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Cubic P-Galois extensions over a field

Atsushi NAKAJIMA
(Received January 20, 1997; Revised July 11, 1997)

Abstract. The notion of P-Galois extensions was introduced by K. Kishimoto [K1] and
[K2]. We determine all cubic P-Galois extensions over a field except that P is a cyclic
group.
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Introduction

Let A/R be a ring extension with common identity 1 and Hom(A_{R}, A_{R})

the set of all right R-module endmorphisms of A . Let P be a subset of
Hom(A_{R}, A_{R}) . In [K2], Kishimoto gave a fundamental properties of P-
Galois extensions and in [K1], he determined the structure of cyclic P-
Galois extensions under the assumption \sigma D=D\sigma and char(R) =p, where
P=\{1, D, D^{2}, \ldots, D^{p-1}, D^{p}=0\} , \sigma is an automorphism of A and D is a
\sigma-derivation.

In this note, we determine all cubic P-Galois extensions over a field
except P is a cyclic group. A cubic P -Galois extension means that the
cardinality of P is three. The notion of P-Galois extension is not familiar
to the reader, so we will begin at the definition of a P-Galois extension.

1. Preliminary results

Let A/R and P be as above. We assume that P is a partially ordered
set with respect to the order \leq . In the following, we denote the elements
of P by Capital Greek Letters. A chain of \Lambda means a descending chain
\Lambda=\Lambda_{0}>>\Lambda_{1}>> >>\Lambda_{m} , where \Lambda_{m} is a minimal element and
\Lambda_{t}>>\Lambda_{s} means that there is no \Lambda_{t}>\Lambda_{u}>\Lambda_{s} . P is said to be a relative
sequence of homomorphisms if it satisfies the following conditions (A. 1)-
(A.I) and (B. 1)-(B.4).

(A. I) \Lambda\neq 0 for all \Lambda\in P and P( \min) , the set of all minimal elements
in P , coincides with all \Lambda\in P such that \Lambda is a ring automorphism.
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(A.2) Any two chain of \Lambda have the same length.
(A.3) If \Lambda\Gamma\neq 0 , then \Lambda\Gamma\in P and if \Lambda\Gamma=0 , then \Gamma\Lambda=0 .
(A.4) Assume that \Lambda\Gamma . \Lambda\Omega\in P . Then

(i) \Lambda\Gamma\geq\Lambda\Omega (resp. \Gamma\Lambda\geq\Omega\Lambda ) if and only if \Gamma\geq\Omega .
(ii) If \Lambda\Gamma\geq\Omega , then \Omega=\Lambda_{1}\Gamma_{1} for some \Lambda\geq\Lambda_{1} and \Gamma\geq\Gamma_{1} .

Let x , y\in A .
(B.I) \Lambda(1)=0 for any \Lambda\in P-P(\min) .
(B.2) For any \Lambda\geq\Gamma . there exists g(\Lambda, \Gamma)\in Hom(A_{R}, A_{R}) such that

\Lambda(xy)=\sum_{\Lambda\geq\Omega}g(\Lambda, \Omega)(x)\Omega(y)
.

(If \Lambda\not\geq\Gamma . then we set g(\Lambda, \Gamma)=0 .)
(B.3) (i) For the above g(\Lambda, \Gamma) , there holds

g( \Lambda, \Gamma)(xy)=\sum_{\Lambda\geq\Omega\geq\Gamma}g(\Lambda, \Omega)(x)g(\Omega, \Gamma)(y)
.

(ii) If \Lambda\Gamma\geq\Omega , then

g( \Lambda\Gamma, \Omega)(x)=\sum_{\Lambda\geq\Lambda’,\Gamma\geq\Gamma’,\Lambda’\Gamma’=\Omega}g(\Lambda, \Lambda’)g(\Gamma, \Gamma’)(x)
.

(B.4) (i) g(\Lambda, \Lambda) is a ring automorphism.
(ii) g(\Lambda, \Omega)=\Lambda for any \Omega\in P(\min) .
(iii) If \Lambda>\Gamma , then g(\Lambda, \Gamma)(1)=0 .

For a relative sequence of homomorphisms P , we set

R_{0}= { a\in A|\Lambda(a)=a for all \Lambda\in P(\min) }.
R_{1}= { a\in A|\Lambda(a)=0 for all \Lambda\in P-P(\min) }.

Then R_{0} and R_{1} are subrings of A. A^{P}=R_{0}\cap R_{1} is called the invariant
subring of P . Next, we compose an algebra from A and P . Let D(A, P)=
\sum_{\Lambda\in P}\oplus Au_{\Lambda} be a free left A-module with A-basis \{u_{\Lambda}|\Lambda\in P\} . Define the
multiplication on D(A, P) by

(au_{\Lambda})(bu_{\Gamma})= \sum_{\Lambda\geq\Omega}ag(\Lambda, \Omega)(b)u_{\Omega\Gamma}
,

where u_{\Omega\Gamma}=0 if \Omega\Gamma=0 . Then we can check that D(A, P) is an algebra,
which is called the trivial crossed product ([K2, Theorem 2.2.]). Under these
circumstances, we define the following
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Definition 1.1 A/R is called a P-Galois extension if it satisfies the fol-
lowing three conditins:

(P. 1) A^{P}=R .
(P.2) A is a finitely generated projective right R-module.
(P.3) The map j : D(A, P) – Hom(A_{R}, A_{R}) defined by j(au_{\Lambda})(x)=

a\Lambda(x) is an isomorphism.

We denote the cardinality of P by |P| . We mean a n-th P-Galois
extension is |P|=n . Then by (P.3), if R is a field, a n-th P-Galois extension
A of R is a free R-module of rank n . So to determine all cubic P-Galois
extensions, we have to classify P of |P|=3 .

Lemma 1.2 ([Nl, Lemma 3.1]) Let P be a relative sequence of homO-
morphisms with |P|=3 . Then P is one of the following:

(1) P is a cyclic group of order 3.
(2) P=\{1, \Lambda, \Lambda^{2}|\Lambda^{3}=0;1<\Lambda<\Lambda^{2}\} and \Lambda is a(1, \sigma) -derivation,

that is, \Lambda(ab)=\Lambda(a)b+\sigma(a)\Lambda(b)(a, b\in\Lambda) and \sigma is an automorphism.
(3) P=\{1, \Lambda, \Gamma|\Lambda\Gamma=\Gamma\Lambda=\Lambda^{2}=\Gamma^{2}=0;1<\Lambda<\Gamma\} and \Lambda is a

(1, \sigma) -derivation.
(4) P=\{1, \Lambda, \Gamma|\Lambda\Gamma=\Gamma\Lambda=\Lambda^{2}=\Gamma^{2}=0;1<\Lambda, 1<\Gamma\} and \Lambda is a

(1, \sigma) -derivation, \Gamma is a(1, \tau) -derivation and \tau is an automorphism.

If P is a cyclic group, then a P-Galois extension A/R is a usual cyclic
Galois extension and so the essential part of P-Galois extension is the cases
(2), (3) and (4). If P is of type (2), then it is discussed in [K1] under the
assumptions \sigma\Lambda=\Lambda\sigma and char(iJ) =3 . We will discuss this case later
without these conditions. First, we have the following

Theorem 1.3 Let R be an integral domain which is contained in the cen-
ter ofA and let P be a relative sequence of homomorphisms in Hom(A_{R}, A_{R})

with |P|=3 . Assume that A has an R free basis \{1, x, y\} . If P is of type
(3) or (4) in the above Lemma 1.2, then A^{P}\neq R .

Proof. Assume that A^{P}=R . We note that R=\{a\in A|\Lambda(a)=\Gamma(a)=

0\} and \Lambda(a) , \Gamma(a)\in R for any a\in A . By \Lambda(xy)=\Lambda(x)y+\sigma(x)\Lambda(y) and
\Lambda(x^{2})=\Lambda(x)x+\sigma(x)\Lambda(x) , we see

\Lambda(x)\Lambda(xy)-\Lambda(y)\Lambda(x^{2})+\Lambda(x)\Lambda(y)x-\Lambda(x)^{2}y=0 .

Since \{1, x, y\} is an R-basis of A and R is an integral domain, we have



324 A. Nakajima

\Lambda(x)=0 and so \Gamma(x)\neq 0 . Similarly we also get \Lambda(y)=0 and \Gamma(y)\neq 0 .
Therefore

\Gamma(x)\Gamma(xy)-\Gamma(y)\Gamma(x^{2})+\Gamma(x)\Gamma(y)x-\Gamma(x)^{2}y=0 ,

which is a contradiction. \square

Corollary 1.4 Let |P|=3 and A an algebra over a field k . If P is of
type (3) or (4) in Lemma 1.2, then A/k is not a P-Galois extension.

By corollary, the essential part of P-Galois extensions with |P|=3 is
the case (2) in Lemma 1.2. In [K1], Kishimoto considered the cyclic P-
Galois extension A/R, that is, P=\{1 , \Lambda , . , \Lambda^{p-1}|\Lambda^{p}=0,1<\Lambda<\Lambda^{2}<

<\Lambda^{p-1}\} under the assumptions \Lambda\sigma=\sigma\Lambda and char(R) =p, where \Lambda is
a (1, \sigma) -derivation. These assumptions are essential in his paper [K1].

2. Cubic P-Galois extensions

In the following we assume that A is an algebra over a field k of
\dim_{k}A=3 , A^{P}=k , P=\{1, \Lambda, \Lambda^{2}|\Lambda^{3}=0,1<\Lambda<\Lambda^{2}\} and \Lambda is a
(1, \sigma) -derivation. We do not assume \Lambda\sigma=\sigma\Lambda and char(k) =3 .

First, we have the following key lemma for cubic P-Galois extensions.

Lemma 2.1 There exists k -basis \{1, x, x^{2}\} of A which satisfies the follow-
ing properties.

(1) \Lambda(x)=1 .
(2) \sigma(x)=r_{0}+r_{1}x(r_{0}, r_{1}\in k) .

Proof. First, we note that k=\{a\in A|\Lambda(a)=0\} . Since the maximal
element of P is \Lambda^{2} , there exists an element a\in A such that \Lambda^{2}(a)=1

[Kl, Theorem 3.4]. We set x=\Lambda(a) and we can take a k-basis \{1, x, y\}

of A . If \Lambda(y)\in k , then \Lambda(y)x-y\in k and so \Lambda(y)\not\in k . We denote
\sigma(x)=r_{0}+r_{1}x+r_{2}y(r_{i}\in k) . Then by \Lambda^{2}(x^{2})=1+r_{1}+r_{2}\Lambda(y) , \Lambda^{2}(x^{2})\in k

and \Lambda(y)\not\in k , we get r_{2}=0 .
Now, for the above k-basis \{1, x, y\} , we set x^{2}=s_{0}+s_{1}x+s_{2}y(s_{i}\in k) .

Since \sigma(x)=r_{0}+r_{1}x , we have

\Lambda(x^{2})=r_{0}+(1+r_{1})x=s_{1}+s_{2}\Lambda(y) .

If s_{2}=0 , then \sigma(x)=r_{0}-x and we get \Lambda^{2}(xy)=x\Lambda^{2}(y) . Since \Lambda^{2}(xy) and
\Lambda^{2}(y) are contained in k , we have \Lambda^{2}(y)=0 and so \Lambda(y)\in k : contradiction.
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Thus s_{2}\neq 0 and \{1, x, x^{2}\} is a k-basis of A. \square

Lemma 2.2 Let \{1, x, x^{2}\} be a k -basis of A in Lemma 2.1. Then the
following holds.

(1) If r_{1}=1 , then char(fc) =3 . In this case, \sigma(x)=r_{0}+x and

x^{3}=s_{0}+r_{0}^{2}x for some s_{0}\in k

(2) If r_{1}\neq 1 , then char(fc) \neq 3 and k containes the primitive 3rd root
\omega of 1. In this case \sigma(x)=r_{0}+\omega x and

x^{3}=t_{0}+r_{0}^{2}\omega^{-1}x+r_{0}(\omega-1)\omega^{-1}x^{2} for some t_{0}\in k .

Proof. We set x^{3}=t_{0}+t_{1}x+t_{2}x^{2}(t_{i}\in k) . Then by Lemma 2.1,
\sigma(x)=r_{0}+r_{1}x and

\Lambda(x^{3})=t_{1}+r_{0}t_{2}+(1+r_{1})t_{2}x

=r_{0}^{2}+r_{0}(1+2r_{1})x+(1+r_{1}+r_{1}^{2})x^{2} .

Comparing coefficients, we have

(*) t_{1}+r_{0}t_{2}=r_{0}^{2} , (1+r_{1})t_{2}=r_{0}(1+2r_{1}) and 0=1+r_{1}+r_{1}^{2} .

If r_{1}=1 , then char(fc) =3 , t_{2}=0 and t_{1}=r_{0}^{2} . If r_{1}\neq 1 , then r_{1} is the
primitive 3rd root of 1, char(fc) \neq 3 , t_{2}=r_{0}(\omega-1)\omega^{-1} and t_{1}=r_{0}^{2}\omega^{-1} .

\square

Now we get the following characterization of P-Galois extensions.

Theorem 2.3 Let P=\{1<\Lambda<\Lambda^{2}|\Lambda^{3}=0\} and \Lambda is a(1, \sigma) -

derivation. Let A be an algebra over a field k such that A^{P}=k and
\dim_{k}A=3 . Then A/k is a P-Galois extension. Moreover there holds
either

(1) char(fc) =3 and A\cong k[X]/(X^{3}-r^{2}X-s)=k[x] for some s\in k ,
where \Lambda(x)=1 and \sigma(x)=r+x ,
or

(2) char(fc) \neq 3 and A\cong k[X]/(X^{3}-t)=k[x] for some t\in k , where
\Lambda(x)=1 and \sigma(x)=\omega x , where \omega is the primitive 3rd root of 1.

Proof. First, we show A/k is a P-Galois extension. Since k is a field,
it is enough to show that the map j : D(A, P)arrow Hom(A_{k}, A_{k}) defined in
(P.3) is a monomorphism. Let \{1, x, x^{2}\} be a k-basis of A in Lemma 2.1.
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For \alpha=a_{0}+a_{1}u_{\Lambda}+a_{2}u_{\Lambda^{2}}\in D(A, P) , we assume j(\alpha)=0 . Then by
j(\alpha)(x^{i})=0(i=0,1,2) , we have a_{0}=a_{1}=0 and a_{2}(1+r_{1})=0 , where
\sigma(x)=r_{0}+r_{1}x in Lemma 2.1. Since 1+r_{1}+r_{1}^{2}=0 in the last equation of
(*) in Lemma 2.2, we see r_{1}+1\neq 0 . Thus a_{2}=0 , which means that j is a
monomorphism.

Now by Lemma 2.2, we may assume

x^{3}=t_{0}+r_{0}^{2}\omega^{-1}x+r_{0}(\omega-1)\omega^{-1}x^{2} ,
\Lambda(x)=1 and \sigma(x)=r_{0}+\omega x .

Since char(fc)\neq 3, if we set x=z+(\omega-1)(3\omega)^{-1}r_{0} as usual, then \{1, z, z^{2}\}

is a free basis of A , where z^{3}=v for some v\in k , \Lambda(z)=1 and \sigma(z)=\omega z .
This show the second part of the theorem. \square

In the sequel, we denote the extensions of type (1) and (2) in the above
theorem by A=(x, r^{2}, s) and A=(x, t) , respectively.

Now, we classify these P-Galois extensions. P-Galois extensions A_{1}

and A_{2} are called isomorphic if there exists an isomorphism \varphi : A_{1}arrow A_{2}

such that \varphi(\Omega a)=\Omega(\varphi(a)) for any a\in A and \Omega\in P .

Theorem 2.4 Let A_{i}=(x_{i}, r_{i}^{2}, s_{i}) be P -Galois extensions (i=1,2) .
Then A_{1} and A_{2} are isomorphic as P-Galois extensions if and only if

r_{1}=r_{2} and u^{3}=r_{1}^{2}u+s_{1}-s_{2} for some u\in k .

When this is the case, the isomorphism \varphi : A_{1} – A_{2} is given by \varphi(x_{1})=

u+x_{2} .

Proof Let \varphi : A_{1}=(x_{1}, r_{1}^{2}, s_{1}) – A_{2}=(x_{2}, r_{2}^{2}, s_{2}) be an isomorphism of
P-Galois extensions. Then by \varphi(\Lambda(x_{1}^{i}))=\Lambda(\varphi(x_{1}^{i}))(i=1,2) and \varphi(x_{1}^{3})=

\varphi(x_{1})^{3} , there exists u\in k such that

\varphi(x_{1})=u+x_{2} , u^{3}=r_{1}^{2}u+s_{1}-s_{2} and r_{1}=r_{2} .

The converse is clear. \square

For a P-Galois extension A=(x, t) , the following is easily seen.

Theorem 2.5 (1) P-Galois extensions A_{1}=(x_{1}, t_{1}) and A_{2}=(x_{2}, t_{2})

are isomorphic if and only if t_{1}=t_{2} .
(2) A=(x, t) is a cyclic \langle g\rangle -Galois extension with g(x)=\omega x , where

\omega is a primitive 3rd root of 1.
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A P-Galois extension (x, t) in Theorem 2.5(2) is a strongly cyclic 3-
extension in the sense of [NN2], and a P-Galois extension (x, 0, s) is a mod-
ular extension in the sense of Kersten [Ker]. For A=(x, r^{2}, s) with r\neq 0 ,
if we take x=ry , then A is isomorphic to k[Y]/(Y^{3}-Y-sr^{-3})=k[y] with
group \langle g\rangle , where g(y)=1+y . This extension is called a cyclic 3-extensi0n
in [NN1]. Conversely, if k[y]=k[Y]/(Y^{3}-Y-s)(s\in k) is a cyclic 3-
extension, then it is a P-Galois extension with \Lambda(y)=1 and \sigma(y)=1+y .
If P-Galois extensions A_{1}=(x_{1}, r_{1}^{2}, s_{1}) and A_{2}=(x_{2}, r_{2}^{2}, s_{2}) are isomorphic,
then the map

\psi : k[y_{1}]=k[Y_{1}]/(Y_{1}^{3}-Y_{1}-s_{1}r_{1}^{-3})arrow k[y_{2}]

=k[Y_{2}]/(Y_{2}^{3}-Y_{2}-s_{2}r_{2}^{-3})

defined by \psi(y_{1})=ur_{1}^{-1}+y_{2} is an isomorphism for the corresponding cyclic
3-extensions. The converse is not true.

We know that the set of isomorphism classes Gal(R, G) of Galois exten-
sions of R with group G has a group structure (cf. [H], [CS]), and for several
cases, we see the structure of Gal(R, G) (cf. [CS], [N2]). On the other hand
it is not known that the set of isomorphism classes Gal(R, P) of P-Galois
extensions of R has a group structure or not. But by theorems 2.4 and 2.5,
we can compute the cardinality of Gal(/c, P) in our case.
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