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Moser type theorem for toric hyperKéahler quotients
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Abstract. We consider the symplectic geometry of toric hyperKihler quotients. Under
a mild condition, we obtain that toric hyperK&hler quotients have stability about its
underlying symplectic structures.
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1. Introduction

Symplectic manifolds have the properties of both softness and hardness.
For softness, there is a classical theorem due to Moser [6].

Theorem 1.1 (Moser) Let M be a closed manifold and {wt}o<t<1 a
smooth family of cohomologous symplectic forms on M. Then there exists
{#¢}o<t<1 a smooth family of diffeomorphisms of M such that ¢fw; = wo
for all t € [0,1].

This theorem is proved by constructing a family of vector fields
{Z:}o<t<1 whose integral flows induce {¢:}o<t<1. Therefore the complete-
ness of these vector fields is necessary. But this is automatically satisfied
since M is compact. In this paper, we prove that an analog of this theo-
rem holds in the case of not necessarily compact but complete hyperKahler
quotients under a mild condition.

Let (M,g,1,J, K) be a complete hyperKahler manifold, i.e. g is a com-
plete Riemannian metric and I, J, K are almost complex structures of M
satisfying

(i) g is Hermitian with respect to I, J, K,

(i) I’=-1,J2=-1,K2=-1,I1J=K,JK=1,KI=J,

(il) VI=0,VJ =0, VK =0,
where V is the Levi-Civita connection of g.

We define the 2-forms wy, wy, wg by wi(X,Y) = g(IX,Y), etc. From
the condition above, it follows that I, J, K are integrable and wy, wy, wg

1991 Mathematics Subject Classification : Primary 53C25; Secondary 14M25.



586 M. Ikeda

are Kahler with respect to I, J, K respectively.

Let G be a compact connected Lie group and g its Lie algebra. We as-
sume that G acts on M preserving its hyperKahler structure with a moment
map

p=(pr, g, px) - M — g* x g* x g7,

i.e. G preserves the metric g and acts on M in a Hamiltonian way for every
symplectic forms wy, wy, wg with moment maps puy, py, ux respectively.
Note that p is a G-equivariant map.

We denote by C the set of G-invariant elements of g*. Let £ =
(€1,€5,6K) € C x C x C be a regular value of y. Then M¢ = p~1(¢) is
a G-invariant smooth submanifold of M. If G acts on M¢ freely, the quo-
tient manifold M%/G has the three induced Kahler forms wf, wg, w% from
wr, wy, wg and the induced metric from ¢¢ as the Riemannian submersion
M¢ — M¢/G. These define the hyperKahler structure on M¢/G. This
manifold M¢/G is called the hyperKahler quotient of M by the moment
map . For further detail, we refer to Section 3 in [4].

In Section 2, we prove the Moser type theorem for hyperKéahler quo-
tients. Roughly speaking, under a mild condition, the symplectic diffeomor-
phism class of the hyperKahler quotient (M¢/ G,w?) is independent of £;
and ¢k (Theorem 2.7). By Duistermaat and Heckman [3], we note that the
cohomology class of w§ changes for various choice of £; in general.

The idea of the proof is as follows. We take an embedded path v =
(vr,v7,7K) : [0,1] — (CxCxC)Nu(M) such that 7 is a constant £; which is
a regular value of py. We also denote by v its image. Then M7 = u~1(v) is
a G-invariant smooth submanifold of M. If G acts on M” freely, we obtain
a family of symplectic manifolds (M7® /G ,w;(t)), t € [0,1] in the manifold
M7 /G. These manifolds are considered as symplectic submanifolds of the
symplectic quotient of (M,w;) by the moment map pu; at the point &;.
Because s is constant, M7/G has the induced closed 2-form w'] from wy.
This closed 2-form is necessarily degenerate. By using the kernel of w}, we
construct the vector field Z on M7/G. If Z is complete, we can construct
symplectic diffeomorphisms between (M7(®) / G,w}Y(O)) and (M(®)/ G,w?(t))
for all t € [0, 1] by using its integral flows.

The assumptions we used here consist of two parts:

(i) the action of G on M7 is free.

(ii) the vector field Z on M7/G is complete.
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In Section 3, we consider toric hyperKahler linear actions on quar-
ternionic vector spaces with certain moment maps. A sufficient condition
for (i) is given by Konno [5]. We prove that the assumption (ii) holds for
this case ([Iheorem 3.1l).

This problem was suggested to me by Professor K. Ono. I should like
to express my gratitude to him for suggesting this problem.

2. Moser type theorem

We use here the same notations in introduction.

Let (M,g,1,J,K) be a complete hyperKahler manifold and G a com-
pact connected Lie group. We denote by g its Lie algebra. We assume that
G acts on M preserving its hyperKéhler structure with a moment map

p= (1, 1y, pk) : M — g* x g" x g*.

Let £; € C be a regular value of u;. We define the space B by
B= (& xCxC)nu(M).

We take an embedded path

v = (7[7’YJ’/7K) : [07 1] — B.
Let Y',...,Y™ be a basis of g. We define the matrix g(z) = (gi;(z)) by

where we denote by Y the fundamental vector field associated to Y € g. By
below, every point of B is a regular value of y. So the action of
G on M7 is locally free. Hence we have det g(x) # 0.

We denote by g~!(z) = (¢¥(z)) the inverse matrix of g(z). We define the
function v : M7 — R by

v(z) =g~ (z)] = (Z Ig”(x)|2> :

1,7=1

Note that the boundedness of v does not depend on the choice of a basis
of g.
The main theorem in this section is the following:

Theorem 2.1 If G acts on M"Y freely and v : MY — R is a bounded
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function, then the manifolds (MW(t)/G,w}Y(t)), t € [0,1] are symplectic dif-
feomorphic each other.

This theorem follows from the arguments below.

First of all, we shall review the tangent spaces of the manifolds M7 and
M¢&. We set € = pu(z) = y(t). The tangent space of M” at x is the inverse
image of T),(zyy by (du).. The tangent vector X, € T, M belongs to T, M"
if and only if there exists s € R and the following equations are satisfied:

g(IY ., X,) = 0
9(JY 4, Xz) = s{(1s(h),Y)
g(KY,, X,) = s(ix(t),Y) forall Y eg. (2.1)

The tangent space of M¢ at z is the kernel of (du).. The tangent vector
X, € T, M belongs to T, M¢ if and only if we can take s = 0 in the above
condition. The tangent space of G-orbit at x is generated by the fundamen-
tal vector fields. Every element of T,(Gz) is represented by Y, for some
Y € g. It is easy to see that T, (Gz) C T,M¢ C T, M".

Lemma 2.2 The vector subspaces of T, M
T.(Gx), IT,(Gx), JT(Gx) and KT.(Gx)
are mutually orthogonal with respect to g.

Proof.  Since uj(hx) = ps(x) for all h € G, it follows that (dur); X, =0
for all X € g. By the property of moment maps, for every X,Y € g, we
have g(IY ,, X,) = ((dp1)zX,,Y) = 0. Hence T;(Gz) and IT,(Gzx) are
mutually orthogonal. The other cases are proved in the same way. U

Lemma 2.3 FEvery point of B is a reqular value of p.

Proof. Take an arbitrary (£7,€7,€x) € B and an arbitrary =z €
pl(&r,€5,€Kk). Because x is a regular value of uy, we have gy (x) # O.
For every (£7,€,&%) € g* x g* x g*, we define the tangent vector in T, M

Xz Z o (€ YOIYE + (€, Y YL + (6, Y)KYS) .

By using [Lemma 2.2, it is easy to see that (du); Xz = (£],&),€%). Therefore
(du)y is surjective. O
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We assume that G acts on M7 freely. Then the canonical projection
p: M — M'/G
is submersion.

Lemma 2.4 The closed 2-form wr on M"Y induces the closed 2-form w]
on M7/G by

(WD p(@) (Xp(@)s Yo(z) = wi(Xe, Yz),  Xp)s Yo(z) € Tp(ay(M7/G),
(2.2)

where X, and Y are any tangent vectors in Ty M" which project to Xz
and Yy(y) respectively.

Proof.  First, we show that the definition (2.2) is independent of the choice
of a point in the G-orbit p(z). From (2.1), we obtain that

wi(TyM", T, (Gz)) = 0. (2.3)

For any h € G, we take tangent vectors X; and Y, in T, M" which
project to X5y and Y, respectively. Because of p(hz) = p(z), it follows
that both (dh), X, — X;_ and (dh),Y; — Y} belong to Ty, (Gz), where we
identify the element h € G and the diffeomorphism M? — M7, ¢ — hzx.
By and the G-invariance of wy, we have wi(X},, Y, ) = wi(Xg, Yz).
So (2.2) is well-defined.

Next, we show that w] is closed. By construction, we have p*(dw]) =
d(p*w?) = dwj. Since p is submersion and wy is closed, so is w?. ]

Because the manifold (M¢/ G,wf) has codimension one in (M7/G,w])

and the 2-form w§ is non-degenerate, the 2-form w) has 1-dimensional

kernel.
We define the submersion

B:M7/G =y
by

Lemma 2.5 The restriction of the differential of 1

(A7) p(a) : ker(w])p(e) = Tu(a)Y
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s a linear isomorphism.

Proof.  Because (di)y(;) is a linear map between 1-dimensional vector
spaces, it is enough to show that (dp),) is non-trivial. Let X, €
ker(wj),(z) be a non-zero element. We take a tangent vector X, € T,M"
which project to X;,,). If X, belongs to T, M £, it follows that X, = 0 from
the non-degeneracy of wy on T, M¢. This contradicts that Xp(x) 18 non-zero.
Hence X, does not belong to T,;M¢. This means that (du),X, # 0. Hence
we conclude that (dfz)p(q) Xp(z) # 0 O

We define the vector field Z on M” /G by the following conditions:

Zp(z) € ker(w])p(a)

u(z) = (). (2.4)

By [Lemma 2.5, Z is uniquely determined by these conditions. Because ¥(t)

is non-zero, Z is a nowhere vanishing vector field.

We shall consider the submersion
p: M — M"/G.

The vertical subspace V, of T, M" is defined by T,(Gz). The horizontal
subspace H; of T;M" is defined by the orthogonal complement of T,(Gx)
in T, M". The restriction of (dp), to the horizontal subspace H, is a linear
isomorphism between H, and T),,(M7/G). Therefore any tangent vector

Xp(z) € Tpz)(M7/G) has a unique horizontal lift X, € H,.

Lemma 2.6 The horizontal lift of Z,) is given by
Zz =) ay(@)JY; + i (2) KX,
i=1

where aiJ(ac) and aiK(m) are uniquely determined by the following equation

gi(z) -+ gin(@)\ [aj(z) ak(z)

gni(@) - gn(@) ) \ai(@) ap(o)
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(1), YY) (3 (), Y1)
= : : (2.5)

. .

(o), Y™ (x (), Y™)

Proof.  From (2.1), (2.5) and Lemma 2.2, it is easy to check that (dp)sZ, €
ker(w] ) p(a), Z, € H, and (dﬂ)lf,(x)(olp)mzc = (dp)eZ5 = (t). Because the
restriction of (dff)p(z) to ker(w})p(y) is a linear isomorphism, we conclude
that (dp)sZz = Zy(z). Therefore Z, is the horizontal lift of Z,). O

Lemma 2.7 There exists some constant K > 0 such that

~ o~

9(Zs, Z;) < Kv(x) forall x € M.

Proof. ~ We put

—

K, = max (Z(%(t),yiy + (WK(t),Yi>2> :

t€0,1] =1
It follows from (2.5) that
|ay(@)], lak ()] < Kiv(z).
By using and (2.5), g(Zy, Z,) is estimated as follows:

9(Ze, Zx) = Y di(x)al(2)gij(z) + ak (z)al(2)gi(2)
i,j=1

= "l (@) (3 (t), YY) + ai () (3 (£), )
=1
< 2Kjv(z).

O]

Proposition 2.8 If G acts on M" freely and v : MY — R is a bounded
function, then the vector field Z is complete. Its integral curves induce the
symplectic diffeomorphism

G (M7(0)/G,w7(0)) — (MV(t)/G,w?(t)) for every t €10,1)].

Proof. By the boundedness of v and [Lemma 2.7, there exists some con-
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stant K’ such that
g(Zx,ZL.) < K’ for all x € M".

From this estimate and the completeness of M, it follows that Z is com-
plete. By using its integral flows and the formulation (2.4), we can construct
canonical identifications

¢ : MO G - MG,

From [2.4) and the closedness of w] from , we have

d

dt(Lt 0 ¢t) w = (Lt o d)t)*ﬁzw}y = (y o d)t)*(dizw} + ’izdw}/) =0,

where ¢; denotes the inclusion map M*® /G — M?/G. Therefore we con-
clude that ¢;w; 1) w}(o). U

3. Toric hyperKahler linear actions

In this section, we consider toric hyperKahler linear actions on quar-
ternionic vector spaces.

Let H= {a+ bl + ¢J + dK : a,b,c,d € R} be the quarternion algebra
and Im H the purely quarternions in H. The right H-linear vector space

HNz{:v:(a;l,...,xN)::vjEH}

has the Euclidean metric g of R*V and the three complex structures I, J,
K. These define the hyperKihler structure on HY. We denote by wy, wy,
wk the associated Kahler forms.

The real torus

TV ={z=(21,...,2n) €CN : |25 = 1}
acts on HY by
z-x=(2171,...,2NIN)-

This action preserves the hyperKihler structure on HY. We denote by tV
the Lie algebra of TV. Let X!,..., X" be a basis of t/¥ satisfying

exp(Zt]XJ> = 2”‘/—“ ...,62”‘/"_1“"),
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where exp : t — T% is the exponential map. We denote by t]ZV the kernel
of exp. Let ui,...,uyn be the dual basis of X!,..., XN. We identify (tV)*
with RY by using this basis. The moment map

po : HY — (¢V)* @ ImH
is given by
po(z) = m (F1lx1,. .., TNIZN),

where T denotes the quarternionic conjugate of x.
Let G be an n-dimensional subtorus of TV and g its Lie algebra. We
define the lattice gz = g N tJZV . The basis Y1,...,Y™ of g is represented by

N
YZ‘——ZCLZ'J'XJ, z':l,...,n,
Jj=1

where the matrix

aix -+ Q1IN

A= (aj,...,an)=|[ :
anl1 *** QGnN

is a rational matrix of maximal rank. We identify g* with R™ by using the
dual basis of Y!,..., Y™ We denote by ¢* the dual of the inclusion map
g — tV. Note that

uj = taj, j=1,...,N. (3.1)

The group G also acts on HY preserving its hyperKahler structure. The
moment map

p:HY - ¢* @ ImH
is given by
N N
p(x) = (o ,uo)(x) = ’/T(Z a1;Z;1xj,. .., Zanj:n_jlxj> .
j=1 j=1

It is easy to see that pu is surjective. We put M = HY and use the same
notations M¢ and M?” in the preceding sections.
The main theorem in this section is the following:
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Theorem 3.1 Suppose a subtorus G of TV satisfies the condition (ii)
of Proposition 3.2 below. For an arbitrary & = (£1,€5,€k) € g* x g* X
g" such that &1 is a regular value of uy, the toric hyperKdhler quotient
M¢/G is smooth and the symplectic diffeomorphism class of (M§/G,w§) is

independent of €5 and Ek.

This theorem follows from Theorem 2.1 and Propositions and 3.5
below.

Proposition 3.2 (Konno) Let £ be a reqular value of pu. Then following
(1) and (ii) are equivalent:

(i)  The action of G on M¢ is free.

(ii) For every J C {1,2,...,N} such that {t*u;};cg forms a basis of g*,

7 =gz® P 2Xx
jege

holds as a Z-module, where J¢ denotes {1,...,N} — J.

Proposition 3.3 (Konno) Fiz an element £ = (£1,€7,€K) € g* x g* x g*.

Then the following (i) and (ii) are equivalent:

(i) & is a regular value of L.

(ii) Forany J C {1,...,N}, whose number of elements is less than n, &7,
£, £k are not simultaneously contained in the linear subspace of g*
spanned by {t*u;}jcs.

For the proofs of these propositions, we refer to [5].
The fundamental vector field Y associated to Y* € g is

_}f_é:(27rai1[:c1,...,27miNI:cN)E]HIN, i=1,...,n.
So we have
. . N
9ij(z) = g(¥3,Y3) = 4n° )~ agap|zk|”
k=1

We denote by g;;(x) the cofactor of g(z) associated to g;;j(x). For further
discussions, we shall calculate det g(z) and g;;(z) explicitly.

Lemma 3.4 The determinant and the cofactor of g(x) are calculated as
follows:
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(1) detg(z) = (4n*)* Y (det(ay, &) |ay, 2+ o,
1<l < <lp <N

. . _ Il

(i)  gi(z) = @n)"! > o N Y N
1<h<<lp-1<N

-1

vanishes if ay,,...,a; _, are linearly dependent.

n—1

where the constant Lﬁ}"'l”

Proof. (i) is followed by a direct computation. So we prove (ii). We
denote by &, the symmetric group of order n. The matrix g(z) can be
written as

N
g(z) = 4n? Z AF|z)?,
k=1

where A* = aitay is n x n-matrix. We denote by Afj the minor matrix

obtained by deleting both the i-th row and the j-th column from A*. By
the definition of the cofactor g;;(x), we have

N
9i;(z) = (=1)"" (47%)" 1 det (Z Ai-"jlxklg) : (3.2)

k=1

We calculate the constant Lgf“l"‘l in (ii). For 0 € &,_;1, we denote by

A;.ijll'"l"_l the matrix whose k-th column consists of the o(k)-th column of

Ai’; From (3.2), we have

Lll-“ln—l _ (_1)i+j Z det(Aq?llml”_l),

ij ij
UEGn—l

oliln_1

Note that every column of A; ;

is a constant multiple of

t
(au, -+ @G-y Gy, 0 oy )
for some k = 1,2,...,n — 1. Therefore if a;,,...,a;,_, are linearly depen-
Il . ) .
dent, det Af] ! ' vanishes. In particular, if at least two of 1, ..., l,_; are
I+l
equal, we have Li;- "l =0, O

Proposition 3.5 Let &5 € g* be a reqular value of pj. For every embed-
ded path

Y= (’vanya/YK) : [071] - {51} X g* X g*a
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the function v : M7 — R is bounded.

Proof.  Because of (ii), for an arbitrary path
p=(p1,---,pn): [0,1) = M7,

it is enough to show the boundedness for

1yl
(47T2)n lLi} n |ml1 |2 T |xln—1 i2

det g(x)

H(z) =

along p. Without loss of generality, we may assume that Iy = k for k =
1,2,...,n— 1. We define

qr(s) = %(—(5%, r(s) = |p(s)]  for all se€(0,1).

Since M do not contain the origin 0 € HY, g(s) is well-defined. We
consider the limit of

Ar)" L au(s) - lgnoi(s) 2

H(p(s)) =
r(s)?det g(q(s))
as s — 1. Ifa,...,a,_1 are linearly dependent, by (ii), we have
Lilj'.""‘1 = (0. So we may assume that ay,...,a,_; are linearly independent

and L ™! = 1. The equation of M7 is given by
ij

q1(s)1q(s) vH(t)
mr(s)*(a; - -an) ; = S
qn(s)Iqn(s) v"(t)

where + is considered as
vy=04. 7 [0,1] > ImH x - x ImH.

By taking some regular n X n-matrix P = (p;;), we obtain that

/ / / /
app 0 Gy Qupyr 0 OGN

P(al SR WL R aN) —

! / /
0 Apn Appt1 770 AN

(3.3)

where at least one of the entries a’. . ..., a’ », is non-zero because A has the
nno y YN
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maximal rank. Therefore we have an equation

71(5)” (@nta(5)Tn(s) + - +aanN< Ja(s))
We define

6 = min |pn1y () + - + panY"(2)].
t€l0,1]

Suppose that § > 0. From [3.4), we obtain an estimate

1 s
< = / 2 .. / 2 )
T(S)Q =35 (|ann”qn(8)| + + |anN]|qN(S)| )

From this and (i), it follows that H(p(s)) is less than or equal
to

21(8)* -+ an=1(5)* (lannllgn(s)* + - - - + lapnllan (5)1?)

5 > : (3.5)
dmd Y7 (det(ay, -~ -az,))" [a, ()12 - |q,, (s)]
1<l <-<lp <N
Note that
det (P(al cre an_lak)) - alll t a;l_ln_la;k., k =n,... ,N.
Because aj, ... ,a,- are linearly independent, the entries a},,...,al,_;, ;

are all non-zero. Therefore det(a; - --a,_1a;) # 0 if and only if a . # 0. In
other words, the numerator of (3.5) has the non-trivial term

lankllar(s)1* -+ lan—1(s)*lax(s) %,

if and only if the denominator of (3.5) has the non-trivial term

(det(ar -~ an-1ak))* |q1(s)* -~ - [gn-1()Plgr(s) >

This means that the numerator of (3.5) can be dominated by the denomi-
nator of (3.5). Since each summand of the denominator of (3.5) is always
positive, we obtain that

H < —
(p(s) < 1
where C' is some constant.

Finally, we prove that § > 0. Suppose that § = 0. Then there exists

for all s € [0,1),
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some tg € [0,1] and the following three equations hold:

pnl’Y} (t()) + o+ pnn’Y?(tO) =0
pnl'Y.l](tO) + - +pnn73(t0) =0
Privk (to) + + -+ + pan VR (f0) = 0, (3.6)

where 77(to) = (vi(to), ..., (to)) € g* and 7% (to), vk (to) are defined in
a similar fashion. Because A has the maximal rank, there exists some
k =mn,...,N such that {t*u;};=1_ n—14 forms a basis of g*. Then ~(to)
can be written as
n—1
~1(to) = Z cjt*u; + ctfug
j=1

for some constants ci,...,c,—1 and ¢. From (3.1), (3.3) and [3.6), we have

n n n—1
0= me"‘y}(to) = Z me(cjaij + caik) = caﬁzk.
i=1 i=1 j=1

Since a], # 0, we have ¢ = 0. Hence we obtain that

n—1
~v1(to) = Z cittu;.
j=1

In the same way, we obtain that both v;(ty) and vx (t9) can be represented
by linear combinations of t*uy, ..., t*u,—1. Therefore, from [Proposition 3.3,
v(to) is a critical value of u. This is a contradiction. So at least one of the
equations does not hold. Hence we have § > 0. O
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