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Cubic P-Galois extensions over a field

Atsushi NAKAJIMA
(Received January 20, 1997; Revised July 11, 1997)

Abstract. The notion of P-Galois extensions was introduced by K. Kishimoto [K1] and
[K2]. We determine all cubic P-Galois extensions over a field except that P is a cyclic

group.
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Introduction

Let A/R be a ring extension with common identity 1 and Hom(Ag, ARr)
the set of all right R-module endmorphisms of A. Let P be a subset of
Hom(Ag, Ag). In [K2], Kishimoto gave a fundamental properties of P-
Galois extensions and in [K1], he determined the structure of cyclic P-
Galois extensions under the assumption 0D = Do and char(R) = p, where
P=1{1,D,D?% ...,DP7! DP = 0}, 0 is an automorphism of A and D is a
o-derivation.

In this note, we determine all cubic P-Galois extensions over a field
except P is a cyclic group. A cubic P-Galois extension means that the
cardinality of P is three. The notion of P-Galois extension is not familiar
to the reader, so we will begin at the definition of a P-Galois extension.

1. Preliminary results

Let A/R and P be as above. We assume that P is a partially ordered
set with respect to the order <. In the following, we denote the elements
of P by Capital Greek Letters. A chain of A means a descending chain
A=Ay >> A >> -+ >> A,,, where A,, is a minimal element and
A+ >> Ag means that there is no Ay > A, > As. P is said to be a relative
sequence of homomorphisms if it satisfies the following conditions (A.1)—
(A.4) and (B.1)-(B.4).

(A.1) A #O0forall A € Pand P(min), the set of all minimal elements
in P, coincides with all A € P such that A is a ring automorphism.
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(A.2) Any two chain of A have the same length.
(A.3) If AT # 0, then AT € P and if AT = 0, then 'A = 0.
(A.4) Assume that AT, AQ € P. Then
(i) AL > AQ (resp. T'A > QA) if and only if I' > Q.
(i) If AI' > Q, then Q = AT} for some A > A; and T' > T;.
Let =, y € A.
(B.1) A(1) =0 for any A € P — P(min).
(B.2) For any A > T, there exists g(A,T') € Hom(Ag, Ag) such that

Azy) = 3 9(A,2)(2)Qy).
A>Q
(If A 2T, then we set g(A,T') =0.)
(B.3) (i) For the above g(A,T'), there holds
gAD)(zy) = Y 9(A,Q)(2)g(2T)(y).

A>Q>T

(ii) If AT > Q, then

g(AT, Q)(z) = > g(A, A)g(T,T") ().
ASA/ P>T AT =Q

(B.4) (i) g(A,A) is a ring automorphism.
(ii) g(A,Q) = A for any Q € P(min).
(iii) If A>T, then g(A,T)(1) = 0.
For a relative sequence of homomorphisms P, we set

Ry = {a€ A|A(a) =a for all A € P(min)}.

Ry = {a€ A|A(a) =0 for all A € P — P(min)}.
Then Ry and R; are subrings of A. A” = Ry N Ry is called the invariant
subring of P. Next, we compose an algebra from A and P. Let D(A, P) =

> rep DAuy be a free left A-module with A-basis {uy | A € P}. Define the
multiplication on D(A, P) by

(aup)(bur) = ) ag(A, Q) (b)ugr,
ASQ

where uqr = 0 if QI' = 0. Then we can check that D(A, P) is an algebra,
which is called the trivial crossed product ([K2, Theorem 2.2.]). Under these
circumstances, we define the following
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Definition 1.1 A/R is called a P-Galois extension if it satisfies the fol-
lowing three conditins:

(P.1) AP =R.

(P.2) A is a finitely generated projective right R-module.

(P.3) The map j : D(A, P) — Hom(Ag, Ar) defined by j(aup)(z) =

aA(z) is an isomorphism.

We denote the cardinality of P by |P|. We mean a n-th P-Galots
extension is |P| = n. Then by (P.3), if R is a field, a n-th P-Galois extension
A of R is a free R-module of rank n. So to determine all cubic P-Galois
extensions, we have to classify P of |P| = 3.

Lemma 1.2 ([N1, Lemma 3.1]) Let P be a relative sequence of homo-
morphisms with |P| = 3. Then P is one of the following:

(1) P is a cyclic group of order 3.

(2) P={1,A,A?|A>=0;1 <A< A?} and A is a (1,0)-derivation,
that is, A(ab) = A(a)b+ o(a)A(b) (a,b € A) and o is an automorphism.
3) P={L,AT|AT=TA=A?=T2=0;1<A<T}and A isa
-derivation.
4) P={1,A\T|AT=TA=A*=T%2=0;1<A,1<T}and A isa
(1, 0)-derivation, ' is a (1, 7)-derivation and T is an automorphism.

(
(1,0)
(

If P is a cyclic group, then a P-Galois extension A/R is a usual cyclic
Galois extension and so the essential part of P-Galois extension is the cases
(2), (3) and (4). If P is of type (2), then it is discussed in [K1]| under the
assumptions oA = Ao and char(R) = 3. We will discuss this case later
without these conditions. First, we have the following

Theorem 1.3 Let R be an integral domain which is contained in the cen-
ter of A and let P be a relative sequence of homomorphisms in Hom(Apg, AR)
with |P| = 3. Assume that A has an R-free basis {1,xz,y}. If P is of type
(3) or (4) in the above Lemma 1.2, then AT # R.

Proof.  Assume that AP = R. We note that R = {a € A | A(a) =T'(a) =
0} and A(a), I'(a) € R for any a € A. By A(zy) = A(z)y + o(z)A(y) and
A(z?) = A(z)z + o(z)A(z), we see

A@)A(ey) — A)AE?) + A@)A(y)e — Ale)y =0

Since {1,z,y} is an R-basis of A and R is an integral domain, we have
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A(x) = 0 and so I'(z) # 0. Similarly we also get A(y) = 0 and I'(y) # 0.
Therefore

[(2)T(zy) = ()L (2?) + T(2)T(y)z — [(z)*y =0,
which is a contradiction. []

Corollary 1.4 Let |P| = 3 and A an algebra over a field k. If P is of
type (3) or (4) in Lemma 1.2, then A/k is not a P-Galois extension.

By corollary, the essential part of P-Galois extensions with |P| = 3 is

the case (2) in Lemma 1.2. In [K1], Kishimoto considered the cyclic P-
Galois extension A/R, that is, P ={1,A,...,AP71 |[AP=0,1< A< A’ <
-+ < AP7!} under the assumptions Ac = oA and char(R) = p, where A is
a (1, 0)-derivation. These assumptions are essential in his paper .

2. Cubic P-Galois extensions

In the following we assume that A is an algebra over a field k of
dimyA =3, AP =k, P={1,A,A’ | A> =0,1 <A< A%} and A is a
(1,0)-derivation. We do not assume Ao = oA and char(k) = 3.

First, we have the following key lemma for cubic P-Galois extensions.

Lemma 2.1 There exists k-basis {1,x, 2%} of A which satisfies the follow-
ing properties.

(1) Az) =1.

(2) o(x)=ro+riz (ro, 11 € k).

Proof.  First, we note that £ = {a € A | A(a) = 0}. Since the maximal
element of P is A?, there exists an element a € A such that A%(a) = 1
[K1, Theorem 3.4]. We set = A(a) and we can take a k-basis {1,z,y}
of A. If A(y) € k, then A(y)z —y € k and so A(y) ¢ k. We denote
o(x) =ro+riz+roy (r; € k). Then by A%(z?) = 1+71+m2A(y), A%(2?) € k
and A(y) ¢ k, we get o = 0.

Now, for the above k-basis {1, z,y}, we set 2% = sg+s17+ 52y (s; € k).
Since o(z) = ro + r1z, we have

A@?) =ro+ (1 47z = 51 + s2A(y).

If sp = 0, then o(z) = ro—xz and we get A%(zy) = vA%(y). Since A%(zy) and
A%(y) are contained in k, we have A%(y) = 0 and so A(y) € k: contradiction.
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Thus sy # 0 and {1, z, 2%} is a k-basis of A. 0

Lemma 2.2 Let {1,z,22} be a k-basis of A in Lemma 2.1. Then the
follounng holds.
(1) If r1 =1, then char(k) = 3. In this case, o(z) = ro +x and

3 =59+ r%:c for some sg € k

(2) If m # 1, then char(k) # 3 and k containes the primitive 3rd root
w of 1. In this case o(z) = rog + wz and

3 =ty +riw e +rolw—Dw lz?  for some tg € k.

Proof. We set 2% = tg + t1z + tox? (t; € k). Then by ﬂm,
o(x) =ro+ mz and

A(z?) = t1 +rota + (1 4+ 7)oz
= 7“3 +ro(l+2r)x+ (147 + r%)xz.

Comparing coefficients, we have
(*) t1+70t2:7'(2), (1+T1)t2:T0(1+27"1) and 0= 1_{_7'1_*_71%.

If 1y = 1, then char(k) = 3, t5 = 0 and t; = r3. If r; # 1, then r; is the
primitive 3rd root of 1, char(k) # 3, t2 = ro(w — 1)w™! and t; = rdw!.

]

Now we get the following characterization of P-Galois extensions.

Theorem 2.3 Let P = {1 < A < A? | A3 = 0} and A is a (1,0)-
derivation. Let A be an algebra over a field k such that AY = k and
dimgy A = 3. Then A/k is a P-Galois extension. Moreover there holds
either

(1) char(k) =3 and A 2 k[X]/(X3 — 12X — s) = k[z] for some s € k,
where A(x) =1 and o(x) =r + =,
or

(2) char(k) # 3 and A = k[X]/(X3 —t) = k[x] for some t € k , where

A(z) =1 and o(x) = wz, where w is the primitive 3rd root of 1.

Proof.  First, we show A/k is a P-Galois extension. Since k is a field,
it is enough to show that the map j : D(A, P) — Hom(Ay, Ay) defined in
(P.3) is a monomorphism. Let {1,z,z%} be a k-basis of A in Lemma 2.1.
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For a = ag + ajup + agup2 € D(A, P), we assume j(a) = 0. Then by
jla)(z') =0 (i = 0,1,2), we have ag = a1 = 0 and ay(1 + 1) = 0, where
o(z) =ro+rz in Lemma 2.1. Since 1+, + 7‘% = 0 in the last equation of
(*) in Lemma 2.2, we see 71 + 1 # 0. Thus ay = 0, which means that j is a
monomorphism.

Now by Lemma 2.2, we may assume

z® =ty +réw e + ro(w — Dw™la?,

A(z)=1 and o(z) =1y + wz.

Since char(k) # 3, if we set z = z+4 (w —1)(3w) " !ry as usual, then {1, z, 2%}
is a free basis of A, where z® = v for some v € k, A(2) = 1 and 0(z2) = w=.
This show the second part of the theorem. []

In the sequel, we denote the extensions of type (1) and (2) in the above
theorem by A = (z,r%,s) and A = (x,1), respectively.

Now, we classify these P-Galois extensions. P-Galois extensions A;
and A, are called isomorphic if there exists an isomorphism ¢ : A; — A
such that ¢(Qa) = Q(¢(a)) for any a € A and Q) € P.

Theorem 2.4 Let A; = (zi,r?,s;) be P-Galois extensions (i = 1,2).
Then Ay and A are isomorphic as P-Galois extensions if and only if

3

rr=ry and u :'r¥u+31—32 for some wu € k.

When this is the case, the isomorphism ¢ : Ay — A is given by p(x1) =
U+ To.

Proof.  Let ¢ : Ay = (z1,7%,81) — Ay = (22,73, 59) be an isomorphism of
P-Galois extensions. Then by ¢(A(z})) = A(p(x})) (i = 1,2) and ¢(z?) =
¢(z1)3, there exists u € k such that

o) =ut+zy, ud= riu+4s; —sy, and 1 =79
The converse is clear. []

For a P-Galois extension A = (z,t), the following is easily seen.

Theorem 2.5 (1) P-Galois extensions Ay = (x1,t1) and As = (x9,t2)
are 1somorphic if and only if t; = to.

(2) A= (=) is a cyclic (g)-Galois extension with g(z) = wx, where
w s a primitive 3rd root of 1.
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A P-Galois extension (z,t) in [Theorem 2.5(2) is a strongly cyclic 3-
extension in the sense of , and a P-Galois extension (z,0, s) is a mod-
ular extension in the sense of Kersten [Ker]. For A = (z,72,5) with r # 0,
if we take z = ry, then A is isomorphic to k[Y]/(Y? —Y — sr73) = k[y] with
group (g ), where g(y) = 1+y. This extension is called a cyclic 3-extension
in [NN1]|. Conversely, if k[y] = k[Y]/(Y? =Y —5) (s € k) is a cyclic 3-
extension, then it is a P-Galois extension with A(y) =1 and o(y) =1 + y.
If P-Galois extensions A = (z1,7%,s1) and Ay = (2, 73, 89) are isomorphic,
then the map

¥ kly] = kYA)/(Y? = Y1 — sir7®) — Ky
= k[Y5)/(Y5 — Yo — 5073 ®)

defined by ¥ (y1) = ury 1 +y2 1s an isomorphism for the corresponding cyclic
3-extensions. The converse is not true.

We know that the set of isomorphism classes Gal(R, G) of Galois exten-
sions of R with group G has a group structure (cf. , [CS]), and for several
cases, we see the structure of Gal(R, G) (cf. [CS], [N2]). On the other hand
it is not known that the set of isomorphism classes Gal(R, P) of P-Galois
extensions of R has a group structure or not. But by theorems 2.4 and 2.5,
we can compute the cardinality of Gal(k, P) in our case.
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