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Moser type theorem for toric hyperK\"ahler quotients
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Abstract. We consider the symplectic geometry of toric hyperK\"ahler quotients. Under
a mild condition, we obtain that toric hyperK\"ahler quotients have stability about its
underlying symplectic structures.
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1. Introduction

Symplectic manifolds have the properties of both softness and hardness.
For softness, there is a classical theorem due to Moser [6].

Theorem 1.1 (Moser) Let M be a closed manifold and \{\omega_{t}\}_{0\leq t\leq 1}a

smooth family of cohomologous symplectic forms on M. Then there exists
\{\phi_{t}\}_{0\leq t\leq 1} a smooth family of diffeomorphisms of M such that \phi_{t}^{*}\omega_{t}=\omega_{0}

for all t\in[0,1] .

This theorem is proved by constructing a family of vector fields
\{Z_{t}\}_{0\leq t\leq 1} whose integral flows induce \{\phi_{t}\}_{0\leq t\leq 1} . Therefore the complete-
ness of these vector fields is necessary. But this is automatically satisfied
since M is compact. In this paper, we prove that an analog of this the0-
rem holds in the case of not necessarily compact but complete hyperK\"ahler
quotients under a mild condition.

Let (M, g, I, J, K) be a complete hyperK\"ahler manifold, i.e. g is a com-
plete Riemannian metric and I , J , K are almost complex structures of M
satisfying

(i) g is Hermitian with respect to I , J , K ,
(ii) I^{2}=-1 , J^{2}=-1 , K^{2}=-1 , IJ=K, JK=I., KI=J,
(iii) \nabla I=0 , \nabla J=0 , \nabla K=0 ,

where \nabla is the Levi-Civita connection of g .
We define the 2-forms \omega_{I} , \omega_{J} , \omega_{K} by \omega_{I}(X, Y)=g(IX, Y) , etc. Prom

the condition above, it follows that I , J , K are integrable and \omega_{I} , \omega_{J} , \omega_{K}
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are K\"ahler with respect to I , J , K respectively.
Let G be a compact connected Lie group and g its Lie algebra. We as-

sume that G acts on M preserving its hyperK\"ahler structure with a moment
map

\mu=(\mu_{I}, \mu_{J}, \mu_{K}) : Marrow g^{*}\cross g^{*}\cross g^{*} ,

i.e. G preserves the metric g and acts on M in a Hamiltonian way for every
symplectic forms \omega_{I} , \omega_{J} , \omega_{K} with moment maps \mu_{I} , \mu_{J} , \mu_{K} respectively.
Note that \mu is a G-equivariant map.

We denote by C the set of G-invariant elements of g^{*} . Let \xi=
(\xi_{I}, \xi_{J}, \xi_{K})\in C\cross C\cross C be a regular value of \mu . Then M^{\xi}=\mu^{-1}(\xi) is
a G-invariant smooth submanifold of M. If G acts on M^{\xi} freely, the qu0-

tient manifold M^{\xi}/G has the three induced K\"ahler forms \omega_{I}^{\xi} , \omega_{J}^{\xi} , \omega_{K}^{\xi} from
\omega_{I} , \omega_{J} , \omega_{K} and the induced metric from g^{\xi} as the Riemannian submersion
M^{\xi}arrow M^{\xi}/G . These define the hyperK\"ahler structure on M^{\xi}/G . This
manifold M^{\xi}/G is called the hyperK\"ahler quotient of M by the moment
map \mu . For further detail, we refer to Section 3 in [4].

In Section 2, we prove the Moser type theorem for hyperK\"ahler qu0-

tients. Roughly speaking, under a mild condition, the symplectic diffeomor-
phism class of the hyperK\"ahler quotient (M^{\xi}/G, \omega_{I}^{\xi}) is independent of \xi_{J}

and \xi_{K} (Theorem 2.1). By Duistermaat and Heckman [3], we note that the
cohomology class of \omega_{I}^{\xi} changes for various choice of \xi_{I} in general.

The idea of the proof is as follows. We take an embedded path \gamma=

(\gamma_{I}, \gamma_{J}, \gamma_{K}) : [0, 1]arrow(C\cross C\cross C)\cap\mu(M) such that \gamma_{I} is a constant \xi_{I} which is
a regular value of \mu_{I} . We also denote by \gamma its image. Then M^{\gamma}=\mu^{-1}(\gamma) is
a G-invariant smooth submanifold of M . If G acts on M^{\gamma} freely, we obtain
a family of symplectic manifolds (M^{\gamma(t)}/G, \omega_{I}^{\gamma(t)}) , t\in[0,1] in the manifold
M^{\gamma}/G . These manifolds are considered as symplectic submanifolds of the
symplectic quotient of (M, \omega_{I}) by the moment map \mu_{I} at the point \xi_{I} .
Because \gamma_{I} is constant, M^{\gamma}/G has the induced closed 2-form \omega_{I}^{\gamma} from \omega_{I} .
This closed 2-form is necessarily degenerate. By using the kernel of \omega_{I}^{\gamma} , we
construct the vector field Z on M^{\gamma}/G . If Z is complete, we can construct
symplectic diffeomorphisms between (M^{\gamma(0)}/G, \omega_{I}^{\gamma(0)}) and (M^{\gamma(t)}/G, \omega_{I}^{\gamma(t)})

for all t\in[0,1] by using its integral flows.
The assumptions we used here consist of two parts:
(i) the action of G on M^{\gamma} is free.
(ii) the vector field Z on M^{\gamma}/G is complete.
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In Section 3, we consider toric hyperK\"ahler linear actions on quar-
ternionic vector spaces with certain moment maps. A sufficient condition
for (i) is given by Konno [5]. We prove that the assumption (ii) holds for
this case (Theorem 3.1).

This problem was suggested to me by Professor K. Ono. I should like
to express my gratitude to him for suggesting this problem.

2. Moser type theorem

We use here the same notations in introduction.
Let (M, g, I, J, K) be a complete hyperK\"ahler manifold and G a com-

pact connected Lie group. We denote by g its Lie algebra. We assume that
G acts on M preserving its hyperK\"ahler structure with a moment map

\mu=(\mu_{I}, \mu_{J}, \mu_{K}) : Marrow g^{*}\cross g^{*}\cross g^{*}

Let \xi_{I}\in C be a regular value of \mu_{I} . We define the space B by

B=(\xi_{I}\cross C\cross C)\cap\mu(M) .

We take an embedded path

\gamma=(\gamma_{I}, \gamma_{J}, \gamma_{K}) : [0, 1]arrow B .

Let Y^{1} , , Y^{n} be a basis of g . We define the matrix g(x)=(g_{ij}(x)) by

g_{ij}(x)=g(\underline{Y}_{x}^{i}, \underline{Y}_{x}^{j}) , x\in M^{\gamma} ,

where we denote by \underline{Y} the fundamental vector field associated to Y\in g . By
Lemma 2.2 below, every point of B is a regular value of \mu . So the action of
G on M^{\gamma} is locally free. Hence we have det g(x)\neq 0 .
We denote by g^{-1}(x)=(g^{ij}(x)) the inverse matrix of g(x) . We define the
function \nu : M^{\gamma}arrow \mathbb{R} by

\nu(x)=|g^{-1}(x)|=(\sum_{i,j=1}^{n}|g^{ij}(x)|^{2})\frac{1}{2}

Note that the boundedness of \nu does not depend on the choice of a basis
of g .

The main theorem in this section is the following:

Theorem 2.1 If G acts on M^{\gamma} freely and \nu : M^{\gamma}arrow \mathbb{R} is a bounded
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function, then the manifolds (M^{\gamma(t)}/G, \omega_{I}^{\gamma(t)}) , t\in[0,1] are symplectic dif-
feomorphic each other.

This theorem follows from the arguments below.
First of all, we shall review the tangent spaces of the manifolds M^{\gamma} and

M^{\xi} . We set \xi=\mu(x)=\gamma(t) . The tangent space of M^{\gamma} at x is the inverse
image of T_{\mu(x)}\gamma by (d\mu)_{x} . The tangent vector X_{x}\in T_{x}M belongs to T_{x}M^{\gamma}

if and only if there exists s\in \mathbb{R} and the following equations are satisfied:

g(I\underline{Y}_{x}, X_{x})=0

g(J\underline{Y}_{x}, X_{x})=s\langle\dot{\gamma}_{J}(t), Y\rangle

g(K\underline{Y}_{x}, X_{x})=s\langle\dot{\gamma}_{K}(t), Y\rangle for all Y\in g . (2.1)

The tangent space of M^{\xi} at x is the kernel of (d\mu)_{x} . The tangent vector
X_{x}\in T_{x}M belongs to T_{x}M^{\xi} if and only if we can take s=0 in the above
condition. The tangent space of G-0rbit at x is generated by the fundamen-
tal vector fields. Every element of T_{x}(Gx) is represented by \underline{Y}_{x} for some
Y\in g . It is easy to see that T_{x}(Gx)\subset T_{x}M^{\xi}\subset T_{x}M^{\gamma} .

Lemma 2.2 The vector subspaces of T_{x}M

T_{x}(Gx) , IT_{x}(Gx) , JT_{x}(Gx) and KT_{x}(Gx)

are mutually orthogonal with respect to g .

Proof. Since \mu_{I}(hx)=\mu_{I}(x) for all h\in G , it follows that (d\mu_{I})_{x}\underline{X}_{x}=0

for all X\in g . By the property of moment maps, for every X, Y\in g , we
have g(I\underline{Y}_{x}, \underline{X}_{x})=\langle(d\mu_{I})_{x}\underline{X}_{x}, Y\rangle=0 . Hence T_{x}(Gx) and IT_{x}(Gx) are
mutually orthogonal. The other cases are proved in the same way. \square

Lemma 2.3 Every point of B is a regular value of \mu .

Proof. Take an arbitrary (\xi_{I}, \xi_{J}, \xi_{K}) \in B and an arbitrary x \in

\mu^{-1}(\xi_{I}, \xi_{J}, \xi_{K}) . Because x is a regular value of \mu_{I} , we have g_{ii}(x)\neq 0 .
For every (\xi_{I}’, \xi_{J}’, \xi_{K}’)\in g^{*}\cross g^{*}\cross g^{*} , we define the tangent vector in T_{x}M

X_{x}= \sum_{i=1}^{n}\frac{1}{g_{ii}(x)}(\langle\xi_{I}’, Y^{i}\rangle I\underline{Y}_{x}^{i}+\langle\xi_{J}’, Y^{i}\rangle J\underline{Y}_{x}^{i}+\langle\xi_{K}’, Y^{i}\rangle K\underline{Y}_{x}^{i})

By using Lemma 2.2, it is easy to see that (d\mu)_{x}X_{x}=(\xi_{I}’, \xi_{J}’, \xi_{K}’) . Therefore
(d\mu)_{x} is surjective. \square
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We assume that G acts on M^{\gamma} freely. Then the canonical projection

p : M^{\gamma}arrow M^{\gamma}/G

is submersion.

Lemma 2.4 The closed 2-form \omega_{I} on M^{\gamma} induces the closed 2-form \omega_{I}^{\gamma}

on M^{\gamma}/G by

(\omega_{I}^{\gamma})_{p(x)}(X_{p(x)}, Y_{p(x)})=\omega_{I}(X_{x}, Y_{x}) , X_{p(x)} , Y_{p(x)}\in T_{p(x)}(M^{\gamma}/G) ,

(2.2)

where X_{x} and Y_{x} are any tangent vectors in T_{x}M^{\gamma} which project to X_{p(x)}

and Y_{p(x)} respectively.

Proof. First, we show that the definition (2.2) is independent of the choice
of a point in the G-0rbit p(x) . From (2.1), we obtain that

\omega_{I}(T_{x}M^{\gamma}, T_{x}(Gx))=0 . (2.3)

For any h\in G , we take tangent vectors X_{hx}’ and Y_{hx}’ in T_{hx}M^{\gamma} which
project to X_{p(x)} and Y_{p(x)} respectively. Because of p(hx)=p(x) , it follows
that both (dh)_{x}X_{x}-X_{hx}’ and (dh)_{x}Y_{x}-Y_{hx}’ belong to Thx(Gx) , where we
identify the element h\in G and the diffeomorphism M^{\gamma} – M^{\gamma} , x\mapsto hx .
By (2.3) and the G-invariance of \omega_{I} , we have \omega_{I}(X_{hx}’, Y_{hx}’)=\omega_{I}(X_{x}, Y_{x}) .
So (2.2) is well-defined.

Next, we show that \omega_{I}^{\gamma} is closed. By construction, we have p^{*}(d\omega_{I}^{\gamma})=

d(p^{*}\omega_{I}^{\gamma})=d\omega_{I} . Since p is submersion and \omega_{I} is closed, so is \omega_{I}^{\gamma} . \square

Because the manifold (M^{\xi}/G, \omega_{I}^{\xi}) has codimension one in (M^{\gamma}/G, \omega_{I}^{\gamma})

and the 2-form \omega_{I}^{\xi} is non-degenerate, the 2-form \omega_{I}^{\gamma} has l-dimensional
kernel.

We define the submersion

\overline{\mu} : M^{\gamma}/Garrow\gamma

by

\overline{\mu}(p(x))=\mu(x) .

Lemma 2.5 The restriction of the differential of \overline{\mu}

(d\overline{\mu})_{p(x)} : ker(\omega_{I}^{\gamma})_{p(x)}arrow T_{\mu(x)}\gamma
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is a linear isomorphism.

Proof. Because (d\overline{\mu})_{p(x)} is a linear map between 1-dimensional vector
spaces, it is enough to show that (d\overline{\mu})_{p(x)} is non-trivial. Let X_{p(x)}\in

ker(\omega_{I}^{\gamma})_{p(x)} be a non-zero element. We take a tangent vector X_{x}\in T_{x}M^{\gamma}

which project to X_{p(x)} . If X_{x} belongs to T_{x}M^{\xi} , it follows that X_{x}=0 from
the non-degeneracy of \omega_{I} on T_{x}M^{\xi} . This contradicts that X_{p(x)} is non-zero.
Hence X_{x} does not belong to T_{x}M^{\xi} . This means that (d\mu)_{x}X_{x}\neq 0 . Hence
we conclude that (d\overline{\mu})_{p(x)}X_{p(x)}\neq 0 . \square

We define the vector field Z on M^{\gamma}/G by the following conditions:

(d\overline{\mu})_{p(x)}Z_{p(x)}=\dot{\gamma}(t)

Z_{p(x)}\in ker(\omega_{I}^{\gamma})_{p(x)}

\mu(x)=\gamma(t) . (2.4)

By Lemma 2.5, Z is uniquely determined by these conditions. Because \dot{\gamma}(t)

is non-zero, Z is a nowhere vanishing vector field.
We shall consider the submersion

p : M^{\gamma}arrow M^{\gamma}/G .

The vertical subspace V_{x} of T_{x}M^{\gamma} is defined by Tx(Gx) . The horizontal
subspace H_{x} of T_{x}M^{\gamma} is defined by the orthogonal complement of T_{x}(Gx)

in T_{x}M^{\gamma} . The restriction of (dp)_{x} to the horizontal subspace H_{x} is a linear
isomorphism between H_{x} and T_{p(x)}(M^{\gamma}/G) . Therefore any tangent vector
X_{p(x)}\in T_{p(x)}(M^{\gamma}/G) has a unique horizontal lift \overline{X}_{x}\in H_{x} .

Lemma 2.6 The horizontal lift of Z_{p(x)} is given by

\overline{Z}_{x}=\sum_{i=1}^{n}a_{J}^{i}(x)J\underline{Y}_{x}^{i}+a_{K}^{i}(x)K\underline{Y}_{x}^{i} ,

where a_{J}^{i}(x) and a_{K}^{i}(x) are uniquely determined by the following equation

(\begin{array}{ll}911(x) g_{1n}(x)\vdots \vdots g_{n1}(x) g_{nn}(x)\end{array})(\begin{array}{ll}a_{J}^{1}(x) a_{K}^{1}(x)\vdots \vdots a_{J}^{n}(x) a_{K}^{n}(x)\end{array})
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= (\begin{array}{ll}\langle\dot{\gamma}_{J}(t),Y^{1}\rangle \langle\dot{\gamma}_{K}(t),Y^{1}\rangle\vdots \vdots\langle\dot{\gamma}_{J}(t),Y^{n}\rangle \langle\dot{\gamma}_{K}(t),Y^{n}\rangle\end{array}) (2.5)

Proof. From- (2.1), (2.5) and Lemma 2.\underline{2} , it is easy \underline{t}o check that (dp)_{x}\overline{Z}_{x}\in

ker (\omega_{I}^{\gamma})_{p(x)} , Z_{x}\in H_{x} and (d\overline{\mu})_{p(x)}(dp)_{x}Z_{x}=(d\mu)_{x}Z_{x}=\dot{\gamma}(t) . Because the
restriction of (d\overline{\mu})_{p(x)} to ker(\omega_{I}^{\gamma})_{\underline{p(}x)} is a linear isomorphism, we conclude
that (dp)_{x}\overline{Z}_{x}=Z_{p(x)} . Therefore Z_{x} is the horizontal lift of Z_{p(x)} . \square

Lemma 2.7 There exists some constant K>0 such that

g(\overline{Z}_{x},\overline{Z}_{x})\leq K\nu(x) for all x\in M^{\gamma} .

Proof. We put

K_{1}= maxt\in[0,1](\sum_{i=1}^{n}\langle\dot{\gamma}_{J}(t), Y^{i}\rangle^{2}+\langle\dot{\gamma}_{K}(t), Y^{i}\rangle^{2})\frac{1}{2}

It follows from (2.5) that

|a_{J}^{i}(x)| , |a_{K}^{i}(x)|\leq K_{1}\nu(x) .

By using Lemma 2.2 and (2.5), g(\overline{Z}_{x},\overline{Z}_{x}) is estimated as follows:

g( \overline{Z}_{x},\overline{Z}_{x})=\sum_{i,j=1}^{n}a_{J}^{i}(x)a_{J}^{j}(x)g_{ij}(x)+a_{K}^{i}(x)a_{K}^{j}(x)g_{ij}(x)

= \sum_{i=1}^{n}a_{J}^{i}(x)\langle\dot{\gamma}_{J}(t), Y^{i}\rangle+a_{K}^{i}(x)\langle\dot{\gamma}_{K}(t), Y^{i}\rangle

\leq 2K_{1}^{2}\nu(x) .

\square

Proposition 2.8 If G acts on M^{\gamma} freely and \nu : M^{\gamma} – \mathbb{R} is a bounded
function, then the vector field Z is complete. Its integral curves induce the
symplectic diffeomorphism

\phi_{t} : (M^{\gamma(0)}/G, \omega_{I}^{\gamma(0)})arrow(M^{\gamma(t)}/G, \omega_{I}^{\gamma(t)}) for every t\in[0,1] .

Proof. By the boundedness of \nu and Lemma 2.7, there exists some con-
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stant K’ such that

g(\overline{Z}_{x},\overline{Z}_{x})\leq K’ for all x\in M^{\gamma} .

From this estimate and the completeness of M, it follows that \overline{Z} is com-
plete. By using its integral flows and the formulation (2.4), we can construct
canonical identifications

\phi_{t} : M^{\gamma(0)}/Garrow M^{\gamma(t)}/G .

From (2.4) and the closedness of \omega_{I}^{\gamma} from Lemma 2.4, we have

\frac{d}{dt}(\iota to\phi t)^{*}\omega_{I}^{\gamma}=(\iota to\phi t)^{*}\mathcal{L}z\omega_{I}^{\gamma}=(\iota to\phi t)^{*}(diz\omega_{I}^{\gamma}+izd\omega_{I}^{\gamma})=0 ,

where \iota_{t} denotes the inclusion map M^{\gamma(t)}/G -arrow M^{\gamma}/G . Therefore we con-
clude that \phi_{t}^{*}\omega_{I}^{\gamma(t)}=\omega_{I}^{\gamma(0)} . \square

3. Toric hyperK\"ahler linear actions

In this section, we consider toric hyperK\"ahler linear actions on quar-
ternionic vector spaces.

Let \mathbb{H}=\{a+bI+cJ+dK : a, b, c, d\in \mathbb{R}\} be the quarternion algebra
and {\rm Im} \mathbb{H} the purely quarternions in \mathbb{H} . The right \mathbb{H}-linear vector space

\mathbb{H}^{N}=\{x=(x_{1}, \ldots, x_{N}) : x_{j}\in \mathbb{H}\}

has the Euclidean metric g of \mathbb{R}^{4N} and the three complex structures I , J ,
K . These define the hyperK\"ahler structure on \mathbb{H}^{N} We denote by \omega_{I} , \omega_{J} ,
\omega_{K} the associated K\"ahler forms.

The real torus

T^{N}=\{z= (z_{1}, , z_{N})\in \mathbb{C}^{N} : |z_{j}|=1\}

acts on \mathbb{H}^{N} by

zx=(z_{1}x_{1}, \ldots, z_{N}x_{N}) .

This action preserves the hyperK\"ahler structure on \mathbb{H}^{N} We denote by t^{N}

the Lie algebra of T^{N} Let X^{1} , \ldots , X^{N} be a basis of t^{N} satisfying

exp ( \sum_{j=1}^{N}t_{j}X^{j})=(e^{2\pi\sqrt{-1}t_{1}}, \ldots, e^{2\pi\sqrt{-1}t_{N}}) ,
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where exp:t^{N}arrow T^{N} is the exponential map. We denote by t_{\mathbb{Z}}^{N} the kernel
of exp . Let u_{1} , , u_{N} be the dual basis of X^{1} , , X^{N} We identify (t^{N})^{*}

with \mathbb{R}^{N} by using this basis. The moment map

\mu 0 : \mathbb{H}^{N}arrow(t^{N})^{*}\otimes{\rm Im} \mathbb{H}

is given by

\mu_{0}(x)=\pi(\overline{x_{1}}Ix_{1}, , \overline{x_{N}}Ix_{N}) ,

where \overline{x} denotes the quarternionic conjugate of x .
Let G be an n-dimensional subtorus of T^{N} and g its Lie algebra. We

define the lattice g_{\mathbb{Z}}=g\cap t_{\mathbb{Z}}^{N} The basis Y^{1} , \ldots , Y^{n} of g is represented by

Y^{i}= \sum_{j=1}^{N}a_{ij}X^{j} . i=1 , . , n ,

where the matrix

A=(a_{1}, \ldots, a_{N})= (\begin{array}{ll}a_{11} a_{1N}\vdots \vdots a_{n1} a_{nN}\end{array})

is a rational matrix of maximal rank. We identify g^{*} with \mathbb{R}^{n} by using the
dual basis of Y^{1} , \ldots , Y^{n} . We denote by \iota^{*} the dual of the inclusion map
g arrow t^{N} Note that

\iota^{*}u_{j}={}^{t}a_{j} , j=1 , . . ’ N. (3.1)

The group G also acts on \mathbb{H}^{N} preserving its hyperK\"ahler structure. The
moment map

\mu : \mathbb{H}^{N}arrow g^{*}\otimes{\rm Im} \mathbb{H}

is given by

\mu(x)=(\iota^{*}\circ\mu 0)(x)=\pi(\sum_{j=1}^{N}a_{1j}\overline{x_{j}}Ix_{j} , . , \sum_{j=1}^{N}a_{nj}\overline{x_{j}}Ix_{j})\tau

It is easy to see that \mu is surjective. We put M=\mathbb{H}^{N} and use the same
notations M^{\xi} and M^{\gamma} in the preceding sections.

The main theorem in this section is the following:
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Theorem 3.1 Suppose a subtorus G of T^{N} satisfies the condition (ii)
of Proposition 3.2 below. For an arbitrary \xi=(\xi_{I}, \xi_{J}, \xi_{K})\in g^{*}\cross g^{*}\cross

g^{*} such that \xi_{I} is a regular value of \mu_{I} , the toric hyperK\"ahler quotient
M^{\xi}/G is smooth and the symplectic diffeomorphism class of (M^{\xi}/G, \omega_{I}^{\xi}) is
independent of \xi_{J} and \xi_{K} .

This theorem follows from Theorem 2.1 and Propositions 3.2 and 3.5
below.

Proposition 3.2 (Konno) Let \xi be a regular value of \mu . Then following
(i) and (ii) are equivalent:
(i) The action of G on M^{\xi} is free.
(ii) For every J \subset\{1,2, . , N\} such that \{\iota^{*}u_{j}\}_{j\in J} forms a basis of g^{*} ,

t_{\mathbb{Z}}^{N}=g_{\mathbb{Z}}\oplus\oplus \mathbb{Z}X^{j}j\in J^{c}

holds as a\mathbb{Z} -module, where J^{c} denotes \{ 1, \ldots , N\}-J

Proposition 3.3 (Konno) Fix an element \xi=(\xi_{I}, \xi_{J}, \xi_{K})\in g^{*}\cross g^{*}\cross g^{*}

Then the following (i) and (ii) are equivalent:
(i) \xi is a regular value of \mu .
(ii) For any J \subset\{1, \ldots, N\} , whose number of elements is less than n , \xi_{I} ,

\xi_{J} , \xi_{K} are not simultaneously contained in the linear subspace of g^{*}

spanned by \{\iota^{*}u_{j}\}_{j\in J} .

For the proofs of these propositions, we refer to [5].
The fundamental vector field \underline{Y}^{i} associated to Y^{i}\in g is

\underline{Y}_{x}^{i}= (2\pi a_{i1}Ix_{1}, . . ’ 2\pi a_{iN}Ix_{N})\in \mathbb{H}^{N} , i=1 , \ldots , n .

So we have

g_{ij}(x)=g( \underline{Y}_{x}^{i}, \underline{Y}_{x}^{j})=4\pi^{2}\sum_{k=1}^{N}a_{ik}a_{jk}|x_{k}|^{2}\wedge

We denote by \overline{g_{ij}}(x) the cofactor of g(x) associated to g_{ij}(x) . For further
discussions, we shall calculate det g(x) and \overline{g_{ij}}(x) explicitly.

Lemma 3.4 The determinant and the cofactor of g(x) are calculated as
follows:
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(i) det
g(x)=(4 \pi^{2})^{n}\sum_{1\leq l_{1}<\cdots<l_{n}\leq N}

(det (a_{l_{1}}\cdot\cdot a_{l_{n}}))^{2}|x_{l_{1}}|^{2}\cdots|x_{l_{n}}|^{2} .

(ii)
\overline{g_{ij}}(x)=(4\pi^{2})^{n-1}\sum_{1\leq l_{1}<\cdots<l_{n-1}\leq N}L_{ij}^{l_{1}\cdots l_{n-1}}|x_{l_{1}}|^{2}

|x_{l_{n-1}}|^{2} ,

where the constant L_{ij}^{l_{1}\cdots l_{n-1}} vanishes if a_{l_{1}} , \ldots , a_{l_{n-1}} are linearly dependent.

Proof. (i) is followed by a direct computation. So we prove (ii). We
denote by \mathfrak{S}_{n} the symmetric group of order n . The matrix g(x) can be
written as

g(x)=4 \pi^{2}\sum_{k=1}^{N}A^{k}|x_{k}|^{2} .

where A^{k}=a_{k^{t}}a_{k} is n\cross n-matrix. We denote by A_{ij}^{k} the minor matrix
obtained by deleting both the i-th row and the j-th column from A^{k} . By
the definition of the cofactor \overline{g_{ij}}(x) , we have

\overline{g_{ij}}(x)=(-1)^{i+j}(4\pi^{2})^{n-1} det ( \sum_{k=1}^{N}A_{ij}^{k}|x_{k}|^{2}) (3.2)

We calculate the constant L_{ij}^{l_{1}\cdots l_{n-1}} in (ii). For \sigma\in \mathfrak{S}_{n-1} , we denote by
A_{ij}^{\sigma,l_{1}\cdots l_{n-1}} the matrix whose k-th column consists of the \sigma(k)-th column of
A_{ij}^{l_{k}} . From (3.2), we have

L_{ij}^{l_{1}\cdots l_{n-1}}=(-1)^{i+j} \sum_{\sigma\in \mathfrak{S}_{n-1}}
det (A_{ij}^{\sigma,l_{1}\cdots l_{n-1}}) .

Note that every column of A_{ij}^{\sigma,l_{1}\cdots l_{n-1}} is a constant multiple of

{}^{t}(a_{1l_{k}} _{a_{i-1l_{k}}} _{a_{i+1l_{k}}} _{a_{nl_{k}}})

for some k=1,2 , \ldots , n-1 . Therefore if a_{l_{1}} , \ldots , a_{l_{n-1}} are linearly depen-
dent, det A_{ij}^{\sigma,l_{1}\cdots l_{n-1}} vanishes. In particular, if at least two of l_{1} , . . ’

l_{n-1} are
equal, we have L_{ij}^{l_{1}\cdots l_{n-1}}=0 . \square

Proposition 3.5 Let \xi_{I}\in g^{*} 6e a regular value of \mu_{I} . For every embed-
ded path

\gamma=(\gamma_{I}, \gamma_{J}, \gamma_{K}) : [0, 1]arrow\{\xi_{I}\}\cross g^{*}\cross g^{*} .
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the function lJ:M^{\gamma}arrow \mathbb{R} is bounded.

Proof. Because of Lemma 3.4 (ii), for an arbitrary path

p=(p_{1}, \ldots,p_{N}) : [0, 1)arrow M^{\gamma} ,

it is enough to show the boundedness for

H(x)= \frac{(4\pi^{2})^{n-1}L_{ij}^{l_{1}\cdot\cdot l_{n-1}}|x_{l_{1}}|^{2}\cdots|x_{l_{n-1}}|^{2}}{\det g(x)}

along p . Without loss of generality, we may assume that l_{k}=k for k=
1,2 , . , n-1 . We define

q_{k}(s)= \frac{p_{k}(s)}{|p(s)|} , r(s)=|p(s)| for all s\in[0,1) .

Since M^{\gamma} do not contain the origin 0\in \mathbb{H}^{N} , q_{k}(s) is well-defined. We
consider the limit of

H(p(s))= \frac{(4\pi^{2})^{n-1}L_{ij}^{1\cdots n-1}|q_{1}(s)|^{2}|q_{n-1}(s)|^{2}}{r(s)^{2}\det g(q(s))}

as sarrow 1 . If a_{1} , \ldots , a_{n-1} are linearly dependent, by Lemma 3.4 (ii), we have
L_{ij}^{1\cdot\cdot n-1}=0 . So we may assume that a_{1} , \ldots , a_{n-1} are linearly independent
and L_{ij}^{1\cdots n-1}=1 . The equation of M^{\gamma} is given by

\pi r(s)^{2}(a_{1} . . a_{N}) (\begin{array}{l}q_{1}(s)Iq_{1}(s)\vdots\overline{q_{N}(s)}Iq_{N}(s)\end{array})- =(\begin{array}{l}\gamma^{1}(t)\vdots\gamma^{n}(t)\end{array}) ,

where \gamma is considered as

\gamma= (\gamma^{1}, , \gamma^{n}) : [0, 1]arrow Im \mathbb{H}\cross
\cross Im \mathbb{H} .

By taking some regular n\cross n-matrix P=(p_{ij}) , we obtain that

P(a_{1}, . .^{a_{n-1}a_{n}\cdots a_{N})}=(\begin{array}{lllll}a_{11}’ a_{1n}’ a_{1n+1}’ a_{1N}’ \ddots \vdots \vdots \vdots 0 a_{n},n a_{n},n+1 a_{n},N\end{array}) ,

(3.3)

where at least one of the entries a_{nn}’ , \ldots , a_{nN}’ is non-zero because A has the



Moser type theorem for toric hyperK\"ahler quotients 597

maximal rank. Therefore we have an equation

\pi r(s)^{2}(a_{nn}’\overline{q_{n}(s)}Iq_{n}(s)+ +a_{nN}’\overline{q_{N}(s)}Iq_{N}(s))

=p_{n1}\gamma^{1}(t)+ \cdot+p_{nn}\gamma^{n}(t) . (3.4)

We define

\delta=\min_{t\in[0,1]}|p_{n1}\gamma^{1}(t)+ +p_{nn}\gamma^{n}(t)| .

Suppose that \delta>0 . From (3.4), we obtain an estimate

\frac{1}{r(s)^{2}}\leq\frac{\pi}{\delta}(|a_{nn}’||q_{n}(s)|^{2}+ +|a_{nN}’||q_{N}(s)|^{2})

From this and Lemma 3.4 (i), it follows that H(p(s)) is less than or equal
to

\frac{|q_{1}(s)|^{2}\cdot\cdot|q_{n-1}(s)|^{2}(|a_{nn}’||q_{n}(s)|^{2}+\cdot\cdot+|a_{nN}’||q_{N}(s)|^{2})}{4\pi\delta\sum_{1\leq l_{1}<\cdots<l_{n}\leq N}(\det(a_{l_{1}}\cdot a_{l_{n}}))^{2}|q_{l_{1}}(s)|^{2}\cdot\cdot|q_{l_{n}}(s)|^{2}} . (3.5)

Note that

det (P(a_{1}\cdot\cdot a_{n-1}a_{k}))=a_{11}’ \cdot a_{n-1n-1}’a_{nk}’ , k=n, \ldots , N.

Because a_{1} , \ldots , a_{n-1} are linearly independent, the entries a_{11}’ , . , a_{n-1n-1}’

are all non-zero. Therefore \det(a_{1} \cdot a_{n-1}a_{k})\neq 0 if and only if a_{nk}’\neq 0 . In
other words, the numerator of (3.5) has the non-trivial term

|a_{nk}’||q_{1}(s)|^{2} . |q_{n-1}(s)|^{2}|q_{k}(s)|^{2} ,

if and only if the denominator of (3.5) has the non-trivial term

(det (a_{1}\cdot\cdot a_{n-1}a_{k}))^{2}|q_{1}(s)|^{2} |q_{n-1}(s)|^{2}|q_{k}(s)|^{2} .

This means that the numerator of (3.5) can be dominated by the denomi-
nator of (3.5). Since each summand of the denominator of (3.5) is always
positive, we obtain that

H(p(s)) \leq\frac{C}{4\pi\delta} for all s\in[0,1) ,

where C is some constant.
Finally, we prove that \delta>0 . Suppose that \delta=0 . Then there exists
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some t_{0}\in[0,1] and the following three equations hold:

p_{n1}\gamma_{I}^{1}(t_{0})+ , . +p_{nn}\gamma_{I}^{n}(t_{0})=0

p_{n1}\gamma_{J}^{1}(t_{0})+ +p_{nn}\gamma_{J}^{n}(t_{0})=0

p_{n1}\gamma_{K}^{1}(t_{0})+ +p_{nn}\gamma_{K}^{n}(t_{0})=0 , (3.6)

where \gamma_{I}(t_{0})=(\gamma_{I}^{1}(t_{0}), \ldots, \gamma_{I}^{n}(t_{0}))\in g^{*} and \gamma_{J}^{i}(t_{0}) , \gamma_{K}^{i}(t_{0}) are defined in
a similar fashion. Because A has the maximal rank, there exists some
k=n, \ldots , N such that \{\iota^{*}u_{j}\}_{j=1,\ldots,n-1,k} forms a basis of g^{*} Then \gamma_{I}(t_{0})

can be written as

\gamma_{I}(t_{0})=\sum_{j=1}^{n-1}c_{j}\iota^{*}u_{j}+c\iota^{*}u_{k}

for some constants c_{1} , . . , c_{n-1} and c . From (3.1), (3.3) and (3.6), we have

0= \sum_{i=1}^{n}p_{ni}\gamma_{I}^{i}(t_{0})=\sum_{i=1}^{n}\sum_{j=1}^{n-1}p_{ni}(c_{j}a_{ij}+ca_{ik})=ca_{nk}’ .

Since a_{nk}’\neq 0 , we have c=0. Hence we obtain that

\gamma_{I}(t_{0})=\sum_{j=1}^{n-1}c_{j}\iota^{*}u_{j} .

In the same way, we obtain that both \gamma_{J}(t_{0}) and \gamma_{K}(t_{0}) can be represented
by linear combinations of \iota^{*}u_{1} , . , \iota^{*}u_{n-1} . Therefore, from Proposition 3.3,
\gamma(t_{0}) is a critical value of \mu . This is a contradiction. So at least one of the
equations (3.6) does not hold. Hence we have \delta>0 . \square
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