
Hokkaido Mathematical Joumal Vol. 27 (1998) p. 77-103

Examples of global attractors in parabolic problems
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Abstract. Based on the theory of dissipative systems (see [HA]), necessary and suffi-
cient conditions for the existence of global attractors for semilinear parabolic problems
are studied. Many examples are considered to show precisely how this conditions works.
We deal in particular with the Hodgkin-Huxley, Fitzhugh-Nagumo and Lotka-Volterra
systems of reaction-diffusion equations, 2-D Navier-Stokes and Burgers equations of hy-
drodynamics and the Cahn-Hilliard pattern formation equation.
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1. Introduction

In this paper we consider an initial boundary value problem for an
autonomous semilinear parabolic system of the form:

\{

u_{t}=-Au+f(x, u, D^{1}u, . . , D^{k}u) , t>0 , x\in\Omega\subset R^{n} ,

B_{j}u=0 , t >0 , x\in\partial\Omega , j=1 , . , md,

u(0, x)=u_{0}(x) , x\in\Omega .

(1)

Both A:=(-1)^{m} \sum_{|\alpha|\leq 2m}[a_{\alpha}^{rs}(x)]_{d\cross d}D^{\alpha} and B_{j}:= \sum_{|\beta|\leq m_{j}}[b_{\beta}^{rs}(x)]_{1\cross d}D^{\beta}

(j=1, . , md) are linear matrix differential operators acting on u=
(u_{1}, . , u_{d}) : R^{+}\cross\Omega –

R^{d} , \Omega is a bounded domain in R^{n} with a reg-
ular boundary \partial\Omega\in C^{2m} , k\leq 2m-1 is a fixed nonnegative integer and
D^{j} (j=1, , k) denotes a vector of partial derivatives with respect to x

of order j , i.e.

D^{j}u=\{D^{\sigma}u_{1}, \ldots, D^{\sigma}u_{d}\}_{|\sigma|=j} .

We assume that:
A-I The triple (A, \{B_{j}\}, \Omega) forms a regular parabolic initial boundary

value problem of 2m-th order in the sense of [AM, Chapt. 1,
Sec. 1].
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A-II All components of the nonlinear term f= (f_{1}, . , f_{d}) are real val-
ued functions, locally Lipschitz continuous with respect to each
of its arguments separately.

Problems of type (1) appear frequently in applications and hence the
existence of solutions as well as their behavior in time are an important
factor in theoretical considerations. For sufficiently large p conditions A-
I , A-II guarantee existence of local [L^{p}(\Omega)]^{d} solutions of (I) in fractional
power spaces X^{\alpha}=D(A^{\alpha}) with \alpha\in[0,1) close to one. Whenever the
problem (1) generates a global semiflow \{T(t)\} on X^{\alpha} , it is the study of the
global attractor [HA] for \{T(t)\} , which allows then to reveal much of the
relevant information about the system. In the case of semigroups created by
abstract evolutionary equations, the necessary and sufficient condition for
the existence of a global attractor has been formulated in [CD3], where some
basic applications to parabolic p.d.e.’s have also been mentioned ([CD3 ,
Rem. 1]). However, since the latter has been treated there merely in a short
cut, it is the aim of the present paper to show precisely how the conditions
of [CD3] work in applications.

Our special concern here is the case when (1) produces a semiflow which
is not dissipative [HA] on the whole phase space but only on a subset of
it. This may happen, for example, when (1) generates global semiflow of
globally bounded solutions but with an unbounded set of equilibria (as for
the Cahn-Hilliard equation). Nevertheless it is also possible the situation
when some initial conditions produce solutions which ‘blow-up’ in finite
or infinite time, whereas for other initial conditions trajectories are globally
bounded and, moreover, enter asymptotically a common subset of the phase
space on which (1) is considered. Such situations, when the global attractor
may occur only on some metric subspace of the starting phase space seem
to be much more natural for parabolic problems and may frequently be
observed. Hence, necessary and sufficient conditions for the existence of a
restricted global attractor for (1) on a complete metric subspace of X^{\alpha} (see
Definition 3 of Section 2.1) will be studied here.

Certainly the heart of the paper are the examples studied in Sec-
tion 3. We consider the Hodgkin-Huxley, Fitzhugh-Nagumo and Lotka-
Volterra systems of reaction-diffusion equations, 2-D Navier-Stokes and
Burgers equations of hydrodynamics and mention the pattern formation
equations as the Cahn-Hilliard model of alloy decomposition. These prob-
lems can be found in many earlier publications. One may refer to [CCS],
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[SM], [RO], [TE], [CRF], [GM], [CD1] [RS]. The main task of this paper
is to give the unified approach to the global solvability and existence of
global attractors for second and higher order parabolic problems mentioned
above.

2. General theory

Section 2.0 contains two general theorems justifying existence of global
attractors for semigroups generated by evolutionary equations with sectorial
operators. It forms a basis for, specified in the case of parabolic systems,
theorems of Section 2.1 where (1) is treated abstractly as a Cauchy prob-
lem in [L^{p}(\Omega)]^{d} . We study there a local semiflow \{T(t)\} generated by (1)
on fractional power spaces X^{\alpha} and formulate an equivalent condition for
distinguishing from a phase space X^{\alpha} a subset V for which a family of
mappings T(t) : V – V(t\geq 0) is a semiflow of global solutions of (1) and,
in addition, has an attractor in V.

2.0. Background
As a consequence of Assumption A-I the operator A_{p} defined in [L^{p}(\Omega)]^{d}

by A from (1) on the domain D(A_{p})=\{\phi\in[W^{2m,p}(\Omega)]^{d} : B_{j}\phi=0 , j=
1 , \ldots , md on \partial\Omega } (p>1) generates an analytic semigroup of linear opera-
tors e^{-tA_{p}} : [L^{p}(\Omega)]^{d}arrow[L^{p}(\Omega)]^{d} , t\geq 0 (cf. [AM, Chapt. I , Th. 2.4]). Hence,
let us consider (1) as a Cauchy problem:

\{

\dot{u}+A_{p}u=F_{p}(u) , t>0 ,

u(0)=u_{0} ,
(2)

with A_{p}=A_{p}+k_{0}Id sectorial and positive in [L^{p}(\Omega)]^{d} (so that Re(\sigma(A_{p}))\geq

a>0 ; in addition as a result of [TR , Th. 5.5.1] A_{p} has compact resolvent)
and F_{p} a nonlinear substitution operator in [L^{p}(\Omega)]^{d} induced by f+kold;

i.e .

F(v)(x)=f(x, v(x), D^{1}v(x) , . , D^{k}v(x))+k_{0}v(x) .

Following [HA , p. 72], [HE, Chapt. 3]:

Definition 1 By a D(A_{p}^{\alpha}) -solution of (1) we understand a continuous
function u : [0, \tau_{u_{0}}) arrow D(A_{p}^{\alpha}) satisfying (2), such that u_{t} : (0, \tau_{u_{0}}) -

[L^{p}(\Omega)]^{d} is continuous and u(t) belongs to D(A_{p}) for each t\in(0, \tau_{u_{0}}) .

Results presented in Section 2.1 contain concretizations, for the case of
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systems of parabolic equations, of the two theorems stated below. TheO-
rem 3 and Corollary 3 of Section 4 are derived from Proposition 1 and the
idea of extending the properties of a semigroup on X^{\beta} onto semigroups on
X^{\alpha} with \alpha\in[\beta, 1) is exploited in all the theorems of Section 2.1. Condi-
tion (4) in Proposition 2 is also important, since it determines the choice
of parameters \alpha_{0} , p_{0} in such a way that the semigroup acting on D(A_{p0}^{\alpha_{0}})

and smoother spaces D(A_{p}^{\alpha}) is automatically continuous in the [W^{k,\infty}(\Omega)]^{d}

norm, which immediately ensures Lipschitz continuity on bounded sets of
the nonlinear term F_{p} (cf. the comments in [C], [CRF], [CD2] and [CD3]).

The following result comes from Hale [HA]:

Proposition 1 Let X be a complete metric space and T(t) : Xarrow X,
t\geq 0 , be a compact C^{0} -semigroup. Assume that \{T(t)\} is point dissipative;
then, there is a global attractor for \{T(t)\} in X

Proof. The proof of this is very simple and follows from the fact that
\{T(t)\} is compact, from the continuity of the map (t, u_{0}) – T(t)u_{0} and
from the point dissipativeness of \{T(t)\} . \square

As seen above, an important step is to guarantee compactness of the
semigroup \{T(t)\} . In parabolic problems of the form (2), this is usually
done by checking that A_{p} has compact resolvent, proving that the associated
semigroup is bounded and then using the variation of constants formula to
obtain its compactness (cf. [HA , Sec. 4.2]). Another approach is presented
in the following theorem.

Let 1>\alpha>\beta>0 and assume that A_{p} has compact resolvent. Assume
also that the nonlinearity F_{p} in (2) is such that

F_{p} : X^{\beta}arrow X

is a well defined map which is Lipschitz continuous on bounded subsets
of X^{\beta} . Therefore F_{p} : X^{\alpha} – X is also Lipschitz continuous on bounded
subsets of X^{\alpha} . Assume that solutions to (2) with initial data in X^{\beta} are
globally defined and let \{T_{\beta}(t)\} denote the semigroup associated with (2)
in X^{\beta} . Assume that \{T_{\beta}(t)\} is point dissipative. Then the following result
holds:

Theorem 1 Under assumptions as stated the semigroup \{T_{\alpha}(t)\} associ-
ated with (2) in X^{\alpha} is globally defined and bounded dissipative. Furthermore,
there is a global attractor for \{T_{\alpha}(t)\} in X^{\alpha} .
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Proof. Let B be a bounded subset of X^{\alpha} and let B_{0}\subset X^{\beta} be such that B_{0}

attracts points of X^{\beta} under the semigroup \{T_{\beta}(t), t\geq 0\} . Let us first prove
that the semigroup \{T_{\alpha}(t)\} is globally defined. If u_{0}\in X^{\alpha} then u_{0}\in X^{\beta}

and \{T_{\beta}(t)u_{0}, t \geq 0\} is a bounded subset of X^{\beta} and therefore \{F_{p}(T_{\beta}(t)u_{0})\}

is a bounded subset of X Thus, omitting subscripts \alpha , \beta wherever they
are inessential, we have:

||T(t)u_{0}||_{X^{\alpha}}

\leq Me^{-at}||u_{0}||_{X^{\alpha}}+\int_{0}^{t}Me^{-a(t-s)}(t-s)^{-\alpha}\Uparrow F_{p}(T(s)u_{0})||xds

\leq M||u_{0}||_{X^{\alpha}}+M\sup_{t\geq 0}||F_{p}(T(t)u_{0})||_{X}\int_{0}^{\infty}e^{-a\theta}\theta^{-\alpha}d\theta

=M||u_{0}||_{X^{\alpha}}+M \sup_{t\geq 0}||F_{p}(T(t)u_{0})||_{X}\frac{\Gamma(1-\alpha)}{a^{1-\alpha}} , (3)

which proves that the semigroup is globally defined on X^{\alpha} . Since N(u_{0}):=

\sup_{t\geq 0}||F_{p}(T_{\alpha}(t)u_{0})||_{X} is not necessarily a bounded function of u_{0} we may
not yet conclude that the semigroup \{T_{\alpha}(t)\} is locally bounded; that is, for
any bounded set B\subset X^{\alpha} and T>0 the set \{T(t)u_{0} : 0\leq t\leq T. u_{0}\in B\}

is bounded in X^{\alpha} . For that we use the following argument.
Note that B viewed as a subset of X^{\beta} is a precompact set and from

the fact (t, u_{0}) – T_{\beta}(t)u_{0} from R^{+}\cross X^{\beta} to X^{\beta} is continuous it follows
that \{T(t)u_{0} : 0\leq t\leq T, u_{0}\in B\} is a bounded subset of X^{\beta} . Using
the variation of constants formula (as before), we conclude that \{T_{\alpha}(t)\} is
locally bounded and therefore compact. To see that it is point dissipative
we proceed as follows. We know that \{T_{\beta}(t)\} is point dissipative; thus, for
any u_{0}\in X^{\alpha} there is a t_{u_{0}} such that dist_{X^{\beta}}(T_{\beta}(t)u_{0}, B_{0})<1 for t\geq t_{u_{0}} .
Thus, for such u and t , we have

T_{\alpha}(t)u=e^{-A_{p}(t-t_{u_{0}})}T_{\alpha}(t_{u_{0}})u+ \int_{t_{u_{0}}}^{t}e^{-A_{p}(t-s)}F_{p}(T_{\alpha}(s)u)ds

and, because of the smoothing action of T(t) (cf. [HE, pp. 26, 57], [AM,
(10), p. 59]),

||T_{\alpha}(t)u||_{X^{\alpha}}\leq M(t-t_{u_{0}})^{\beta-\alpha}e^{-a(t-t_{u_{0}})}||T(t_{u_{0}})u||_{X^{\beta}}

+ \int_{t_{u_{0}}}^{t}Me^{-a(t-s)}(t-s)^{-\alpha}||F_{p}(T_{\alpha}(s)u)||_{X}ds
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\leq M(t-t_{u_{0}})^{\beta-\alpha}e^{-a(t-t_{u_{0}})}(\sup_{v\in B_{0}}||v||_{X^{\beta}}+1)

+M \frac{\Gamma(1-\alpha)}{a^{1-\alpha}} sup ||F(v)||_{X} ,
dist_{X^{\beta}}(v,B_{0})<1

which proves that \{T_{\alpha}(t)\} is point dissipative and the proof is completed
applying Proposition 1. \square

2.1. Abstract approach to parabolic systems
We start this section with the definition:

Definition 2 A D(A_{p}^{\alpha}) solution u(t, u_{0}) of (1) does not ‘blow-up’ iff
\tau_{\max}(u_{0})=\infty and

sup ||u(t, u_{0})||_{D(A_{p}^{\alpha})}<\infty ;
t\in[0,\infty)

i.e. a solution u(t, u_{0}) is defined globally in time and its trajectory is
bounded.

The following is a well known result (cf. [HA , Sec. 2.2], [HE, Chapt. 3]):

Proposition 2 For p_{0}\in(1, \infty) and \alpha_{0}\in(0,1) satisfying

k<2m \alpha_{0}-\frac{n}{p_{0}} , (4)

the nonlinear term F : D(A_{p0}^{\alpha_{0}}) – [L^{p0}(\Omega)]^{d} is Lipschitz continuous on
bounded sets and a local semiflow \{T(t)\}(T(t)u_{0} = u(t, u_{0}) for t \in

[0, \tau_{\max}(u_{0}))) of maximal D(A_{p0}^{\alpha_{0}}) -solutions of (1) is defined on D(A_{p0}^{\alpha_{0}}) .

As a consequence of Definition 2, whenever u_{0}\in D(A_{p0}^{\alpha_{0}}) is such that
T(t)u_{0} does not ‘blow-up’. the estimate:

\sup_{t>0}||T(t)u_{0}||_{Y}\leq const (5)

holds with Y:=D(A_{p0}^{\alpha_{0}}) . However, even if (5) holds for some u_{0}\in D(A_{p0}^{\alpha_{0}})

and Y\supset D(A_{p0}) one cannot expect, in general, that the corresponding
D(A_{p0}^{\alpha_{0}}) solution T(t)u_{0} does not ‘blow-up’, unless simultaneously F_{p} is sub-
ordinated to some power of A_{p} . More precisely:

Theorem 2 Let p_{0} , \alpha_{0} satisfy (4) and u_{0}\in D(A_{p0}^{\alpha_{0}}) . Then T(t)u_{0} does
not ‘blow-up ’ if and only if there is a Banach space Y\supset D(A_{po}) and a
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nondecreasing function g:[0, \infty) – [0, \infty) such that:

\exists_{c>0}\forall_{t\in(0,\tau_{\max}(u_{0}))}||T(t)u_{0}||_{Y}\leq c (6)

and

\exists_{\theta\in[0,1)}\forall_{t\in(0,\tau_{\max}(uo))}||F(T(t)u_{0})||_{[L^{p_{0}}(\Omega)]^{d}}

\leq g(||T(t)u_{0}||_{Y})(1+||A_{p0}^{\alpha_{0}}T(t)u_{0}||_{[L^{p_{0}}(\Omega)]^{d}}^{\theta}) . (7)

Proof. As shown in [CD3 , Th. 1], conditions (6) and (7) are sufficient to
verify that T(t)u_{0} does not ‘blow-up’. To prove that (6) and (7) are also
necessary observe that (6) follows from the boundedness of \{T(t)u_{0}, t\geq 0\}

in D(A_{p0}^{\alpha_{0}})=:Y Furthermore, since

\{T(t)u_{0}, t\geq 0\}\subset D(A_{p0}^{\alpha_{0}})\subset boundedcont

.
[C^{k}(cl\Omega)]^{d} , (8)

then for any t\geq 0 the set

B_{t}:= \{(x, T(t)u_{0}(x), D^{1}T(t)u_{0}(x), \ldots, D^{k}T(t)u_{0}(x)), x\in d\Omega\}

is bounded in cl\Omega\cross R^{d_{0}} (here d_{0}=d \sum_{|\alpha|\leq k}1 ). More precisely:

B_{t}\subset cl\Omega\cross B_{R^{d_{0}}}(0, C||T(t)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}) ,

where B_{R^{d_{0}}} is a ball in R^{d_{0}} centered in 0 with radius C||T(t)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})} and
C is the Sobolev constant from the embedding (8). Then by the continuity
of f , for each fixed t>0 we verify that:

||F_{p0}(T(t)u_{0})||_{[L^{p}(\Omega)]^{d}}

\leq|\Omega|^{\frac{1}{p_{0}}}||f(\cdot, T(t)u_{0}(\cdot), D^{1}T(t)u_{0}(\cdot) , , D^{k}T(t)u_{0}(\cdot))

+k_{0}T(t)u_{0(\cdot)||_{[L^{\infty}(\Omega)]^{d}}}

\leq|\Omega|^{\frac{1}{p_{0}}} \{|f(x,p_{1}, . , _{p_{d_{0}})|+k_{0}|(p_{1}}, \ldots,p_{d})|\}

(p_{1}, \ldots,p_{d_{0}})\in B_{t}\sup_{x\in d\Omega}

\leq|\Omega|^{\frac{1}{p_{0}}} sup \{
|f(x, p_{1}, , _{p_{d_{0}}})|

x\in cl\Omega

|(p_{1},\ldots,p_{d_{0}})|\leq C||T(t)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}

+k_{0}|(p_{1}, \ldots,p_{d})|\}

which proves that (7) is satisfied with arbitrarily chosen \theta\in[0,1) and a
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function g : [0, \infty)arrow[0, \infty) defined by

g(y)=|\Omega|^{\frac{1}{p_{0}}} sup \{|f(x,p_{1}, . . ’ p_{d_{0}})|+k_{0}|(p_{1}, \ldots,p_{d})|\} . (9)
x\in cl\Omega

|(p_{1} ,... ,p_{d_{0}})|\leq Cy

\square

Since the definition of g is independent of u_{0} then, as a consequence of
Theorem 2, we get immediately:

Corollary 1 Let p_{0} , \alpha_{0} satisfy (4) and V\subset D(A_{p0}^{\alpha_{0}}) . Then T(t)u_{0} does
not ‘blow-up ’ for u_{0}\in V if, and only if, there is a Banach space Y\supset D(A_{p0})

and a nondecreasing function g:[0, \infty)arrow[0, \infty) such that

\forall_{u_{0}\in V}\exists_{c(u_{0})>0}\forall_{t\in(0,\tau_{\max}(u_{0}))}||T(t)u_{0}||_{Y}\leq c(u_{0}) (10)

and

\exists_{\theta\in[0,1)}\forall_{u_{0}\in V}\forall_{t\in(0,\tau_{\max}(u_{0}))}||F(T(t)u_{0})||_{[L^{p_{0}}(\Omega)]^{d}}

\leq g(||T(t)u_{0}||_{Y})(1+||A_{p0}^{\alpha_{0}}T(t)u_{0}||_{[L^{p_{0}}(\Omega)]^{d}}^{\theta}) (11)

Corollary 1 contains criteria for boundedness of trajectories of points.
In Proposition 3 below, a similar result concerning orbits of bounded sets
is given.

Proposition 3 Let p_{0} , \alpha_{0} satisfy (4) and V\subset D(A_{p0}^{\alpha_{0}}) . Then the follow-
ing conditions are equivalent:

T(t)u_{0} does not ‘blow-up ’ for u_{0}\in V and for each bounded
subset B of D(A_{p0}^{\alpha_{0}}) the positive orbit \{T(t)B\cap V, t\geq 0\} is (12)
bounded in D(A_{p0}^{\alpha_{0}}) ,

There is a Banach space Y\supset D(A_{p0}) and a nondecreasing
function g : [0, \infty)arrow[0, \infty) such that (10), (11) holds with

(13)the function c:Varrow[0, \infty) in (10) taking bounded subsets
of V into bounded subsets of [0, \infty) .

Proof Sufficiency of (13) follows from [CD3 , Th.1]. To prove that (13)
is also necessary we only need to justify that c(u_{0}) is bounded on bounded
subsets of V (cf. Cor. 1). Since T(t)u_{0} does not ‘blow-up’ for u_{0}\in V then all
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considerations of the proof of Th. 2 may be repeated until the nondecreasing

function g is defined as the condition (9) states. Thus, using (9), we get for
each t\geq 0 :

||T(t)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}

\leq Ce^{-at}||u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}+\int_{0}^{t}C\frac{e^{-as}}{s^{\alpha_{0}}}g(\sup_{s\in[0,t)}||T(s)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})})ds

\leq C||u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}+g(\sup_{s\in[0,\infty)}||T(s)u_{0}||_{D(A_{P0}^{\alpha_{0}})})C\frac{\Gamma(1-\alpha_{0})}{a^{1-\alpha_{0}}} . (14)

Defining now for each u_{0}\in V

c(u_{0}):=C||u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}+C \frac{\Gamma(1-\alpha_{0})}{a^{1-\alpha_{0}}}g( sup ||T(s)u_{0}||_{D(A_{p_{0}}^{\alpha_{0}})}) ,
s\in[0,\infty)

(15)

it is clear that if for each bounded subset B of D(A_{p0}^{\alpha_{0}}) the orbit \{T(t)B\cap

V, t\geq 0\} is bounded in D(A_{p0}^{\alpha_{0}}) , then the function c:Varrow[0, \infty) given in
(15) is bounded on bounded subsets of V \square

As a result of [CD3 , Th. 1] it follows that point dissipativeness of \{T(t)\}

is equivalent to the asymptotic independence of some introductory estimate

of initial conditions. Connecting the mentioned result with Cor. 1 we obtain
as a consequence:

Corollary 2 Let p_{0} , \alpha_{0} satisfy (4) and V\subset D(A_{p0}^{\alpha_{0}}) . Then the following
two conditions are equivalent:

o T(t)u_{0} does not ‘blow-up ’ for u_{0}\in V and there is a bounded subset B

of D(A_{p0}^{\alpha_{0}}) such lhat for each u_{0}\in V, dist_{D(A_{p_{0}}^{\alpha_{0}})}(T(t)u0, B)arrow 0 when
tarrow+\infty ,

\circ There is a Banach space Y\supset D(A_{p0}) and a nondecreasing function
g : [0, \infty)arrow[0, \infty) such that (10), (11) hold and the estimate (10) is
asymptotically independent of u_{0}\in V , i.e .

\exists c_{1}>0\forall_{uo\in V}\lim_{tarrow+}\sup_{\infty}||T(t)u_{0}||_{Y}<c_{1}
. (16)

After these preparations, the equivalent condition for existence of a
restricted global attractor for \{T(t)\} generated by (1) on a subset of D(A_{p0}^{\alpha_{0}})

may easily be formulated. As is seen in Definition 3 below, we shall consider
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further only semiflows which take bounded sets onto bounded sets.

Definition 3 Let \{T(t)\} be a local semiflow on D(A_{p0}^{\alpha_{0}}) . We say that
S\subset D(A_{p0}^{\alpha_{0}}) is a restricted global attractor for \{T(t)\} in D(A_{p0}^{\alpha_{0}}) iff for some
closed nonempty subset V of D(A_{p0}^{\alpha_{0}}) , T(t) : Varrow V , t\geq 0 , is a global
semiflow on V such that positive orbits of bounded sets are bounded and S
is a global attractor for \{T(t)\} restricted to V in the sense of the definition
stated in [HA , Sec. 3.4].

Remark 1. When V=D(A_{p0}^{\alpha_{0}}) , Definition 3 coincides with the original
definition of the global attractor contained in Hale’s monograph [HA]. How-
ever, the above notion of a restricted global attractor seems to be more
useful in applications. As seen in many examples, although (1) (under an
appropriate choice of parameters \alpha and p) almost always generates a local
semiflow on D(A_{p}^{\alpha}) , it is rather rare for it to keep trajectories of all points
from D(A_{p}^{\alpha}) bounded in time, or even if this is so, it is much more rare that
this semiflow is point dissipative on the whole phase space D(A_{p}^{\alpha}) . Hence,
the results presented here give equivalent conditions for selecting in D(A_{p}^{\alpha})

a subset V such that \{T(t)\} restricted to V is globally defined and point dis-
sipative; i.e. there is a restricted global attractor for \{T(t)\} (see Theorem 3
below).

Remark 2. In [HA , p. 17] a local attractor was defined as a compact invari-
ant set attracting an open neighborhood of itself. This notion is, in general,
different from the notion introduced above of a restricted global attractor
unless a special form of V is considered. For instance, in the well known
Cahn-Hilliard equation (see [CD2], [TE] for details) the set V has the form:

V=\{\phi\in D(A_{p}^{\alpha});|\overline{\phi}|\leq b\} , b>0 where \overline{\phi}:=|\Omega|^{-1}\int_{\Omega}\phi(x)dx .

Clearly V is unbounded in D(A_{p}^{\alpha}) and among elements of a restricted global
attractor A_{V} (cf. [TE], [CD2]) are constant stationary solutions:

\psi(x)\equiv|\Omega|^{-1}a , for a\in[0, b] .

Since any open neighbourhood of A_{V} in D(A_{p}^{\alpha}) must contain element \phi_{\in}

with spatial average \overline{\phi}_{\in}=b+\epsilon(\epsilon>0) and spatial averages of solutions of
the Cahn-Hilliard equation are preserved in time, then A_{V} will not attract
the trajectory of \phi_{\epsilon} so that A_{V} is not a local attractor in the sense of [HA ,
p. 17] in D(A_{p}^{\alpha}) .
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Connecting Cor. 1, Prop. 3, Th. 2 and using the results of [HA , Chapt.
3, 4] we obtain finally:

Theorem 3 Let p_{0} , \alpha_{0} satisfy (4), \{T(t)\} be a local semiflow on D(A_{p0}^{\alpha_{0}})

introduced in Prop. 2 and the resolvent of A_{p0} be compact. Then \{T(t)\}

has a restricted global attractor in D(A_{p0}^{\alpha_{0}}) if and only if the conjunction

of conditions (13) and (16) holds with some closed and positively invariant
nonempty subset V of D(A_{p0}^{\alpha_{0}}) .

Based on the results given above, in the next section a number of
parabolic problems is studied. Finally, in Section 4, the above abstract
requirements are translated into algebraic conditions concerning the data
of problem (1).

3. Examples

3.1. Dissipation Through Contracting Rectangles
We start with the general setting that was formulated and studied by

C. C. Conley, J. A. Smoller and their collaborators (see e.g. [CCS], [SM]).
In general, showing that a semigroup \{T(t)\} is point dissipative is done

with the use of La Salle ’s invariance theory and though it may be a delicate
step, it can be accomplished in many applications (see, for example [C] or
[CRF] ) .

Let \Omega be a bounded domain in R^{n} , n\leq 3 , with smooth boundary and D
denotes a positive definite diagonal matrix. Consider the following second
order semilinear parabolic system:

\{

u_{t}=D\triangle u+f(u) , x\in\Omega , t>0 ,

\frac{\partial u}{\partial N}=0 , x\in\partial\Omega , t>0 ,
(17)

where f : \mathcal{M}\subset R^{d}arrow R^{d} is a locally Lipschitz continuous function and \mathcal{M}

is a closed rectangle in R^{n} such that in every face of the rectangle

f(u) N(u)\leq 0

with N(u) denoting the outward normal vector to the corresponding face.
Assume that \alpha>\frac{n}{4} and let V=\{u\in X^{\alpha} : \forall_{x\in\Omega}u(x)\in \mathcal{M}\} . It has been
shown in [C] that (17) is locally well posed in V In addition to the above
hypothesis, assume that there is a bounded rectangle R_{0} containing 0 and
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a point x_{0}\in \mathcal{M} with

R_{t}=x_{0}+tR_{0}

such that \{R_{t}, t\geq 0\} covers \mathcal{M} and

f(u) N(u)<0 (18)

for any u in a closed face of R_{t}\cap \mathcal{M} which is not contained in a face of \mathcal{M} ,
N(u) being the outward normal vector to that face.

Remark 3. Even though the above conditions seem complicated at first,
they are very natural. They merely state that the flow points inward in a
family of rectangles (larger then R_{0} ) which cover \mathcal{M} . And with Neumann
boundary conditions this is expected to occur in many examples for which
one hopes to prove existence of global attractors since the solutions to \dot{u}=

f(u) are also solutions to the problem (17).

Next we describe how the above conditions imply dissipativeness in X^{\alpha} .
Let P_{R_{0}} : \mathcal{M}arrow R^{+} be the function defined by

P_{R_{0}}(u)= \inf\{t\geq 0 : u\in R_{t}\}

and F_{R_{0}} : Varrow R^{+} be the function defined by

F_{R_{0}}(w)= \sup_{x\in\Omega}P_{R_{0}}(w(x)) .

Note that since X^{\alpha}\subset[L^{\infty}(\Omega)]^{d} we have that F_{R_{0}} is a Lipschitz function in
bounded subsets of V It has been proved in [C] that

\dot{F}_{R_{0}}(u)<-\eta

for any u_{0} whose image is not contained in R_{0} . Here \dot{F}_{R_{0}} denotes the deriva-
tive along solutions of (17). Therefore, F_{R_{0}} is a Lyapunov function and
from La Salle’s invariance theory we obtain that T_{Y}(t) is globally defined
and point dissipative in the uniform norm, proving that (16) is satisfied.
Also, using invariant regions and the variation of constants formula, one
easily obtains boundedness (see [C]) and from Proposition 2, (13) is satis-
fied. Theorem 3 guarantees the existence of a restricted global attractor in
V

Remark 4. An alternative way to get point dissipativeness is to use point
dissipativeness in the uniform norm to obtain dissipativeness in V through



Examples of global attractors in parabolic problems 89

the variation of constants formula (see [C]) and then use the previous com-
ments to obtain boundedness in V

For easier studies of several physical models the following short intr0-
duction is useful. Let \Omega be a bounded smooth subset of R^{n} . X=[L^{2}(\Omega)]^{d} ,
and A:D(A)\subset Xarrow X be the unbounded product operator defined by

-A=[-\triangle+\delta Id]\cross \cross[-\triangle+\delta Id]

d-times

on the domain

D(A)=\{u\in[H^{2}(\Omega)]^{d} : \frac{\partial u_{i}}{\partial N}=0,1\leq i\leq d in \partial\Omega\}

The operator -A is selfadjoint, positive with compact resolvent and we
can define its fractional powers (-A)^{\alpha} and the associated fractional power
spaces X^{\alpha} (cf. Proposition 4). It follows next from the fact that A has
compact resolvent that X^{\alpha_{1}} is compactly embedded in X^{\alpha_{2}} whenever \alpha_{1}>

\alpha_{2} . Also X^{\alpha}=[H^{2\alpha}(\Omega)]^{d} for \alpha\leq\frac{1}{2} and X^{\alpha}\subset[L^{\infty}(\Omega)]^{d} with compact
embedding for \alpha>\frac{n}{4} .

3.2. The Hodgkin-Huxley Equations
Consider the system of weakly coupled semilinear parabolic partial dif-

ferential equations in \Omega\subset R^{n} . n\leq 3 ,

\{

cu_{t}=C^{-1}\triangle u+g(u, v, w, z) , x\in\Omega , t >0 ,
v_{t}=\epsilon_{1}\triangle v+g_{1}(u)(h_{1}(u)-v) , x\in\Omega , t>0 ,
w_{t}=\epsilon_{2}\triangle w+g_{2}(u)(h_{2}(u)-w) , x\in\Omega , t>0 ,
z_{t}=\epsilon_{2}\triangle z+gs(u)(h_{3}(u)-z) , x\in\Omega , t>0 ,

\frac{\partial u}{\partial N}=\frac{\partial v}{\partial N}=\frac{\partial w}{\partial N}=\frac{\partial z}{\partial N} , x\in\partial\Omega , t>0 ,

(19)

where C , c_{i} and \epsilon_{i} , i=1,2,3 , are positive constants, and g is defined by

g(u, v, w, z)=k_{1}v^{3}w(c_{1}-u)+k_{2}z^{4}(c_{2}-u)+k_{3}(c_{3}-u) ,

c_{1}>c_{3}>0>c_{2} . (20)

Furthermore, g_{i}>0,1>h_{i}>0 , i=1,2,3 . In this model the variables
v , w , z represent chemical concentrations, and are thus nonnegative, while
u denotes electric potential. The equations are a mathematical model for
the physiological phenomenon of signal transmission across axons.
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The above system is locally well posed in V=\{(u_{1}, u_{2}, u_{3}, u_{4})\in X^{\alpha} :
\forall_{x\in\Omega}u_{1}\in R^{1} , u_{i}(x)\geq 0,2\leq i\leq 4\} , \alpha>\frac{n}{4} . In what follows we prove that
the problem (19) has a restricted global attractor in V

Under these hypotheses it is easy to see that (18) is satisfied for the
vector field F(u, v, w, z)=(g(u, v, w, z), g_{1}(u)(h_{1}(u)-v) , g_{2}(u)(h_{2}(u)-w) ,
g_{3}(u)(h_{3}(u)-z))^{T} in \mathcal{M}=\{(u_{1}, u_{2}, u_{3}, u_{4})\in R^{4} : u_{i}\geq 0,2\leq i\leq

4 , u_{1}\in R^{1}\} . Choose x_{0}=(0,0,0,0) and R_{0}=[-M_{1}, M_{1}]x[0,1]^{3} , M_{1}\geq

\max\{c_{1}, |c_{2}|\} . It follows from the results of the previous sections that the
problem (19) has a restricted global attractor in V

3.3. The Fitzhugh-Nagumo Equations
Consider the equations

\{

u_{t}=\triangle u+f(u)-v , x\in\Omega , t>0 ,
v_{t}=\epsilon\triangle v+\sigma u-\gamma v , x\in\Omega , t>0 ,

\frac{\partial u}{\partial N}=\frac{\partial v}{\partial N}=0 , x\in\partial\Omega , t>0 ,

(21)

where \sigma , \gamma and \epsilon are positive constants. The function f has the qualitative
form of a cubic polynomial, for example f(u)=-u(u-\beta)(u-1) , where
0< \beta<\frac{1}{2} . This system is known as the Fitzhugh-Nagumo Equations and
also constitutes a mathematical model for transmission of nerve impulses in
axons.

Therefore, the system (21) defines a local semigroup in X^{\alpha} , \alpha>\frac{n}{4} .
If we choose a rectangle R such that in the lower face \sigma u-\gamma v>0 , in
the upper face \sigma u-\gamma v<0 , in the left face f(u)-v>0 , in the right face
f(u)-v<0 , then (18) is satisfied. The fact that f grows more than linearly
guarantees that it is always possible to find such a rectangle and to justify
the existence of a restricted global attractor for (21) in V_{R}=\{(u, v)\in X^{\alpha} :
(u(x), v(x))\in R , x\in\Omega\} , \alpha>\frac{n}{4} .

3.4. Superconductivity of Liquids
Consider the following system of parabolic partial differential equations:

\{

u_{t}=D\triangle u+(1-|u|^{2})f(u) , x\in\Omega , t>0 ,

\frac{\partial u}{\partial N}=0 , x\in\partial\Omega , t>0 ,
(22)

where f:= (f_{1}, \ldots, f_{d}) is a locally Lipschitz function satisfying f_{i}(u)u_{i}>0

for u_{i}\neq 0,1\leq i\leq d , D is as before. Then, if x_{0}=0 and R_{0}=[-1,1]^{d} . the
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condition (18) is satisfied and the results of the previous sections imply the
existence of a global attractor for the problem (22) in X^{\alpha} . \alpha>\frac{n}{4} .

3.5. Lotka-Volterra Models for Two Competing Species
Consider the following Lotka-Volterra Model in X^{\alpha} for two species com-

peting for the same food source, with each species having logistic growth in
the absence of the other and taking into account the diffusion:

\{

u_{t}=d_{1}\triangle u+u (l-u–a v), x\in\Omega , t>0 ,
v_{t}=d_{2}\triangle v+\rho v (l-v–b u), x\in\Omega , t>0 ,

\frac{\partial u}{\partial N}=\frac{\partial v}{\partial N}=0 , x\in\partial\Omega , t>0 ,

(23)

where a , b , \rho are positive constants. Let \mathcal{M}:=[0, \infty)\cross[0, \infty) and V=
\{\phi\in X^{\alpha}; \forall_{x\in\Omega}\phi(x)\in \mathcal{M}\} , \alpha>\frac{n}{4} . Note that

u^{2} (1 - u – av) <0 for u>1 , v\geq 0 ,
\rho v^{2} (1 - v - bu) <0 for v>1 , u\geq 0 .

Therefore, taking x_{0}=0 and R_{0}=[0,1]\cross[0,1] , the results in the previous
sections imply that the problem (23) has a restricted global attractor in V

3.6. Systems of parabolic equations in H^{1}(\Omega) in subcritical
growth case without gradient structure

The present example will show that although the abstract approach of
Part 2 is convenient in applications, because of restrictions imposed e.g. by
condition (4), separate treating of specific problems will sometimes extend
the range of spaces in which global attractors could be detected. Such
extension, however, requires extra assumptions imposed on nonlinearity.

Let f : R^{d}arrow R^{d} be a locally Lipschitz continuous function and assume
that there are constants \xi_{i} , 1\leq i\leq d , such that

f_{i}(u)u_{i}<0 , (24)

for all u\in R^{d} with |u_{i}|>\xi_{i} . Consider the system of parabolic problems:

\{

u_{t}=D\triangle u+f(u) in R^{+}\cross\Omega ,

\frac{\partial u}{\partial N}=0 on \partial\Omega ,

u(0, x)=u_{0}(x) , x\in\Omega .

(25)
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Choosing arbitrary \alpha\in(0,1) , p\in(1, \infty) satisfying (4);

\alpha>\frac{n}{2p}

and any u_{0}\in D(A_{p}^{\alpha}) , as a direct consequence of the [L^{\infty}(\Omega)]^{d} a priori
estimates of D(A_{p}^{\alpha}) solutions to (25) following from 3.1, we get an estimate

||f(u(t, u_{0}))||_{[L^{\infty}(\Omega)]^{d}}\leq g(||u(t, u_{0})||_{[L^{\infty}(\Omega)]^{d}}) ,

which is a special form of (11) with Y=[L^{\infty}(\Omega)]^{d} . Restricting the semi-
group generated by (25) to u_{0} with values in a positively invariant rectangle
\mathcal{M} , from 3.1 we get automatically the existence of a restricted global at-
tractor as a consequence of Theorem 3 with

V=D(A_{p}^{\alpha})\cap\{\phi\in[L^{\infty}(\Omega)]^{d};\phi(x)\in \mathcal{M}\} .

Assume now additionally that n=3 and there are constants \gamma<2 and
C>0 such that

|f(u)-f(v)|^{2}\leq C(1+|u|^{2\gamma}+|v|^{2\gamma})|u-v|^{2} . (26)

Our first aim will be to prove that the problem (25) is locally well
posed in X^{\alpha} for some \alpha<\frac{1}{2} . Then, we will prove that the solutions of
(25) are globally defined and that the semigroup associated with (25) is
point dissipative in X^{\alpha} . With that information we use the fact that X^{\frac{1}{2}} is
compactly embedded in X^{\alpha} , \alpha<\frac{1}{2} , to obtain that the semigroup associated
with (25) has a global attractor in X^{\frac{1}{2}} . The following lemma guarantees
that the problem (25) is locally well posed.

Lemma 1 The map f^{e} : [H^{s}(\Omega)]^{d}arrow[L^{2}(\Omega)]^{d} , where f^{e}(u)(x)=f(u(x))

for x\in\Omega , is well defined and Lipschitz continuous on bounded subsets of
[H^{s}(\Omega)]^{d} for s \geq\frac{3}{2}(1-\frac{1}{\gamma+1}) .

Proof It is enough to prove the above result for s= \frac{3}{2}(1-\frac{1}{\gamma+1}) . Let

r>0 and u , v\in[H^{s}(\Omega)]^{d} be such that ||u||_{[H^{s}(\Omega)]^{d}}\leq r and ||v||_{[H^{s}(\Omega)]^{d}}\leq r .
Then,

\int_{\Omega}|f(u(x))-f(v(x))|^{2}dx

\leq C\int_{\Omega}(1+|u(x)|^{2\gamma}+|v(x)|^{2\gamma})(u(x)-v(x))^{2}dx
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\leq C(|\Omega|^{\frac{1}{q}}+||u||_{[L^{2\gamma q}(\Omega)]^{d}}^{2\gamma}+||v||_{[L^{2\gamma q}(\Omega)]^{d}}^{2\gamma})||u-v||_{[L^{2q’}(\Omega)]^{d}}^{2} ,

where \frac{1}{q}+\frac{1}{q}, =1 . Since [H^{s}(\Omega)]^{d}\subset[L^{p}(\Omega)]^{d} with continuous inclusion for

s= \frac{3}{2}-\frac{3}{p} , we impose that 2q’=p. Then, 2\gamma q=p . Since [H^{s}(\Omega)]^{d} is

continuously embedded in [L^{p}(\Omega)]^{d} . we have that

||f^{e}(u)-f^{e}(v)||_{[L^{2}(\Omega)]^{d}}

\leq cK(|\Omega|^{\frac{2\gamma}{p}}+K^{2\gamma}(||u||_{[H^{s}(\Omega)]^{d}}^{2\gamma}+||v||_{[H^{s}(\Omega)]^{d}}^{2\gamma}))^{\frac{1}{2}}||u-v||_{[H^{s}(\Omega)]^{d}}

\leq cK(|\Omega|^{\frac{2\gamma}{p}}+2K^{2\gamma}r^{2\gamma})^{\frac{1}{2}}||u-v||_{[H^{s}(\Omega)]^{d}} ,

where K is the embedding constant for [H^{s}(\Omega)]^{d}\subset[L^{p}(\Omega)]^{d} and the result
is proved. \square

Let u_{0}\in X^{\alpha} , \alpha\geq\frac{3}{4}(1-\frac{1}{\gamma+1}) . Then, from Lemma 1, there exists a
solution u(t, u_{0}) to the problem (25) satisfying u(0, u_{0})=u_{0} . This local
solution is such that u(t, u_{0})\in X^{\beta} . for every \beta\leq 1 and t>0 and for as
long as it exists. Therefore, u(t, u_{0})\in[L^{\infty}(\Omega)]^{d} for t>0 and for as long
as it exists. If [0, t_{\max}) denotes the maximal interval of existence of this
solution and t_{0}\in(0, t_{\max}) , we have that u(t_{0}, u_{0})(x)\in R_{\tau} for some \tau>0 .
Therefore, from the results in 3.1 we obtain that this solution does not blow
up in finite time and as consequence of this, it must exist for all time. Also

from the results in 3.1 we obtain that the semigroup associated with (25)
is point dissipative in [L^{\infty}(\Omega)]^{d} . Using the variation of constants formula

weobtainthatthissemigroupispointdissipativeinX^{\alpha},\alpha\geq Theoremlimpliesthat(25)hasag1oba1attractorinX^{\beta},\beta>\frac{3}{\frac{43}{4}}(1-(1-\frac{1}{\frac{\gamma+11}{\gamma+1}})).

,

in particular it has a global attractor in X^{\frac{1}{2}}=[H^{1}(\Omega)]^{d} and the result is
proved.

Remark 5. No gradient structure is assumed for (25). Thus, we have been
able to prove the existence of global attractors in [H^{1}(\Omega)]^{d} for systems of
parabolic problems in the subcritical growth case without assuming that
the nonlinearity has a symmetric Jacobian.

3.7. Fluid flow problems

3.7.1. 2D-Navier-Stokes system. The Navier-Stokes system was
studied by many authors but we will refer here only to [HE, p. 79-81],
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[TE , p. 102-113] and [GM] for details or references. Let us consider

\{

u_{t}=\triangle u-(u, \nabla)u+f-\nabla p in (0, T) \cross D ,

divu=0, in (0, T) \cross D ,

u=0 on S\cross(0, T) ,
u(0, x)=u_{0}(x) in D ,

(27)

where D is a bounded domain in R^{2} with a smooth boundary S , u=
(u^{1}(t, x) , u^{2}(t, x)) denotes velocity, p(t, x) pressure and f=(f^{1}(x), f^{2}(x))

the external forces. Projecting this problem (P_{r}) onto a subspace X_{r}\subset

[L^{r}(D)]^{2},1<r<\infty , of divergence-free functions

X_{r}=cl_{[L^{r}(D)]^{2}}\{\phi\in[C_{0}^{\infty}(D)]^{2}; div\phi=0\}

we get (27) in an abstract form

u_{t}+A_{r}u=F_{r}u+P_{r}f , t>0 , u(0)=u_{0} , (28)

with sectorial matrix operator

A_{r}=-P_{r} \{\begin{array}{ll}\triangle 00 \triangle\end{array}\}

(cf. [GM, Lem. 1.1], [HE, p. 80-81]) defined on the domain D(A_{r})=X_{r}\cap

\{\phi\in[W^{2,r}(D)]^{2} ; \phi|_{\partial D}=0\} and nonlinear term F_{r}u=-P_{r}(u, \nabla)u . Com-
pactness of the resolvent (A_{r}+\lambda Id)^{-1} : X_{r}arrow X_{r} , \lambda\in\sigma(A_{r}) , follows
from the estimate in [GM, Lem. 3.1] with m=0 and compactness of the
embedding [W^{2,r}(D)]^{2}arrow[L^{r}(D)]^{2} .

In order to fulfil condition (4), we choose p_{0}\in(1, \infty) and \alpha_{0}\in(0,1)

satisfying

1<2( \alpha_{0}-\frac{1}{p_{0}}) (29)

From [GM , p. 269] for 0\leq\alpha\leq 1 , it is known that

D(A_{r}^{\alpha})=[X_{r}, D(A_{r})]_{\alpha}

and, whenever \alpha\geq 0 , D(A_{r}^{\alpha}) is continuously embedded in the space of Bessel
potentials [H_{r}^{2\alpha}(D)]^{2} . In particular, for \alpha\in[\alpha_{0},1) and r\geq p_{0} , D(A_{r}^{\alpha}) is a
subset of [L^{\infty}(D)]^{2}\cap[H_{r}^{1}(D)]^{2} and the nonlinear term F_{r} : D(A_{r}^{\alpha}) – X_{r} is



Examples of global attractors in parabolic problems 95

Lipschitz continuous on bounded sets. Indeed, for \phi , \psi\in D(A_{r}^{\alpha})

||F_{r}\phi-F_{r}\psi||_{X^{r}}

\leq C_{r}||\phi||_{[W^{1,r}(D)]^{2}}||\phi-\psi||_{[W^{1,r}(D)]^{2}}

+C_{r}||\phi-\psi||_{[W^{1,r}(D)]^{2}}||\psi||_{[W^{1,r}(D)]^{2}}

\leq C_{r}\max\{||\phi||_{[W^{1,r}(D)]^{2}}, ||\psi||_{[W^{1,r}(D)]^{2}}\}||\phi-\psi||_{[W^{1,r}(D)]^{2}}

(cf. [GM , Lem. 3.2]), so that local solvability of (28) follows.
Now for \alpha_{0}>\frac{1}{2} and p0>2 (resulting from (29)), our D(A_{r}^{\alpha}) solution

(\alpha\in[\alpha_{0},1) , r\geq p_{0}) is automatically a solution in the sense of [TE, Th.
2.1, p. 106] and we are allowed to use an a priori estimate (2.36) of [TE ,
p. 109], to get

||u(t)||_{[H_{0}^{1}(D)]^{2}}\leq const , for t\geq t_{0}+r_{7} (30)

with const independent of u_{0} (note that estimate (2.25) of [TE] is too weak
for our needs, since it corresponds to borderline values of \gamma_{j} , j=0,1 in
(44) ) .

Based on [GM , Lem. 3.3] we can estimate the right side of (28) as
follows:

||F_{r}u+P_{r}f||_{[L^{r}(D)]^{2}}\leq||P_{r}(u, \nabla)u||_{[L^{r}(D)]^{2}}+C_{0,r}||f||_{[L^{r}(D)]^{2}}

\leq C_{r}||u||_{[W^{1,r}(D)]^{2}}^{2}+C_{0,r}||f||_{[L^{r}(D)]^{2}} . (31)

Simple application of the Nirenberg-Gagliardo inequality [AM, p. 60] gives
next:

||u||_{[W^{1,r}(D)]^{2}}\leq c||u||_{[H_{0}^{1}(D)]^{2}}^{1-\theta}||u||_{D(A_{r}^{1-\epsilon})}^{\theta}

( \theta>\frac{1-\frac{2}{r}}{2-2\epsilon i-\frac{2}{\Gamma}} and \epsilon\in(0, \frac{1}{r} ) is arbitrary, so that 2\theta<1 ). Hence, (31) may

be extended to a suitable form of (11), and we obtain

||F_{r}u+P_{r}f||_{[L^{r}(D)]^{2}}

\leq C^{2}||u||_{[H_{0}^{1}(D)]^{2}}^{2-2\theta}||u||_{D(A_{r}^{1-\epsilon})}^{2\theta}+C_{0,r}||f||_{[L^{r}(D)]^{2}} , (32)

which together with (30) justifies the applicability of Corollary 2. Existence
of a global attractor for the semigroup generated by (27) on D(A_{r}^{\alpha}) with
r>2 and \alpha\in(\max\{1-\frac{1}{r};\frac{1}{2}+\frac{1}{r}\}, 1) now follows from Theorem 3.
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3.7.2. Burgers equation. A simpler physical model for viscous fluid
motion is the Burgers equation [DL]:

\{

v_{t}=l/v_{xx}+Uv- \frac{1}{2}(v^{2})_{x} , t>0 , x\in(0, \pi) ,
U_{t}=P-l/U- \int_{0}^{\pi}v^{2}(t, x)dx , t>0 ,

v(t, O)=v(t, \pi)=0 , t>0 ,

v(0, x)=v_{0}(x) , x\in(0, \pi) ,

U(0)=U_{0} ,

(33)

where lJ >0 denotes viscosity and P>0 stays for a constant pressure drop.

bo1icinitia1boundary1ueprob1em(seepart(i)ofProp.4inSection4)DenotingA_{1}=-\nu\frac{\partial^{2}}{va\partial x^{2}}onecanseethat(A_{1},Id,(0, \pi))isaregularpara-

.
Hence, A_{1} is a sectorial operator in L^{p}(0, \pi) . Moreover A_{2}:=-\nu Id with
D(A_{2})=R^{1} (as bounded and linear; cf. [HE, Chapt. 1, Ex.1]) is also
sectorial and hence, the problem (33) admits an abstract formulation (2)
with the product operator A_{p}:=A_{1}\cross A_{2} considered on the domain D(A_{p})=

(W_{0}^{1,p}(0, \pi)\cap W^{2,p}(0, \pi))\cross R^{1} being sectorial in L^{p}(0, \pi)\cross R^{1} (cf. [HE, Chapt.
1, Ex. 3]). In this example the substitution operator F_{p} is defined as:

F_{p}(U, v):=(Uv- \frac{1}{2}(v^{2})_{x}, P- \int_{0}^{\pi}v^{2}(t, x)dx)

Whenever 2 \alpha_{0}-\frac{1}{p0}>1 it may be seen that F_{p0} acting from D(A_{p0}^{\alpha_{0}})=

D(A_{1_{p0}}^{\alpha_{0}})\cross R^{1} into L^{p0}(0, \pi)\cross R^{1} is Lipschitz continuous on bounded sets
and hence (33) is shown to generate a local semiflow on D(A_{p0}^{\alpha_{0}}) .

In order to derive a suitable a priori estimate for (33) let us multiply the
first equation by v , integrate it over (0, \pi) under the homogeneous boundary
conditions, multiply the second equation by U and next add the results. We
obtain:

\frac{1}{2}\frac{d}{dt}(\int_{0}^{\pi}v^{2}dx+U^{2})=-\nu(\int_{0}^{\pi}v_{x}^{2}dx+U^{2})+PU (34)

and further, using the Poincar\’e and Cauchy inequalities,

\frac{1}{2}\frac{d}{dt}(\int_{0}^{\pi}v^{2}dx+U^{2})\leq-\nu(\int_{0}^{\pi}v^{2}dx+U^{2})+\frac{P^{2}}{2\epsilon}+\frac{\epsilon U^{2}}{2} . (36)

When \epsilon=\nu is inserted in (35), we come to the differential inequality

\frac{d}{dt}(\int_{0}^{\pi}v^{2}dx+U^{2})\leq-\nu(\int_{0}^{\pi}v^{2}dx+U^{2})+\frac{P^{2}}{\nu} , (36)
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which leads to the estimate

\int_{0}^{\pi}v^{2}dx+U^{2}\leq(\int_{0}^{\pi}v_{0}^{2}dx+U_{0}^{2})e^{-\nu t}+\frac{P^{2}}{\nu}\frac{1-e^{-\nu t}}{\nu} , (37)

so that asymptotically we get:

\lim_{tarrow+}\sup_{\infty}(\int_{0}^{\pi}v^{2}dx+U^{2})\leq\frac{P^{2}}{\nu^{2}} for all (v_{0}, U_{0})\in D(A_{p0}^{\alpha_{0}}) . (38)

Note that by [TR, Th. 5.5.1] the resolvent of A_{1} is compact. Obtaining
(11) is now purely technical and the existence of a global attractor for (33)
follows (see Theorem 4 of Section 4). More precisely, estimating the leading
nonlinear term of F_{p} with the use of the Young inequality:

| \frac{1}{2}(v^{2})_{x}|=|vv_{x}|\leq\frac{3}{4}|v_{x}|^{\frac{4}{3}}+\frac{1}{4}|v|^{4}-

we may achieve a global attractor on the whole space D(A_{p0}^{\alpha_{0}}) with param-
term \alpha_{0} , p_{0} satisfying 2 \alpha_{0}-\frac{1}{p_{0}}>1 and the exponent \alpha_{0}\in(\frac{3}{4},1) (cf. (42)

with \gamma_{0}=4 , \gamma_{1}=\frac{4}{3} ).

3.8. Pattern formation equations
The final group of examples for the study of which our theoretical ap-

proach of Section 2.1 was in fact created is formed by the pattern formation
equations, namely the Cahn-Hilliard and KuramotO-Sivashinsky equations.
There is no need to repeat here detailed studies of these problems and
its generalization - the Cahn-Hilliard system - since they were presented
chronologically in [CD1]-[CD3] and earlier papers cited there.

4. Technicalities

4.1. Problems with uniformly strongly parabolic operators
Due to the complicated character of the definition of the regular para-

bolic initial boundary value problem to which we refer in the Assumption
A-I, direct verification of its conditions is, in many examples, a rather uneasy
operation. Slightly more convenient in applications is the situation when
A is a uniformly strongly parabolic operator since, as may be seen from the
results of [AM, Chapt. II], the Assumption A-I is then much simpler to
prove.

Let the following smoothness conditions be satisfied:
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\circ All components of matrices [a_{\alpha}^{rs}(x)]_{d\cross d}(|\alpha|\leq 2m) appearing in the
definition of A belong to C^{0}(cl\Omega) .

\circ All elements of matrices [b_{\beta}^{rs}(x)]_{1\cross d}(j=1, . . ’ md, |\beta|\leq m_{j}) , con-
nected with boundary operators B_{j} , are of the class C^{2m-m_{j}}(\partial\Omega) .

Citing then [AM, Chapt. II , Sec. 6] (cf. also [LSU, Chapt. VII, \S 8]) we have:

Definition 4 A differential operator A:=(-1)^{m} \sum_{|\alpha|\leq 2m}[a_{\alpha}^{rs}(x)]_{d\cross d}D^{\alpha}

is uniformly strongly parabolic iff

\forall(x,\xi,\eta)\in cl\Omega\cross R^{n}\cross C^{d}\xi\neq 0,\eta\neq 0Re(\overline{\eta}^{T}\sum_{|\alpha|=2m}\xi^{\alpha}[a_{\alpha}^{rs}(x)]_{d\cross d}\eta)>0 .

The result stated below is due to [AM, Chapt. II , Th. 6.6] and contains
the general and simple criteria for validity of Assumption A-I for a large
number of parabolic problems.

Proposition 4 Suppose that smoothness conditions hold and consider re-
quirements (i), (ii) introduced below.

(i) A is a second order operator (m=1) , so that A admits the form

A=- \sum_{j,k=1}^{d}[a_{jk}^{rs}]_{d\cross d}\frac{\partial^{2}}{\partial x_{j}\partial x_{k}}+\sum_{j}^{d}[a_{j}^{rs}]_{d\cross d^{\frac{\partial}{\partial x_{j}}+}}[a_{0}^{rs}]_{dxd}

and for some diagonal matrix D=[\delta^{rs}]_{d\cross d} , where (\delta^{11}. . , \delta^{dd})\in\{0,1\}^{d} :

[B]_{d\cross d}=D \sum_{j,k=1}^{d}[a^{rs}(x)_{jk}]_{d\cross d} cos (N(x), x_{j}) \frac{\partial}{\partial x_{k}}

+(Id-D)+D[b_{0}^{rs}(x)]_{d\cross d} .

(ii) Vector fields lJ_{i}(x)\in C^{2m-1}(\partial\Omega, R^{n})(i=1, \ldots, m) are defined, for
which

\exists_{c_{3}>0}\forall_{x\in\partial\Omega}\forall_{i=1,\ldots m}lJ_{i}(x)N(x)\geq c_{3}

(where N(x) denotes a normal vector to \partial\Omega in x\in\partial\Omega ) and there is l\in

\{0, \ldots, m\} such that for j=1 , \ldots , m :
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[B_{j}]_{d\cross d}= \{\begin{array}{lll}\frac{\partial^{l+j-1}}{\partial\nu_{j}^{l+j-1}} 00 \ddots \frac{\partial^{l+j-1}}{\partial\nu_{j}^{l+j-1}}\end{array}\}

d\cross d+termsoforderlowerthan(l+m-1)

.

If either the operator A is uniformly strongly parabolic and (ii) holds or A
is uniformly very strongly parabolic and (i) is satisfied ( c/. [AMI]), then the
triple (A, \{B_{j}\}, \Omega) forms a regular parabolic initial boundary value problem,
as is required in the Assumption A-I.

It is clear that Prop. 4 is not applicable to all problems of the type (1) for
which Assumption A-I holds. For the remaining class of problems appearing
in applications, either all conditions required in A-I must be separately
verified or the sectorial property of A, crucial for considerations of Sec. 2.1
needs to be justified, depending which is actually less difficult to show.

Below, the simple conditions allowing the abstract requirements of the-
orems of Sec. 2.1 to be realized will be studied.

4.2. Realization of abstract conditions of Section 2.1.
As a result of abstract considerations of (1) the existence of sufficiently

smooth local solutions of (1) is guaranteed (see Prop. 2) so that the esti-
mation procedure, in which both differential and integral properties of the
solution are usually applied, may be continued until the required [W^{l,r}(\Omega)]^{d}-

estimate of solutions is obtained. From the point of view of practical calcu-
lations it is unpleasant to be forced to verify abstract criteria; hence, in the
following theorem the conditions of Section 2.1 have been formulated either
in algebraic form or as [W^{l,r}(\Omega)]^{d}-type estimates which may be obtained
from (1) with the use of standard techniques.

Theorem 4 Let p_{0} , \alpha_{0} satisfy (4) and V\subset D(A_{p0}^{\alpha_{0}}) . Then the conjunc-
tion of conditions (13) and (16) is equivalent to Conditions H_{1}-H3 stated
below.
Conditions H_{1}-H3. There are some l\geq 0 , r\geq 1 satisfying

l<2m\alpha_{0} , r\leq p_{0} , (39)

such that, as long as D(A_{p^{0}}^{\alpha_{0}}) solutions u(t, u_{0}) corresponding to u_{0}\in V
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exist, the following properties hold:
(H_{1}) For solutions starting from u_{0}\in Va[W^{l,r}(\Omega)]^{d} estimate of the

‘net ’ smoothness s=l- \frac{n}{r} is known, i.e .

\forall_{u_{0}\in V}\exists_{C_{1}(u_{0})>0}||u(t, u_{0})||_{[W^{l,r}(\Omega)]^{d}}\leq C_{1}(u_{0}) , where
(40)

C_{1} : Varrow[0, \infty) is bounded in bounded subsets of V

(H_{2}) On solutions originated in u_{0}\in V the growth of the nonlinear
term f is limited according to a condition

|f(x, u(t, u_{0}), D^{1}u(t, u_{0}), \ldots, D^{k}u(t, u_{0}))|

\leq g(||u(t, u_{0})||_{[W^{l,r}(\Omega)]^{d}})(1+\sum_{j=0}^{k}|D^{j}u(t, u_{0})|^{\gamma_{j}}) , (41)

where g : [0, \infty) – [0, \infty) is nondecreasing and

1\leq\gamma_{j}<1+2m.\underline{\alpha_{0}-j} if s<j ,
J -s (42)

1\leq\gamma_{j} arbitrarily large if s\geq j .

(H3) The estimate (40) is asymptotically independent of u_{0}\in V , i.e .

\exists_{C_{2}>0}\forall_{u_{0}\in V}\lim_{tarrow+}\sup_{\infty}||u(t, u_{0})||_{[W^{l,r}(\Omega)]^{d}}\leq C_{2} . (43)

Proof. If (13) and (16) hold, then using equivalent conditions of Prop. 3
and Th. 2 we obtain all requirements H_{1}-H3. To prove the converse, note
that thanks to (42) and our general assumption (4) there is some \theta\in(0,1)

such that

1 \leq\gamma_{j}<\theta+\frac{\theta(2m\alpha_{0}-j)+(1-\theta)\frac{n}{p0}}{j-s}

whenever s<j . Hence, the generalized Nirenberg-Gagliardo interpolation
inequality of [AM, Cor. 4.2] can be applied and (13) follows after similar
calculations as in [CD2 , Lem. 1] with Y:=[W^{l,r}(\Omega)]^{d} . Since H3 is then the
same as (16), the proof is completed. \square

Remark 6. It is clear that u(t, u_{0}) does not ‘blow-up’ for u_{0}\in V if, and only
if, Conditions H_{1}-H_{2} hold. Furthermore, since p_{0} can be taken arbitrarily
large and \alpha_{0} may be sufficiently close to 1 then both (4) and (39) are not
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restrictive at all whereas (42), roughly speaking, may be given in the form:

1 \leq\gamma_{j}<1+\frac{2m-j}{j-s} if s<j ,
(44)

1\leq\gamma_{j} arbitrarily large if s\geq j ,

where parameter s=l- \frac{n}{r} measures the ‘net’ smoothness of the estimate
(40). Whenever f is bounded by a power function, i.e. using symbolic
notation when:

|f(x, D^{0}, D^{1}, \ldots, D^{k})|\leq const(1+\sum_{j=0}^{k}|D^{j}|^{\gamma_{j}}) , (45)

it is easy to calculate from (44) the minimal ‘net’ smoothness s of the a
priori [W^{l,r}(\Omega)]^{d} estimate (40) necessary for validity of Conditions H_{1}-H3.
For example, if m=1 and f(x, D^{0}, D^{1})=|D^{0}|^{anynumber}+|D^{1}|^{2} then it is
necessary to derive the estimate whose ‘net’ smoothness s is positive (i.e. an
estimate slightly ‘better’ then L^{\infty} must be known); whereas for m=1 and
f(x, D^{0}, D^{1})=|D^{0}|^{anynumber}+|D^{1}|^{2-\epsilon}(\epsilon\in(0,1)) it suffices to have the
estimate with ‘net’ smoothness s> \frac{-\epsilon}{1-\in} (i.e. L^{\infty} estimate is then sufficient).

As a consequence of Th. 3 and Th. 4 we obtain:

Corollary 3 Let p_{0} , \alpha_{0} satisfy (4), \{T(t)\} be a local semiflow on D(A_{p0}^{\alpha_{0}})

resulting from Prop. 2 and the resolvent of A_{p0} be compact. Then \{T(t)\}

has a restricted global attractor in D(A_{p0}^{\alpha_{0}}) if and only if, Conditions H_{1}-

H3 hold with some closed and positively invariant nonempty subset V of
D(A_{p0}^{\alpha_{0}}) .

Although, from a theoretical point of view, the existence of restricted
global attractors for parabolic problems of type (1) has been completely
settled here, it is always a delicate and crucial point in applications to find
sufficiently ‘net’-smooth a priori estimate of solutions. However, no general
method to realize this point may be developed and results above merely
answer the question of which is the minimal ‘net’ smoothness of the a priori
estimate that should be known.
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