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A note on lattices with group actions

Tsuyoshi ATSUMI
(Received October 30, 1996)

Abstract. By using a lattice version of Hayden’s result we generalize a Jacobi’s formula
for the theta series of the dual lattice when a finite group acts on the lattice. This solves
a problem posed by Yoshida.

Key words: lattice, group, dual lattice, Jacobi’s formula.

1. Introduction

In his paper [6] Yoshida proved the following result.

Result There is a generalization of MacWilliams identity [4] to codes
with group actions.

Moreover he raised the following problem in [6].

Problem What can we say about lattices with group actions? Can we
define the equivariant version of theta functions?

We solve the problem above. In this paper we shall prove that there is
a lattice version of his result.

We introduce notation and terminology in lattice theory. Let V be the
real n-dimensional space R^{n} . A lattice \Lambda[5] is a subgroup of V satisfying
one of the following equivalent conditions:

i) \Lambda is discrete and V/\Lambda is compact;
ii) \Lambda is discrete and generates the R-vector space V ;
iii) There exists an R-basis (e_{1}, \ldots, e_{n}) of V which is a Z-basis of \Lambda (i.e.

\Lambda=Ze_{1}\oplus \oplus Ze_{n}) .
Let

e_{1}=(e_{11}, \ldots, e_{1n}) ,
e_{2}=(e_{21}, \ldots, e_{2n}) ,

.\cdot

.

e_{n}=(e_{n1} , . .^{ e_{nn})}
’
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be the coordinates of the basis vectors of \Lambda given in (iii). The n\cross n matrix
M with (i, j) -entry equal to e_{ij} is called a generator matrix for \Lambda . The
determinant of \Lambda is defined to be det \Lambda=| det M| .

Given two vectors u= (u_{1}, \ldots, u_{n}) , v=(v_{1}, \ldots, v_{n}) of V , their inner
product will be denoted by u\cdot u or (u, u) . The dual lattice \Lambda^{\perp} of \Lambda is defined
by

\Lambda^{\perp}= { u\in R^{n}|u\cdot v=u_{1}v_{1}+ +u_{n}v_{n}\in Z for all v\in\Lambda }.

The theta series\ominus_{\Lambda}(z) of a lattice \Lambda is given by

\Theta_{\Lambda}(z)=\sum_{u\in\Lambda}q^{u\cdot u}
,

where q=e^{\pi iz} . Jacobi’s formula for the theta series of the dual lattice:

\Theta_{\Lambda^{\perp}}(z)=(\det\Lambda)(i/z)^{n/2}\ominus_{\Lambda}(-1/z) . (1)

In section 2 we shall define G-lattices and give our theorem on them,
which is a generalization of (1).

In section 3 we shall prove Lemma 1 which does not seem to be trivial
and our theorem by using a lattice version of Hayden’ theorem.

For notation and terminology, see [2] and [5] for lattice theory, [6] for
lattices with group actions.

In particular, G is a finite group, RG is a group ring over R.

2. Lattices with group actions

From now on we assume that G is a finite permutation group on the
coordinates of V Then we can define a natural action of G on V as follows:
If v= (v_{1}, . . ’ v_{n})\in V and g\in G , we let vg=(x_{1}, \ldots, x_{n}) where for
i=1 , . . ’ n , x_{i}=v_{ig^{-1}} . In this way V becomes an RG-module and every
element of RG is a linear, orthogonal transformation of V A G lattice is a
lattice which is also a ZG-submodule of V .

As in [1], the operator \theta is defined by

\theta=\frac{1}{|G|}\sum_{g\in G}g .

Here we note that \theta\in RG , V\theta= {v\in V|vg=v for all g\in G}, \theta^{T}=\theta

and \theta^{2}=\theta , where \theta^{T} is the transpose of \theta (see [1]). Let C_{1} , \ldots , C_{t} be the
orbits of the coordinates of V under the action of G . Let m_{i} be the orbit
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length of C_{i} . Define \overline{C}_{i} as the vector of V which has 1/\sqrt{m_{i}} as its entry for
every point of C_{i} and 0 elsewhere. (This definition of the \overline{C}_{i} ’s is similar to
that in the proof of Theorem 4.3 in [1] ) . Then each of \overline{C}_{1} , . , \overline{C}_{t} is in V\theta

and every element u of V\theta is of the form

u=\sum_{i=1}^{t}x_{i}\overline{C}_{i} .

The vector space V\theta is of dimension t .
For vectors a , b of V9, the inner product a \circ b of a and b is defined by

a \circ b=a_{1}b_{1}+ +a_{t}b_{t} , (2)

where a=\sum_{i=1}^{t}a_{i}\overline{C}_{i} and b=\sum_{i=1}^{t}b_{i}\overline{C}_{i} .
Let D be a lattice in V9. (That is, there exists an R-basis consisting of

t elements of V\theta which is a Z-basis of D. ) D_{G}^{\perp} is the dual of D in V\theta with
respect to the inner product (2). The norm of u\in D is u\circ u . We describe
the theta series \ominus_{D}(z) of a sublattice D in V\theta as follows:

\Theta_{D}(z)=\sum_{u\in D}q^{u\circ u}
,

where q=e^{\pi iz} . Then we have the following:

Theorem Let \Lambda be a G -lattice and let \Lambda_{0}=\{r\in\Lambda|r\theta\in\Lambda\} . Then the
following holds:
(i) \Lambda_{0}\theta is a lattice.
(ii) \Theta_{\Lambda_{0}^{\perp}\theta}(z)=(\det\Lambda_{0}\theta)(i/z)^{t/2}\Theta_{\Lambda_{0}\theta}(-1/z) .

If G is trivial, that is, G=\{e\} , the equation above reduces to (1). Note
that \Lambda_{0}\theta=\Lambda\cap\Lambda\theta= {v\in\Lambda|vg=v for all g\in G}.

3. Proof of theorem

We prove the following lemma which is part (i) of our theorem.

Lemma 1 Let \Lambda be a G-lattice and let \Lambda_{0}=\{r\in\Lambda|r\theta\in\Lambda\} . Then \Lambda_{0}\theta

is a lattice.

Proof. First we shall show that |G|(\Lambda\cap\Lambda\theta)(=|G|\Lambda_{0}\theta) is a lattice.
Let (e_{1}, , e_{n}) be a Z-basis of \Lambda which is also an R-basis of V Since
(e_{1}, \ldots , e_{n}) is an R-basis of V. we see that vectors |G|e_{1}\theta , \ldots , |G|e_{n}\theta of
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|G|(\Lambda\cap\Lambda\theta) generate V9. This shows that

V\theta\subseteq R(|G|e_{1}\theta)+ +R(|G|e_{n}\theta) .

On the other hand, clearly |G|(\Lambda\cap\Lambda\theta)\subseteq V\theta , hence we have

V\theta=R(|G|e_{1}\theta)+ +R(|G|e_{n}\theta) . (3)

\Lambda is a free Z-module and |G|(\Lambda\cap\Lambda\theta) is a Z-submodule of \Lambda . So there exists
a basis (m_{1}, , m_{n}) for \Lambda , and non-zero elements \delta_{1} , \ldots , \delta_{r} , r\leq n , in Z
such that \delta_{i}|\delta_{i+1}1\leq i\leq r-1 , and such that vectors \delta_{1}m_{1} , \ldots , \delta_{r}m_{r} forms
a basis for |G|(\Lambda\cap\Lambda\theta) (see [3, pp 97]). Since (m_{1}, . . , m_{n}) is an R basis of
V , vectors \delta_{1}m_{1} , \ldots , \delta_{r}m_{r} are linearly independent over R. From this and
(3) it follows that

V\theta=R(\delta_{1}m_{1})\oplus \cdot . \oplus R(\delta_{r}m_{r}) ,

which shows that r=t . This proves that |G|(\Lambda\cap\Lambda\theta) is a lattice. So is
\Lambda\cap\Lambda\theta . \square

In order to prove Theorem we need the following proposition which is
a lattice version of Hayden’s theorem [1].

Proposition 1 Under the same notation as in Lemma 1, we have the
following:

(\Lambda_{0}\theta)^{\perp}=Ker\theta\oplus\Lambda_{0}^{\perp}\theta .

Proof. Our proof is similar to the proof of Theorem 4.2 in [1], We note
that \Lambda_{0} is a ZG-submodule of G lattice \Lambda , \theta^{T}=\theta and \theta^{2}=\theta . If r\in\Lambda_{0} ,
\hat{r}\in\Lambda_{0}^{\perp} and y\in Ker \theta^{T} . we have

(\hat{r}\theta^{T}, r\theta)=(\hat{r}, r\theta^{2})=(\hat{r}, r\theta)\in Z ,

because r\theta\in\Lambda\cap\Lambda\theta\subseteq\Lambda_{0} and

(y, r\theta)=(y\theta^{T}, r)=0\in Z .

This shows that

Ker\theta+\Lambda_{0}^{\perp}\theta\subseteq(\Lambda_{0}\theta)^{\perp} (4)

If r\in\Lambda_{0} , y\in(\Lambda_{0}\theta)^{\perp} , we have

(y\theta^{T}, r)=(y, r\theta)\in Z .
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So

y\theta^{T}=y\theta\in\Lambda_{0}^{\perp} .

Hence

y=y-y\theta+(y\theta)\theta\in Ker\theta+\Lambda_{0}^{\perp}\theta .

This implies that

(\Lambda_{0}\theta)^{\perp}\subseteq Ker\theta+\Lambda_{0}^{\perp}\theta . (5)

(4) and (5) complete the proof of Proposition 1. \square

We start to prove Theorem. If x=\sum_{i}x_{i}\overline{C}_{i}\in\Lambda_{0}\theta and y=\sum_{i}y_{i}\overline{C}_{i}\in

\Lambda_{0}^{\perp}\theta , by Proposition 1 we have

x\circ y=(x, y)\in Z .

So

\Lambda_{0}^{\perp}\theta\subseteq(\Lambda_{0}\theta)_{G}^{\perp} . (6)

Now take x=\sum_{i}x_{i}\overline{C}_{i}\in(\Lambda_{0}\theta)_{G}^{\perp} , y=\sum_{i}y_{i}\overline{C}_{i}\in\Lambda_{0}\theta . and observe

(x, y)=x\circ y\in Z .

This shows that

x\in(\Lambda_{0}\theta)^{\perp} . (7)

Since x\in V\theta , (7) and Proposition 1 imply that x\in\Lambda_{0}^{\perp}\theta .
Now we proved that

(\Lambda_{0}\theta)_{G}^{\perp}\subseteq\Lambda_{0}^{\perp}\theta . (8)

From (6) and (8) it follows that

(\Lambda_{0}\theta)_{G}^{\perp}=\Lambda_{0}^{\perp}\theta . (9)

Now we shall finish the proof of Theorem. Lemma 1 tells us that \Lambda_{0}\theta is
a lattice. Hence, we have Jacobi’s formula for the theta series of the dual
lattice (\Lambda_{0}\theta)_{G}^{\perp} in V\theta :

\Theta_{(\Lambda_{0}\theta)_{G}^{\perp}}(z)=(\det\Lambda_{0}\theta)(i/z)^{t/2}\ominus_{\Lambda_{0}\theta}(-1/z) .

Hence equation (9) establishes our Theorem.
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Remark. It is easy to prove that

\Lambda/\Lambda_{0}\cong\Lambda\theta/\Lambda\cap\Lambda\theta ,
\Lambda_{0}=(\Lambda\cap Ker\theta)\oplus(\Lambda\cap\Lambda\theta) .
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