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On the extension properties of Triebel-Lizorkin spaces
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Abstract. Extension of functions originally defined on a domain of a Euclidean space
to the whole Euclidean space is considered. Two results on the extension of functions in
A. Seeger’s generalized Triebel-Lizorkin spaces are proved.
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1. Introduction

In [S], Seeger introduced some function spaces on domains of \mathbb{R}^{n} , which
can be considered as a natural generalization of the Triebel-Lizorkin space
to the case of spaces on domains, and gave an extension theorem for those
spaces ([ibid.; Theorem 2]). The purpose of the present paper is to give some
results concerning the extension properties of Seeger’s function spaces. In
this section, after fixing several notations, we shall state the main results of
this paper.

Throughout this paper we use the letters n , \Omega , k , p , q , r , and \alpha in the
following fixed meanings: n is a positive integer and denotes the dimension
of the Euclidean space \mathbb{R}^{n} ; \Omega denotes an open subset of \mathbb{R}^{n} ; k denotes
a nonnegative integer; p , q , and r denote positive real numbers or \infty;\alpha

denotes a nonnegative real number.
We also use the following notations. The set

Q=Q(x, t)= { (y_{i})\in \mathbb{R}^{n}| max |y_{i}-x_{i}|\leqq t },

where x=(x_{i})\in \mathbb{R}^{n} and 0<t<\infty , is called a cube with center x and
sidelength 2t . The center of a cube Q is denoted by x_{Q} and the sidelength
by \ell(Q) . If Q=Q(x, t) and 0<a<\infty , then the cube Q (x , at) is simply
denoted by aQ . The Lebesgue measure of a cube Q is denoted by |Q| ; thus
|Q|=\ell(Q)^{n} . A dyadic cube is a cube of the form \{(x_{i})\in \mathbb{R}^{n}|2^{m}k_{i}\leqq

x_{i}\leqq 2^{m}(k_{i}+1) , i=1 , , n\} with m and k_{i} integers. The set of all dyadic
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cubes is denoted by V. We call a Lebesgue measurable function merely a
function. For functions f on a Lebesgue measurable set E\subset \mathbb{R}^{n} , we write

||f||_{p,E}=( \int_{E}|f(x)|^{p}dx)^{1/p} ;

if p=\infty , we use the usual modification that we replace the ( \int(\cdots)^{p}dx)^{1/p}

by the essential supremum norm. For functions f on \Omega , we define

M_{p}(f)(x)=Q\cdot.cubeQ\ni xsup\{|Q|^{-1/p}||f||_{p,Q\cap\Omega}\}
, x\in \mathbb{R}^{n}-

If A is a finite set, \# A denotes the number of elements of A. We use
the letter c to denote various positive constants, which may be different in
each occasion. If a constant c depends only on the parameters \beta , \gamma , \delta , . .,
and if we want to indicate this dependence explicitly, then we write it as
c(\beta, \gamma, \delta, .) .

Now let f be a function on \Omega . For cubes Q\subset\Omega , we set

v_{r}^{k}(f, Q)= \inf\{|Q|^{-1/r}||f-P||_{r,Q}|P\in \mathcal{P}_{k}\} ,

where \mathcal{P}_{k} denotes the set of polynomial functions on \mathbb{R}^{n} of degree not ex-
ceeding k . For x\in\Omega , we write

\rho_{\Omega}(x)=\sup\{t>0|Q(x, t)\subset\Omega\} .

Taking \epsilon with 0<\epsilon<1 , we define

G_{q,r}^{\alpha,k}(f)(x)=( \int_{0}^{\epsilon\rho_{\Omega}(x)}(t^{-\alpha}v_{r}^{k}(f, Q(x, t)))^{q}\frac{dt}{t})^{1/q} , x\in\Omega . (1.1)

It is easy to see that (x, t) – v_{r}^{k}(f, Q(x, t)) is a lower semicontinuous func-
tion on the set \{(x, t)|x\in\Omega, 0<t<\rho_{\Omega}(x)\} and G_{q,r}^{\alpha,k}(f) is a lower
semicontinuous function on \Omega .

Suppose either q=\infty or 0<p , q , \alpha<\infty . Taking r satisfying

\frac{1}{r}+\frac{\alpha}{n}>\max\{\frac{1}{p} , \frac{1}{q}\} , (1.2)

we define

|f;E_{p,q}^{\alpha,k}(\Omega)|=||G_{q,r}^{\alpha,k}(f)||_{p,\Omega} . (1.3)

It can be shown that the choices of \epsilon in (1.1) and r in (1.3) do not affect
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| ; E_{p,q}^{\alpha,k}(\Omega)| up to the equivalence (see Propositions 1 and 4 in Section 2).

Remark. For q=\infty , the function G_{q,r}^{\alpha,k}(f) and the quasinorm |f;E_{p,q}^{\alpha,k}(\Omega)|

are slight modifications of f_{\alpha}^{\neq} and |f|_{C_{p}^{\alpha}(\Omega)} of DeVore and Sharpley [DS]; see
the last part of Section 2. In the case q<\infty , they are given by Seeger [S]
(the notations are different). Seeger [ibid.] proved that the quasinorm

||f||=|f;E_{p,q}^{\alpha,k}(\Omega)|+||f||_{p,\Omega} (1.4)

is equivalent to the quasinorm of the Triebel-Lizorkin space F_{p,q}^{\alpha}(\Omega) if 0<p ,
\alpha<\infty , 0<q\leqq\infty , k+1>\alpha , and 1+ \alpha/n>\max\{1/p, 1/q\} and if \Omega is
an (\epsilon, \delta) domain

We say that \Omega is an extension domain for E_{p,q}^{\alpha,k} if every function f on
\Omega with |f;E_{p,q}^{\alpha,k}(\Omega)|<\infty can be extended to a function F on \mathbb{R}^{n} such that

|F;E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq A|f;E_{p,q}^{\alpha,k}(\Omega)| (1.5)

with a constant A , 1\leqq A<\infty , independent of f .
The following is our first main theorem.

Theorem 1 Suppose 0<p , q_{0} , \alpha<\infty and k+1>\alpha and suppose \Omega

is an extension domain for E_{p,q0}^{\alpha,k} . Then \Omega is also an extension domain for
E_{p,q}^{\alpha,k} for q in the range q_{0}<q\leqq\infty .

We shall prove this theorem in Section 3, where we shall first prove a
result concerning the extension which holds for arbitrary \Omega (Proposition 7)
and then we shall deduce Theorem 1.

We next consider the extension property for the (\epsilon, \delta) -domains. We say
that \Omega (an open subset of \mathbb{R}^{n} ) is an (\epsilon, \delta) domain (0<\epsilon\leqq 1,0<\delta\leqq\infty)

if \Omega is connected and if for each x , y\in\Omega with |x-y|<\delta there exists a
rectifiable curve \gamma in \Omega joining x to y and satisfying

(the length of \gamma ) \leqq\epsilon^{-1}|x-y|

and

dis(z, \Omega^{c})\geqq\epsilon\min\{|z-x|, |z-y|\} for all z on \gamma .

This concept is due to P. Jones [J2].
The following theorem is known.
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Theorem A An (\epsilon, \infty) -domain is an extension domain for E_{p,q}^{\alpha,k} if either

q=\infty and k+1\geqq\alpha (1.6)

or

0<p , q , \alpha<\infty and k+1>\alpha . (1.7)

Similar extension theorem for (\epsilon, \delta) domain with \delta<\infty involving the
mod 0 quasinorm of (1.4) is also known. In the case (1.6), Theorem A ,
together with its mod 0 version for (\epsilon, \delta) -domain, was proved by Jones [J1]
(p=\infty, \alpha=0) , Christ [C] (p>1, \alpha>0) , and Miyachi [M] (p\leqq 1, \alpha>0) .
The present author does not know a literature which contains an explicit
statement of Theorem A for the case p<\infty=q and \alpha=0 . This case,
however, can be proved by the same method as in [J1], [C], or [M]; see
Section 4 of the present paper. Theorem A for the case (1.7) was given by
Seeger [S] (without detailed proof).

In this paper, we shall be interested in the problem whether the ex-
tension operator for the (\epsilon, \delta) -domain can be made linear. The extension
operators of [J1] and [C] are linear. A slight modification of the extension
method of [S] gives a linear extension operator in the case p , q\geqq 1 . In [M],
a linear extension operator is given in the case q=\infty , k+1\geqq\alpha>0 , and
1+\alpha/n>1/p . We shall extend these results; the following is the second
main theorem of this paper.

Theorem 2 Suppose p , q , \alpha , and k satisfy either (1.6) or (1.7). Also
suppose 1+ \alpha/n>\max\{1/p, 1/q\} . Then:

(1) If \Omega is an (\epsilon, \infty) domain 0<\epsilon\leqq 1 , then there exists a linear
operator T_{1} which associates with each function f on \Omega a function T_{1}f

on \mathbb{R}^{n} such that (T_{1}f)|\Omega=f and F=T_{1}f satisfies (1.5) with A=
c(n, k, \alpha, p, q, \epsilon) .

(2) If \Omega is an (\epsilon, \delta) domain 0<\epsilon\leqq 1,0<\delta<\infty , then there exists
a linear operator T_{2} which associates with each function f on \Omega a function
T_{2}f on \mathbb{R}^{n} such that (T_{2}f)|\Omega=f and

|T_{2}f;E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|+||T_{2}f||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon,\delta}(|f;E_{p,q}^{\alpha,k}(\Omega)|+||f||_{p,\Omega}) ,

where c_{\epsilon,\delta}=c (n , k , \alpha,p , q , \epsilon , \min\{\delta , diam \Omega\} ).

This theorem will be proved in Section 4.
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The existence of a linear extension operator has, besides practical use in
analysis, the following geometric meaning. For simplicity, let us consider the
mod 0 case; we define, temporarily, the space E_{p,q}^{\alpha,k}(\Omega) as the class of those
functions f on \Omega for which the quasinorm ||f|| of (1.4) is finite. Then E_{p,q}^{\alpha,k}(\Omega)

equipped with this quasinorm || || is a quasi-Banach space. For any \Omega , the
restriction operator \sigma : F\mapsto F|\Omega is a continuous linear mapping of E_{p,q}^{\alpha,k}(\mathbb{R}^{n})

to E_{p,q}^{\alpha,k}(\Omega) . The assertion that each function of E_{p,q}^{\alpha,k}(\Omega) can be extended
to a function of E_{p,q}^{\alpha,k}(\mathbb{R}^{n}) is equivalent to the assertion that \sigma is onto. The
assertion that a bounded linear extension operator E_{p,q}^{\alpha,k}(\Omega) – E_{p,q}^{\alpha,k}(\mathbb{R}^{n})

exists is equivalent to the assertion that \sigma is onto and the kernel of \sigma has a
closed complementary subspace in E_{p,q}^{\alpha,k}(\mathbb{R}^{n}) .

2. Basic results

In this section, we give some basic properties of G_{q,r}^{\alpha,k} ( ) and
| . ; E_{p,q}^{\alpha,k}(\Omega)| . Most of the results in this section are slight modifications of
the known ones. For proofs, we sometimes give only outline or suggestions.

The following lemma is elementary and well known.

Lemma 1 (1) For polynomials P\in \mathcal{P}_{k} and for cubes Q , we have

||P||_{\infty,aQ}\leqq c(n, k, a)||P||_{\infty,Q} , 1<a<\infty ,

||\partial^{lJ}P||_{\infty,Q}\leqq c(n, k)\ell(Q)^{-|\iota/|}||P||_{\infty,Q} .

(2) If Q and R are cubes satisfying Q\subset R , then

v_{r}^{k}(f, Q)\leqq(|R|/|Q|)^{1/r}v_{r}^{k}(f, R) .

For functions f defined on a cube Q and for 1\leqq A<\infty , we define
\Pi_{k}^{A}(f, r, Q) as the set of those polynomials \pi in \mathcal{P}_{k} such that

||f- \pi||_{r,Q}\leqq A\inf\{||f-P||_{r,Q}|P\in \mathcal{P}_{k}\} .

Lemma 2 (1) \Pi_{k}^{A}(f, r, Q)\neq\emptyset .
(2) If \pi\in\Pi_{k}^{A}(f, r, Q) , then ||\pi||_{\infty,Q}\leqq c(n, k, r)A|Q|^{-1/r}||f||_{r,Q} .
(3) If Q_{1} and Q_{2} are cubes such that Q_{1}\cap Q_{2}\neq\emptyset , bQ_{i}\subset\Omega(i=1,2)

with 1<b<\infty , and B^{-1}\leqq\ell(Q_{1})/\ell(Q_{2})\leqq B with 1\leqq B<\infty , and if f is
a function on \Omega and \pi_{i}\in\Pi_{k}^{A}(f, r, Q_{i})(i=1,2) , then

||\pi_{1}-\pi_{2}||_{\infty,Q_{1}}\leqq c(n, k, r, b, B)A(v_{r}^{k}(f, bQ_{1})+v_{r}^{k}(f, bQ_{2})) .
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Proof. The assertion (1) follows from the fact that \mathcal{P}_{k} is finite dimensional.
For (2), see e.g . [DS ; p. 23]. Proof of (3) is easy if one of Q_{i} is included in the
other (see e.g . [DS ; p. 24]); the general case can be reduced to this easy case
by taking a cube R which satisfy R\subset bQ_{1}\cap bQ_{2} and \ell(R)\approx\ell(Q_{1})\approx\ell(Q_{2}) .
Details are left to the reader. \square

We now show that the choice of \epsilon in the definition of G_{q,r}^{\alpha,k}(f) does not
affect |f;E_{p,q}^{\alpha,k}(\Omega)| up to the equivalence.

Proposition 1 Let 0<\epsilon_{1} , \epsilon_{2}<1 and let G_{1} and G_{2} be the functions
G_{q,r}^{\alpha,k}(f) defined with \epsilon=\epsilon_{1} and \epsilon=\epsilon_{2} respectively. Then ||G_{1}||_{p,\Omega}\approx

||G_{2}||_{p,\Omega} .

Proof. We may assume \Omega\neq \mathbb{R}^{n} and \epsilon_{1}<\epsilon_{2} . Then obviously ||G_{1}||_{p,\Omega}\leqq

||G_{2}||_{p,\Omega} . In order to prove the reverse estimate ||G_{2}||_{p,\Omega}\leqq c||G_{1}||_{p,\Omega} , it is
sufficient to prove that the pointwise inequality

G_{2}(x)\leqq c_{\eta}M_{\eta}(G_{1})(x) , x\in\Omega ,

with c_{\eta}=c(n, k, \alpha, q, r, \epsilon_{1}, \epsilon_{2}, \eta) , holds for every \eta>0 . We fix an x\in\Omega .
We shall simply write v(R)=v_{r}^{k}(f, R) and Q^{*}=Q(x, \epsilon_{2}\rho_{\Omega}(x)) . We have

G_{2}(x) \leqq cG_{1}(x)+c(\int_{\epsilon_{1}\rho_{\Omega}(x)}^{\epsilon_{2}\rho_{\Omega}(x)}(t^{-\alpha}v(Q(x, t)))^{q}\frac{dt}{t})1/q

The second term on the right hand side can be majorized by c\ell(Q^{*})^{-\alpha}v(Q^{*}) .
Hence it is sufficien to show the estimate

\ell(Q^{*})^{-\alpha}v(Q^{*})\leqq c_{\eta}M_{\eta}(G_{1})(x) . (2.1)

Since \epsilon_{2}<1 , we have

\rho_{\Omega}(y)\approx\ell(Q^{*}) for all y\in Q^{*} (2.2)

Take a sufficiently large positive integer N and decompose Q^{*} into N^{n}

congruent cubes R_{j} . We choose N so large that

2R_{j}\subset Q(y, 2^{-1}\epsilon_{1}\rho_{\Omega}(y)) for all y\in R_{j} . (2.3)

Notice that N can be chosen depending only on \epsilon_{1} and \epsilon_{2} . We number the
cubes R_{j} so that R_{j}\cap R_{j+1}\neq\emptyset .

For each R_{j} , we take \pi_{j}\in\Pi_{k}^{1}(f, r, R_{j}) . By Lemma 1 (1) and Lemma
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2 (3), we have

||\pi_{i}-\pi_{i+1}||\infty,R_{j}\leqq cN||\pi_{i}-\pi_{i+1}||_{\infty,R_{i}}

\leqq c_{N}(v(2R_{i})+v(2R_{i+1}))

Summing over i ’s, we obtain

|| \pi_{1}-\pi_{j}||_{\infty,R_{j}}\leqq c_{N}\sum_{i}v(2R_{i}) .

Thus

||f-\pi_{1}||_{r,R_{j}}\leqq c||f-\pi_{j}||_{r,R_{j}}+c||\pi_{j}-\pi_{1}||_{r,R_{j}}

\leqq c|R_{j}|^{1/r}v(R_{j})+c_{N}|R_{j}|^{1/r}\sum_{i}v(2R_{i})

\leqq c_{N}|Q^{*}|^{1/r}\sum_{i}v(2R_{i}) .

Summing over j ’s, we obtain

v(Q^{*}) \leqq|Q^{*}|^{-1/r}||f-\pi_{1}||_{r,Q^{*}}\leqq c_{N}\sum_{i=1}^{N^{n}}v(2R_{i}) . (2.4)

On the other hand, from (2.3) and (2.2), using Lemma 1 (2), we see that
v(2R_{j})\leqq c_{N}v(Q(y, t)) for all y\in R_{j} and for 2^{-1}\epsilon_{1}\rho_{\Omega}(y)<t<\epsilon_{1}\rho_{\Omega}(y) , and
hence

v(2R_{j}) \leqq c_{N}\ell(Q^{*})^{\alpha}\inf_{R_{j}}G_{1}\leqq c_{N,\eta}\ell(Q^{*})^{\alpha}M_{\eta}(G_{1})(x) (2.5)

for every \eta>0 . Now (2.1) follows from (2.4) and (2.5). Proposition 1 is
proved. \square

We shall introduce a variant of G_{q,r}^{\alpha,k}(f) . Let f be a function on \Omega .
Taking real numbers a and b satisfying 1<a<b , we define

g_{q,r}^{\alpha,k}(f)(x)=(D \ni\sum_{bQ\subset\Omega}Q\ni x(\ell(Q)^{-\alpha}v_{r}^{k}(f, aQ))^{q})^{1/q} , x\in\Omega .

By the same argument as in the proof of Proposition 1, we can prove
the following proposition.



280 A. Miyachi

Proposition 2 Let 1<a_{1}<b_{1}<\infty and 1<a_{2}<b_{2}<\infty and let g_{i}(f) ,
i=1,2 , 6e the functions g_{q,r}^{\alpha,k}(f) defined with (a, b)=(a_{i}, b_{i}) . Then

||g_{1}(f)||_{p,\Omega}\approx||g_{2}(f)||_{p,\Omega}\approx||G_{q,r}^{\alpha,k}(f)||_{p,\Omega} .

In the sequel, if no comment is made on the choices of the parameters
\epsilon and a and 6, then it should be understood that G_{q,r}^{\alpha,k}(f) and g_{q,r}^{\alpha,k}(f) are
defined with \epsilon=1/2 and with a=2 and b=3 .

With the aid of Proposition 2, the next proposition follows from the
fact that g_{q,r}^{\alpha,k}(f)(x) is nonincreasing with respect to q .

Proposition 3 If q_{1}>q_{2} , then |f;E_{p,q_{1}}^{\alpha,k}(\Omega)|\leqq c|f;E_{p,q_{2}}^{\alpha,k}(\Omega)| .

We recall the sharp maximal function of DeVore and Sharpley [DS].
Let Q be a cube and h a function on Q . Following [DS], we define

h_{k,\alpha,r}^{\# Q}(x)= \sup { \ell(R)^{-\alpha}v_{r}^{k}(f, R)|R : cube, x\in R\subset Q }, x\in Q .

The following lemma is implicitly given in [DS].

Lemma 3 Let h be a function on a cube Q\subset \mathbb{R}^{n} . Let 1\leqq A<\infty and
\pi\in\Pi_{k}^{A}(h, r, Q) . Then:

(1) If 1/p>\alpha/n and 1/q=1/p-\alpha/n , then

||h-\pi||_{q,Q}\leqq cA||h_{k,\alpha,r}^{\# Q}||_{p,Q;}

(2) If 1/p<\alpha/n , then

||h-\pi||_{\infty,Q}\leqq cA\ell(Q)^{\alpha-n/p}||h_{k,\alpha,r}^{\# Q}||_{p,Q} .

Here c=c(n, k, \alpha,p, r) .

Note on the proof. If \alpha>0 , the claim (1) can be proved by the
argument of [DS ; Proof of Theorem 4.3]. If \alpha=0 , it can be proved by
modifying the argument of [FS2 ; Proof of Theorem 5] (cf. also [DS ; Theorem
6.8]). The claim (2) can he proved by the argument of [DS ; pp. 23-25];
cf. also [ibid.; Theorem 9.1 and Section 12].

The above lemma and Lemma 2 (2) imply the following.

Corollary Let h be a function on a cube Q\subset \mathbb{R}^{n} . Then:
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(1) If 1/p>\alpha/n and 1/q=1/p-\alpha/n , then

||h||_{q,Q}\leqq c||h_{k,\alpha,r}^{\# Q}||_{p,Q}+c|Q|^{1/q-1/r}||h||_{r,Q;}

(2) If 1/p<\alpha/n , then

||h||_{\infty,Q}\leqq c\ell(Q)^{\alpha-n/p}||h_{k,\alpha,r}^{\# Q}||_{p,Q}+c|Q|^{-1/r}||h||_{r,Q} .

Here c=c(n, k, \alpha,p, r) .

The next proposition shows that the choice of r in (1.3)-(1.2) does not
affect |f;E_{p,q}^{\alpha,k}(\Omega)| up to the equivalence.

Proposition 4 Let either q=\infty or 0<p , q , \alpha<\infty . Also let 0<
r_{1} , r_{2}\leqq\infty and suppose (1.2) holds for both r=r_{1} and r=r_{2} . Then

||G_{q,r_{1}}^{\alpha,k}(f)||_{p,\Omega}\approx||G_{q,r_{2}}^{\alpha,k}(f)||_{p,\Omega} .

This proposition for the case 0<p , q , \alpha<\infty is implicitly proved in [S ;
Proof of Theorem 1]. The case q=\infty is proved in [DS ; Theorem 4.3 and
its proof]. In fact, [DS;loc. cit.] contains arguments which are valid only in
the case \alpha>0 or in the case r<\infty (the proof of the inequalities (4.10) and
(4.10)’ in [ibid.; p. 25] and part of the proof of Theorem 4.3). But, using
our Lemma 3, where (1) is valid for \alpha=0 as well and (2) gives estimates
of L^{\infty} -norms, we can easily modify the argument of [DS] to cover the cases
\alpha=0 or r=\infty . Detailed proof of Proposition 4 is left to the reader.

The next proposition and the corollary to follow it show that the case
k>\alpha is not much different from the case k=[\alpha] (we use [\alpha] to denote the
integer which satisfies [\alpha]\leqq\alpha<[\alpha]+1) .

Proposition 5 Let f be a function on \mathbb{R}^{n} and let 0\leqq\alpha<k . Then:
(1) There exists a polynomial \pi in \mathcal{P}_{k} such that

G_{q,r}^{\alpha,[\alpha]}(f-\pi)(x)\leqq c(n, k, \alpha, q, r)G_{q,r}^{\alpha,k}(f)(x)

for all q and r and all x\in \mathbb{R}^{n} . ( The polynomial \pi does not depend on q

and r. )
(2) If there exists an r such that

\lim j^{-[\alpha]-1-n/r}||f||_{r,R_{j}}=0 ,
jarrow\infty

where R_{j}=[-j, j]^{n} , then the \pi of (1) can be taken to be 0.
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Corollary If 0\leqq\alpha<k and 0<s\leqq\infty , then for functions f on \mathbb{R}^{n}

holds

||G_{q,r}^{\alpha,k}(f)||_{p,\mathbb{R}^{n}}+||f||_{s,\mathbb{R}^{n}}\approx||G_{q,r}^{\alpha,[\alpha]}(f)||_{p,\mathbb{R}^{n}}+||f||_{s,\mathbb{R}^{n}} .

Proof We shall give only the outline of the proof. First, following the
argument of [DS ; Proofs of Lemmas 2.3 and 4.4], we can prove that for
\pi_{Q}\in\Pi_{k}^{1}(f, r, Q) holds

G_{q,r}^{\alpha,[\alpha]}((f-\pi_{Q})|Q^{o})(x)

\leqq c(n, k, \alpha, q, r)G_{q,r}^{\alpha,k}(f)(x) for x\in Q^{o} (2.6)

where Q^{o} denotes the interior of Q . Notice that the left hand side of (2.6)
remains unchanged if we replace \pi_{Q} by

\tilde{\pi}_{Q}(x)=\sum_{\alpha<|\nu|\leqq k}\frac{\partial^{\nu}\pi_{Q}(0)}{\nu!}x^{lJ}

Secondly, for each q and r , we can obtain the inequality of (1) with \pi

possibly depending on q and r by taking the limit of (2.6). To be precise,
fix q and r and suppose G_{q,r}^{\alpha,k}(f)(x_{0})<\infty for at least one x_{0}\in \mathbb{R}^{n} . For
R_{j}=[-j, j]^{n} . take \pi_{R_{j}}\in\square _{k}^{1}(f, r, R_{j}) . Then for |\nu|>\alpha the limit

\lim_{jarrow\infty}\partial^{\nu}\pi_{R_{j}}=a_{\nu}

exists uniformly on compact sets, and, by taking limit of (2.6) with Q=R_{j}

and with \pi_{Q} replaced by \tilde{\pi}_{R_{j}} , we can prove that the polynomial

\pi(x)=\lim_{jarrow\infty}\tilde{\pi}_{R_{j}}(x)=\sum_{\alpha<|\iota/|\leqq k}\frac{a_{l/}(0)}{\nu!}x^{\nu} (2.7)

satisfies the inequality of (1). Thirdly, by observing that the polynomial P
for which

G_{q,r}^{\alpha,[\alpha]}(f-P)(x)<\infty for some (q, r, x)

(if there exists any such P) is unique mod \mathcal{P}_{k} , we can easily see that the \pi

of (1) can be taken independent of q and r . Fourthly, the claim (2) easily
follows from the formula (2.7). Finally, the corollary immediately follows
from the proposition since, by (2) of the proposition, ||f||_{s,\mathbb{R}^{n}}<\infty implies
that we can take \pi=0 in the inequality of (1) of the proposition. \square
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As the final subject of this section, we shall see the relations between
the function G_{\zeta x)r}^{\alpha,k},(f) and the sharp and flat maximal functions of DeVore
and Sharpley [DS]. For functions f on \Omega and for 1\leqq b<\infty , we define

f_{k,\alpha,r}^{\#(b)}(x)= \sup { \ell(R)^{-\alpha}v_{r}^{k}(f, R)|R : cube, R\ni x , bR\subset\Omega },
x\in\Omega .

The maximal functions f_{\alpha,r}^{\neq} and f_{\alpha,r}^{b} of [DS ; p. 22] coincide with f_{k,\alpha,r}^{\#(1)} with
k\leqq\alpha<k+1(i.e., k=[\alpha]) and k<\alpha\leqq k+1 respectively.

The following proposition holds.

Proposition 6 (1) We have

c^{-1}f_{k,\alpha,r}^{\#(5)}(x)\leqq G_{\propto)r}^{\alpha,k},(f)(x)\leqq f_{k,\alpha,r}^{\#(2)}(x) , x\in\Omega .

(2) For 1<b<\infty , we have

||f_{k,\alpha,r}^{\#(b)}||_{p,\Omega}\approx||G_{\infty,r}^{\alpha,k}(f)||_{p,\Omega} . (2.8)

(3) If 1/r+\alpha/n>1/p , then (2.8) holds for b=1 as well.

Proof. The claim (1) is easy to prove. The claim (2) can be proved by
the same method as in the proof of Proposition 1. The claim (3) follows if
we prove the estimate

||f_{k,\alpha,r}^{\#(1)}||_{p,\Omega}\leqq c||f_{k,\alpha,r}^{\#(b)}||_{p,\Omega} (2.9)

for b>1 and 1/r+\alpha/n>1/p . In fact (2.9), combined with the obvious
inequality ||f_{k,\alpha,r}^{\#(b)}||_{p,\Omega}\leqq||f_{k,\alpha,r}^{\#(1)}||_{p,\Omega} and with (2), implies the desired result.
To prove (2.9), observe first that the claim of Proposition 4 for q=\infty holds
if we replace G_{q,r_{i}}^{\alpha,k}=G_{\infty,r_{i}}^{\alpha,k} by f_{k,\alpha,r_{i}}^{\#(b)}(1\leqq b<\infty) . Hence, in order to prove
(2.9) for 1/r+\alpha/n>1/p , it is sufficient to prove it for sufficiently small r .
If r\leqq 1 , then by following the argument in [Jl; Lemma 2.3 and Corollary
in \S 3], we can prove that

f_{k,\alpha,r}^{\#(1)}\leqq cM_{r}(f_{k,\alpha,r}^{\#(b)})(x) for all x\in\Omega ;

this inequality implies (2.9) if in addition r<p . Details are left to the
reader. \square
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3. General results for extension

In this section, we prove a general result concerning the extension which
holds for arbitrary \Omega and then prove Theorem 1.

We first recall the Whitney decomposition of open subsets of \mathbb{R}^{n} . For
\Omega\neq \mathbb{R}^{n} . let \mathcal{G}(\Omega) be the set of maximal dyadic cubes Q satisfying 3Q\subset\Omega .
The following lemma is well known.

Lemma 4 Let \Omega\neq \mathbb{R}^{n} .
(1) The interiors of the cubes in \mathcal{G}(\Omega) are disjoint and the union of

all the cubes in \mathcal{G}(\Omega) is equal to \Omega .
(2) If 0<a<3 , then the cubes aQ with Q\in \mathcal{G}(\Omega) have bounded

overlaps.
(3) If two cubes Q_{1} and Q_{2} in \mathcal{G}(\Omega) have nonempty intersection, then

2^{-1}\leqq\ell(Q_{1})/\ell(Q_{2})\leqq 2 .
(4) There exists a family of C^{\infty} functions \{\phi_{Q}^{\Omega}|Q\in \mathcal{G}(\Omega)\} such that

supp\phi_{Q}^{\Omega}\subset 2Q , 0\leqq\phi_{Q}^{\Omega}(x)\leqq 1 , \sum_{Q\in \mathcal{G}(\Omega)}\phi_{Q}^{\Omega}(x)=1 for all x\in\Omega , and
|\partial_{x}^{\nu}\phi_{Q}^{\Omega}(x)|\leqq c_{\nu}\ell(Q)^{-|\nu|} for each multi-index lJ .

We next recall the vector maximal inequality of Fefferman and Stein
[FS1].

Lemma 5 Let A be a countable set of cubes and suppose a nonnegative
real number a_{Q} is associated with each Q\in A . If 0<p , q<\infty and if
\infty>\lambda>\max\{n/p, n/q\} , then

||( \sum_{Q\in A}a_{Q^{q}}(\frac{\ell(Q)}{\ell(Q)+|x-x_{Q}|})^{\lambda q})1/q||p,\mathbb{R}^{n} \leqq c||( \sum_{Q\in A}a_{Q^{q}}\chi_{Q})^{1/q}||_{p,\mathbb{R}^{n}}

with c=c(n, \lambda,p, q) .

In fact, this lemma follows from the inequality of [FS1 ; Theorem 1 (1)]
once one observes that

M_{s}(a_{Q} \chi_{Q})(x)\approx a_{Q}(\frac{\ell(Q)}{\ell(Q)+|x-x_{Q}|})^{n/s} , 0<s<\infty .

Now let \Omega\neq \mathbb{R}^{n} and f a function on \Omega . Let 1\leqq A<\infty and fix a k
(nonnegative integer) and an r(0<r\leqq\infty) . For each Q\in \mathcal{G}(\Omega) , take a
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\pi_{Q}\in\Pi_{k}^{A}(f, r, Q) . We define

F_{1}= \sum_{Q\in \mathcal{G}(\Omega)}\pi_{Q}\phi_{Q}^{\Omega}

and

(f-F_{1})^{\sim}(x)=\{
f(x)-F_{1}(x) if x\in\Omega

0 if x\in\Omega^{c} .

Then we have the following proposition.

Proposition 7 Let F_{1} be as given above. Suppose either (1.6) or (1.7)
holds. Also suppose (1.2) holds. Then

|(f-F_{1})^{\sim}; E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq c|f;E_{p,q}^{\alpha,k}(\Omega)|

with c=c(n, k, \alpha, p, q, r, A) .

Proof. In this proof, c denotes various positive constants which depend
only on n , k , \alpha , p , g , r , A , and other parameters (if any) indicated as
subscripts, and \overline{c} denotes various positive constants which depend only
on n .

We devide the set D of all dyadic cubes into D_{1}=\{R\in D|3R\subset\Omega\}

and D_{2}=D\backslash D_{1} . We write

g(h)=g_{q,r}^{\alpha,k}(h) and

g_{i}(h)(x)=( \sum_{x\in R\in D_{i}}(\ell(R)^{-\alpha}v_{r}^{k}(h, 2R))^{q})^{1/q} i=1,2 .

Obviously g(h)\leqq cg_{1}(h)+cg_{2}(h) . Hence the desired inequality follows if
we prove

||g_{i}((f-F_{1})^{\sim})||_{p,\mathbb{R}^{n}}\leqq c||g(f)||_{p,\Omega} (3.1_{i})

for i=1 and 2 (by Proposition 2).
In the sequel we shall use the following simple notations:

v_{R}=v_{r}^{k}(f, 2R) , f^{\#}=f_{k,\alpha,r}^{\#(3/2)}

By Propositions 6, 3, and 2, we have

||f^{\#}||_{p,\Omega}\approx|f;E_{p,\infty}^{\alpha,k}(\Omega)|\leqq c|f;E_{p,q}^{\alpha,k}(\Omega)|\approx||g(f)||_{p,\Omega} . (3.2)
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Proof of (3.1_{1}) . The function g_{1}((f-F_{1})^{\sim}) vanishes outside \Omega , and on \Omega

we have

g_{1}((f-F_{1})^{\sim})\leqq cg_{1}(f)+cg_{1}(F_{1})=cg(f)+cg_{1}(F_{1}) .

For g_{1}(F_{1}) , we shall prove that

g_{1}(F_{1})(x)\leqq c_{\eta}M_{\eta}(f^{\#})(x) , x\in\Omega , (3.3)

for every \eta>0 , which, combined with the inequality just above and with
(3.2), implies (3.1_{1}) .

We shall make a further reduction. Since every dyadic cube R satisfying
3R\subset\Omega is included in a cube K\in \mathcal{G}(\Omega) , and since each fixed x\in\Omega is
contained in at most \overline{c} cubes K in \mathcal{G}(\Omega) , we have

g_{1}(F_{1})(x) \leqq c\sup_{x\in K\in \mathcal{G}(\Omega)}(\sum_{x\in R\subset K}(\ell(R)^{-\alpha}v_{r}^{k}(F_{1},2R))^{q})1/q

Hence, inorder to prove (3.3), it is sufficient to prove that

( \sum_{x\in R\subset K}(\ell(R)^{-\alpha}v_{r}^{k}(F_{1},2R))^{q})^{1/q}\leqq c_{\eta}M_{\eta}(f^{\#})(x) , x\in K , (3.4)

for every fixed K\in \mathcal{G}(\Omega) and for every \eta>0 .
We shall prove (3.4). Fix an x and a K such that x\in K\in \mathcal{G}(\Omega) . Set

A=\{Q\in \mathcal{G}(\Omega)|2Q\cap 2K\neq\emptyset\} and

B = { T\in \mathcal{G}(\Omega)|T\cap 2Q\neq\emptyset for some Q\in A}.

We have \# A \leqq\overline{c} and \# B \leqq\overline{c} and

\ell(Q)\approx\ell(T)\approx\ell(K) for Q\in A and T\in B . (3.5)

For each Q\in A , there exist cubes T_{j}\in B (j=0,1, \ldots, m) such that
T_{0}=Q , T_{m}=K , and T_{j}\cap T_{j+1}\neq\emptyset . Then, by Lemma 2 (3),

||\pi_{T_{j}}-\pi_{T_{j+1}}||_{\infty,2Q}\leqq c||\pi_{T_{j}}-\pi_{T_{j+1}}||_{\infty,T_{j}}\leqq c(v_{T_{j}}+v_{T_{j+1}})

(the first inequality holds because 2Q\subset\overline{c}T_{j} ). Summing over j ’s, we have

|| \pi_{Q}-\pi_{K}||_{\infty,2Q}\leqq c\sum_{T\in B}v_{T}
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and hence

|| \partial^{\nu}(\pi_{Q}-\pi_{K})||_{\infty,2Q}\leqq c\ell(Q)^{-|\iota/|}\sum_{T\in B}v_{T}

for all multi-index u . From this estimate and from (3.5), we obtain

|| \nabla^{k+1}F_{1}||_{\infty,2K}=||\nabla^{k+1}(\sum_{Q\in A}(\pi_{Q}-\pi_{K})\phi_{Q}^{\Omega})||_{\infty,2K}

\leqq c\ell(K)^{-k-1}\sum_{T\in B}v_{T}
,

where \nabla^{k+1}F=(\partial^{\nu}F)_{|\nu|=k+1} . Hence, if R is a dyadic cube with R\subset K ,
then by approximating F_{1} by its Taylor polynomial of order k expanded
about the center of R we obtain

v_{r}^{k}(F_{1},2R) \leqq v_{\infty}^{k}(F_{1},2R)\leqq c(\ell(R)\ell(K)^{-1})^{k+1}\sum_{T\in B}v_{T}

and hence, using (3.5) again,

\ell(R)^{-\alpha}v_{r}^{k}(F_{1},2R)\leqq c(\ell(R)\ell(K)^{-1})^{k+1-\alpha}\sum_{T\in B}\ell(T)^{-\alpha}v_{T}

\leqq c(\ell(R)\ell(K)^{-1})^{k+1-\alpha}\sum_{T\in B}\inf_{T}f^{\#}

\leqq c_{\eta}(\ell(R)\ell(K)^{-1})^{k+1-\alpha}M_{\eta}(f^{\#})(x)

for every \eta>0 (the last inequality follows from the fact that T\in B satisfy
\overline{c}T\supset K\ni x and that \# B \leqq\overline{c}). Taking \ell^{q}-quasinorm over R ’s , we obtain
(3.4). Thus (3.1_{1}) is proved.

Proof of (3.1_{2}) . We shall prove the estimate

||g_{2}((f-F_{1})^{\sim})||_{p,\mathbb{R}^{n}}\leqq c||f^{\#}||_{p,\Omega} , (3.6)

which is stronger than (3.1_{2}) (see (3.2)).
Suppose R\in D_{2} . We set

A(R)=\{Q\in \mathcal{G}(\Omega)|2Q\cap 2R\neq\emptyset\} .

There exists an absolute positive constant a such that all Q\in A(R) satisfy
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Q\subset aR . We have

|2R|^{1/r}v_{r}^{k}((f-F_{1})^{\sim}, 2R) \leqq(\int_{2R\cap\Omega}|f(x)-F_{1}(x)|^{r}dx)^{1/r}

\leqq c(\sum_{Q\in A(R)}\int_{2Q}|f(x)-\pi_{Q}(x)|^{r}dx)^{1/r} ,

from which we obtain

\ell(R)^{-\alpha}v_{r}^{k}((f-F_{1})^{\sim}, 2R)\leqq c
(\begin{array}{ll}\Sigma |Q|v_{Q^{r}}Q\in \mathcal{G}(\Omega)Q\subset aR \end{array})

1/r

\ell(R)^{-n/r-\alpha}

(3.7)

We shall consider two cases separately.
First, suppose (1.7) and (1.2) hold. We set s= \min\{q, r\} . Then from

(3.7) we obtain

g_{2}((f-F_{1})^{\sim})(x) \leqq c(\sum_{x\in R\in D_{2}} (\begin{array}{ll}\Sigma |Q|v_{Q^{r}}Q\in \mathcal{G}(\Omega)Q\subset aR \end{array}) q/r_{\ell(R)^{-(n/r+\alpha)q)^{1/q}}}

\leqq c(\sum_{x\in R\in D_{2}} (\begin{array}{ll}\Sigma |Q|v_{Q^{r}}Q\in \mathcal{G}(\Omega) Q\subset aR \end{array})

s/r

\ell(R)^{-(n/r+\alpha)s)^{1/s}}

\leqq c(_{x\in R\in D_{2}}\sum_{Q} Q\subset\sum_{\in \mathcal{G}(\Omega)},|Q|^{s/r}v_{Q^{s}}\ell(R)^{-(n/r+\alpha)s)^{1/s}}aR

We estimate the last term by taking the sum over R first and using the fact
that the cubes R with x\in R and Q\subset aR satisfy \overline{c}\ell(R)\geqq\ell(Q)+|x-x_{Q}| ;
the result is
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g_{2}((f-F_{1})^{\sim})(x)

\leqq c(\sum_{Q\in \mathcal{G}(\Omega)}(\ell(Q)^{-\alpha}v_{Q})^{s}(\frac{\ell(Q)}{\ell(Q)+|x-x_{Q}|})^{(n/r+\alpha)s})1/s

Now we use the vector maximal inequality of Fefferman and Stein (see
Lemma 5) to obtain

||g_{2}((f-F_{1})^{\sim})||_{p,\mathbb{R}^{n}} \leqq c||(\sum_{Q\in \mathcal{G}(\Omega)}(\ell(Q)^{-\alpha}v_{Q})^{s}\chi_{Q})^{1/s}||_{p,\mathbb{R}^{n}}

\leqq c||f^{\#}||_{p,\Omega} ,

where the last inequality holds because the cubes in \mathcal{G}(\Omega) are essentially
disjoint. Thus (3.6) is proved under (1.7) and (1.2).

Next suppose (1.6) and (1.2) hold. We set 1/r+\alpha/n=1/\sigma . Then the
right hand side of (3.7) is written as

c|R|^{-1/\sigma}(Q \in \mathcal{G}\sum_{Q\subset aR}(\Omega)(|Q|^{1/\sigma}\ell(Q)^{-\alpha}v_{Q})^{r)^{1/r}} ,

which is majorized by

c|R|^{-1/\sigma}(Q \in \mathcal{G}\sum_{Q\subset aR}(\Omega)(|Q|^{1/\sigma}\ell(Q)^{-\alpha}v_{Q})^{\sigma)^{1/\sigma}}

\leqq c|R|^{-1/\sigma}(Q\in \mathcal{G}\sum_{Q\subset aR}(\Omega)|Q|(\inf_{Q}f^{\#})^{\sigma})^{1/\sigma}

\leqq c|R|^{-1/\sigma}(\int_{\Omega\cap aR}(f^{\#})^{\sigma})^{1/\sigma}

Hence, taking sup over R’s , we obtain

g_{2}((f-F_{1})^{\sim})(x)\leqq cM_{\sigma}(f^{\#})(x) .

Since \sigma<p , this inequality implies (3.6). Thus (3.1_{2}) is proved. This
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completes the proof of Proposition 7. \square

We shall now prove Theorem 1.

Proof of Theorem 1. Take an r satisfying 1/r+ \alpha/n>\max\{1/p, 1/q_{0}\} . Let
f be a function on \Omega . Let F_{1} be the function as treated in Proposition 7.
Since \Omega is an extension domain for E_{p,q0}^{\alpha,k} , there exists a function F_{1}^{*} on \mathbb{R}^{n}

which is an extension of F_{1} and which satisfies

|F_{1}^{*}; E_{p,q0}^{\alpha,k}(\mathbb{R}^{n})|\leqq A|F_{1;}E_{p,q0}^{\alpha,k}(\Omega)| .

Notice that in the proof of Proposition 7 we actually proved that

|F_{1;}E_{p,q0}^{\alpha,k}(\Omega)|\leqq c|f;E_{p,\infty}^{\alpha,k}(\Omega)|

(see (3.3) and (3.2)). Hence

|F_{1}^{*}; E_{p,q0}^{\alpha,k}(\mathbb{R}^{n})|\leqq cA|f;E_{p,\infty}^{\alpha,k}(\Omega)| . (3.8)

Now, if q_{0}<q\leqq\infty , then (3.8) combined with Proposition 3 implies that

|F_{1}^{*}; E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq cA|f;E_{p,q}^{\alpha,k}(\Omega)| ,

from which and from Proposition 7. we see that f^{*}=(f-F_{1})^{\sim}+F_{1}^{*} . which
is an extension of f . satisfies

|f^{*}; E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq cA|f;E_{p,q}^{\alpha,k}(\Omega)| .

Theorem 1 is proved. \square

4. Extension for (\epsilon, \delta)-domain
The purpose of this section is to prove Theorem 2.
Throughout this section, we assume \Omega\neq \mathbb{R}^{n} and \Omega is an (\epsilon, \delta) domain

with 0<\epsilon\leqq 1 and 0<\delta\leqq\infty . Let \hat{\Omega} denote the interior of \Omega^{c} and let
\delta_{1}=\min { \delta , diam \Omega }.

The following properties of the (\epsilon, \delta) -domain are known; see [J1], [J2;
\S 2], or [M; \S 3] .

Lemma 6 (1) If Q , S\in \mathcal{G}(\Omega) , 0<A<\infty , \ell(Q)\leqq\ell(S) , dis(Q, S)\leqq
A\ell(S) , and dis(Q, S)<\epsilon\delta , then there exist cubes T_{j}\in \mathcal{G}(\Omega)(j=0,1, . . , N)

such that T_{0}=Q , T_{N}=S , T_{j}\cap T_{j+1}\neq\emptyset , c(n, \epsilon, A)T_{j}\supset Q , T_{j}\subset c(n, \epsilon, A)S ,
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and

N\leqq c(n, \epsilon) log (\ell(S)/\ell(Q))+c(n, \epsilon, A) .

(2) There exists a positive constant \beta which depends only on n and \epsilon

and with which the following holds: For each Q\in \mathcal{G}(\hat{\Omega}) with \ell(Q)<\beta\delta_{1} ,
there exists a cube \check{Q} in \mathcal{G}(\Omega) such that \ell(\check{Q})=\ell(Q) and dis(Q,\check{Q})\leqq

c(n, \epsilon)\ell(Q) .
(3) For each cube R with \ell(R)<\delta , there exists a cube S in \mathcal{G}(\Omega)\cup \mathcal{G}(\hat{\Omega})

such that S\cap R\neq\emptyset and \ell(S)\geqq c(n, \epsilon)\ell(R) .
(4) The boundary of \Omega has measure 0.
(5) If \delta=\infty>diam\Omega and if Q_{0} is a cube in \mathcal{G}(\Omega) which has the

maximum sidelength, then \ell(Q_{0})\geqq c(n, \epsilon)diam\Omega .

In the sequel, we fix a mapping Q\mapsto\check{Q} as mentioned in (2) of the above
lemma and also fix, in the case of (5), a cube Q_{0} as mentoioned there.

We shall prove Theorem 2 by using the extension method of [J1], [C],
[M], and [S]. We shall recall the method.

Let f be a function on \Omega . We take a k (nonnegative integer) and an
r(0<r\leqq\infty) and a real number A satisfying 1\leqq A<\infty . For each
Q\in \mathcal{G}(\Omega) , we take \pi_{Q}\in\square _{k}^{A}(f, r, Q) . We take d such that 0<d\leqq\beta^{*}\delta_{1} ,
where \beta^{*} is a positive constant which depends only on n and \epsilon and which is
sufficiently small (in particular, it is not larger than the \beta of Lemma 6 (2)),
and we define the function F_{2} on \mathbb{R}^{n} by F_{2}=f on \Omega and

F_{2}= \sum \pi_{\check{Q}}\phi_{Q}^{\hat{\Omega}} on \Omega^{c} .
Q\in \mathcal{G}(\hat{\Omega})

\ell(Q)<d

Notice that d can be equal to \infty if \delta_{1}=\infty . If \delta=\infty and \delta_{1}=diam\Omega<\infty ,
then we define the function F_{3} on \mathbb{R}^{n} by F_{3}=f on \Omega and

F_{3}= \sum \pi_{\check{Q}}\phi_{Q}^{\hat{\Omega}}+ \sum \pi_{Q_{0}}\phi_{Q}^{\hat{\Omega}} on \Omega^{c} .
Q\in \mathcal{G}(\hat{\Omega}) Q\in \mathcal{G}(\hat{\Omega})

\ell(Q)<\beta\delta_{1} \ell(Q)\geqq\beta\delta_{1}

In the papers mentioned above, it is shown that F_{2} or F_{3} give the
desired extension if we choose r appropriately. The choice of r is crucial to
our problem of the linearity of the extension operator. The reason is this:
There exists a linear mapping S_{Q} : L^{r}(Q) – \mathcal{P}_{k} satisfying

S_{Q}(f)\in\square _{k}^{A}(f, r, Q) for all f\in L^{r}(Q) , (4.1)
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with A independent of f . if and only if r\geqq 1 . If 1\leqq r\leqq\infty , an example of
the linear mapping S_{Q} : L^{r}(Q) – \mathcal{P}_{k} satisfying (4.1) with A=c(n, k, r) is
defined by

\int_{Q}(f-S_{Q}(f))Pdx=0 for all P\in \mathcal{P}_{k} .

In [J1], [C], and [S], it is shown that the choice r= \min\{1,p, q\} is
allowed in order that F_{2} or F_{3} satisfy the estimate for | . ; E_{p,q}^{\alpha,k}| . In [M], it is
shown that r satisfying (1.2) works well in the case q=\infty and \alpha>0 . We
shall show that these results can be extended as in the following proposition.

Proposition 8 Let \Omega\neq \mathbb{R}^{n} be an (\epsilon, \delta) -domain, 0<\epsilon\leqq 1,0<\delta\leqq\infty ,
and let F_{2} and F_{3} be defined as above. Suppose either (1.6) or (1.7) holds.
Also suppose (1.2) holds. Then:

(1) We have

|F_{2;}E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq c_{\epsilon}(|f;E_{p,q}^{\alpha,k}(\Omega)|+d^{-\alpha}||f||_{p,\Omega})

(here d^{-\alpha}=0 if d=\infty ).
(2) If d<\infty , then

||F_{2}||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}(d^{\alpha}|f;E_{p,\infty}^{\alpha,k}(\Omega)|+||f||_{p,\Omega})

(3) If \delta=\infty>diam\Omega , then

|F_{3;}E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq c_{\epsilon}|f;E_{p,q}^{\alpha,k}(\Omega)| .

Here c_{\epsilon}=c(n, k, r, A, p, g, \alpha, \epsilon) .

Before going into the proof of this proposition, we shall see that TheO-
rem 2 follows from it. In fact, under the assumption of Theorem 2 we can
take r=1 and, as mentioned above, we can define the operators f – F_{2}

and f – F_{3} as linear operators. Then the operator T_{2} of Theorem 2 (2) can
be given by T_{2}f=F_{2} with d<\infty . If \delta=\infty=diam\Omega , the operator T_{1} of
Theorem 2 (1) can be given by T_{1}f=F_{2} with d=\infty ; if \delta=\infty>diam\Omega ,
it is given by T_{1}f=F_{3} .

Proof of Proposition 8. In this proof, various positive constants shall be
denoted by the letters c and \overline{c} . These are used as follows: c denotes various
positive constants which depend only on n , k , r , A , \alpha , p , g , and on other
parameters (if any) indicated as subscripts; \overline{c} denotes various positive con-
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stants which depend only on n and other parameters (if any) indicated as
subscripts. In what follows, we shall introduce two positive real numbers t

and s . Since t and s can be chosen depending only on \alpha , p , q , r , and n , we
shall omit to indicate the dependence of the constant c on t or s .

We use the same abbreviations as in the proof of Proposition 7:

g(f)=g_{q,r}^{\alpha,k}(f) , f^{\#}=f_{k,\alpha,r}^{\#(3/2)} , v_{R}=v_{r}^{k}(f, 2R) .

Recall that (3.2) holds. We shall begin with (2).

Proof of (2). Suppose d<\infty . Take a positive real number t such that
1/r+\alpha/n>1/t>1/p . Let Q\in \mathcal{G}(\hat{\Omega}) with \ell(Q)<d . Using Lemma 2 (2)
and the corollary to Lemma 3, we see that

||\pi_{\check{Q}}||_{\infty,\check{Q}}\leqq c|\check{Q}|^{-1/r}||f||_{r,\check{Q}}

\leqq c(|\check{Q}|^{\alpha/n-1/t}||f^{\#}||_{t,\check{Q}}+|\check{Q}|^{-1/t}||f||_{t,\check{Q}})

Since 2Q\subset\overline{c}_{\epsilon}\check{Q} , we have

||\pi_{\check{Q}}||_{\infty,2Q}\leqq c_{\epsilon}||\pi_{\check{Q}}||_{\infty,\check{Q}} .

Combining these inequalities and using the fact 2Q\subset\overline{c}_{\epsilon}\check{Q} again, we see
that

|F_{2}(x)|\leqq c_{\epsilon}(d^{\alpha}M_{t}(f^{\#})(x)+M_{t}(f)(x)) (4.2)

for x\in\Omega^{c} . Obviously this inequality also holds a.e . on \Omega . The claim (2)
follows from (4.2) and (3.2).

Proof of (1). Let t be the same as above and take a real number s such
that 0<s \leqq\min\{1, q, r\} and s<p . We decompose the set D of all dyadic
cubes into the following three subsets:

D_{1}=\{R\in D|3R\subset\Omega\} ,
D_{2}=\{R\in D|3R\subset\hat{\Omega}\} ,
D_{3}=D\backslash (D_{1}\cup D_{2}) .

For functions F on \mathbb{R}^{n} . we write

\overline{g}(F)=g_{q,s}^{\alpha,k}(F) and
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\overline{g}_{i}(F)=(\sum_{R\in D_{i}}(\ell(R)^{-\alpha}v_{s}^{k}(F, 2R))^{q}\chi_{R})1/q i=1,2,3 .

Obviously \overline{g}(F)\leqq c(\overline{g}_{1}(F)+\overline{g}_{2}(F)+\overline{g}_{3}(F)) . Hence, in order to prove (1),
it is sufficient to prove the estimate

||\overline{g}_{i}(F_{2})||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}(||g(f)||_{p,\Omega}+d^{-\alpha}||f||_{p,\Omega}) (4.3_{i})

for i=1,2,3 (by virtue of Propositions 2 and 4).

Proof of (4.3_{1}) . The function \overline{g}_{1}(F_{2}) vanishes outside \Omega , and on \Omega we
have \overline{g}_{1}(F_{2})=g_{q,s}^{\alpha,k}(f)\leqq g(f) (since s\leqq r ). Hence (4.3_{1}) is obvious.

Proof of (4.3_{2}) . We shall prove the pointwise estimate

\overline{g}_{2}(F_{2})\leqq c_{\epsilon}(M_{t}(f^{\#})+d^{-\alpha}M_{t}(f)) ,

which, combined with (3.2), implies (4.3_{2}) . For K\in \mathcal{G}(\hat{\Omega}) , we set

\overline{g}_{2,K}(F_{2})=(R\in\sum_{R\subset K}D(\ell(R)^{-\alpha}v_{s}^{k}(F_{2},2R))^{q}\chi_{R})^{1/q}

Then, by the same reason as in the proof of Proposition 7 (see the argument
between (3.3) and (3.4) ) , the pointwise estimate for \overline{g}_{2}(F_{2}) mentioned above
follows if we prove the estimate

\overline{g}_{2,K}(F_{2})\leqq c_{\epsilon}(M_{t}(f^{\#})+d^{-\alpha}M_{t}(f)) on K (4.4)

for each K\in.\mathcal{G}(\hat{\Omega}) .
We shall prove (4.4). Fix an x and a K such that x\in K\in \mathcal{G}(\hat{\Omega}) . Set

A=\{Q\in \mathcal{G}(\hat{\Omega})|2Q\cap 2K\neq\emptyset\} .

Notice that \# A \leqq\overline{c} and that \ell(Q)\approx\ell(K) for all Q\in A . We shall consider
three cases separately.

Case (i) \max\{\ell(Q)|Q\in A\}<d . For each Q\in A , we have

dis (\check{Q},\check{K})\leqq\overline{c}_{\epsilon}\ell(K)<\overline{c}_{\epsilon}d\leqq\overline{c}_{\epsilon}\beta^{*}\delta_{1}\leqq\epsilon\delta

(the constant \beta^{*} is chosen so small that the last inequality hold), and hence,
by Lemma 6 (1), there exist cubes T_{j}\in \mathcal{G}(\Omega)(j=0,1, \ldots, m) such that
T_{0}=\check{Q} , T_{m}=\check{K} , T_{j}\cap T_{j+1}\neq\emptyset , and m\leqq\overline{c}_{\epsilon} . These T_{j} necessarily satisfy
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\overline{c}_{\epsilon}T_{j}\supset Q\cup K and \overline{c}_{\epsilon}^{-1}\leqq\ell(T_{j})/\ell(K)\leqq\overline{c}_{\epsilon} . Let B denote the set of all T_{j} ’s
arising from all Q\in A . We have \# B \leqq\overline{c}_{\epsilon} since \#\{T_{j}\}\leqq\overline{c}_{\epsilon} for each Q\in A

and \# A \leqq\overline{c} . Using the \{T_{j}\} and B , we can deduce the estimate of \overline{g}_{2,K}(F_{2})

in the same way as in the proof of Proposition 7 (see Proof of (3.1_{1}) ) ; i.e . ,
we first obtain

|| \pi_{\check{Q}}-\pi_{\check{K}}||_{\infty,2Q}\leqq c_{\epsilon}\sum_{T\in B}v_{T}

for all Q\in A , from which we can deduce

|| \nabla^{k+1}F_{2}||_{\infty,2K}\leqq c_{\epsilon}\ell(K)^{-k-1}\sum_{T\in B}v_{T}

and then

\ell(R)^{-\alpha}v_{s}^{k}(F_{2},2R)\leqq\ell(R)^{-\alpha}v_{\infty}^{k}(F_{2},2R)

\leqq c_{\epsilon}(\frac{\ell(R)}{\ell(K)})^{k+1-\alpha}\sum_{T\in B}\ell(T)^{-\alpha}v_{T}

for all dyadic cubes R with R\subset K , and finally we obtain the estimate

\overline{g}_{2,K}(F_{2})(x)\leqq c_{\epsilon,\eta}M_{\eta}(f^{\#})(x)

for every \eta>0 , which a fortiori implies (4.4).
Case (ii) \min\{\ell(Q)|Q\in A\}\geqq d . In this case (4.4) is obvious since

F_{2}=0 on 2K and \overline{g}_{2,K}(F_{2})=0 .
Case (ii) \min\{\ell(Q)|Q\in A\}<d\leqq\max\{\ell(Q)|Q\in A\} . This case

occurs only when d<\infty . Note that \ell(K)\approx d in this case. As we showed
in the proof of (2), the estimate

||\pi_{\check{Q}}||_{\infty,2Q}\leqq c_{\epsilon}(|\check{Q}|^{\alpha/n-1/t}||f^{\#}||_{t,\check{Q}}+|\check{Q}|^{-1/t}||f||_{t,\check{Q}})

holds for all Q\in \mathcal{G}(\hat{\Omega}) with \ell(Q)<d . Using this estimate and using
the fact that the cubes Q in A with \ell(Q)<d satisfy \ell(Q)\approx\ell(K) and
\overline{c}_{\epsilon}\check{Q}\supset\overline{c}Q\supset K\ni x , we obtain

||\nabla^{k+1}F_{2}||_{\infty,2K}\leqq c_{\epsilon}\ell(K)^{-k-1}(d^{\alpha}M_{t}(f^{\#})(x)+M_{t}(f)(x)) .
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From this estimate, we see that

\ell(R)^{-\alpha}v_{s}^{k}(F_{2},2R)

\leqq c_{\epsilon}(\frac{\ell(R)}{\ell(K)})^{k+1-\alpha}(M_{t}(f^{\#})(x)+d^{-\alpha}M_{t}(f)(x))

for all dyadic cubes R included in K . Taking \ell^{q}-quasinorm over R ’s , we
obtain (4.4). Thus (4.3_{2}) is proved.

Proof of (4.3_{3}) . This is the main part of the proof of (1). For R\in D_{3} , we
set

A(R)=\{Q\in \mathcal{G}(\Omega)\cup \mathcal{G}(\hat{\Omega})|2Q\cap 2R\neq\emptyset\} .

As is easily seen, there exists an absolute positive constant a such that
\ell(Q)\leqq a\ell(R) for all Q\in A(R) and all R\in D_{3} . We decompose the set D_{3}

into the following two subsets:

D_{3,1}=\{R\in D_{3}|\ell(R)<d/a\} ,
D_{3,2}=\{R\in D_{3}|\ell(R)\geqq d/a\} .

For functions F on \mathbb{R}^{n} , we set

\overline{g}_{3,j}(F)=(\sum_{R\in D_{3,j}}(\ell(R)^{-\alpha}v_{s}^{k}(F, 2R))^{q}\chi R)1/q j=1,2 .

Obviously \overline{g}_{3}(F)\leqq c(\overline{g}_{3,1}(F)+\overline{g}_{3,2}(F)) . We shall prove

||\overline{g}_{3,\dot{j}}(F_{2})||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}(||f^{\#}||_{p,\Omega}+d^{-\alpha}||f||_{p,\Omega}) (4.5_{j})

for j=1,2 , which, combined with (3.2), implies (4.3_{3}) .

Proof of (4.5_{1}) . Let F_{1} be the function defined in Section 3. We set F_{2}^{*}=

F_{2}-(f-F_{1})^{\sim} , which can be written as

F_{2}^{*}= \sum_{Q\in \mathcal{G}(\Omega)}\pi_{Q}\phi_{Q}^{\Omega}+\sum_{Q\in \mathcal{G}(\hat{\Omega})}\pi_{\check{Q}}\phi_{Q}^{\hat{\Omega}}
.

\ell(Q)<d

We have

\overline{g}3,1(F_{2})\leqq c\overline{g}3,1(F_{2}^{*})+c\overline{g}3,1((f-F_{1})^{\sim})1
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In the proof of Proposition 7, we proved

||\overline{g}_{3,1}((f-F_{1})^{\sim})||_{p,\mathbb{R}^{n}}\leqq c||f^{\#}||_{p,\Omega} (4.6)

(see (3.6)). Here we shall prove

||\overline{g}_{3,1}(F_{2}^{*})||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}||f^{\#}||_{p,\Omega} . (4.7)

If this is done, then (4.5_{1}) follows from (4.6) and (4.7).
Suppose R\in D_{3,1} . For all Q\in A(R) , we have \ell(Q)\leqq a\ell(R)<d . For

Q\in A(R) , we define \tilde{Q} as \tilde{Q}=Q if Q\in \mathcal{G}(\Omega) and \tilde{Q}=\check{Q}.ifQ\in \mathcal{G}(\hat{\Omega}) .
We take a cube S in A(R) which has the maximum sidelength. Notice that
\ell(R)\leqq\overline{c}_{\epsilon}\ell(S) by Lemma 6 (3).

Let Q\in A(R) . We have

dis (\tilde{Q},\tilde{S})\leqq\overline{c}_{\epsilon}\ell(R)\leqq\overline{c}_{\epsilon}\ell(S) and

dis(\tilde{Q},\tilde{S})\leqq\overline{c}_{\epsilon}\ell(R)<\overline{c}_{\epsilon}d/a\leqq\overline{c}_{\epsilon}\beta^{*}\delta_{1}/a\leqq\epsilon\delta

(the constant \beta^{*} is chosen so small that the last inequality hold). Thus,
by Lemma 6 (1), there exist cubes T_{j}\in \mathcal{G}(\Omega)(j=0,1, \ldots, N) such that
T_{0}=\tilde{Q} , T_{N}=\tilde{S} , T_{j}\cap T_{j+1}\neq\emptyset,\overline{c}_{\epsilon}T_{j}\supset\tilde{Q} , and T_{j}\subset\overline{c}_{\epsilon}\tilde{S} . Since Q\subset\overline{c}_{\epsilon}\tilde{Q}

and \tilde{S}\subset\overline{c}_{\epsilon}R , we have Q\subset\overline{c}_{\epsilon}T_{j} and T_{j}\subset\overline{c}_{\epsilon}R . In the same way as in the
proof of Proposition 7 (see Proof of (3.1_{1}) ), we have

|| \pi_{\overline{Q}}-\pi_{\tilde{S}}||_{\infty,2Q}\leqq c_{\epsilon}\sum_{j=0}^{N}v_{T_{j}}\leqq c_{\epsilon}\sum_{T}v_{T} ,

where the last sum is taken over the cubes T satisfying

T\in \mathcal{G}(\Omega) , Q\subset\overline{c}_{\epsilon}T , and T\subset\overline{c}_{\epsilon}R . (4.8)

Since the boundary of \Omega has measure 0 (Lemma 6 (4)), we have

F_{2}^{*}- \pi_{\overline{S}}=\sum_{Q\in A(R)}(\pi_{\tilde{Q}}-\pi_{\overline{S}})\phi_{Q}
a.e . on 2R,

where \phi_{Q} stands for \phi_{Q}^{\Omega} or \phi_{Q}^{\hat{\Omega}} according as Q\in \mathcal{G}(\Omega) or Q\in \mathcal{G}(\hat{\Omega}) . Hence,
using the fact that the cubes 2Q for Q\in A(R) have bounded overlaps and
using the estimate of ||\pi - -\pi_{\overline{S}}||_{\infty,2Q} given above, we see that

||F_{2}^{*}- \pi_{\tilde{S}}||_{s,2R}^{s}\leqq c\sum_{Q\in A(R)}|Q|||\pi_{\overline{Q}}-\pi_{\overline{S}}||_{\infty,2Q}^{s}
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\leqq c_{\epsilon}\sum_{Q\in A(R)}|Q|(.\sum_{T.(4.8)}v_{T})^{s}

\leqq c_{\epsilon}\sum_{Q\in A(R)}|Q|.\sum_{T.(4.8)}v_{T^{s}}

\leqq c_{\epsilon}\tau_{T\subset\overline{c}_{\epsilon}R’} \sum_{\in \mathcal{G}(\Omega)}|T|v_{T^{s}}

.

Hence

\ell(R)^{-\alpha}v_{s}^{k}(F_{2}^{*}, 2R)\leqq c_{\epsilon}
(\begin{array}{ll}\Sigma |T|v_{T^{s}}T\in \mathcal{G}(\Omega) T\subset\overline{c}_{\epsilon}R \end{array})

1/s

\ell(R)^{-n/s-\alpha} . (4.9)

We shall deduce (4.7) from (4.9) by the same method as in the proof
of Proposition 7 (see Proof of (3.1_{2}) ). In the case of (1.7): From (4.9), we
have

\overline{g}_{3,1}(F_{2}^{*})(x)\leqq c_{\epsilon}(\sum_{x\in R\in D_{31}} (\begin{array}{ll}\Sigma |T|v_{T^{S}}T\in \mathcal{G}(\Omega) T\subset\overline{c}_{\epsilon}R \end{array})

q/s

\ell(R)^{-(n/s+\alpha)q)^{1/q}}

\leqq c_{\epsilon}
(\begin{array}{lll}\Sigma \Sigma |T|v\tau^{s}\ell(R)^{-(n/s+\alpha)s}x\in R\in D_{31} T\in \mathcal{G}(\Omega)T\subset\overline{c}_{\epsilon}R \end{array})

1/s

\leqq c_{\epsilon}(\sum_{T\in \mathcal{G}(\Omega)}(\ell(T)^{-\alpha}v_{T})^{s}(\frac{\ell(T)}{\ell(T)+|x-x_{T}|})^{(n/s+\alpha)s})^{1/s}

and hence, using Lemma 5, we obtain

|| \overline{g}_{3,1}(F_{2}^{*})||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}||(\sum_{T\in \mathcal{G}(\Omega)}(\ell(T)^{-\alpha}v_{T})^{s}\chi\tau)^{1/s}||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}||f^{\#}||_{p,\Omega} .

In the case of (1.6): With \sigma given by 1/\sigma=1/s+\alpha/n , the right hand side
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of (4.9) can be written as

c_{\epsilon}|R|^{-1/\sigma}(T \in \mathcal{G}\sum_{T\subset\overline{c}_{\epsilon}R}(\Omega)(|T|^{1/\sigma}\ell(T)^{-\alpha}v_{T})^{s})1/s

and this is majorized by

c_{\epsilon}|R|^{-1/\sigma}(T \in \mathcal{G}\sum_{T\subset\overline{c}_{\epsilon}R}(\Omega)(|T|^{1/\sigma}\ell(T)^{-\alpha}v_{T})^{\sigma})1/\sigma

\leqq c_{\epsilon}|R|^{-1/\sigma}(T\in \mathcal{G}\sum_{T\subset\overline{c}_{\epsilon}R}(\Omega)|T|(\inf_{T}f^{\#})^{\sigma})1/\sigma

\leqq c_{\epsilon}|R|^{-1/\sigma}(\int_{\Omega\cap\overline{c}_{\epsilon}R}(f^{\#})^{\sigma})^{1/\sigma} ;

hence

\overline{g}_{3,1}(F_{2}^{*})(x)=\sup_{x\in R\in D_{31}}\{\ell(R)^{-\alpha}v_{s}^{k}(F_{2}^{*}, 2R)\}\leqq c_{\epsilon}M_{\sigma}(f^{\#})(x) ,

from which follows (4.7). Thus (4.5_{1}) is proved.

Proof of (4.5_{2}) . We may assume d<\infty . For R with x\in R , we have

\ell(R)^{-\alpha}v_{s}^{k}(F_{2},2R)\leqq\ell(R)^{-\alpha}|2R|^{-1/s}||F_{2}||_{s,2R}

\leqq c\ell(R)^{-\alpha}M_{s}(F_{2})(x) .

Taking \ell^{q}-quasinorm over R’s satisfying x\in R\in D_{3,2} , we have

\overline{g}_{3,2}(F_{2})(x)\leqq cd^{-\alpha}M_{s}(F_{2})(x) .

Combining this estimate with (4.2), we obtain

\overline{g}_{3,2}(F_{2})(x)\leqq c_{\epsilon}(M_{s}(M_{t}(f^{\#}))(x)+d^{-\alpha}M_{s}(M_{t}(f))(x)) ,

from which follows (4.5_{2}) . Now (4.3_{3}) is proved and the proof of (1) is
complete.

Proof of (3). Here we shall be brief since (3) can be proved by only slightly
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modifying the proof of (1). We set F_{3}^{*}=F_{3}-(f-F_{1})^{\sim} with F_{1} given in
Section 3. Since the estimate for (f-F_{1})^{\sim} is already given in Proposition
7, it is sufficient to estimate F_{3}^{*} We shall prove

|F_{3}^{*}; E_{p,q}^{\alpha,k}(\mathbb{R}^{n})|\leqq c_{\epsilon}|f;E_{p,\infty}^{\alpha,k}(\Omega)| , (4.10)

which is sufficient for our purpose (by Proposition 3).
For Q\in \mathcal{G}(\Omega)\cup \mathcal{G}(\hat{\Omega}) , we define \tilde{Q} as follows: \tilde{Q}=Q if Q\in \mathcal{G}(\Omega) ;

\tilde{Q}=\check{Q} if Q\in \mathcal{G}(\hat{\Omega}) and \ell(Q)<\beta\delta_{1} ; \tilde{Q}=Q_{0} if Q\in \mathcal{G}(\hat{\Omega}) and \ell(Q)\geqq\beta\delta_{1} .
The function F_{3}^{*} can be written as

F_{3}^{*}= \sum_{Q\in \mathcal{G}(\Omega)\cup \mathcal{G}(\hat{\Omega})}\pi_{\overline{Q}}\phi_{Q}

,

where \phi_{Q} stands for \phi_{Q}^{\Omega} or \phi_{Q}^{\hat{\Omega}} according as Q\in \mathcal{G}(\Omega) or Q\in G(\hat{\Omega}) .
The basic task amounts to the estimate of the difference \pi_{\overline{Q}}-\pi

- for
Q , S\in \mathcal{G}(\Omega)\cup \mathcal{G}(\hat{\Omega}) with, say, \ell(Q)\leqq\ell(S) and dis(Q, S)\leqq\overline{c}_{\epsilon}\ell(S) . If
\tilde{Q}=\tilde{S}=Q_{0} , there is no problem. If \tilde{Q}\neq Q_{0} or \tilde{S}\neq Q_{0} , then we see that
there exist cubes T_{j}\in \mathcal{G}(\Omega)(j=0,1, . . ’ N) such that T_{0}=\tilde{Q} , T_{N}=\tilde{S} ,
T_{j}\cap T_{j+1}\neq\emptyset,\overline{c}_{\epsilon}T_{j}\supset Q , and T_{j}\subset\overline{c}_{\epsilon}S , and using these T_{j} we can estimate
||\pi_{\overline{Q}}-\pi_{\overline{S}}||_{\infty,2Q} in the same way as in the proof of (1).

Let s be the same as in the proof of (1). Using the estimate of ||\pi–

\pi_{\overline{S}}||_{\infty,2Q} as explained above and following the argument in the proof of (1),
we can prove the inequality

||g_{q,s}^{\alpha,k}(F_{3}^{*})||_{p,\mathbb{R}^{n}}\leqq c_{\epsilon}||f^{\#}||_{p,\Omega} ,

which, combined with Propositions 2 and 4 and with (3.2), implies (4.10).
This completes the proof of (3). Thus Proposition 8 and Theorem 2 are
proved. \square
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