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A periodic boundary value problem for a generalized
2D Ginzburg-Landau equation

Charles Bu'2, Randy SHULL? and Kanyi ZHAO?
(Received October 21, 1996; Revised April 2, 1997)

Abstract. This article studies the periodic boundary value problem for a generalized
Ginzburg-Landau equation with additional fifth order term and cubic terms containing
spatial derivatives. We present sufficient condition for global existence. A blow-up of
solutions is found via numerical simulation.
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1. Introduction

The classical one-dimensional Ginzburg-Landau equation (GL)
ur = (1 + i)tz — (s + i) ufu + yu (1-1)

frequently occurs as the leading term in an asymptotic expansion of the
slowly varying envelope of solutions for such “exact” models such as the
Navier-Stocks equations [1]. If K < 0 then as ~ increases, with peri-
odical boundary condition undergoes a subcritical bifurcation after which
almost all solutions become unbounded in finite time. It is also of physical
interest (see [2—4] for details) to carry the expansion to second order in case
of small k. This leads to the resulting generalized GL [5].

U = QU + Q1Uss + aolul?u + aslul?uy + agui, +aslu|fu (1-2)

where a; = a; + ib; are all complex parameters (though we note that ag
can be regarded as real since the complex part can be eliminated via a
simple transformation). If a; > 0 > as and —4ajas > (b3 — b4)? then
(1-2) possesses a global classical solution u(t) € C([0,00); Hp.,[0, L]) N
C1((0,00); Hpr [0, L]) for every u(0) € H,..[0,L] [2]. It has been found
that the cubic terms involving partial derivatives can significantly slow the
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propagation speed of moving fronts and pulses . They can create prob-
lems and must be balanced by the fifth order term and the second derivative
term. In general, the higher order terms in (1-2) when compared with
provide more opportunities for instability and blow-up. From physical point
of view, the periodic boundary condition serves as a “natural” case to study
the evolution of patterns and to interpret numerical results. However, the
type of boundary data does not seem to be essential as far as the result
of global existence is concerned. For example, if we impose the Dirichlet
boundary condition, it appears that most of our results remain the same.
The GL equation in higher spatial dimensions

up = (v +ia)Viu — (k + iB)|u* + yu (1-3)

has been studied fairly extensively as a model for “turbulent” dynamics in
nonlinear partial differential equations [7-12]. When ¢ = 1 this equation
has been found for a general class of nonlinear evolution problems including
several classical problems from hydrodynamics and other fields of physics
and chemistry. We note that the generalized complex Ginzburg-Landau
equation could be derived as a wave envelope or amplitude equation
governing wave-packet solutions, for example, in the study of the Taylor-
Couette flow, Benard convection and plane Poiseuille flow. There is signif-
icance difference in behavior of the hard and soft turbulence in the system
when we move up from D = 1. This change is caused by the background
role of the nonlinear Schrédinger equation (NLS) which is the dissipation-
less limit of the complex Ginzburg-Landau equation. For D = 1, the NLS
is integrable and has infinitely many conserved quantities but when D > 2,
solutions of the NLS fail to exist under certain conditions. For D = 2,3,
gives some interesting estimates in their study of the possibility of soft
and hard turbulence in the GL equation with periodic boundary value prob-
lem. Results on the existence of global solution for initial value problem of

with D = 2,3,4 were found in several cases [14]. For example, when
D =gq =2, k =v =1, there is a global solution if |a| < v/3 or ﬁfgl < §
Further also gives various results on 3D or 4D GL with different non-
linearity. However, these are sufficient conditions for global solution. It
appears that no necessary condition for global existence has been found
in the literature. The lack of global solutions for 2D in several cases was
demonstrated through numerical simulation in [15].

The objective of this article is to extend the global existence theorem
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in to a 2D GL equation with additional third order term with spatial
derivatives and fifth order term. We will present a sufficient condition for
global solution and give an example of blow-up phenomenon.

2. Global existence theorem

We consider the following generalized Ginzburg-Landau equation in 2
spatial dimensions

U = oot + a1Au + a2|u|2u

+ aslufug + agu?d, + as|u*uy + asutty — arlu/fu  (2-1)

where a; = aj +1b;, j =0,...,7. For the sake of simplicity, we set byp = 0
(If by # 0 then we can apply a transformation to eliminate it.) Also, both
Re a; and Re a7 must be positive, i.e. a; > 0, a7 > 0, otherwise the solution
either blows up at finite time or the equation is ill-posed. Periodic boundary
condition is imposed as follows

u($7y+L):u’($’y_L)7 ’LL(ZE-{—L,y) :U(:E—L,y) (2_2)

along with initial condition u(z,y,0) = f(z) € H?(2) where Q = [-L, L] x
[-L,L]. For D = 2, it is more reasonable physically to study the periodic
boundary value problem than Dirichlet or Neumann boundary value prob-
lem on a square domain. When taking L large enough, one can get most
of the behavior of the equation. A local existence theorem can be obtained
from semigroup theory or using the Galerkin method (see §3.3 and §3.5 of
[16]). To obtain a global existence theorem, we impose the following two
conditions.

(lb4 — b3l + |b6 — b5])2 < 4aqa7, a; >0, ar >0 (I)

6 2
3 b
Sl <an (5 -1+ (2) ()
j=3 a
We note that since a; > 0, the right hand side of must be positive.
Thus would also imply that 2 — 4/1+ (%E)2 > 0 or |3§| < é

Lemma 1 The L' norm of the solution to (2-1) is bounded for all times
if (I) holds.
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Proof.  Differentiate [u|* with respect to t variable, substitute u; by (2-1)
then integrate over :

Bllul? = 2Re//Q s
= 2Re // (aolul® + (a1 + ib1) Au - u + aglu|*)dzdy
Q

+ 2Re // (a3|ul*up @ + oy lul?uig + as|u)?uy @
Q
+ aslultuty — (a7 + iby)|u|®)dzdy

= 2of|ul3 — 21| Va3 + 2as|[ul[§ — 2a7]|ul[§
+ 2(by — b3)Im //Q |u*ugadzdy
+ 2(bg — bs)Im / /Q luf2uyadzdy (2-3)
Write
by — b3| = A, lbs — bs| = B (2-4)
and estimate the following (C is an appropriate positive number)
‘2(b4 - 1?3)1110//Q |u2uxﬂd$dy’ < 2|by — bs]||ul[3]|uz]|2

A
< ACIull+ Sllwall} (25)

‘2(1)6 —b5)Im//Q |u2uyadxdy| < 2lbg — bs|[[ullg]|uyl|2

B
< BClull§+ Sllwl  (26)

Add (2-5) and [2-6)

\2(b4 — b3)Im // |u2uxadxdy{ + ‘2(66 — bs)Im // |u2uyﬂd:cdy}
Q Q

A+ B
C

< (A+ B)C|lullg + IVull3 (2-7)

Since (|by — b3] + |bg — b5])? < 4aia7, this implies that (A+ B)? < 4ajar.
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Therefore there exists a positive number C such that both

A+ B
C

hold. Write e = min{2a7—(A+B)C, 2a;—4££} and combine thorough
to get

2 2 2
llullz < 2aollull3 — 2a1]|Vull3 + 2az|ulls — 2az]|ullg

(bg — b3)Im // |u\2uwﬂdacdy‘
Q
(bg — bs)Im //Q |u|2uyﬂd$dyl

< 2ao]|ull3 — 2a1(| Va3 + 2az[ull; — 2a7||ullg
A+B
C
< 2aql[ufl3 — 2a1 (| Vull3 + 2az[ul|; — 2a7]|u|lg
+ (2a7 — ¢)[ullg + (2a1 — €)[|Vulf3

< 2aolull3 — €| Vull3 + 2az[ulli — ellulls

(A+ B)C < 2ar,

< 2a4q (2-—8)

+2

+2

+(A+ B)Cl|u|l§ + | Vull3

2 2, € 16, 205, 1o 6
< aollullz = el Vullz + Sllullg + —[lullz — €f[ullg
€
= coflullz = el Vullz = 5 [|ullg (2-9)
Integrate both sides of in ¢ one has
t
Jul < ¢ +eo [ Iulifer (2-10)
An application of Gronwall’s lemma yields that ||u|/3 is bounded for all
t > 0. L]

Lemma 2 If in addition to (I), we assume that (I1) holds, then the H'
norm of the solution to (2-1) is bounded for all times.

Proof.  To establish H! estimates, differentiate |u,|?> with respect to ¢
variable, substitute the equation (2-1) then integrate over (2.

O uz 13

= 2Re // Uzptizdrdy = —2Re // Ul dxdy
Q Q
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= —2Re // Uze(aou + @1 Au + a2|u|2u)dwdy
Q

— 2Re //Q Uge (a3|ul?uy + agu?dy + a5|u|2uy
+ agu?ly — ar|ul*u)dzdy

< 2a0lugll3 — 2a1|[use||3 — 2a1]|ugy||3

+ 2Re // oy (2|u|?uy + vty )dzdy

6 2

1-— - 2
E ( 11— ©)l[uol I3 + 1 / |ul |Vu|2d:cdy)
=3 2 al(

2Re [ arlul?(3luflusl? + 20°2)dudy

< 200l us 3 ~ areljuse|} + Slaz| /| uusPdody

6
2|ay[? 2
+Z (al( / |u|*|Vu|2dzdy

i=3

— 2// lul?(3ar|ul?|uz|?® + 2a7Re u?a2 — 2b7Im u?a2)dzdy
Q

(2-11)
Let utu, = a+ib, k = |2—z| then
[u|?(3a7|u|? |ugt|2 + 2a7Re u?a@2 — 2b;Im u?a?)
= |u|*(2a7(a® + b?) 4 2a7(a® — b?) — 4brab)
= |u|*(5a7a® + a7b? — 4brab)
> az|ul*(5a® + b* — 4k|ab|)
> ar|ul? (5a2 +b? — 2kMa? — %zﬂ)
= ar|ul?(5a® + b2 — (5 — 0)a? — (1 — 0)b?)
= a7o|ul?(a® + b?) (2-12)
Here the unknown o > 0 is obtained from the equations
2k
%M =5-0, TL=1-0 (2-13)

thus ¢ = 3 —2v/1 + k2 and M is determined. Therefore, the last line above
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becomes

a7(3 = 2V1 + k2)|ul?jutz|* = a7(3 — 2V 1 + k) |ul*us|?  (2-14)
Combine (2-11), and (2-14)

Oullusl 3 < 2a0]lus!§ — arelfuse|3 + 6laal [ JuurPdody

6

Ly Al // 4| Vu[2dzdy
= a1(l—e€) JJa
— 2a7(3 — 2v/1 + k2?) // |u|?|ug|2dzdy (2-15)
Q

Similarly one has

Oulluyl13 < 2a0lluy|3 — axelluyy |} + Blacl [ Juu, Pdody
6

2 2
+ Z |%| // lu|*|Vu|2dedy
273 - 2V1+ B) / / uf*uy [2dzdy (2-16)
Q
From [2-15) and

OIVully < 2a0][Vully ~ ~arel|V2ull} + laa] [ [u|Vultdady

6

+ Z —M— // |u|*|Vu|2dedy
=3 a1(1 — 6) Q
23— 2V1+ &) // (|4 Vu|2dzdy (2-17)
Q

Because of [II), there exist €,€' > 0 such that

6 2
4 R
> Aoyl” —2a7(3 - 2V1+k?) < —¢ (2-18)
=3 a1(1 — 6)
Therefore
3tHVU|'§

< 2a0||Vull5 — are||V2ul|3

+6|a2|// lu|2|Vu|2da:dy—e'// || Vu|?dzdy
Q Q
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< 2a0||Vul3 — a1€]|Vu|l3

3
+ // <6'|u|4 + ﬁ) |Vu|2dzdy — € // |u|*|Vu|2dedy
0 € Q

= col | Vull§ - arel | V2ul (219
Integrate one has
t t
1Vul +ae [ [1V2ull3dr < e+ co [ |IVulfr (220
0 0

By Gronwall’s lemma, ||Vu||3 is bounded for all ¢t > 0. In addition we can
see that for each T' > 0, there exists a constant > 0 such that

t
/ V2| 2dr < 6 (2-21)
0

for 0 <t < T. This proves the lemma. ]
Now we can prove the global existence theorem.

Theorem  Assume that both (1) and (II) hold and u(x,y,0) € H3. Then
the (2-1) has a unique global classical solution u € L°(H?) N C*(LY).

Proof. To get H? estimates, we differentiate |ugyq|? in ¢ variable then
integrate over (2.

at”“:tﬂt”%

= 2Re // Uprtlzrdrdy = —2Re // UptUprrdrdy
Q Q

= —2Re // lUgee(ou + a1Au + ag|ul?u — arlul*u),drdy
Q

— 2Re //Q TUgge(as|ul?uy + agu?iy + a5|u|2uy + aeuzﬂy)xdxdy
< ”2a1l|umx||g - 2“1”“3:3:?4”%

— 2Re //Q(aoum + ao(|ul?uge + u’a,)

— ar(3lul*ug + 2Julu?u,))gedrdy

+a [ (192ulluf? + [Vl lu])ugzs 2 dody
< —2a11|um||3 + 2a0‘|um||§

+er [ (Pl + Ju*Dluslluzss dody
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e //Q(IV2UHU'2 + |Vu’2’u‘)”Ua:mH2da:dy
ay

< _2all|umx$||3 + 2a0”“’$$||§ + 4

+d // ul®|us [Pdady + &
Q2

a
25 el B+ ¢ [[ (V2uPlult + [ValfuP)dedy

aq ~
= “‘ZH“H:MH% + 2‘10['“331:"% +c+ CllHUHgoHuxH%

+ 5 (IIV2ul l3lull5 + [Vul 3] Vul ]|l |Z,) (2-22)
To proceed we need the following Gagliardo-Nirenberg estimates

11
[[ulloo < AalIV2u|3 []ul|3 (2-23)

2 1
IVulloo < A2l|V7Pul|F [|ull3 (2-24)

Apply these two inequalities on [2-22) and use the fact that ||Vul|y is
bounded on [0, 7] one has

al ~
8t||um:cH§ < —ZHummH% + ZGOHUMH% +c
+ ATV 2ul[3] 3l uel13 + ch(1|V2ul)3AS] | V203 |ul 2
4 2
+ [Vl [3A5] V3013 [Jul |3 A3 V2|2 [u]]2)

a ~ N
< = e + 2a0]luse 13 + &+ &l V2ull3
4
+ 2| V313 19 2ul |2 (2-25)
Similarly
Hlluyyll3 < —=luyyyll3 + 2aolluy, |13 + &
thtyyllz = =7 Uyyy|[5 + 2a0]|uyyll3 + ¢
4
+&l[V2ull} + 2| V3ul 131V 2] (2-26)
From and (2-26).
aj ~
OUIVPulld < ~—lIVull3 + 2a0]|V2ul[} + 22

4
+2¢]|V2ull3 + 22| V2ul 13 || V2ull, (2-27)
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By Cauchy-Swartz inequality

P gq
|fgl < —+= (2-28)
P q

one has (p =3, ¢ =3)

3,113 2¢ o2

F=divullf, o= 29l (229)
4 2€P 1 /2¢\1

20| Vulld VPl < 9%l + 5 () 192l (2-50)

Let € be small enough then substitute [2-30) in [(2-27)

||V2ull3 < 2a0|[V?ull3 + 22 + 26]|V2ul[3 + col[V?ul[3
<+ |IVElf (2-31)

Write h(t) = 1+ ||V2u||3, divide both sides of by h and integrate
from 0 to t, one obtains (using (2-21))

192 < g(0) < g(0)exp (¢ [ g(ryar)
< g(0)exp ('t + "6) (2-32)

for all 0 < ¢ < T. Since T is arbitrary, we conclude (along with Lemma 1l
and Cemma 2) that the H2 norm of u is bounded for all finite time thus the
theorem is proved. []

It remains to be seen whether global solution exists when (I) or (II)
does not hold. We try to partially answer this question by numerical sim-
ulation, using a software named PDE2D. This is a widely used tool and
has been shown fairly effective in dealing with nonlinear boundary value
problems for 2-dimensional equations. PDE2D is a general-purpose two-
dimensional time-dependent partial differential equation solver [18], using
a finite element program. The main program is complied by a FORTRAN
77 compiler. On our IBM RISC/6000, we attempted to solve various gen-
eralized GL equation (2-1) using PDE2D (version 3.2). It appears that
solutions will blow up for certain b; > 0, b7 < 0. For example, this happens
whenaozbO:O, a1=1,b1=1,a2=b2=0,a3-——a4:a5:a6:0,
by =bs =1, by =bg = —1, a7 = 1, by = —10. The correspondance equation
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is
up = (14 i) Au+ i|u?uy — i|u|* @y + ilul?u,
— ilul?ay — (1 — 107)|u)*u (2-33)
If w=U + ¢V then the above equation becomes

Up = (Use + Uyy) — (Vo + Vi) — (U? + VZ)2(U + 10V)
—2U2 + VA (Vp + V) (2-34)

Vi = (Uge + Uyy) + (Vaz + Vi) — (U2 + V2(V —10U)  (2-35)

which are used for PDE2D numerical calculation. We first verify that equa-

tion does not satisfy the necessary conditions (I) and for global
existence stated in [Lemma. 1 and Lemma 2. Evidently (I) can not hold

because

(|bg — b3| + |bg — b5|)> = 16 > daja; = 4 (2-36)

Meanwhile, from the remark under condition we require that

3 b7\ 2
S 4142 0 2-
or
bz V5
hd( ~ye 9.
o < (2-38)

pl I 10 > — (2-39)
thus both (I) and are not satisfied for global existence. Indeed, a blow-
up is found in this case. (See Fig. 1). The final triaglization of the numerical
scheme is shown in Fig. 2.

Numerical outputs for the norm of Vu is given in Table 1. We note that
different initial values only change the solutions to a certain degree, a blow-
up will eventually occur (unless the initial value is identically zero). There
are several methods in the PDE2D program (we used the band method
here). But applying different methods only alters the numerical output of
the solution slightly.
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Fig. 1. Blow-up for the solution to the 2D GL equation. Produced by PDE2D on
IBM RISC/6000 with band method (NSTEPS=100, T = 10, ug(z,y) =
1 — sin?z + sin?y, dimensions of work arrays: IRWRK8Z=236188,
I[TWK8Z=2200), showing the graphs for Reu and Imu at t = 3.

.0

-123 -0.73 -Q25 025 Qa7s 125

Fig. 2. Final Trianglization
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T = 5.000000E—01 Integral estimate = 675.961345682602882
T = 1.000000E4-00 Integral estimate = 1209.88753719904275
T = 1.500000E4-00 Integral estimate = 2982.68347406797966
T = 2.000000E+00 Integral estimate = 4425.90852545208963
T = 2.500000E+00 Integral estimate = 6539.06775364662280
T = 3.000000E+00 Integral estimate = 10809.0941266501450
T = 3.500000E+400 Integral estimate = 18052.3402689260693
T = 4.000000E+00 Integral estimate = 23930.4366167518820
T = 4.500000E+00 Integral estimate = 33522.6579867473556
T = 5.000000E+-00 Integral estimate = 53013.7673756343574
T = 5.500000E+00 Integral estimate = 80276.0150922616449
T = 6.000000E+00 Integral estimate = 122501.539642156873
T = 6.500000E+-00 Integral estimate = 164016.626101799106
T = 7.000000E+00 Integral estimate = 206970.842716049723
T = 7.500000E+00 Integral estimate = 332312.663851631514
T = 8.000000E+00 Integral estimate = 495083.882031293295
T = 8.500000E4-00 Integral estimate = 679797.603704631212
T = 9.000000E+00 Integral estimate = 825050.795782348257
T = 9.500000E+4-00 Integral estimate = 1139936.20926420321
T = 1.000000E+01 Integral estimate = 1527942.92813526723

Table 4. Numerical Output for |Vul|3
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