.Z‘) - Fp('ra ta Vg, Vit UA/IUi-—l,m)”Q

N(t)

< S 1i—1),

< t) o(wi-1)

IAobi(z, )wim1vit1atlly < CpCy ol AP So(wi-1),
INo?ai(z, hwi1vis1,02lly < CpCallolZ, AP So(w;-1).

With the assumption
2e°T0C50Cx Ty 1= 26T Cs0(Ct + CpCy ||o]| o, MTo)PH
1
+ CpCalloll2 N T )To <

we obtain
N(t)
At)

lgilly < CrSo(wi—1) + Q1 So(wi—1).

We suppose Sp(wi—1)(t) < CA(t)P. Without loss of generality we may
assume that the sequences (C;), (Cg,4) are monotonically increasing with
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q. From this and [Proposition 4.2 it follows that
t (1 Q'
Csofalwi)(0) < 2050 [ € (30) g, (r)ar
0 A(T)
<C

w Q S,
> U (2€COTOCSy()CKt + inO CoTO )\(t)p

< —C“’M( )P

Hence we obtain Sp(w;_1)(t) < Cé”(%)i)\(t)p. Nirenberg-Gagliardo Interpo-
lation and Sps(w;)(t) < 2A(¢)P give the assertion. The Lemma is proved.

[]

By standard arguments one can show that the limit v is a solution of
the equation

Ly = vy + oAbp(x,t,v)vg — 02)\2%(3:, t,0) Vs

P
= F (Jc,t,v,vt, o\ vy).

It follows that u = -P ul9) + v solves [4.1) and (1.5). The Theorem 4.1 is

proved.

Remark 4.1. Obviously, one can show a similar theorem for systems with
diagonal principal part.

5. Fully nonlinear weakly hyperbolic equations

It is sufficient to show that a fully nonlinear weakly hyperbolic Cauchy
problem is equivalent to a suitably chosen weakly hyperbolic quasilinear
Cauchy system, see Remarks 1.1, 2.1, 3.1, 4.1. We will divide this proof
into two parts.

Theorem 5.1 Let

Fj € CY([0,T),C®(R®) x H}o.(P)),

u, ug, oAug € C2([0, T, per(P)),
A e C¥[0,T)), oe€H' (P).

per

The function u is a solution of the Cauchy problem (0.1), (0.2), if and only
if (uo, w1, uz) := (u,us, uz) is a solution of the system

Fruy g4 + 0AFouy ot + 02 X2 F3ug 40 + 0N Fyug o + Fsug g + Feuy + Fy
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+ o N Fyug s + 02()\2),F3UQ7;E + o)X Fyuy =0, (5.1)

Frugy + 0 AFoug g + 02N Fug pp + 0N Fyug o + Fsugy + Foug + Fr
+ o' AFyus ¢ + (02)' N2 F3ug 4 + o' N Fyuy = 0, (5.2)

Frug gt + 0 AFoug o + 02 N2 F3ug 20 + 0N Fyug
— Fluu - O'/\FQUQ’t — 0'2)\2F3U2’$ — U)\’F4UQ + F = O, (53)

ul(x’o) = 9‘91(1')7 ul,t(mao) = ‘102(33)7
UQ(CU?O) = @O,m(x)a ul,t(xvo) = ‘1‘91,36(1')’
uo(z,0) = ¢o(z), ui(z,0) =¢1(),

where the function F' and the derivatives F; depend on
(ul,t7 U)‘UQ,ta 02)‘271/2,1'7 J)\,u% ug,t, Uo, I, t)
For the definition of po see the assumption AS8.

Proof. ~ We restrict us to show the <-direction.
Differentiating (5.3) with respect to ¢ and subtraction from (5.1) gives

Fr(ur — uog)e + FaoX(uy — uot)et + F302 A2 (U1 — ot )za
+ FyoN (uy — uo)z — (Fii(uos — ur)e + Fo0M(uo e — u2):
+ F37t02/\2(u0@ —ug)z) — (F4’ta)\’(u07m — ug)
+ Foo XN (ug p — ua)i + F302 (M) (wg e — u2)z) — Fao X" (ug z — us)
+ F5(u1 —uo¢)t + Fo(ur —upyt) = 0. (5.4)

Differentiating (5.3) with respect to = and subtracting from yields

Fi(ug — uoz)u + FaoM(ug — uo z)zt + F30° A% (ug — 10,2 )2z
+ FyoX (ug —uoz)s — (F1z(uot — u1)t + Fo poMug o — u2)y
+ Eo,,gcaz)\z(uo’;C —Ug)z) — (F47x0)\'(u0’x — ug)
+ Fpo' Mug e — u2)t + F3(02) N2 (uo e — ua)z) — Fu0' N (ugz — us)
+ Fs(ug — ug 2 )t + Fe(ug —ug ) = 0. (5.5)
The system [5.4), is a linear homogeneous weakly hyperbolic system
for the functions v; = ups — u1, v2 = upz — u2. The Levi conditions are

satisfied. From the uniqueness of periodic solutions we get v; = vy = 0.
Combining this result with (5.3) gives the assertion. []
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The next theorem will reduce the quasilinear principal part to a semi-
linear one.

Theorem 5.2 We assume

a,b € CH[0,T],C=(R,) x H*(P)),

per
feC([0,T],C*(Ry) x Hy(P)),
i, 4y, o\, € C'([0,T), Hyoo(P)),
A€ C%([0,T)).

The vector U is a solution of

— - — ] = — - — ] = —
Uy + oA(U, Uy, N Uy, T, )Ty — 02 N2a(T, Ty, oN Uy, ) Uy
P = — ] —
= f(u,ds, o N Uz, x,t),

ﬁ(a;‘,O) = (E()(l‘), ﬁt(x70) = @1(%)

if and only if the vector (uy, Uy, Us) := (U, Uy, Uy) is a solution of

with the

Uy gt + 0Ny g — 02 N°Qi) 4 + Oyl 4 + N bily (5.6)
— 0'2/\2atﬁ2,1- — 02(/\2)’a11’2’x = ﬁ,

Uy g¢ + 0NbTy g — 02Ny 4y + 0N, Ty 4 + 0/ by (5.7)
— 0?Nayily ; — (0%) Natly , = frily + foilag + f3(oN2)x + fu,

by = bty + botla s + bs(o N 12) . + by,

Ay = a1l + agliay + az(o N ds), + ay,

ot + oAU ot — 02N2aily gy = (5.8)

matial conditions

ﬁl('r70) = 951(33)’ ﬁl,t(x>0) = 952(x)?
uz(z,0) = Gox(z), dUat(r,0) = F1a(),
710(37,0) - (150(37); ﬁ()’t(fl?,(n - @1(1’)

The functions b, a, by, a; depend on (U, Uy, 0N Uy, x,t) and f, ﬁ, f; depend
on (g, U, 0N Uy, x,t). The vector @y is defined similar to po in assump-

tion AS.
Proof.

We consider only the <-direction.

We differentiate with respect to z, subtract the equation from
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and obtain

(ify — oz )et + ONb(ilo — U0,z )et — 02 N2a(ily — o,z )ee

+ o' Ab(dy — Up 1)t + oA(byta + botia s + by(oN ), + by) oy

— oA(b1p o + batiy oz + b3 (N )y + by 2t

— (02)’)\2a(ﬁ2 — Uy )z — 02)\2((11?1'2 + agtsy

+ a3(0>\/17f2)a: + a4)ﬁ2,x
+ 0N (a1tlo z + agily o + az(oN ds), + aq)Uo 2z
= fi(tiy — do) + fa(tlz — Toz)t- (5.9)
Differentiating with respect to t and subtraction from implies

(6 — do.t)er + oN(1 — o t)et — T N2a(il) — Tot)re (5.10)
+ OA’b(ﬁQ — ﬁ(],x)t + U)\bt(ﬁg — ﬂO,:p)t — UQ(AQ)IQ(ITQ - ’l-l:()ﬁx)x

— o*Nay(iy — toz)r = 0.

The equations (5.9), (5.10) are a weakly hyperbolic linear homogeneous
system for the functions v} = Uy — U, U2 = Uy, — Uz. We leave it to the
reader to verify that the Levi conditions are satisfied. Hence one obtains
U1 = Uy = 0. []

6. Examples

Example 1. The methods presented in this paper enable us to study equa-
tions with, e.g.,

A#) = texp <—l>, o(z) = (sinx)ksin( ! )

SInxT

where | € Z, o € R, k € N large. The degeneration occurs in the set

(R x {0}) U ({mm: m € Z} x [0,T])
U ({arcsin <%> tm € Z\{O}} x [0, T]) .

The following example goes back to Qi Min-you [Qi58].

Ezample 2. We consider

Uy — tzum = aug, u(z,0)=¢(x), w(z,0)=
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If a = const., a = 4n+1, where n > 0 is an integer, then the unique solution
has the representation

. Vit (k)( 1 2)
) = “42)
u(e,1) Zk!(n—k)!r(mé)(p vy

k=0

One can observe two interesting effects. First, a loss of regularity oc-
curs, which depends on the value of the coefficient of the lower order term.
Second, singularities of the initial data propagate along the characteristic
T+ %tz = const. Propagation along the other characteristic x — %t2 = const.
does not happen.

We will generalize this example.
Ezample 3. We consider the Cauchy problem
wy + bthugy — at®u,, — dtt -, = 0, (6.1)
u(z,0) = p(x), wu(x,0)=0, (6.2)

where a, b, de R, l € N, [ > 1.
The ansatz u(x,t) = S.7_ cxt TV R (2 4+ kt!H1) leads to

Co = 1,

CRI+D)RI+ ) k—1) + ) + b1+ 1)(k—1)—d
h=T U+ Dk(I+ 1)k —1) Rl
"2 700 1+ T Vi)

~l(l+ 1)k +d

Tl )2k (1 )b

This gives for kK = k1 or kK = K9

l b d
ny = -1+ :
Lo2(l+) <\/b2+4a ) (1+1)Vb2 + 4a

[ b d
ng = — + 1) — ,
’ 2(1+1) (xsz'lr da (I + 1)Vb% + 4a
respectively. The natural number n describes the loss of Sobolev regularity.

It is worth to point out that z + xt!t! = z + T1,2A(t), where 71 5 are the
characteristic roots and A(t) = [i A(s)ds, where A(t) = ¢'. Additionally,
we emphasize that it is not possible to construct a solution as a linear
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combination of 301, - and 3372, - -+, since ny + ny <0.

The question arises of whether the solution suffers from a loss of general-
ity if the expressions for n; and ny are no integers, too. Here one can not ex-
press the solution by the above finite sum. But there are other explicit rep-
resentations. The following ideas go back to Taniguchi and Tozaki [TT80],
who studied equations with b=0and a = 1.

We apply partial Fourier transform with respect to  and obtain with
y(t; &) = Fr—¢u(z,t) the ordinary differential equation with parameter &

Y (t) +ibt'ey' (t) + at® €2y (t) — idt' " €y(t) = 0.
We transform the time variable,

Ti=A)E, () :=yt8)
and conclude that
1 1

11
v (1) + (;l—b-—l -I—ib) V(1) + <a—idl+1;) v=20

We change the variables again,

z:=rit, w(z):=v (i> e,

rl

which gives

We choose
1 b 2 b
o2 %0, 2221, |r|= Vbt da
s2 rs r? s r

The result is

2w’ (2) + (v — 2)w'(2) — aw(z) = 0,

[ [ b d
=— a= +1)+ .
7 [+1 2(0+1) (x/b2 + 4a (I +1)vVb? + 4a

This is a confluent hypergeometric differential equation. Two linearly inde-



374 M. Dreher and M. Reissig

pendent solutions are
wl('z) = 1F1 (aa’% Z)v wz(Z) = Zl_’ylFl(l +a— ’772 -, Z)

These series are polynomials if —a or a — v are nonnegative integers, re-
spectively. We have for |z| — oo the asymptotic expansion

1F1(Oé, Y5 Z)
(%)

+ira ., —a

R—1 3
e (Z il + o 7)”<—z>‘"+0<1z|"%>>

['(y—a) n!

62

I(

n=0

o=y (L —U)n{l — Q) _ _

. (z D= ahll =0l o S)),
n=0 )

the upper sign been taken if —3 < argz < %m the lower sign if —%TF <
argz < —%w ([AS84], 13.5.1). Here one can see the special role of the
exponents —a = ng and o —y = n;. At least one of this exponents is
negative, since ny + ng = —y < 0. This negative exponent gives no loss of
regularity:.

+

After some computations one obtains

u(e.t) = o [l €)o(€) de.

™

where the function py has the asymptotic behaviour |£|7* or |£]*™7 for
€] — oo

Summary Let ¢ € H*(R), s € R and n := max(—a,a — 7). Then there
exists a solution u € H°""(R).

Remark 6.1.  We consider the Cauchy problem [0.2],
gt + bA(t)ugr — () Ugy — dN (H)uy = 0,

where b, d, ¢ are real constants and b% 4+ 4¢ > 0. We define

A(t) := /Ot ANT)dr, y:=z— gA(t), v(y,t) == u(z,t)
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The transformation

b2
y=:2z " +c, w(z,t):=v(y,t)

b+ 2d
Vb2 4+ 4c

This reduction makes the results of Aleksandrian [Ale84| and Taniguchi-
Tozaki [TT80] applicable to equations which have a term ;.

yields

Wit — )\(t)2wzz - /\’(t)wz = 0.

A. Appendix
Proof of We use Lemma Al1 and get
EN(8§h)v) En(vy — Bj(z,t, h)ovy)

< |lvell g (py + Cproa. v 18 (2, &5 )| v oy llova L v
< C(L+[[hll gnpy)Sn(v).

Similarly, we conclude that

HUUJ:HHN(P) = h h
81" = 85" Ny
1 h
< Chprod,N a0 EJ(V)(U)
61 "52 HN(P)
h
< C(L+ [l g p)ER (),
(h) (h)
2 (h) 2 (h)
HUtHHN(p) < Wal v + W(?Q (Y
2 1 HN(P) 2 1 HN(P)

h
< OO+ bl epy)EN" (v):

Lemma A.1 Let f € CN(Px K), where K C R" and P C R are compact
sets. Let v; € Hé\ér(P) with (z,vi(x),...,v(z)) € K for all z € P.
(a) Then,

EN(f('7 Ul(')’ cee ’vn(')))
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<env(lvilla s lvnllo) (En(vi) +- - + En(vn) +1).

(b) More precisely, if N > 3, then

En(f(vi(l),...,on(2))

< (PN(”Ul“oo’”UI,JI“OO7"'7HUTLH007| oo)
X (En(v1) 4+ + En(vn-1) + En-1(vn))
+ ||f (@, v (@), on (@) 108 vl

+Z\|f (@, v1(2), -, vn(@))]l5-

Proof. ~ We make use of the Leibniz formula
& f(z,v1(2), ... ,vn(x))
i
Z ] Z Z Z ZVl,---,l/n)(m’,Ul’”.’,Un’)

i+l= ] l1+ Al =l 11=0 un—()

hi1 hk,l/k

) ﬁ 5 (825 vg) - - - (By

| IRIRRRY

S0\ hia e, =l : i
hk,mzl

Uk)

9

where we use the following convention: If v, = 0, then [;, = 0 and if all v
are 0, then 7 = j.

Another tool is the generalized Interpolation Inequality of Nirenberg-
Gagliardo for periodical functions,

Jj—n Jj—n

830, < CllarollF [o2olly =", n<j<m, (A.1)

1 j—n 1( j—n)
. Ly .
r  pm—n) gq m-—n

By Holder’s Inequality,
ld%.f(z, v1(2), .., val(z ))Hz
< Cj Z Z Z Zﬂf“’l’ Y xvl,...,vn)Hoc

itl=j l1+..+lp=lv1=0 v, =0
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3 1 IR DR (G A AN [CARS R FAN R

k=1 hk,1+”~hk,uk=lk
him>1
where

Vi

n 1
>0 -
k=1s=1

Wechooseaks—h—andapply (A1) withn=0,r =2ap,,p=2,¢=00
m =1, j = hjs. The result is

hi, l s 1 Lk
102" vk llpg, . < CllOzvklly™ llonllos

thus
|, f (2, v1(2), - - vn ()]l
< En(o1llags s lvnllo (Z >, Hl!al’vkllz +1>

i+l=5 1 +..+lp=L k=1
< ANUvilloes -5 lonlloe) Uil g py + -+ + llonll v py + 1)

Proof of (b) We use the finer estimate
ldy' f(z,v1(2), -, vn ()]
Iy In
<o Y N> e (@ vy o)l

i+l=N UL+ +lp=lv1=0 vn=0

n
h’ 2 1 hk,u‘ 2 1
S D S G R R [Cac TN L
k=1 hk,1+"'hk,uk:lk
hig,m 21

+ [ 7O OV N0 wally + 1L F 0O,

”

where the “o” means that terms with [, =1l = N, v, =1 or ¢« = N do not
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occur. We apply (A.1) with

(2(1 — 2
( ) :k=n,
hk,s_l [—1 :k:n,
T =20 := { m =
' 2(1-1) l k< n,
k<,
L hk,s —1
and p =2, ¢ = 00, j = hg s, n = 1. The result is
N 1 1—_1
102" v L3, . < CllOorly* l " (k<n),
1——1
||3§”’Svn\|2an,s < C||8l lvn“ ns”Uanoo .
We have to check whether 37, & —— o < 1. It holds
n v n—1
1 lk — Vg ln — Up
5= T o1 T
k=1s=1 ks =1 ' N
We have to distinguish three cases:
ln=10: Thisgivesly =---=1,_1 =0and v, > 2, hence S < 1.
1<l <I—1: At least one v, (k < n) is positive, hence 3771 Iy — vy <
[ -1, —1.
It follows that
S<l—ln~1+ln—yn<1 In +ln—1<1
| -2 — -1 [1-2 — 7
l, =0: (trivial)
We conclude that
ldz f(z,v1(2), .., va (@)l
S on(villosos - -5 llonlloo)
Y n Vam
Z(HHankllwkllvka “)H(?N Yon[o”" |on 2|8 )
BEB
N .
+ F OOV DY onlly + D[ £O0-O,,

=0

where B is some index set. It holds >_}_; v < 1. If this sum is strictly less
than 1, we use the embeddings HY~=!(P) ¢ L>°(P) and HN=2(P) ¢ L®(P)
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to increase the exponents of |[0Nwk|l, and ||0Y ~1v,||, such that the sum
becomes 1.
The application of Young’s Inequality completes the proof. []

Remark A.1. After obvious modifications one can prove for every 0 < m <
n the generalization

EN(f('a Ul(')? Tt vn()))

< on(llvilleo s | 0ot 1Vnllse s 1nzll o)
(EN(vl) + -+ En(vm) + EN—1(Umg1) + -+ En—1(vp))
+ Z\If 000 (g vy (@), (@) o 10N 5

+ ZHf(j’O’W’O) (z,v1(2), -, on(@))l,-

7=0

Lemma A.2 Leto € HYYY(P), a € HY,

per per

N > 2. Let h € C5°(R) be a function with

(P) and oa € HNH(P), where

per

/ h(z)dx =1, supph=[-1,1]
R
and write h.(z) := e h(z/e), ac := a* he. Then it holds

I‘UGJE’IHN+1(P) S C \VIE.

Proof. It is sufficient to prove that |00 *1a.||, < C. It holds

o(@)(OX a)(@) = [ o(@alM (e~ 2)dz = f(z) +g:(a)
R
— /a( 1™ ()i — z) dz
+/ Na™) (2)hL(z — z) dz.

The proof is divided into two parts. In the first part we show that || f-||, < C,
in the second we prove that ||g.||, < C. We have

f@) =[G V@i - iz
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_ il (7) /R(U(ﬁa(fvﬂ?)(z)hg(x — 2)dz.

We observe that (ca)V) € Hl . (P), oaN=1) ¢ H...(P), which results in

N
fe(x) = (O'CL)(N+1) * he(z) — Z <]JV) (U(j)a(N_j))/ * he ().

j=1
This implies immediately ||f:||, < C for all . Now we consider g.(z).
Obviously, we have |o(z) — 0(2)| < Clz — z| < Ce and |h.(x — z)| < Ce 2.
This gives |g(z)| < C(|a"™)] % k.)(z), where

{ (2e)71 x| <,

ke(x) =
) 0 x| > e,

el ey = 1.
By standard arguments one shows that
19ell z2(py < Clat™] Iz2@pyllhellpi@) < Cla™|| 20 < C.

]
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