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Differentiability of p-central Cantor sets

Sergio PLAZA* and Jaime VERA**

(Received June 8, 1994; Revised November 20, 1996)

Abstract. We provide, for each r\geq 1 , a geometrical construction of Cantor sets which
are regular of class C^{r} , and whose self-arithmetic difference is a Cantor set of positive
Lebesgue measure. When r\geq 2 these Cantor sets are dynamically defined. We construct

a diffeomorphism on the sphere with a basic set equal to the product of those Cantor sets

which we constructed.

Key words: Cantor sets, regular Cantor sets, dynamically defined Cantor sets, Hausdorff
dimension and limit capacity.

1. Introduction

In the study of bifurcations of a generic one-parameter family of surface
diffeomorphims having a generic homoclinic tangency at a parameter value,
the arithmetic difference (sum) of two Cantor sets appears in a natural way
(cf. [PT]).

The problem about the topological or measure-theoretical structure of
the arithmetic difference of two Cantor sets, both with zero Lebesgue mea-
sure, has been considered by M. Hall [H] in his work related to Number
Theory where he uses the concept of thickness in order to obtain results
on the sets of the sum and of the product of sets of continued fractions.
Motivated by dynamical systems problems, S. Newhouse rediscovered the
concept of thickness and used it in the study of, what he called, “wild hy-
perbolic sets of surface diffeomorphisms” (see [N]). J. Palis (based on his
joint work with F. Takens on homoclinic bifurcations on surface diffeomor-
phisms [PT,1] and [PT,2]) has renewed the interest for the problem of the
measure-theoretical and topological structure of the difference of two Can-
tor sets, since, as we mentioned above, these sets arise in a natural way in
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this branch of dynamical systems. It is important to note that the Cantor
sets which appear in the study of homoclinic bifurcations of surface diffe0-
morphisms are regular in a sense which we will explain. Following Palis and
Takens, we call these Cantor sets dynamically defined (for more details see
[PT] ) .

In order to establish more precisely the problems related to the differ-
ence set of two Cantor sets, we recall some definitions.

Let I\subset \mathbb{R} be a closed interval, and let \Lambda\subset I be a Cantor set. We
will say \Lambda is regular of class C^{r} , r\geq 1 , if there are closed disjoint intervals
I_{1} , . , I_{k} of I , a C^{r} map \varphi : \bigcup_{i=1}^{k}I_{i} –I such that \Lambda=\bigcap_{n\geq 0}\varphi^{-n}(I_{1}\cup

\cup I_{k}) and, for each i=1 , . , k , the restriction \varphi_{i}=\varphi|_{I_{i}} : I_{i} –I is an
onto and expanding map: that is, |\varphi_{i}’(x)|>1 , for all x\in I_{i} . The Cantor
set \Lambda is called affine if each \varphi_{i} of above is an affine map. Recall that given
A , B\subset \mathbb{R} , the arithmetic difference set of A and B , A-B , is

A-B=\{x-y : x\in A, y\in B\}=\{\mu\in \mathbb{R} : A\cap(B+\mu)\neq\emptyset\}

where B+\mu=\{y+\mu : y\in B\} is the translation of B by \mu .
In [PT,1] Palis has proposed several problems concerning the structure

of the difference set of two regular Cantor sets, e.g.,

Is it true, at least generically or for most regular, of class C^{r}(r\geq 2) ,
Cantor sets \Lambda_{1} and \Lambda_{2} , that the arithmetic difference set \Lambda_{1}-\Lambda_{2} has zero
Lebesgue measure or else contains intervals ?

Concerning this problem, A. Sannami in [S] has constructed an example
of a C^{\infty} regular Cantor set, \Lambda\subset \mathbb{R} , such that \Lambda-\Lambda is a Cantor set with
positive Lebesgue measure.Thus the answer to the problem is negative when
we are considering the set of all regular Cantor sets. This example is very
rigid, hence a positive answer is possible in a generic sense or for most Cantor
sets. On the other hand, in [L] P. Larsson has constructed random Cantor
sets obtaining similar results to those of A. Sannami. Nevertheless, these
Cantor sets are far from being regular. In [MO] P. Mendes and F. Oliveira
have studied the topological structure of the difference of two Cantor sets,
thus obtaining a classification of the topological structures for the class of
homogeneuos Cantor sets. This classification consists of five possible types
of structures: a Cantor set, a closed interval, and three others which they
call L , R and M Cantorvals.

Finally, mention must be made to the fact that J. Palis and F. Takens,
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in their joint work [PT,1] and [PT,2] , and also S. Newhouse in [N] have used
numerical invariants of Cantor sets, limit capacity, Hausdorff dimension and
thickness, to obtain criteria which give partial answers to these problems
(see Section 8 or [PT] for the definitions of these concepts). For example,
if \Lambda_{1} , \Lambda_{2}\subset \mathbb{R} are Cantor sets with limit capacities d_{1} and d_{2} , respectively,
and d_{1}+d_{2}<1 , then \Lambda_{1}-\Lambda_{2} has zero Lebesgue measure. On the other
hand, if the Hausdorff dimensions h_{1} and h_{2} of \Lambda_{1} and \Lambda_{2} , respectively, are
such that h_{1}+h_{2}>1 , then for almost all (in the Lebesgue measure sense)
\gamma\in \mathbb{R} , \Lambda_{1}-\gamma\Lambda_{2} has positive Lebesgue measure where \gamma\Lambda_{2}=\{\gamma x : x\in\Lambda_{2}\} .
Moreover, if \Lambda_{1} and \Lambda_{2} are such that \Lambda_{1}\cap hull(\Lambda_{2}) and hull (\Lambda_{1})\cap\Lambda_{2} are
both nonempty, and their respective thicknesses \tau(\Lambda_{1}) and \tau(\Lambda_{2}) satisfy
\tau(\Lambda_{1})\tau(\Lambda_{2})>1 , then the Gap Lemma in [N] yields that \Lambda_{1}\cap\Lambda_{2} is nonempty
and that \Lambda_{1}-\Lambda_{2} has interior points.

2. Basic Concepts and Results

Throughout and without loss of generality, we will consider Cantor sets
contained in the unit interval I=[0,1] .

In order to establish our results we first recall some definitions.

Definition 1 Let \Lambda\subset I be a Cantor set. We will say \Lambda is a C^{r}-regular
Cantor set, r\geq 0 , if there are closed disjoint intervals I_{1} , \ldots , I_{k} of I , and
strictly monotone expanding maps \varphi_{i} : I_{i}arrow I , i=1 , \ldots , k , which are of
class C^{r} on \Lambda and such that

\Lambda=\cap\cup n=0_{\sigma\in\Sigma_{n}^{k}}\infty\varphi_{\sigma(1)}^{-1}\circ
\circ\varphi_{\sigma(n)}^{-1}(I) ,

where \Sigma_{n}^{k}=\{\sigma : \{1, . , n\}arrow\{1, \ldots, k\}\} .
Furthermore, when r\geq 2 we will say the Cantor set \Lambda is dynamically

defined.

Remark 1. In the above defifinition, a C^{r}(r\geq 0) expanding map means
|\varphi_{i}(x)-\varphi_{i}(y)|>\alpha|x-y| , x , y\in\Lambda , where \alpha>1 . For the case r\geq 1 , the
above condition reduces to |\varphi_{i}’(x)|\geq\alpha>1 , x\in\Lambda .

Definition 2 Let \Lambda\subset I be a Cantor set. Let p\geq 1 be an integer. We
will say \Lambda is a p-central Cantor set if there is a sequence of real numbers
s=(\lambda_{n})_{n\in \mathbb{N}} with \lambda_{0}=1 and, for any n \geq 1,0<\lambda_{n}<\frac{1}{p+1} , such that
\Lambda=\bigcap_{n=0}^{\infty}I^{n} , where I^{0}=[0,1] and I^{n+1} is the union of (p+1)^{n+1} closed
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disjoint intervals of length \Pi_{i=1}^{n+1}\lambda_{i} obtained from I^{n} by removing the p
open central intervals each of length \frac{(1-(p+1)\lambda_{n+1})}{p}\Pi_{i=1}^{n}\lambda_{i} in each connected
component I_{j}^{n} of I^{n} . Let \Lambda(p, s) denote the Cantor set \Lambda .

If \lambda_{1}=\lambda_{2}= \cdot\cdot=\lambda_{n}= =\alpha in Definition 2, the Cantor set thus
obtained is called the p-\alpha-central Cantor set and denoted \Lambda(p, \alpha) .

Remark 2. Since the length of each connected component I_{j}^{n} of I^{n} is
\Pi_{i=1}^{n}\lambda_{i} , the Lebesgue measure of the p-central Cantor set thus obtained
is

\lim_{narrow\infty}\Pi_{i=1}^{n}(p+1)\lambda_{i}=\lambda , \lambda\in[0,1] .

Remark 3. A sequence s=(\lambda_{n})_{n\in \mathbb{N}} , with \lambda_{0}=1 and 0< \lambda_{n}<\frac{1}{p+1} , for
all n\geq 1 , determines and is determined by a unique p-central Cantor set
\Lambda(p, s) .

We have the following

Theorem 1 Let \Lambda(p, s)\subset[0,1] be a p-central Cantor set (p\geq 1) which
is determined by a sequence s=(\lambda_{n})_{n\in \mathbb{N}} as in Definition 2. Suppose that
\lim_{narrow\infty}\lambda_{n}=\lambda\neq 0 and that there are r, n_{0}\in \mathbb{N} such that, for all n\geq n_{0} ,
the following conditions hold:

(1) | \frac{1}{\lambda_{n}}-\frac{1}{\lambda}|<2^{-\frac{r(r+1)}{2}}(\Pi_{i=1}^{n}\lambda_{i})^{r} ;

(2) | \frac{1}{\lambda_{n}}\frac{1-(p+1)\lambda_{n}}{(1-(p+1)\lambda_{n+1})}-\frac{1}{\lambda}|<2^{-\frac{r(r+1)}{2}}(\frac{1-(p+1)\lambda_{n+1}}{p})^{r}(\Pi_{i=1}^{n}\lambda_{i})^{r}

Then \Lambda(p, s) is a C^{r} -regular Cantor set.

We give the proof of Theorem 1 in paragraph five.
Next we have the following two corollaries:

Corollary 1 Let \Lambda(p, s)\subset[0,1] be a p-central Cantor set determined by a
sequence s=(\lambda_{n})_{n\in \mathbb{N}} as in Definition 2. Suppose that \lim_{narrow\infty}\lambda_{n}=\lambda\neq 0 ,
and that there is n_{0}\in \mathbb{N} such that, for all n\geq n_{0} , the following conditions
hold:

(1) | \frac{1}{\lambda_{n}}-\frac{1}{\lambda}|<2^{-\frac{n(n+1)}{2}}(\square _{i=1}^{n}\lambda_{i})^{n} ;

(2) | \frac{1}{\lambda_{n}}\frac{(1-(p+1)\lambda_{n})}{(1-(p+1)\lambda_{n+1})}-\frac{1}{\lambda}|<2^{-\frac{n(n+1)}{2}}(\frac{1-(p+1)\lambda_{n+1}}{p})^{n}(\Pi_{i=1}^{n}\lambda_{i})^{n}

Then \Lambda(p, s) is a C^{\infty} -regular central Cantor set.

Corollary 2 Let \Lambda(p, s)\subset[0,1] be a p-central Cantor set determined by
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a sequence of real numbers s=(\lambda_{n})_{n\in \mathbb{N}} as in Definition 2. Suppose s

is increasing and satisfies: 0< \lambda_{n}<\frac{1}{p+1} , for all n\geq 1 , \lim_{narrow\infty}\lambda_{n}=\lambda ,

0< \lambda<\frac{1}{p+1} , and| \frac{1}{\lambda_{n}}-\frac{1}{\lambda}|<2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r} where t satisfies \lambda_{1}^{tr} ( \frac{p+1}{1-(p+1)\lambda}+

1)<( \frac{1-(p+1)\lambda}{p})^{r} Then \Lambda(p, s) is a C^{r} -regular Cantor set.

Theorem 2 Let \Lambda(p, s)\subset[0,1] be a p-central Cantor set as in Theorem
1. Assume that the sequence s=(\lambda_{n})_{n\in \mathbb{N}} is increasing and satisfies the

following conditions:
(1) 0< \lambda_{n}<\frac{1}{2p+1} , n\geq 1 ;
(2) \sum_{i=1}^{\infty}\log((2p+1)\lambda_{i}) converges.

Then \Lambda(p, s)-\Lambda(p, s) is a Cantor set of positive Lebesgue measure.

3. Basic Notations and Main Lemma

We first give the basic construction necessary to prove Theorem 1 for
the case p=1 ; here we denote \Lambda(p, s) by \Lambda(s) . For the case p\geq 2 , the
proof of Theorem 1 follows from similar arguments.

Let \Lambda(s) be the central Cantor set determined by a sequence of real
numbers s=(\lambda_{n})_{n\in \mathbb{N}} , with \lambda_{0}=1 and 0< \lambda_{n}<\frac{1}{2} , for n=1,2 , We
set I_{1}=I_{1}^{1}=[0, \lambda_{1}] , I_{2}=I_{2}^{1}=[1-\lambda_{1},1] , and I^{1}=I_{1}^{1}\cup I_{2}^{1} . We wish to
construct a surjective map f : I^{1} –I which is monotone on each connected
component of I^{1} and such that \Lambda=\bigcap_{n=0}^{\infty}f^{-n}(I) . Also, for each n\in \mathbb{N} , we
impose the condition f^{-n}(I)=I^{n} (see Definition 2). The map f will be
obtained as the limit of a sequence of maps g_{n} : I^{1}

– I . In order to define
the sequence of maps (g_{n})_{n\in \mathbb{N}} we need some notations.

Let R be the rectangle [x_{1}, x_{2}]\cross[y_{1}, y_{2}] . Let 0< \alpha<\frac{1}{2} and 0<
\beta<\frac{1}{2} . We set R_{1}(R, \alpha, \beta)=[x_{1}, x_{1}+\alpha(x_{2}-x_{1})]\cross[y_{1}, y_{1}+\beta(y_{2}-y_{1})] ,
R_{2}(R, \alpha, \beta)=[x_{2}-\alpha(x_{2}-x_{1}), x_{2}]\cross[y_{2}-\beta(y_{2}-y_{1}), y_{2}] , and L(R, \alpha, \beta)=

[x_{1}+\alpha(x_{2}-x_{1}), x_{2}-\alpha(x_{2}-x_{1})]\cross[y_{1}+\beta(y_{2}-y_{1}), y_{2}-\beta(y_{2}-y_{1})] (see
Figure 1).

Now, for each n\in \mathbb{N} , let \triangle_{n} denote the set of sequences of 1’s and
2’ s of length n . For \gamma\in\triangle_{n} , we inductively define rectangles R_{\gamma}^{n} and L_{\gamma} .
Set R_{1}^{1}=[0, \lambda_{1}]\cross I , and R_{2}^{1}=[1-\lambda_{1},1]\cross I . Next assume that, for all
\gamma\in\triangle_{n} , we have defined the rectangles R_{\gamma}^{n} and L_{\gamma} . We now set R_{\gamma 1}^{n+1}=

R_{1}(R_{\gamma}^{n}, \lambda_{n+1}, \lambda_{n}) , R_{\gamma 2}^{n+1}=R_{2}(R_{\gamma}^{n}, \lambda_{n+1}, \lambda_{n}) , and L_{\gamma}=L(R_{\gamma}^{n}, \lambda_{n+1}, \lambda_{n}) .

Let \pi_{1} : [0, 1] \cross[0,1]arrow[0,1] be the projection given by \pi_{1}(x, y)=x .
For \gamma\in\triangle_{n} , define I_{\gamma}^{n}=\pi_{1}(R_{\gamma}^{n}) ; note that I^{n}= \bigcup_{\gamma\in\triangle_{n}}I_{\gamma}^{n} .
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R_{2}(R,\alpha,\beta)

L(R,\alpha,\beta)

R_{1}(R,\alpha,\beta)

Fig. 1.

We may now define the following sequence of maps (g_{n})_{n\in \mathbb{N}} :
1. Let g_{1} : I_{1}\cup I_{2} -I be strictly monotone and continuous on each

connected component I_{1}^{1} and I_{2}^{1} of I^{1} , and such that the end points of
the graphics of g_{1}|_{I_{1}^{1}} and g_{1}|_{I_{2}^{1}} are vertices of the rectangles R_{1}^{1} and R_{2}^{1} ,
respectively. Clearly, g^{-1}(I)=I^{1}=I_{1}^{1}\cup I_{2}^{1} .

2. In order to define g_{2} : I_{1}^{1}\cup I_{2}^{1}arrow I we proceed as follows. Let \gamma\in\triangle_{1}

and define g_{2} : I_{1}^{1}\cup I_{2}^{1}arrow I to be strictly monotone and continuous on each
connected component I_{1}^{1} and I_{2}^{1} of I^{1} , such that its graphic is contained
in the union of the rectangles R_{\gamma 1}^{2} , L_{\gamma} , and R_{\gamma 2}^{2} , and passing through two
vertices of each one of these rectangles. It is clear that g_{2}^{-1}(I)=I^{1} and
that g^{-2}(I)=I^{2} .

3. Next we define g_{3} : I_{1}^{1}\cup I_{2}^{1} –I by redefining g_{2} on the intervals
I_{\beta}^{2} , \beta\in\triangle_{2} . On each interval I_{\beta}^{2} , \beta\in\triangle_{2} , define g_{3} the same way as in
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R_{\gamma 2}(R_{Y’}^{n}\lambda_{n+1},\lambda_{n})

L_{\gamma}=L(\eta,\lambda_{n+1},\lambda_{n})

R_{\gamma 1}(R_{1’}^{n}\lambda_{n+1},\lambda_{n})

Fig. 2.

step 2 above, only now changing the rectangles R_{\gamma 1}^{2} , L_{\gamma} and R_{\gamma 2}^{2} by the
rectangles R_{\beta 1}^{3} , L_{\beta} and R_{\beta 2}^{3} , respectively. We thus obtain a map g_{3} which
is strictly monotone and continuous, and such that: g_{3}|_{(I^{1}-I^{2})}\equiv g_{2}|_{(I^{1}-I^{2})} ,
g_{3}^{-1}(I)=I^{1} , g_{3}^{-2}(I)=I^{2} and g_{3}^{-3}(I)=I^{3} .

4. Suppose we have defined g_{n} : I^{1} –I to be strictly monotone and
continuous on each connected component I_{1}^{1} and I_{2}^{1} of I^{1} , and such that the
graphic of g_{n} contains two vertices of each rectangle R_{\gamma}^{n} , \gamma\in\triangle_{n} . Define
g_{n+1} : I^{1}arrow I by simply changing the definition of g_{n} on \pi_{1}(R_{\gamma}^{n}) , \gamma\in\triangle_{n} ,
the same way as in step 3. We thus obtain a map g_{n+1} which is strictly
monotone and continuous on each connected component of I^{1} , and such
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g_{1}

Fig. 3. (a)

g_{2}

Fig. 3. (b)
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g_{3}

Fig. 3. (c)

that its graphic contains two vertices of each rectangle R_{\gamma}^{n+1} . \gamma\in\triangle_{n+1} ;

furthermore, g_{n+1}|_{(I^{1}-I^{n})}\equiv g_{n}|_{(I^{1}-I^{n})} . It is clear that g_{n+1}^{-i}(I)=I^{i} , i=
1 , \ldots , n+1 .

Remark 4.
1. Since, for all n\in \mathbb{N} , g_{n+1}|_{(I^{1}-I^{n})}\equiv g_{n}|_{(I^{1}-I^{n})} , we conclude that the

sequence (g_{n})_{n\in \mathbb{N}} converges uniformly on I^{1}-I^{n} . Since the length of I_{j}^{n} is
\Pi_{i=1}^{n}\lambda_{i} , and since \lim_{narrow\infty}\Pi_{i=1}^{n}\lambda_{i} is zero, we have defined f= \lim_{narrow\infty}g_{n} ,

f : I^{1}
– I , which is strictly monotone and continuous. It is clear that

\Lambda=\bigcap_{n=1}^{\infty}f^{-n}(I) .
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2. A point x\in\Lambda will be called border point if x is an end point of I_{j}^{n} ,
some j and n .

Assume that f is defined as above and of class C^{r} . r\geq 2 . Let x be a
border point. Then

f’(x)= \lim_{narrow\infty}\frac{\Pi_{i=1}^{n}\lambda_{i}}{\Pi_{i=1}^{n+1}\lambda_{i}}=\lim_{narrow\infty}\frac{1}{\lambda_{n+1}}=\frac{1}{\lambda}

and, consequently, for all x\in\Lambda , we have that f’(x)= \frac{1}{\lambda} and that f^{(i)}(x)=

0 , for any i=2, , r .

For the proof of Theorem 1 we need the following

Main Lemma Let r\in \mathbb{N} . Let a>0 and 0<\epsilon<1 . If x and y satisfy
(i) 0<x<\epsilon ,
(ii) |y-ax|<2^{-\frac{r(r+1)}{2}}x^{r+1} ,
then t/iere exists a C^{\infty} -function h : [0, x] –

\mathbb{R} such that
(1) h(0)=0, h(x)=y-ax ,
(2) h^{(i)}(0)=h^{(i)}(x)=0 , for any 1\leq i\leq r ,
(3) |h^{(i)}(t)|<\epsilon , for any 1\leq i\leq r and 0\leq t\leq x .

We begin the proof of the Main Lemma in paragraph four after the
proof of Lemma 6.

Remark 5.
1) Under its conditions, the Main Lemma guarantees that we may

construct a C^{\infty} map g : [0, x] - [0, y] whose graphic has slope a at both 0
and x , and that its first r derivatives are bounded by \epsilon (see Figure 4).

We use this fact to define the sequence of maps (g_{n})_{n\in \mathbb{N}} .
2) Assume that s=(\lambda_{n})_{n\in \mathbb{N}} satisfies the conditions of Theorem 1.

Let a= \frac{1}{\lambda} . If x and y denote the sides of the rectangle R_{\gamma}^{n} , \gamma\in\triangle_{n} , n\geq 1 ,
then x=\Pi_{i=0}^{n}\lambda_{i} , y=\Pi_{i=0}^{n-1}\lambda_{i} , and |y-ax|<2^{-\frac{r(r+1)}{2}}x^{r+1} . Similarly,
if x and y denote the sides of the rectangle L_{\gamma} , \gamma\in\triangle_{n} , n\geq 2 , then
x=(1-2\lambda_{n+1})\Pi_{i=0}^{n}\lambda_{i} , y=(1-2\lambda_{n})\Pi_{i=0}^{n-1}\lambda_{i} , and |y-ax|<2^{-\frac{r(r+1)}{2}}x^{r+1} .
We conclude that the Main Lemma may be applied to both rectangles R_{\gamma}^{n}

and L_{\gamma} , n\in \mathbb{N} large enough.
In the general case, for the rectangles R_{\gamma}^{n} , we apply the Main Lemma

with x=\Pi_{i=1}^{n}\lambda_{i} and y=\Pi_{i=1}^{n-1}\lambda_{i} , and for the rectangles L_{\gamma} it is applied with
x= \frac{(1-(p+1)\lambda_{n+1})}{p}\Pi_{i=1}^{n}\lambda_{i} and y= \frac{(1-(p+1)\lambda_{n})}{p}\Pi_{i=1}^{n-1}\lambda_{i} , n\in \mathbb{N} large enough.



Differentiability of p-central Cantor sets 11

h(t)

g(t)=at+h(t)

a\ell

Fig. 4.

4. Proof of the Main Lemma

In order to prove the Main Lemma, we first define the r-times iteration
of integration of functions and give five lemmas.

Let f(t) be an integrable function on a closed interval [a, b] . We define

f^{[0]}(t)=f(t) , f^{[1]}(t)= \int_{a}^{t}f(s)ds and f^{[r+1]}(t)= \int_{a}^{t}f^{[r]}(s)ds .

Now let r\in \mathbb{N} . We define functions w_{r}(t) on [0, 2^{r}] by

w_{0}(t)=1 , 0\leq t\leq 1
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and

w_{r+1}(t)=\{
w_{r}(t) , 0\leq t\leq 2^{r}

-w_{r}(t-2^{r}) , 2^{r}\leq t\leq 2^{r+1} .

With the above notation we have the following

Lemma 2
(1) For any r\geq 1 and 0\leq i\leq r-1 ,

w_{r}^{[i]}(t)=\{

w_{r-1}^{[i]}(t) , \leq t\leq 2^{r-1}

-w_{r-1}^{[i]}(t-2^{r-1}) , 2^{r-1}\leq t\leq 2^{r}

(2) For any r\geq 1 and 1\leq i\leq j\leq r , w_{r}^{[i]}(2^{j})=0 .
(3) For any r\geq 1 and 0\leq t\leq 2^{r-1} , w_{r}^{[r]}(t+2^{r-1})=2^{\frac{(r-1)(r-2)}{2}}-w_{r}^{[r]}(t) .
(4) For any r\geq 1 , w_{r}^{[r+1]}(2^{r})=2^{\frac{r(r-1)}{2}}

Proof. (1) By induction on r we prove the statement and that
w_{r}^{[j]}(2^{r-1})=0 , for all 1\leq j\leq r-1 .

First we note that, for any r , case i=0 is precisely the definition of
w_{r} . Thus we may assume that i\geq 1 .

(i) Case r=1 . Then i=0 and, as we pointed out above, we are done.
On the other hand, there are no j\geq 1 such that 1\leq j\leq r-1 .

(ii) Case r=2 . Then i may be 0 or 1, and j=1 .
For i=1 we have: if 0\leq t\leq 2 , then

w_{2}^{[1]}(t)= \int_{0}^{t}w_{2}(s)ds=\int_{0}^{t}w_{1}(s)ds=w_{1}^{[1]}(t) ;

and if 2\leq t\leq 2^{2} , then

w_{2}^{[1]}(t)= \int_{0}^{t}w_{2}(s)ds=\int_{0}^{2}w_{2}(s)ds+\int_{2}^{t}w_{2}(s)ds

=w_{2}^{[1]}(2)- \int_{2}^{t}w_{1}(s-2)ds=w_{2}^{[1]}(2)-\int_{0}^{t-2}w_{1}(u)du

=w_{2}^{[1]}(2)-w_{1}^{[1]}(t-2) .

Now, for j=1 , we have

w_{2}^{[1]}(2)= \int_{0}^{2}w_{2}(s)ds=\int_{0}^{2}w_{1}(s)ds
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= \int_{0}^{1}w_{0}(s)ds-\int_{1}^{2}w_{0}(s-1)ds=0 .

Therefore

w_{2}^{[1]}(t)=\{

w_{1}^{[1]}(t) , 0\leq t\leq 2

-w_{1}^{[1]}(t-2) , 2\leq t\leq 2^{2}

By induction we now assume that the statement is true for all 2\leq k\leq r-1 ;

we prove that it is true for k=r . For this we make induction over i and j .

Case i=1 . If 0\leq t\leq 2^{r-1} . then

w_{r}^{[1]}(t)= \int_{0}^{t}w_{r}(s)ds=\int_{0}^{t}w_{r-1}(s)ds=w_{r-1}^{[1]}(t) ;

now if 2^{r-1}\leq t\leq 2^{r} . then

w_{r}^{[1]}(t)= \int_{0}^{t}w_{r}(s)ds=\int_{0}^{2^{r-1}}w_{r-1}(s)ds-\int_{2^{r-1}}^{t}w_{r-1}(s-2^{r-1})ds

=w_{r-1}^{[1]}(2^{r-1})- \int_{0}^{t-2^{r-1}}w_{r-1}(u)du

=w_{r-1}^{[1]}(2^{r-1})-w_{r-1}^{[1]}(t-2^{r-1}) .

We next must prove that w_{r-1}^{[1]}(2^{r-1})=0 . We have

w_{r-1}^{[1]}(2^{r-1})= \int_{0}^{2^{r-1}}w_{r-1}(s)ds

= \int_{0}^{2^{r-2}}w_{r-2}(s)ds-\int_{2^{r-2}}^{2^{r-1}}w_{r-2}(s-2^{r-2})ds

= \int_{0}^{2^{r-2}}w_{r-2}(s)ds-\int_{0}^{2^{r-2}}w_{r-2}(s)ds=0 ,

thus w_{r}^{[1]}(t)=-w_{r-1}^{[1]}(t-2^{r-1}) . Therefore

w_{r}^{[1]}(t)=\{

w_{r-1}^{[1]}(t) , 0\leq t\leq 2^{r-1}

-w_{r-1}^{[1]}(t-2^{r-1}) , 2^{r-1}\leq t\leq 2^{r}
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By induction we now suppose that

w_{r}^{[\ell]}(t)=\{

w_{r-1}^{[\ell]}(t) , 0\leq t\leq 2^{r-1}

-w_{r-1}^{[\ell]}(t-2^{r-1}) , 2^{r-1}\leq t\leq 2^{r} ,

for all \ell , with 1\leq\ell\leq i\leq r-1 .
If 0\leq t\leq 2^{r-1} , we have

w_{r}^{[i+1]}= \int_{0}^{t}w_{r}^{[i]}(s)ds=\int_{0}^{t}w_{r-1}^{[i]}(s)ds=w_{r-1}^{[i+1]}(t) ;

and if 2^{r-1}\leq t\leq 2^{r} , then

w_{r}^{[i+1]}(t)= \int_{0}^{t}w_{r}^{[i]}(s)ds=\int_{0}^{2^{r-1}}w_{r}^{[i]}(s)ds+\int_{2^{r-1}}^{t}w_{r}^{[i]}(s)ds

=w_{r}^{[i+1]}(2^{r-1})- \int_{2^{r-1}}^{t}w_{r-1}^{[i]}(s-2^{r-1})ds

=w_{r}^{[i+1]}(2^{r-1})- \int_{0}^{t-2^{r-1}}w_{r-1}^{[i]}(s)ds

=w_{r}^{[i+1]}(2^{r-1})-w_{r-1}^{[i+1]}(t-2^{r-1}) .

It remains to see that w_{r}^{[i+1]}(2^{r-1})=0 . For this we prove that if 1\leq j+1\leq

i+1 , then w_{r}^{[j+1]}(2^{r-1})=0 . In fact let 0\leq j\leq i . Then

w_{r}^{[j+1]}(2^{r-1})= \int_{0}^{2^{r-1}}w_{r}^{[j]}(s)ds=\int_{0}^{2^{r-1}}w_{r-1}^{[j]}(s)ds

= \int_{0}^{2^{r-2}}w_{r-1}^{[j]}(s)ds-\int_{2^{r-2}}^{2^{r-1}}w_{r-1}^{[j]}(s-2^{r-2})ds

= \int_{0}^{2^{r-2}}w_{r-1}^{[j]}(s)ds-\int_{0}^{2^{r-2}}w_{r-1}^{[j]}(s)ds=0 .

The latter completes the induction step. Therefore

w_{r}^{[i]}(t)=\{

w_{r-1}^{[i]}(t) , 0\leq t\leq 2^{r-1}

-w_{r-1}^{[i]}(t-2^{r-1}) , 2^{r-1}\leq t\leq 2^{r} ,

and w_{r}^{[j]}(2^{r-1})=0 , for all 1\leq j\leq i+1 . Since i\leq r-2 and j\leq i+1 , we
have j\leq r-1 which completes the proof of the statement.

Concerning (2), let 1\leq i\leq j\leq r ; we have three possibilities:
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(i) If j=r, we have

w_{r}^{[i]}(2^{r})= \int_{0}^{2^{r}}w_{r}^{[i-1]}(s)ds

= \int_{0}^{2^{r-1}}w_{r-1}^{[i-1]}(s)ds-\int_{2^{r-1}}^{2^{r}}w_{r-1}^{[i-1]}(s-2^{r-1})ds

= \int_{0}^{2^{r-1}}w_{r-1}^{[i-1]}(s)ds-\int_{0}^{2^{r-1}}w_{r-1}^{[i-1]}(s)ds=0 .

(ii) If j=r-1 , then w_{r}^{[i]}(2^{r-1})=0 as was proved above as part of
the proof of statement (1).

(iii) Finally if j=r-\ell\geq i>1 , we consider powers of 2 ordered as
follows: 2^{r}>2^{r-1}> , . >2^{r-(\ell-1)} . Note that i\leq j=r-\ell<r-(\ell-1)<

<r , and apply the above formula to obtain w_{r}^{[i]}(2^{j})=w_{r}^{[i]}(2^{r-\ell})=

w_{r-1}^{[i]}(2^{r-\ell})=w_{r-2}^{[i]}(2^{r-\ell})=’ . =w_{r-(\ell-1)}^{[i]}(2^{r-\ell})=0 .
As for (3) by induction on r we have that, for r=1 ,

w_{1}^{[1]}(t+1)= \int_{0}^{t+1}w_{1}(s)ds=\int_{0}^{1}w_{1}(s)ds+\int_{1}^{t+1}w_{1}(s)ds

= \int_{0}^{1}ds-\int_{1}^{t+1}ds=1-t=2^{\frac{(r-1)(r-2)}{2}}-w_{1}^{[1]}(t) .

By induction we now assume that w_{\ell}^{[\ell]}(t+2^{\ell-1})=2^{\frac{(\ell-1)(\ell-2)}{2}}-w_{\ell}^{[\ell]}(t) , for
any 0\leq t\leq 2^{\ell-1} and 1\leq\ell\leq r . Then, for r+1 , we have

w_{r+1}^{[r+1]}(t+2^{r})= \int_{0}^{t+2^{r}}w_{r+1}^{[r]}(s)ds

= \int_{0}^{2^{r}}w_{r}^{[r]}(s)ds-\int_{2^{r}}^{t+2^{r}}w_{r}^{[r]}(s-2^{r})ds

=w_{r}^{[r+1]}(2^{r})- \int_{0}^{t}w_{r+1}^{[r]}(u)du

=w_{r}^{[r+1]}(2^{r})-w_{r+1}^{[r+1]}(t) .

Since

w_{r}^{[r+1]}(2^{r})= \int_{0}^{2^{r}}w_{r}^{[r]}(s)ds

= \int_{0}^{2^{r-1}}w_{r}^{[r]}(s)ds+\int_{2^{r-1}}^{2^{r-1}+2^{r-1}}w_{r}^{[r]}(s)ds ,
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setting s=t+2^{r-1} in the latter integral we obtain

w_{r}^{[r+1]}(2^{r})= \int_{0}^{2^{r-1}}w_{r}^{[r]}(s)ds+\int_{0}^{2^{r-1}}w_{r}^{[r]}(s+2^{r-1})ds

= \int_{0}^{2^{r-1}}w_{r}^{[r]}(s)ds+\int_{0}^{2^{r-1}}(2^{\frac{(r-1)(r-2)}{2}}-w_{r}^{[r]}(s))ds

=2^{\frac{(r-1)(r-2)}{2}}2^{r-1}=2^{\frac{r(r-1)}{2}}

which completes the proof of statement (2). \square

The proof of statement (4) is contained in the last part of statement
(3) and thus the proof of the lemma is now complete.

We next define the function k_{r}(t) by rescaling w_{r}(t) from [0, 2^{r}] to [0, x] ,

k_{r}(t)=w_{r}( \frac{2^{r}}{x}t)

By Lemma 2 above and (r+1)-times rescaling in integration we obtain

k_{r}^{[r+1]}(x)=2^{-\frac{r(r+3)}{2}}x^{r+1}

For this, by induction on r , we prove that

k_{r}^{[i]}(t)= \frac{x^{i}}{2^{2i}}w_{r}^{[i]}(\frac{2^{r}t}{x}) ,

for any 1\leq i\leq r+1 .
In fact for r=1 and r=2 , we have:

k_{r}^{[1]}(t)= \int_{0}^{t}k_{r}(s)ds=\int_{0}^{t}w_{r}(\frac{2^{r}s}{x})ds=\frac{x}{2^{r}}\int_{0}^{\frac{2^{r}t}{x}}w_{r}(u) du

= \frac{x}{2^{r}}w_{r}^{[1]}(\frac{2^{r}t}{x}) ,

k_{r}^{[2]}(t)= \int_{0}^{t}k_{r}^{[1]}(s)ds=\frac{x}{2^{r}}\int_{0}^{t}w_{r}^{[1]}(\frac{2^{r}s}{x})ds=\frac{x^{2}}{2^{2r}}\int_{0}^{\frac{2^{\Gamma}t}{x}}w_{r}^{[1]}(u)du

= \frac{x^{2}}{2^{2r}}w_{r}^{[2]}(\frac{2^{r}t}{x})

By induction we assume that

k_{r}^{[\ell]}(t)= \frac{x^{\ell}}{2^{2\ell}}w_{r}^{[\ell]}(\frac{2^{r}t}{x}) .
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for any 2\leq\ell\leq r . Next for r+1 , we have

k_{r}^{[r+1]}(t)= \int_{0}^{t}k_{r}^{[r]}(s)ds=\frac{x^{r}}{2^{2r}}\int_{0}^{t}w_{r}^{[r]}(\frac{2^{r}s}{x})ds

= \frac{x^{r+1}}{2^{2(r+1)}}\int_{0}^{\frac{2^{r}t}{x}}w_{r}^{[r]}(u)du=\frac{x^{r+1}}{2^{2(r+1)}}w_{r}^{[r+1]}(\frac{2^{r}t}{x})

Now if we set t=x in the above formula and using that w_{r}^{[r+1]}(2^{r})=

2^{\frac{(r-1)(r-2)}{2}} . we obtain

k_{r}^{[r+1]}(x)=x^{r+1}
2^{-\frac{r(r+3)}{2}}

Concerning the maximum values of |k_{r}^{[i]}(t)| . for 1\leq i\leq r+1 and 0\leq t\leq x ,
we have the following four lemmas.

Lemma 3 For r\geq 1 and 0\leq t\leq 2^{r-1} , w_{r}^{[r-1]}(t)\geq 0 .

Proof. We make induction on r\geq 1 . For r=1 and r=2 , the statement
is an easy computation.

By induction assume that w_{r-1}^{[r-2]}(t)\geq 0 , for any r\geq 3 and all 0\leq t\leq

2^{r-2} .
We have two cases to consider:

(i) 0\leq t\leq 2^{r-2} and
(ii) 2^{r-2}\leq t\leq 2^{r-1} .

Case (i). We have

w_{r}^{[r-1]}(t)= \int_{0}^{t}w_{r}^{[r-2]}(s)ds=\int_{0}^{t}w_{r-1}^{[r-2]}(s)ds\geq 0 .

Case (ii). Since 0\leq t-2^{r-2}\leq 2^{r-2}\leq 2^{r-1} , we have that

w_{r}^{[r-1]}(t)= \int_{0}^{t}w_{r}^{[r-2]}(s)ds=\int_{0}^{t-2^{r-2}}w_{r}^{[r-2]}(s)ds

+ \int_{t-2^{r-2}}^{2^{r-2}}w_{r}^{[r-2]}(s)ds+\int_{2^{r-2}}^{t}w_{r}^{[r-2]}(s)ds

= \int_{0}^{t-2^{r-2}}w_{r-1}^{[r-2]}(s)ds+\int_{t-2^{r-2}}^{2^{r-2}}w_{r}^{[r-2]}(s)ds

+ \int_{2^{r-2}}^{t}w_{r-1}^{[r-2]}(s)ds
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= \int_{0}^{t-2^{r-2}}w_{r-2}^{[r-2]}(s)ds+\int_{t-2^{r-2}}^{2^{r-2}}w_{r}^{[r-2]}(s)ds

- \int_{2^{r-2}}^{t}w_{r-2}^{[r-2]}(s-2^{r-2})ds

= \int_{0}^{t-2^{r-2}}w_{r-2}^{[r-2]}(s)ds+\int_{t-2^{r-2}}^{2^{r-2}}w_{r}^{[r-2]}(s)ds

- \int_{0}^{t-2^{r-2}}w_{r-2}^{[r-2]}(u)du

= \int_{t-2^{r-2}}^{2^{r-2}}w_{r}^{[r-2]}(s)ds=\int_{t-2^{r-2}}^{2^{r-2}}w_{r-1}^{[r-2]}(s)ds\geq 0 .

\square

Lemma 4 For r\geq 1 and 0\leq t\leq 2^{r} , we have that w_{r}^{[r]}(t)\geq 0 and w_{r}^{[r]}(t)

attains the maximum value 2\frac{(r-1)(r-2)}{2} at t=2^{r-1} .

Proof. If 0\leq t\leq 2^{r-1} , then \frac{dw_{r}^{[r]}(t)}{dt}=w_{r}^{[r-1]}(t)\geq 0 . Hence w_{r}^{[r]}(t) is
increasing in [0, 2^{r-1}] and, therefore, 0=w_{r}^{[r]}(0)\leq w_{r}^{[r]}(t)\leq w_{r}^{[r]}(2^{r-1})=

2^{\frac{(r-1)(r-2)}{2}}

If 2^{r-1}\leq t\leq 2^{r} . then \frac{dw_{r}^{[r]}(t)}{dt}=\frac{d}{dt}(2^{\frac{(r-1)(r-2)}{2}}-w_{r}^{[r]}(t-2^{r-1}))=

-w_{r}^{[r-1]}(t-2^{r-1})\leq 0 ; hence w_{r}^{[r]}(t) is decreasing in [2^{r-1},2^{r}] . Therefore

2\frac{(r-1)(r-2)}{2}=w_{r}^{[r]}(2^{r-1})\geq w_{r}^{[r]}(t)\geq w_{r}^{[r]}(0)=0 .

\square

Lemma 5 For r\geq 0 and 1\leq i\leq r+1 , the maximum value of |w_{r}^{[i]}(t)| in
0\leq t\leq 2^{r} is 2 \frac{(i-1)(i-2)}{2}

Proof. Since \frac{dw_{r}^{[r+1]}(t)}{dt}=w_{r}^{[r]}(t)\geq 0 , w_{r}^{[r+1]}(t) is increasing and by Lemma
4

t \in[0,2^{r}]\max|w_{r}^{[r+1]}(t)|=w_{r}^{[r+1]}(2^{r})=2^{\frac{r(r-1)}{2}}

Again, by Lemma 4

t \in[0,2^{r}]\max|w_{r}^{[r]}(t)|=2^{\frac{(r-1)(r-2)}{2}}
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Now suppose i\leq r-1 . Then

t \in[0,2^{r}]\max|w_{r}^{[i]}(t)|=t\in[0,2^{r-1}]\max|w_{r-1}^{[i]}(t)|=maxt\in[0,2^{\underline{r}2}]|w_{r-2}^{[i]}(t)|=

=t \in[0,2^{r-(r-i)}\max|w_{r-(r-i)}^{[i]}(t)|]=2^{\frac{(i-1)(i-2)}{2}}

\square

Lemma 6 For any 1\leq i\leq r+1 , and any 0\leq t\leq x , the maximum value

of |k_{r}^{[i]}(t)| is x^{i}2^{\frac{(i-1)(i-2)}{2}-ir}

Proof. Since k_{r}^{[i]}(t)= \frac{x^{i}}{2^{ir}}w_{r}^{[i]} ( \frac{2^{r}t}{x}) and by Lemma 5, we have

0 \leq t\leq xmax|k_{r}^{[i]}(t)|=0\leq t\leq xmax|\frac{x^{i}}{2^{ir}}w_{r}^{[i]}(\frac{2^{r}t}{x})|=\frac{x^{i}}{2^{ir}}0\leq\max_{s\leq 2^{r}}|w_{r}^{[i]}(s)|

= \frac{x^{i}}{2^{ir}}2^{\frac{(i-1)(i-2)}{2}}=x^{i}2^{\frac{(i-1)(i-2)}{2}-ir}

\square

1

Fig. 5. (a)
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q0

Fig. 5. (b)

We next begin the proof of the Main Lemma.
In order to define the function h we take a C^{\infty} bump function q_{0} :

[0, x]arrow[0,1] such that q_{0}\equiv 1 in a neighborhood V of \frac{x}{2} and that q_{0}\equiv 0 in
some neighborhoods of 0 and x .
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We define, inductively, a sequence of C^{\infty} maps q_{n} : [0, x]arrow[-1,1] by

q_{n}(t)=\{

q_{n-1}(2t) , 0 \leq t\leq\frac{x}{2}

-q_{n-1}(2t-x) , \frac{x}{2}\leq t\leq x

We now define the function h by

h(t)= \frac{y-ax}{q_{r}^{[r+1]}(x)}q_{r}^{[r+1]}(t) .

Then it is clear that h is C^{\infty} , and that it satisfies h(0)=0 and h(x)=y-ax;
we thus have statement (1).

Concerning statement (2), it is clear that h^{(i)}(0)=0 , for any 1\leq i\leq r .
In order to prove h^{(i)}(x)=0 we first note that

h^{(i)}(t)= \frac{y-ax}{q_{r}^{[r+1]}(x)}q_{r}^{[r+1-i]}(t) .

Next note that if we prove q_{r}^{[r+1-i]}(x)=0 , the second part of statement (2)
follows.

We have the following

Lemma 7
(1) For any r\geq 1 and 0\leq i\leq r-1 ,

q_{r}^{[i]}(t)=\{

\frac{1}{2^{i}}q_{r-1}^{[i]}(2t) , 0 \leq t\leq\frac{x}{2}

- \frac{1}{2^{i}}q_{r-1}^{[i]}(2t-x) , \frac{x}{2}\leq t\leq x

(2) q_{r}^{[i]}(2^{j-r}x)=0 , for any r\geq 1 and 1\leq i\leq j\leq r .

Proof. (1) By induction on r we prove the statement and the equality
q_{r}^{[i+1]}( \frac{x}{2})=0 .

First note that, for any r\geq 1 , case i=0 is precisely the defintion of q_{r} .
We may thus assume that i\geq 1 .

For r=1 , i may be 0 or 1.
For i=1 :
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if 0 \leq t\leq\frac{x}{2} , then

q_{1}^{[1]}(t)= \int_{0}^{t}q_{1}^{[0]}(s)ds=\int_{0}^{t}q_{1}(s)ds=\int_{0}^{t}q_{0}(2s)ds

= \frac{1}{2}\int_{0}^{2t}q_{1}(u)du=\frac{1}{2}q_{1}^{[1]}(2t) ;

and if \frac{x}{2}\leq t\leq x , then

q_{1}^{[1]}(t)= \int_{0}^{\frac{x}{2}}q_{1}(s)ds+\int_{\frac{x}{2}}^{t}q_{1}(s)ds=q_{1}^{[1]}(\frac{x}{2})-\int_{2}^{tt}xq_{0}(2s-x)ds

=q_{1}^{[1]}( \frac{x}{2})-\frac{1}{2}\int_{0}^{2t-x}q_{0}(u)du=q_{1}^{[1]}(\frac{x}{2})-q_{0}^{[1]}(2t-x) .

It remains to prove that q_{1}^{[1]}
( \frac{x}{2})=0 . We have

q_{1}^{[1]}( \frac{x}{2})=\int_{0}^{\frac{x}{2}}q_{1}(s)ds=\int_{0}^{\frac{x}{2}}q_{0}(2s)ds=\frac{1}{2}\int_{0}^{x}q_{0}(u)du

= \frac{1}{2}(\int_{0}^{\frac{x}{2}}q_{0}(2u)du-\int_{x}^{xx}q_{0}(2u-x)du)2

= \frac{1}{2}(\int_{0}^{x}q_{0}(v)dv-\int_{0}^{x}q_{0}(v)dv)=0 .

Therefore

q_{1}^{[1]}(t)=\{

\frac{1}{2}q_{0}^{[1]}(2t) , 0 \leq t\leq\frac{x}{2}

- \frac{1}{2}q_{0}^{[1]}(2t-x) , \frac{x}{2}\leq t\leq x

Now by induction assume that, for any 0\leq\ell\leq i\leq r-1 ,

q_{r}^{[\ell]}(t)=\{

\frac{1}{2^{\ell}}q_{r-1}^{[\ell]}(2t) , 0 \leq t\leq\frac{x}{2}

- \frac{1}{2^{\ell}}q_{r-1}^{[\ell]}(2t-x) , \frac{x}{2}\leq t\leq x

We have: if 0 \leq t\leq\frac{x}{2} , then

q_{r}^{[i+1]}(t)= \int_{0}^{t}q_{r}^{[i]}(s)ds=\frac{1}{2^{i}}\int_{0}^{t}q_{r-1}^{[i]}(2s)ds

= \frac{1}{2^{i+1}}\int_{0}^{2t}q_{r-1}^{[i]}(u)du=\frac{1}{2^{i+1}}q_{r-1}^{[i+1]}(2t) ;
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and if \frac{x}{2}\leq t\leq x , then

q_{r}^{[i+1]}(t)= \int_{0}^{\frac{x}{2}}q_{r}^{[i]}(s)ds+\int_{2}^{tt}xq_{r}^{[i]}(s)ds

=q_{r}^{[i+1]}( \frac{x}{2})-\frac{1}{2^{i}}\int_{\frac{x}{2}}^{t}q_{r-1}^{[i]}(2s-x)ds

=q_{r}^{[i+1]}( \frac{x}{2})-\frac{1}{2^{i+1}}\int_{0}^{2t-x}q_{r-1}^{[i]}(s)ds

=q_{r}^{[i+1]}( \frac{x}{2})-\frac{1}{2^{i+1}}q_{r-1}^{[i+1]}(2t-x) .

It remains to prove q_{r}^{[i+1]}
( \frac{x}{2})=0 . We have that

q_{r}^{[i+1]}( \frac{x}{2})=\int_{0}^{\frac{x}{2}}q_{r}^{[i]}(s)ds=\frac{1}{2^{i}}\int_{0}^{\frac{x}{2}}q_{r-1}^{[i]}(2s)ds=\frac{1}{2^{i+1}}\int_{0}^{x}q_{r-1}^{[i]}(s)ds

= \frac{1}{2^{i+1}}(\int_{0}^{\frac{x}{2}}q_{r-2}^{[i]}(2s)ds-\int_{2}^{xx}xq_{r-2}^{[i]}(2s-x)ds)

= \frac{1}{2^{i+2}}(\int_{0}^{x}q_{r-2}^{[i]}(u)du-\int_{0}^{x}q_{r-2}^{[i]}(u)du)=0 .

(2) Again, by induction on r we have three cases to consider:
(i) if j=r, then

q_{r}^{[i]}(x)= \int_{0}^{x}q_{r}^{[i-1]}(s)ds=\int_{0}^{\frac{x}{2}}q_{r}^{[i-1]}(s)ds+\int_{\frac{x}{2}}^{x}q_{r}^{[i-1]}(s)ds

= \frac{1}{2^{i-1}}\int_{0}^{\frac{x}{2}}q_{r-1}^{[i-1]}(2s)ds-\frac{1}{2^{i-1}}\int_{2}^{xx}xq_{r-1}^{[i-1]}(2s-x)ds

= \frac{1}{2^{i}}(\int_{0}^{x}q_{r-1}^{[i-1]}(u)du-\int_{0}^{x}q_{r-1}^{[i-1]}(u)du)=0 ;

(ii) if j=r-1 , we have

q_{r}^{[i]}( \frac{x}{2})=\int_{0}^{\frac{x}{2}}q_{r}^{[i-1]}(s)ds=\int_{0}^{\frac{x}{2}}q_{r-1}^{[i-1]}(2s)ds=\frac{1}{2}\int_{0}^{x}q_{r-1}^{[i-1]}(u)du

= \frac{1}{2}(\int_{0}^{\frac{x}{2}}q_{r-2}^{[i-1]}(2u)du-\int_{x}^{xx}q_{r-2}^{[i-1]}2(2u-x)du)

= \frac{1}{2^{2}}(\int_{0}^{x}q_{r-2}^{[i-1]}(w)dw-\int_{0}^{x}q_{r-2}^{[i-1]}(w)dw)=0 ;
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(iii) if 1\leq i\leq j=r-\ell , then 2^{j-r}x= \frac{x}{2^{l}} and

q_{r}^{[i]}( \frac{x}{2^{\ell}})=\int_{0}^{\frac{x}{2^{\ell}}}q_{r}^{[i-1]}(s)ds

= \int_{0}^{\frac{x}{2^{\ell}}}q_{r-1}^{[i-1]}(2s)ds=\frac{1}{2}\int_{0}^{\frac{x}{2^{\ell-1}}}q_{r-1}^{[i-1]}(s)ds

= \frac{1}{2}\int_{0}^{\frac{x}{2^{\ell-1}}}q_{r-2}^{[i-1]}(2s)ds=\frac{1}{2^{2}}\int_{0}^{\frac{x}{2^{\ell-2}}}q_{r-2}^{[i-1]}(s)ds

.\cdot

.

(\ell-1)- steps

.\cdot

.

= \frac{1}{2^{\ell-1}}\int_{0}^{\frac{x}{2}}q_{r-(\ell-1)}^{[i-1]}(s)ds

= \frac{1}{2^{\ell-1}}\int_{0}^{\frac{x}{2}}q_{r-\ell}^{[i-1]}(2s)ds=\frac{1}{2^{\ell}}\int_{0}^{x}q_{r-\ell}^{[i-1]}(s)ds

= \frac{1}{2^{\ell}}(\int_{0}^{\frac{x}{2}}q_{r-\ell}^{[i-1]}(s)ds+\int_{\frac{x}{2}}^{x}q_{r-\ell}^{[i-1]}(s)ds)

= \frac{1}{2^{\ell}}(\int_{0}^{\frac{x}{2}}q_{r-\ell-1}^{[i-1]}(2s)ds-\int_{x}^{xx}q_{r-\ell-1}^{[i-1]}(2s-x)ds)2

= \frac{1}{2^{\ell+1}}(\int_{0}^{x}q_{r-\ell-1}^{[i-1]}(s)ds-\int_{0}^{x}q_{r-\ell-1}^{[i-1]}(s)ds)=0

which completes the proof of the lemma. \square

Now in order to see that q_{r}^{[r+1-i]}(x)=0 , we set j=r in q_{r}^{[\ell]}(2^{j-r}x)=0

and obtain that q_{r}^{[\ell]}(x)=0 . Next set \ell=r+1-i and the claim q_{r}^{[r+1-i]}(x)=

0 follows.
We next return to the proof of the Main Lemma.
As for statement (3), we estimate the maximum value of |h^{(i)}(t)| . For

any 1\leq i\leq r , we have

|h^{(i)}(t)|= \frac{|y-ax|}{|q_{r}^{[r+1]}(x)|}|q_{r}^{[r+1-i]}(t)|

We now have the following

Lemma 8 For any \delta>0 , if we take V large enough (namely, if [0, x]-V
is very small), then |q_{r}^{[i]}(t)-k_{r}^{[i]}(t)|\leq\delta , for any 1\leq i\leq r and t\in[0, x] .
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Proof. Let A=\{t\in[0, x] : q_{r}(t)\neq k_{r}(t)\} . It is clear that if we take
V large enough, then m(A)=m([0, x]-V) is very small (m denotes the
Lebesgue measure).

For the statement we make induction on i .
(a) For i=1 ,

|q_{r}^{[1]}(t)-k_{r}^{[1]}(t)|=| \int_{0}^{t}q_{r}(s)-k_{r}(s)ds|\leq\int_{0}^{t}|q_{r}(s)-k_{r}(s)|ds

\leq\int_{0}^{x}|q_{r}(s)-k_{r}(s)|ds=\int_{A}|q_{r}(s)-k_{r}(s)|ds

< \int_{A}ds=m(A)=m([0, x]-V) .

(b) By induction assume that |q_{r}^{[i]}(t)-k_{r}^{[i]}(t)|<m([0, x]-V) , for any
1\leq i\leq r-1 . Then we have

|q_{r}^{[i+1]}(t)-k_{r}^{[i+1]}(t)|=| \int_{0}^{t}q_{r}^{[i]}(s)-k_{r}^{[i]}(s)ds|

\leq\int_{0}^{t}|q_{r}^{[i]}(s)-k_{r}^{[i]}(s)|ds

\leq\int_{0}^{t}m([0, x]-V)ds=tm([0, x]-V)

\leq xm([0, x]-V)<m([0, x]-V) .

Now to complete the proof of statement (3) of the Main Lemma, we
note that by assumption

|y-ax|<x^{r+1} 2^{-\frac{r(r+1)}{2}}

Therefore, there exists a constant 0<C<1 such that

|y-ax|<Cx^{r+1} 2^{-\frac{r(r+1)}{2}}

If q_{r} is sufficiently close to k_{r} , we have

|q_{r}^{[r+1]}(x)|\geq C|k_{r}^{[r+1]}(x)| ,

and by Lemma 6, for any 1\leq i\leq r and 0\leq t\leq x ,

|k_{r}^{[r+1-i]}(t)|\leq 2^{\frac{(r-i)(r-i-1)}{2}-r(r+1-i)} x^{r+1-i} .

Now let \delta be a positive number satisfying \delta<\frac{\in-x}{2^{r}} . By Lemma 8, and if we

take V large enough, q_{r} satisfies |q_{r}^{[i]}(t)-k_{r}^{[i]}(t)|\leq\delta , for any 1\leq i\leq r and
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t\in[0, x] . Thus we have

|h^{(i)}(t)|= \frac{|y-ax|}{|q_{r}^{[r+1]}(x)|}|q_{r}^{[r+1-i]}(t)|

\leq\frac{|y-ax|}{C|k_{r}^{[r+1]}(x)|}(|k_{r}^{[r+1-i]}(t)|+\delta)

\leq|y-ax| C^{-1} x^{-i} 2^{\frac{i(i+1)}{2}}

+|y-ax| C^{-1} x^{-(r+1)} 2\frac{r(r+3)}{2}
\delta

<x^{r+1-i}+2^{r} \delta\leq x+2^{r} \delta<\epsilon .

\square

5. Proof of Theorem 1

Let s=(\lambda_{n})_{n\in \mathbb{N}} be a sequence of real numbers as in the hypotheses of
Theorem 1.

Assume that we have defined maps of class C^{r} . g_{k} : I^{1}
– [0, 1] , k=

1 , \ldots , n , which are strictly monotone on each connected component of I^{1} ,
and such that their graphics contain two vertices of each rectangle R_{\gamma}^{n} ,
\gamma\in\triangle_{n} . To define g_{n+1} we change the definition of g_{n} on each interval
\pi_{1}(R_{\gamma}^{n})=\pi_{1}(R_{\gamma 1}^{n+1})\cup\pi_{1}(L_{\gamma})\cup\pi_{1}(R_{\gamma 2}^{n+1}) , \gamma\in\triangle_{n} . For this we apply the
Main Lemma in each rectangle R_{\gamma 1}^{n+1} , L_{\gamma} and R_{\gamma 2}^{n+1} , \gamma\in\triangle_{n} , hence obtaining
a C^{r} map g_{n+1} : I^{1}

– [0, 1] which is strictly monotone on each connected
component of I^{1} and such that its graphic contains two vertices of each of
the rectangles R_{\gamma}^{n+1} and of the rectangles L_{\gamma} , \gamma\in\triangle_{n+1} , thus ending the
induction step.

Since m(I^{n})arrow 0 , as narrow\infty (m the Lebesgue measure), from the Main
Lemma it follows that given \epsilon>0 , there is N\in \mathbb{N} such that g_{n}’|_{I^{N}} is \epsilon-close
to the constant map \lambda(t)=\frac{1}{\lambda} , n\geq N , and that g_{n}^{(i)}|_{I^{N}} is \epsilon-close to the
null map, i=1 , \ldots , r . We conclude that, for i=1 , . , r , the sequences
(g_{n}^{(i)})_{n\in \mathbb{N}} converge uniformly and, therefore, f= \lim_{narrow\infty}g_{n} is a map of
class C^{r} , which ends the proof of Theorem 1 in this case.

For the general case, the arguments are analogous with the correspond-
ing modifications.

Remark 6. Clearly, if \lambda\in ]0, \frac{1}{2} [, the constant sequence \lambda_{n}=\lambda , n\in \mathbb{N} ,
satisfies the conditions of Theorem 1.
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6. Proof of Corollary 2

It suffices to show that the sequence (\lambda_{n})_{n\in \mathbb{N}} satisfies the conditions of
Theorem 1.

1. We have that

| \frac{1}{\lambda_{n}}-\frac{1}{\lambda}|<2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r}<2^{-\frac{r(r+1)}{2}}(\Pi_{i=1}^{n}\lambda_{i})^{r} ,

and thus condition 1 of Theorem 1 holds.
2. Since | \frac{1}{\lambda_{n}}-\frac{1}{\lambda}| < 2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r} , it follows that |\lambda-\lambda_{n}| <

\lambda_{n}\lambda_{1}^{(n+t)r}2^{-\frac{r(r+1)}{2}}

Now we have

| \frac{1}{\lambda_{n}}\frac{1-(p+1)\lambda_{n}}{1-(p+1)\lambda_{n+1}}-\frac{1}{\lambda_{n}}|=\frac{p+1}{\lambda_{n}}\frac{|\lambda_{n+1}-\lambda_{n}|}{|1-(p+1)\lambda_{n+1}|}

< \frac{1}{\lambda_{n}}\frac{p+1}{1-(p+1)\lambda}2^{-\frac{r(r+1)}{2}}\lambda_{n}\lambda_{1}^{(n+t)r} ;

that is,

| \frac{1}{\lambda_{n}}\frac{1-(p+1)\lambda_{n}}{1-(p+1)\lambda_{n+1}}-\frac{1}{\lambda_{n}}|<\frac{p+1}{1-(p+1)\lambda}2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r}

Finally

| \frac{1}{\lambda_{n}}\frac{1-(p+1)\lambda_{n}}{1-(p+1)\lambda_{n+1}}-\frac{1}{\lambda}|

\leq|\frac{1}{\lambda_{n}}\frac{1-(p+1)\lambda_{n}}{1-(p+1)\lambda_{n+1}}-\frac{1}{\lambda_{n}}|+|\frac{1}{\lambda_{n}}-\frac{1}{\lambda}|

< \frac{p+1}{1-(p+1)\lambda}2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r}+2^{-\frac{r(r+1)}{2}}\lambda_{1}^{(n+t)r}

=2^{-\frac{r(r+1)}{2}} \lambda_{1}^{nr}\lambda_{1}^{tr}(\frac{p+1}{1-(p+1)\lambda}+1)

<2^{-\frac{r(r+1)}{2}}
(\Pi_{i=1}^{n}\lambda_{i})^{r} ( \frac{1-(p+1)\lambda}{p})^{r}

<2^{-\frac{r(r+1)}{2}}
(\Pi_{i=1}^{n}\lambda_{i})^{r} ( \frac{1-(p+1)\lambda_{n+1}}{p})^{r} ;

that is, condition 2 of Theorem 1 holds.
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7. Proof of Theorem 2

The sequence s=(\lambda_{n})_{n\in \mathbb{N}} satisfies the conditions of Theorem 1 and,
hence, the associated p-central Cantor set \Lambda(p, s) is of class C^{r} , r\geq 1 .
Let \Lambda=\bigcap_{n=1}^{\infty}I^{n} be as in Definition 2. From hypothesis (1) it is easily
seen that the arithmetic difference J^{n}=I^{n}-I^{n} is the union of (2p+1)^{n}

disjoint intervals of length 2 \square _{i=1}^{n}\lambda_{i} . Then K= \bigcap_{n=1}^{\infty}J^{n} is a Cantor set with
Lebesgue measure m(K)= \lim_{narrow\infty}m(J^{n})=\lim_{narrow\infty}2\Pi_{i=1}^{n}((2p+1)\lambda_{i}) .
From hypothesis (2) we see that m(K)>0 . Finally, it is easy to see that
K=\Lambda-\Lambda (see [S]). In particular, \lim_{iarrow\infty}\lambda_{i}=\frac{1}{2p+1} .

8. Hausdorff dimension and limit capacity of central Cantor sets

We now recall the definitions of Hausdorff dimension and limit capacity
of sets; we next apply these concepts to central Cantor sets in order to prove
that the above examples are “frontier examples”, which will become clear
in the end.

In order to define the Hausdorff dimension and the limit capacity, we
consider a metric space (X, d) .

8.1. Hausdorff dimension
The diameter of a subset U of X , which we denote by |U| , is \sup\{d(x, y) :

x , y\in U\} . Let E\subset X . and let \delta>0 . We will say a collection \{U_{i}\}_{i\in\Gamma} is a
\delta-cover of E if E \subset\bigcup_{i\in\Gamma}U_{i} and 0<|U_{i}|<\delta .

Let s>0 . The s-dimensional Hausdorff measure of E is

\mathcal{H}^{s}(E)=\lim_{\deltaarrow 0}\inf\{\sum_{i=1}^{\infty}|U_{i}|^{s} : \{U_{i}\}_{i\in \mathbb{N}} is a countable \delta-cover of E\} .

Set H_{\delta}^{s}(E)= \inf { \sum_{i=1}^{\infty}|U_{i}|^{s} : \{U_{i}\}_{i\in \mathbb{N}} is a countable \delta- cover of E }. It is
clear that \delta<\delta’ implies H_{\delta}^{s}(E)\geq?\{_{\delta}^{s},(E) . Thus, fixing E\subset X and s>0 ,
the function \deltaarrow H_{\delta}^{s}(E) is non-increasing and, therefore, there always exists
\lim_{\deltaarrow 0}H_{\delta}^{s}(E)=\sup_{\delta>0}H_{\delta}^{s}(E) . Hence H^{s}(E) is well defined, for any subset
E\subset X . Moreover, the set function E – \prime H^{s}(E) is an outer measure on X
as well as a measure on the class of Borel subsets of X . Let E\subset X\tau It is
well known that there is a unique value s_{0} such that

H^{s}(E)=\{
\infty if s<s_{0}

0 if s>s_{0}
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Note that \mathcal{H}^{s_{0}}(E) may be 0, +\infty or a finite nonzero value. The value s_{0} ,

where H^{s}(E) jumps from \infty to 0, is called the Hausdorff dimension of E

and is denoted HD(E) . For a more detailed discussion of the Hausdorff
dimension and its properties, see [PT] and [F].

8.2. Limit Capacity
Let E\subset X be a compact set. For \epsilon>0 , set n(\epsilon) as the smallest number

of \epsilon-balls (i.e., balls of radius \epsilon ) needed to cover E . The limit capacity of

E is

d(E)= \lim_{\inarrow}\sup_{0}\frac{\ln(n(\epsilon))}{-1n(\in)} .

It is easy to see that HD(E)\leq d(E) , for any compact subset E of X (cf.

[PT] ) .
Now we have the following

Proposition 1 Let \Lambda(p, s) be a p-central Cantor set defined by a sequence
s=(\lambda_{n})_{n\in \mathbb{N}} , with \lim_{narrow\infty}\lambda_{n}=\lambda\neq 0 . Then d(\Lambda(p, s))=[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}} .

Proof. Note that in the n-th step of the construction of \Lambda(p, s) the set I^{n}

is the union of (p+1)^{n} intervals each of length \Pi_{i=1}^{n}\lambda_{i} . Therefore

d( \Lambda(p, s))=\lim_{narrow\infty}\frac{1og((p+1)^{n})}{-1og(\Pi_{i=1}^{n}\lambda_{i})}=\lim_{narrow\infty}\frac{-1og(p+1)}{\frac{1}{n}1og(\Pi_{i=1}^{n}\lambda_{1})}

= \lim_{narrow\infty}\frac{-1og(p+1)}{\frac{1}{n}\sum_{i=1}^{n}1og(\lambda_{i})}=\frac{1og(p+1)}{1og(\lambda^{-1})} .

\square

Also note that d(\Lambda(p, s)) is equal to the limit capacity of the p-\lambda-central

Cantor set. Hence it follows that HD(\Lambda(p))\leq[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}} . If \Lambda(p, s) is regular

of class C^{r} , r\geq 2 , it is dynamically defined. For this class of Cantor sets,

we have that its Hausdorff dimension and limit capacity are equal (cf. [PT ,

p. 80, Proposition 7]); hence HD(\Lambda(p, s))=[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}} .

For the case r=1 and in order to obtain lower bounds for HD(\Lambda(p, s)) ,

we use the following mass distribution principle (see [F]). We first recall that

a mass distribution on a set F is a measure \mu with support contained in

F and such that 0<\mu(F)<\infty . In fact, we may always suppose that

\mu(F)=1 , i.e., \mu is mass distribution probability.
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Theorem 3 (cf. [B] or [F]) Let \mu be a mass distribution on a set F.
For some s>0 , suppose there are numbers c>0 and \delta>0 such that
\mu(U)\leq c|U|^{s} , for any set U with |U|<\delta . Then H^{s}(F) \geq\frac{\mu(F)}{c} and,
consequently, s\leq HD(F) .

We now apply this mass distribution principle to obtain a lower bound
for the Hausdorff dimension of a p-central Cantor set \Lambda(p, s) , with s=
(\lambda_{n})_{n\in \mathbb{N}} as above.

Recall that \Lambda(p, s)=\bigcap_{n\geq 0}I^{n} where I^{n}= \bigcup_{j=1}^{(p+1)^{n}}I_{j}^{n} and the I_{j}^{n} are
closed intervals each of length \Pi_{i=1}^{n}\lambda_{i} , with I_{j}^{n}\cap I_{\ell}^{n}=\emptyset , j\neq\ell . We define
a mass distribution \mu on \Lambda(p, s) as \mu=\lim_{narrow\infty}\mu_{n} , where \mu_{n} is a mass
distribution on I^{n} defined as follows: each interval I_{j}^{n} of I^{n} carries a mass
equaling ( \frac{1}{p+1})^{n}

Now let U\subset I be an interval of length |U|\leq 1 , and let n be the integer
such that \Pi_{i=1}^{n+1}\lambda_{i}\leq|U|<\Pi_{i=1}^{n}\lambda_{i} . Hence U can intersect at most one of
the (p+1)^{n} intervals I_{j}^{n} of I^{n} . Set t=[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}}=d(\Lambda(p, s)) . Then

\mu_{n}(U)\leq(p+1)^{-n}=(e^{\log(\lambda_{i})_{)}^{-[mathring]_{\frac{n1g(p+1)}{1og(_{i=1}\Pi n\lambda_{i})}}}}\Pi_{i=1}^{n}

=(\Pi_{i=1}^{n}\lambda_{i})-[mathring]_{\frac{n1g(p+1)}{1og(_{i=1}\Pi n\lambda_{i})}}

Now since \Pi_{i=1}^{n+1}\lambda_{i}\leq|U| , it follows that \Pi_{i=1}^{n}\lambda_{i}\leq\lambda_{n+1}^{-1}|U| and that

\mu_{n}(U)\leq|U|-[mathring]_{\frac{n1g(p+1)}{1og(_{i=1^{\lambda_{i}}}\Pi n)}}\lambda[mathring]_{\frac{n1g(p+1)}{n+11og(_{i=1}\Pi n\lambda_{i})}}

Set s_{n}=-[mathring]_{\frac{n1g(p+1)}{1og(\Pi_{i=1}^{n}\lambda_{i})}} , and set
c_{n}=\lambda[mathring]_{\frac{1g(p+1)}{n+1\frac{1}{n}1og(\Pi n\lambda_{i}i=1)}}

Therefore the inequal-
ity above may be rewritten as \mu_{n}(U)\leq c_{n}|U|^{s_{n}} . On the other hand,
\lim_{narrow\infty}c_{n}=\lambda^{[mathring]_{\frac{1g(p+1)}{1\circ g(\lambda)}}}=p+1 and \lim_{narrow\infty}s_{n}=[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}}=t . Hence
H^{t}(\Lambda(p, s)>0 and HD(\Lambda(p, s))\geq t=d(\Lambda(p, s)) . Therefore HD(\Lambda(p, s))=

d(\Lambda(p, s))=[mathring]_{\frac{1g(p+1)}{1og(\lambda^{-1})}} .

Remark 7. If A\subset \mathbb{R} , then HD(A)<1 implies m(A)=0.

When a Cantor set \Lambda\subset \mathbb{R} is dynamically defined we have that 0<
HD(\Lambda)=d(\Lambda)<1 , hence m(\Lambda)=0 (cf. [PT , p. 80, Proposition 7]).
In general, the situation (although it is not our case) is rather different for
Cantor sets which are only C^{1} . In [Bo] R. Bowen has construted an example
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of a C^{1} Cantor set of positive Lebesgue measure.
We next prove the following

Proposition 2 Let \Lambda(p, s)\subset[0,1] be a p-central Cantor set constructed

from a sequence s=(\lambda_{i})_{i\in \mathbb{N}} , 0< \lambda_{i}<\frac{1}{p+1} . Assume that \lim_{iarrow\infty}\lambda_{i}=\lambda and
that \lambda\neq 0 . Then we have the following two possibilities:

b)a) ifif \lambda>\frac{1}{2p\frac{+11}{2p+1}},then\Lambda(p, s)-\Lambda(p, s)containsintervals\lambda<,then\Lambda(p,s)-\Lambda(p,s)isaCantorset’.of

zero Lebesgue
measure.

Proof. Geometrically the difference of x , y\in \mathbb{R} , x-y , is obtained pr0-

jecting the point (x, y)\in \mathbb{R}^{2} on the x-axis through the direction \theta=

\pi/4 . We let proj \theta denote this projection. Now \Lambda(p, s)=\bigcap_{n\geq 0}I^{n} , where
I^{n}= \bigcup_{i=1}^{(p+1)^{n}}I_{j}^{n} is the union of (p+1)^{n} intervals each of length \Pi_{i=1}^{n}\lambda_{i} ;

hence I^{n} \cross I^{n}=\bigcup_{i,j=1}^{(p+1)^{n}}I_{i}^{n}\cross I_{j}^{n} On the other hand, we know that
\Lambda(p, s)-\Lambda(p, s)=\bigcap_{n\geq 0}J^{n} , where J^{n} is the union of (2p+1)^{n} intervals
each of length 2 \Pi_{i=1}^{n}\lambda_{i} . In fact, J^{n}=I^{n}-I^{n}= \bigcup_{i,j\geq 1}(I_{i}^{n}-I_{j}^{n}) .

We first study the case \lambda_{n}=\frac{1}{2p+1} , for any n\geq 1 . It is clear that the
projection proj \theta(I_{i}^{n}\cross I_{j}^{n}) , i , j=1 , \ldots , (p+1)^{n} , covers all of [-1, 1]. These

projections intersect at points of the form \frac{k}{2p+1} and, moreover, there are no
overlaps.

Now assume that \lambda=\lim_{narrow\infty}\lambda_{n}>\frac{1}{2p+1} . Then there exists n_{0}\geq 1

such that \Pi_{i=1}^{n_{0}}\lambda_{i}\geq(\frac{1}{2p+1})^{n_{0}} and, therefore, the projection proj \theta(I_{i}^{n_{0}}\cross I_{j}^{n_{0}})

is always an interval, for all n\geq n_{0} ; thus \Lambda(p, s)-\Lambda(p, s)contains intervals.
Note that, for n<n_{0} , J^{n}=I^{n}-I^{n} may contain gaps.

If \lambda< \frac{1}{2p+1} , there exists n_{0}\geq 1 such that \Pi_{i=1}^{n_{0}}\lambda_{i}< ( \frac{1}{2p+1})^{n_{0}} , for
all n\geq n_{0} , and it is easy to see that \Lambda(p, s)-\Lambda(p, s) is a Cantor set of
zero Lebesgue measure. Note that the projection set J^{n} may not contain
gaps for n<n_{0} , but if we iterate our construction process of the difference
set J^{n}=I^{n}-I^{n} a large enough number of times, then such gaps must
necessarily appear. \square

Remark 8. For the case \lambda=\frac{1}{2p+1} , we have that \Lambda(p, s)-\Lambda(p, s) may be
a Cantor set of positive Lebesgue measure. In fact, this possibility occurs
when the sequence s=(\lambda_{n})_{n\in \mathbb{N}} satisfies the hypotheses of theorems 1 and
2. This proposition also shows that our examples are “frontier examples”
since a “small perturbation” of them yields regular Cantor sets whose self-
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arithmetic difference set either contains intervals or is a Cantor set of zero
Lebesgue measure.

Remark 9. In a certain sense the p-central Cantor sets \Lambda(p, s) , with p\geq 1

and s=(\lambda_{n})_{n\in \mathbb{N}} a sequence which satisfies conditions of theorems 1 and 2,
for some r\geq 1 (i.e., they are regular Cantor sets of class C^{r} and their self-
arithmetic difference set is a Cantor set of positive Lebesgue measure), are
(‘so near” to the rigid p-central Cantor sets \Lambda(p, \lambda) , where \lambda=\lim_{narrow\infty}\lambda_{n}=

\frac{1}{2p+1} , which satisfy \Lambda(p, \lambda)-\Lambda(p, \lambda)=[-1,1] .

9. Example

We now give an example of a construction of a diffeomorphism f in the
sphere S^{2} . with a basic set \Gamma (a horseshoe) which is the product of a central
Cantor set \Lambda with itself (cf. [Bo] for an analogous construction).

Let s=(\lambda_{n})_{n\in \mathbb{N}} . with \lambda_{0}=1 and 0< \lambda_{n}<\frac{1}{2} , n\geq 1 , be a sequence
which defines a central Cantor set \Lambda . Assume that (\lambda_{n})_{n\in \mathbb{N}} satisfies the
conditions of Theorem 1, for some r\geq 1 . Then \Lambda is a C^{r} regular Cantor
set. Let \varphi : I_{1}\cup I_{2} –I be the C^{r} function which defines \Lambda , that is,
\Lambda=\bigcap_{i=0}^{\infty}\varphi^{-i}(I) .

We assume that \varphi is strictly increasing in I_{1} , and that it is strictly
decreasing in I_{2} . We denote \varphi_{i}=\varphi|_{I_{i}} , i=1,2 . Let R_{1}=[0, \lambda_{1}]\cross I , and
R_{2}=[1-\lambda_{1},1]\cross I . Define f : R_{1}\cup R_{2}arrow \mathbb{R}^{2} by

f(x, y)=\{
(\varphi_{1}(x), \varphi_{1}^{-1}(y)) , if (x, y)\in R_{1}

(\varphi_{2}(x), \varphi_{2}^{-1}(y)) , if (x, y)\in R_{2} .

It is easy to see that f(R_{1})=I\cross[0, \lambda_{1}] , and that f(R_{2})=I\cross[1-\lambda_{1},1] .
The images of R_{1} and R_{2} under f are shown in Figure 6 (a).

Now we extend f to I\cross I applying the rectangle [\lambda_{1},1-\lambda_{1}]\cross I into a
horseshoe as is shown in Figure 6 (b).

Note that p=(0,0) is a hyperbolic fixed point of f . with eigenvalues
equaling \lambda and \lambda^{-1} . The local unstable manifold of p contains I\cross\{0\} , and
its local stable manifold contains {0} \cross I . Finally, we extend f to S^{2} as in
the classical horseshoe example (cf. [PM]).

Now, as is done in [N], we may perturb f outside \Lambda(p, s) in such a
way as to create a homoclinic tangency. When we unfold this homoclinic
tangency we see that \Lambda-\Lambda is the set where there are primary homoclinic
tangencies. Thus if we choose the sequence (\lambda_{n})_{n\in \mathbb{N}} as in Theorem 2, we
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Fig. 6. (a)

Fig. 6. (b)

have that the set \Lambda-\Lambda=\{\mu : \Lambda\cap(\Lambda+\mu)\neq\emptyset\} has positive Lebegue
measure. Other possibilities for a construction of a horseshoe are shown in
figures 7. and 8.
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Fig. 7.



Differentiability of p-central Cantor sets 35

Fig. 8.
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