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Parabolic geometries and canonical Cartan connections
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Abstract. Let G be a (real or complex) semisimple Lie group, whose Lie algebra g is
endowed with a so called |k| -grading, i.e. a grading of the form \mathfrak{g}=9-k\oplus\cdots\oplus \mathfrak{g}_{k} , such
that no simple factor of G is of type A_{1} . Let P be the subgroup corresponding to the
subalgebra \mathfrak{p}=g0\oplus\cdots\oplus \mathfrak{g}_{k} . The aim of this paper is to clarify the geometrical meaning
of Cartan connections corresponding to the pair (G, P) and to study basic properties of
these geometric structures.

Let Go be the (reductive) subgroup of P corresponding to the subalgebra go- A
principal P-bundle E over a smooth manifold M endowed with a (suitably normalized)

Cartan connection \omega\in\Omega^{1}(E, \mathfrak{g}) automatically gives rise to a filtration of the tangent
bundle TM of M and to a reduction to the structure group G_{0} of the associated graded
vector bundle to the filtered vector bundle TM . We prove that in almost all cases the
principal P bundle together with the Cartan connection is already uniquely determined
by this underlying structure (which can be easily understood geometrically), while in
the remaining cases one has to make an additional choice (which again can be easily
interpreted geometrically) to determine the bundle and the Cartan connection.

Key words: parabolic geometry, Cartan connection, partially integrable almost-CR-
structure G-structure, filtered manifold.

1. Introduction

It is an idea that goes back to E. Cartan (see [10]) to view manifolds
endowed with certain geometric structures as “curved analogs” of homoge-
neous spaces. More precisely, given a Lie group G and a closed subgroup
H\leq G , a generalized space corresponding to the homogeneous space G/H
(which is simply called a space by Cartan) is a smooth manifold M of the
same dimension as G/H , together with a principal H-bundle Earrow M over
M, which is endowed with a Cartan connection \omega\in\Omega^{1}(E, g) , that is a triv-
ialization of the tangent bundle of E which is H-equivariant and reproduces
the generators of fundamental vector fields. For example, for Riemannian
structures (which are not among the structures considered in this paper),
the group G is the group of motions of \mathbb{R}^{n} , H is the orthogonal group O(n)
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(so G/H is just \mathbb{R}^{n} . and G is exactly the group of isometries of \mathbb{R}^{n} ). Given
a Riemannian manifold M of dimension n , the principal bundle E is the
orthogonal frame bundle of M, and the Cartan connection is the soldering
form on this bundle together with the Levi-Civita connection on M .

Already this example (which is among the simplest possible ones) shows,
that identifying a manifold as a generalized space in the above sense should
be rather the result of a theorem than a definition. The aim of this paper
is to clarify the geometrical meaning of such generalized space structures
in a (rather wide) special case. Namely, we consider the case where G is
semisimple (real or complex) and its Lie algebra is endowed with a so called
|k| -grading, i.e. a grading of the form g=g_{-k}\oplus\cdots\oplus g_{-1}\oplus g_{0}\oplus g_{1}\oplus\cdot\cdot\oplus g_{k}

and the subgroup, which will be called P , corresponds to the Lie subalgebra
90\oplus \oplus g_{k} . In the complex case, this just means that P is a parabolic
subgroup of G . Guided by this fact and following Feffermann-Graham and
Bailey (see [1]), we call the corresponding geometric structures parabolic
geometries. So what we consider contains curved analogs of all compact
complex simple homogeneous spaces and real forms of this situation.

Particularly well known examples of structures of this type are the s0-

called AHS-structures, which are the structures corresponding to groups
with |1| -graded Lie algebras in the above sense. Among these, there are
the conformal and paraconformal (or almost Grassmannian) structures, as
well as the classical projective structures (see [6] and the references therein
for a discussion of AHS-structures). A very well studied example of a
parabolic geometry corresponding to a |2| -graded Lie algebra is given by
CR-structures with non-degenerate Levi-form. This example is discussed in
some detail in this paper, see 4.14-4.16. An important source for examples
of general parabolic geometries is twistor theory, see 4.17 for an outline of
these examples. Surprisingly, also the geometry of generic six-dimensional
codimension-two CR-manifolds fits into the scheme of parabolic geometries,
see [18].

The motivation for this work is mainly to provide a basis for a geomet-
rical study of parabolic geometries and of differential operators intrinsic to
them. Such operators have been intensively studied in the case of AHS-
structures, and in particular in the case of conformal structures (see [6],
the references therein, and [8] ) . Also, powerful results on the existence of
invariant differential operators for general parabolic geometries are already
available, see [9].
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There is a second way to view the results that we shall prove. Given
a manifold with a parabolic geometry, i.e. a principal P-bundle together
with a suitably normalized Cartan connection, it is easy to see that one
can construct certain underlying structures. Our main results then show
that the bundle and the Cartan connection are already fully determined by
these underlying structures. These structures are rather easy to interpret
geometrically, so one can view our results also as proofs for the existence of a
canonical Cartan connection for these underlying structures. The construc-
tion of canonical Cartan connections also solves the equivalence problem for
such structures. In fact, this is the more traditional point of view, say for
AHS-structures and CR-structures.

The problem of constructing canonical Cartan connections has a rather
long history. First of all, Cartan’s original method of equivalence gives
a possibility of constructing canonical Cartan connections in a variety of
cases. It seems that in some of the cases we consider this method works even
under weaker assumptions than we impose. On the other hand, it seems to
be hard in this approach to give a general description of the normalizations,
which are necessary to ensure the uniqueness of the Cartan connections in a
broader setting (say for arbitrary parabolics). The problem of constructing
canonical Cartan connections for AHS-structures has been treated in several
different ways by various authors (see e.g. [20], [17] (in the torsion free case),
[3] (in an associated-bundle setting) and [7] ) .

In the case of CR-structures, the construction of a canonical Cartan
connection is due to E. Cartan (see [11]) for hypersurfaces in \mathbb{C}^{2} and to
N. Tanaka (see [21]) and S.S . Chern and J. Moser (see [12]) for arbitrary
CR-manifolds. As an application of our results, we show the existence of
a canoncial Cartan connection for the significantly more general class of
partially integrable almost-CR-manifolds.

In [22], N. Tanaka treated problems quite closely related to the problems
treated here, but from a different point of view and with different aims.
His main motivation was studying the corresponding equivalence problems,
rather than geometric properties of the structures themselves. We prove
a more general version of his main result in 4.5. We believe that, besides
working in bigger generality (Tanaka treated only simple groups with trivial
center and the case where the algebra is the prolongation of the nonpositive
part) and being technically simpler, our approach shows much clearer the
geometrical background of the whole situation. In particular, this refers to
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the emphasis on filtrations (which occur only implicitly in Tanaka’s work)
and our starting point for the prolongation procedure, which is different
from Tanaka’s and can be easily understood geometrically.

In [15], T. Morimoto developed a general theory of geometric strucutres
on filtered manifolds, mainly motivated by studying equivalence problems.
As an application of this general theory, he obtained a general criterion for
the existence of canonical Cartan connections, extendeding the results of
Tanaka to semisimple groups and other groups (see [16]). Although Mori-
moto’s procedure is simpler than the one presented here (once all the general
machinery is developed) we think that our procedure has an advantage: In
our approach all the necessary data in the procedure are constructed di-
rectly and have a direct geometric interpretation. This is not really visible
in the general setting presented here, but it becomes apparent once one
works with a concrete structure, see [5]. In contrast to that, Morimoto’s
procedure uses non-commutative (semi-holonomic) frame bundles and the
canonical forms on these bundles, which seem to us to be much harder to in-
terpret geometrically. There is no doubt, however, that the two procedures
are essentially equivalent.

The main results

Since parts of this paper are rather technical, we collect here the main
results: Let G be a semisimple Lie group with |k| -graded Lie algebra g as
above, P the corresponding subgroup and G_{0}\leq P the subgroup correspond-
ing to the Lie subalgebra go- Let M be a smooth manifold with a filtration
of the tangent bundle TM=T^{-k}M\supset \cdot 1\supset T^{-1}M by smooth subbundles
such that the rank of T^{i}M equals the dimension of g_{-i}\oplus\cdots\oplus g_{-1} . The main
technical notion in the paper is the notion of harmonic P-frame bundles of
degree \ell (see 3.6 and 3.10). This notion interpolates between two rather
simple concepts. For \ell=1 one gets reductions to the structure group G_{0}

of the associated graded vector bundle to the filtered vector bundle TM_{J}.
which satisfy a condition called the structure equations (see 3.4). Roughly,
this can be interpreted geometrically as follows: First, one has to require
that the Lie-bracket of vector fields is compatible with the filtration, i.e. the
bracket of a section of T^{i}M with a section of T^{j}M is a section of T^{i+j}M .
Under this assumption, the Lie bracket gives rise to a pointwise Lie algebra
structure on the associated graded vector bundle to the tangent bundle, and
a P-frame bundle of degree one over M which satisfies the structure equa-
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tions means exactly that each fiber of the associated graded bundle (with
this algebraic bracket) looks like the graded G_{0}-module 9-k\oplus \oplus 9-1 .
Since the group G_{0} is always reductive, this can be easily described explic-
itly in each case. The other extremal case (\ell=2k+1) of a P-frame bundle
is a principal P-bundle over M endowed with a suitably normalized Cartan
connection.

The technical core of the paper is Theorem 3.22, which shows that,
assuming that a certain Lie algebra cohomology group (which depends on
\ell) is trivial, one can construct a unique (up to isomorphism) harmonic P-
frame bundle of degree \ell+1 out of a harmonic P-frame bundle of degree \ell .
Together with a rather simple way to go in the other direction, this shows
that, assuming the vanishing of the cohomology group, there is a bijective
correspondence between isomorphism classes of harmonic P-frame bundles
of degree \ell and of degree \ell+1 .

The relevant cohomology groups have been computed in [23] using
Kostant’s version of the Bott-Borel-Weil theorem. The result is that in all
cases except two families (one of which is the classical projective structures,
the other one a certain |2| -grading on symplectic algebras which corresponds
to a contact-analog of classical projective structures) all the relevant coh0-
mology groups vanish. Thus, except for these two cases, there is a bijective
correspondence between reductions to the structure group G_{0} of the associ-
ated graded vector bundle to the tangent bundle and isomorphism classes of
principal P-bundles endowed with suitably normalized Cartan connections.
In the remaining cases (except the one of a simple factor corresponding to
one-dimensional projective structures, which is really degenerate), we show
that the obstructions occur only in the very first step of the prolongation
procedure, and in this step one has to make a choice, which should be sim-
ply viewed as an ingredient of the structure (in fact the only ingredient in
the projective case and the only additional ingredient to a contact struc-
ture in the other case). Thus, in these cases we still get canonical Cartan
connections.

In Section 4 we discuss the relation of our approach to the one of N.
Tanaka and prove a more general version of the main result of his paper
[22]. Moreover, we discuss some geometric properties of manifolds with
parabolic geometries. In particular, we study the curvature of the canonical
Cartan connection and discuss its relation to cohomology. Finally, we out-
line several examples, in particular AHS-structures and partially integrable
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almost-CR-structures.

2. |k| -graded Lie algebras

In this section, we collect some basic facts about |k| -graded semisimple
Lie algebras. Our basic reference for these results is [23]. That paper also
contains the computations of the cohomology groups which we will need
in the sequel. We give an alternative presentation of the Hodge structure
on the standard complexes computing these cohomologies in the real and
complex case, which seems more conceptual to us than the one of [22] and
prove some basic results on groups with |k| -graded semisimple Lie algebras.

Definition 2.1 Let K be \mathbb{R} or \mathbb{C} . A |k| -graded Lie algebra over K is a
Lie algebra g over K together with a decomposition g=g_{-k}\oplus\cdot\cdot\oplus 9-1\oplus

90\oplus g_{1}\oplus \oplus g_{k} , such that [g_{i}, g_{j}]\subset g_{i+j} and such that the subalgebra
9-:=g_{-k}\oplus\cdots\oplus g_{-1} is generated by 9-1. In the whole paper, we will only
deal with semisimple |k| -graded Lie algebras.

By \mathfrak{p} we will denote the subalgebra 90\oplus\cdot 1 \oplus g_{k} of g , and by \mathfrak{p}_{+} the
subalgebra g_{1}\oplus\cdots\oplus g_{k} of \mathfrak{p} . As we shall see in 2.2 below, the powers of \mathfrak{p}_{+}

are then just given as \mathfrak{p}_{+}^{i}=g_{i}\oplus\cdots\oplus g_{k} , for all i=1 , , k . Moreover, from
2.2 it also follows that a |k| -graded semisimple Lie algebra is a direct sum
of |k_{i}| -graded simple Lie algebras, and we will assume throughout the paper
that all these k_{i} are bigger than zero, i.e. that none of the simple ideals is
contained in \emptyset 0 .

Proposition 2.2 Let g be a semisimple |k| -graded Lie algebra. Then the
following assertions hold:

1. There is a unique element E\in 90 such that [E, X]=\ell X for all
X\in g\ell .

2. Let B be the Killing form of g . Then B(g_{i}, g_{j})=0 unless i+j=0, and
B induces an isomorphism g_{i}^{*}\cong g_{-i} of 90 -modules for all i=1 , \ldots , k .

3. If g’ is an ideal in g , then g’ is homogeneous, i.e . g’=\oplus_{i=-k}^{k}(g’\cap g_{i}) .
In particular, g is a direct sum of simple |k_{i}| -graded Lie algebras (where
all k_{i} are less or equal to k).

4. Let A\in g_{i} with i>-k be an element such that [A, X]=0 for all
X\in 9-1 . Then A=0 .

5. For i>-k we have [g_{i+1}, g_{-1}]=g_{i} .
(The last two statements in the case i=0 need that no simple factor of g
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is contained in go-)

Proof. (1)-(3) are shown in Section 3.1 and Lemma 3.1 of [23]. (4)
and (5) are proved in Lemma 3.2 of [23] in the simple case, but under the
assumption that no simple factor is contained in g_{0} , the results for the
simple case obviously imply the analogous statements in the semisimple

\squarecase.

2.3. The properties of |k| -graded Lie algebras collected in 2.2 are sufficient
to completely describe the meaning of a |k| -grading on a complex simple
Lie algebra. Namely, it can be shown (see Section 3.3 of [23]) that given
a complex |k| -graded simple Lie algebra, one can find a Certan-subalgebra
\mathfrak{h}\subset g_{0}\subset g , a system \triangle^{+} of positive roots for (g, \mathfrak{h}) , and a subset \Sigma\subset\triangle 0

of the corresponding set of simple roots such that the grading of g is given
by the \Sigma-height of roots. This means that for any root \alpha , the root space g_{\alpha}

is contained in the homogeneous component g_{j} , where j is the sum of all
coefficients of elements of \Sigma in the expansion of \alpha as a linear combination of
simple roots. In particular, this implies that \mathfrak{p}\subset g is the standard parabolic
subalgebra corresponding to \Sigma\subset\triangle^{+} , see [4, 2.2].

Conversely, if \mathfrak{p}\subset g is any parabolic subalgebra in a complex simple Lie
algebra, then choosing a Cartan subalgebra and positive roots appropriately,
\mathfrak{p} is the standard parabolic subalgebra corresponding to a set \Sigma of simple
roots. But then the \Sigma-height gives a |k| grading on g , where k is the \Sigma

-

height of the maximal root.
In particular, specifying a |k| -grading for some k on a complex simple

Lie-algebra is equivalent to specifying a parabolic subalgebra \mathfrak{p}\subset g . More-
over, the possible gradings of that type and the lengths of these gradings
can be read off the expression of the highest root (i.e. the highest weight of
the adjoint representation) as a linear combination of simple roots.

Since a |k| -grading is the same thing as a parabolic subalgebra, we can
use the Dynkin diagram notation as introduced in [4, 2.2] for complex |k| -

graded Lie algebras. So we take the Dynkin diagram for the Lie algebra g

and replace the dots corresponding to the simple roots contained in \Sigma by
crosses. Consider for example the Dynkin diagram \infty . The underlying
Lie algebra of this is A_{3}=\epsilon 1(4, \mathbb{C}) , and we have to consider the standard
parabolic corresponding to \Sigma=\{\alpha_{1}, \alpha_{2}\} . The highest root for A3 isjust the
sum of the three simple roots, so its \Sigma-height is 2, and we get a |2| grading
which is given by:
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(\begin{array}{llll}9o g_{1} g_{2} g_{2}9-1 9o g_{1} g_{1}9-2 9-1 9o 9o9-2 9-1 9o 9o\end{array})

It can also be shown that two Dynkin diagrams (with crosses) represent
isomorphic |k| -graded Lie algebras if there is an isomorphism of the two
diagrams preserving the sets of crosses, see [23, Theorem 3.12], where also
the real case is discussed in terms of Satake diagrams.

Finally, it should be remarked that any complex simple Lie algebra
admits a (up to isomorphism) unique contact-gradation, i.e. a |2| -grading
such that \dim(g_{\pm 2})=1 , see [23, Section 4.2].

2.4. Next, we have to discuss the Lie algebra cohomology groups of 9-
with coe fRcients in g , which enter in two ways into the theory of parabolic ge-
ometries. On one hand, parts of the first cohomology occur as obstructions
in the prolongation procedure, and on the other hand the second cohomol-
ogy is related to the possible values of the curvature of a normalized Cartan
connection.
As usual, the chain groups for these cohomology groups are defined as
C^{n}(\emptyset-, g):=L(\Lambda^{n}g_{-}, g) , the space of linear maps from the n-th exterior
power of g-to g . Alternatively, one can also view them as multilinear
alternating maps. The differential \partial : C^{n} (9-, g) – C^{n+1} (9-, g) is given by

(\partial\varphi)(X_{0}, , X_{n})

:= \sum_{i=0}^{n}(-1)^{i}[X_{i}, \varphi(X_{0}, \ldots,\hat{X}_{i} , . ,^{X_{n})]}

+ \sum_{i<j}(-1)^{i+j}\varphi([X_{i}, X_{j}], X_{0}, , ^{\hat{X}_{i}}, . , ^{\hat{X}_{j}}, \ldots, X_{n})
,

where the hat denotes omission.
We will denote by L_{\ell}(\Lambda^{n}g_{-}, g) or by C_{\ell}^{n} (9-, g) the space of linear

maps which are homogeneous of degree \ell , i.e. for which \varphi(X_{1}, \ldots, X_{n})\in

g_{i_{1}+\cdots+i_{n}+\ell} if each X_{j} lies in g_{i_{j}} . From the definition of \partial it is obvious that
\partial maps L_{\ell}(\Lambda^{n}g_{-}, g) to L_{\ell}(\Lambda^{n+l}g_{-}, g) . Accordingly, also the cohomology
groups split as H^{n}(g_{-}, g)=\oplus_{\ell}H_{\ell}^{n}(g_{-}, g) .

Note that the Lie subalgebra g_{0} of g acts on each component g_{i} via the
adjoint action. This implies that it acts on each of the spaces C^{n}(g_{-}, g) , and
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the action preserves the homogeneity of maps. Moreover, one immediately
verifies that the differential \partial is a homomorphism of 90-modules. Conse-
quently, each of the cohomology groups H_{\ell}^{n} (9-, g) is naturally a 90-module.

2.5. By 2.2(2), the Killing form on g can be used to identify the Lie
subalgebra 9-with the dual of the Lie subalgebra \mathfrak{p}_{+} . Consequently, for
any g-module V , we can identify the space C^{n}(g_{-}, V)\cong\Lambda^{n}(g_{-}^{*})\otimes V with
the dual space of \Lambda^{n}(\mathfrak{p}_{+}^{*})\otimes V^{*}\cong C^{n}(\mathfrak{p}_{+}, V^{*}) . In particular, the negative of
the dual map of the Lie algebra differential \partial : C^{n-1}(\mathfrak{p}_{+}, V^{*}) – C^{n}(\mathfrak{p}_{+}, V^{*})

can be viewed as a linear map \partial^{*} : C^{n}(9-, V) – C^{n-1}(g_{-}, V) , which is
called the codifferential. Clearly, the codifferential satisfies \partial^{*}\circ\partial^{*}=0 .

Since the Killing form identifies g-with the dual of \mathfrak{p}_{+} even as a g_{0^{-}}

module, we conclude that the codifferential \partial^{*} is a homomorphism of g_{0^{-}}

modules.
In the sequel, we will need the formula for the codifferential in the

special case \partial^{*} : C^{2}(g_{-}, g) – C^{1}(g_{-}, g) . To get the explicit formula, let
\{\xi_{\alpha}\} be a basis for g-and \{\eta_{\alpha}\} the dual basis (with respect to the Killing
form) of \mathfrak{p}_{+} . Using these, and identifying g with g^{*} using the Killing form,
we can compute the dual pairing of \varphi\in C^{n} (9-, g) and \psi\in C^{n}(\mathfrak{p}_{+}, g) as

\langle\varphi, \psi\rangle=\frac{1}{n!}\sum_{\alpha_{1},\ldots,\alpha_{n}}B(\varphi(\xi_{\alpha_{1} \ldots, }, \xi_{\alpha_{n}}), \psi(\eta_{\alpha_{1}},\ldots, \eta_{\alpha_{n}})) .

By definition, \langle\partial^{*}\varphi, \psi\rangle=-\langle\varphi, \partial\psi\rangle , and computing the right hand side for
\varphi\in C^{2}(9-, 9) and \psi\in C^{1}(\mathfrak{p}_{+}, g) we get

\frac{1}{2}\sum_{\alpha,\beta}B
(\varphi(\xi_{\alpha}, \xi_{\beta}), -[\eta_{\alpha}, \psi(\eta_{\beta})]+[\eta_{\beta}, \psi(\eta_{\alpha})]+\psi([\eta_{\alpha}, \eta_{\beta}])) ,

and by bilinearity of B this splits as a sum of three terms. Invariance of
the Killing form implies that each of the first two terms gives

\frac{1}{2}\sum_{\beta}B ( \sum_{\alpha}[\eta_{\alpha}, \varphi(\xi_{\alpha}, \xi_{\beta})]
, \psi(\eta_{\beta})).

For the last term, we can expand [ \eta_{\alpha}, \eta_{\beta}]=\sum_{\gamma}a_{\alpha\beta}^{\gamma}\eta_{\gamma} , where a_{\alpha\beta}^{\gamma}=

B(\xi_{\gamma}, [\eta_{\alpha}, \eta_{\beta}]) . But again by invariance of the Killing form, a_{\alpha\beta}^{\gamma} =

B([\xi_{\gamma}, \eta_{\alpha}], \eta_{\beta}) and thus

\sum_{\beta}a_{\alpha\beta}^{\gamma}\xi_{\beta}=[\xi_{\gamma}, \eta_{\alpha}]_{-}

,
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the component in 9-of the Lie bracket [\xi_{\gamma}, \eta_{\alpha}] . Using this, we can rewrite
the last term as

\frac{1}{2}\sum_{\gamma}B ( \sum_{\alpha}\varphi([\eta_{\alpha}, \xi_{\gamma}]_{-}, \xi_{\alpha})
, \psi(\eta_{\gamma})).

Thus, we see that for \varphi\in C^{2}(9-, 9) and X\in 9- we get:

\partial^{*}\varphi(X)=\sum_{\alpha}[\eta_{\alpha}, \varphi(\xi_{\alpha}, X)]+\frac{1}{2}\sum_{\alpha}\varphi([\eta_{\alpha}, X]_{-}, \xi_{\alpha}) .

2.6. Next, we want to show that the codifferential is the adjoint map of
the differential with respect to a certain metric. By [22, Lemma 1.5] for
any |k| -graded simple Lie algebra g there is an involutive automorphism
\sigma : garrow g which is conjugate linear in the complex case, such that \sigma(g_{i})=

9-i , and B(X, \sigma(X))<0 for all 0\neq X\in g . Consequently, B^{*}(X, Y):=

-B(X, \sigma(Y)) defines a positive definite inner product in the real case and
a positive definite Hermitian inner product in the complex case, which is
symmetric by invariance of the Killing form. Applying this construction to
each of the simple ideals, we get the same result in the semisimple case.

Now consider the map \mathcal{F} : C^{n} (9-, g) – C^{n}(\mathfrak{p}_{+}, g) defined by

\mathcal{F}(\varphi)(Z_{1}, \ldots, Z_{n}):=\sigma(\varphi(\sigma(Z_{1}), . , \sigma(Z_{n})))

Note that this maps complex linear maps to complex linear maps, but is
only conjugate linear in the complex case. A simple direct computation
using the fact that \sigma is compatible with brackets shows that the map \mathcal{F} is
compatible with the Lie algebra differential, i.e. \partial(\mathcal{F}(\varphi))=\mathcal{F}(\partial\varphi) .

The form B^{*} constructed above induces an inner product (which we
also denote by B^{*} ) on each of the spaces C^{n}(g_{-}, g)\cong\Lambda^{n}(g_{-}^{*})\otimes g . Now we
claim:

Proposition The differential \partial : C^{n} (9-, g) arrow C^{n+1}(g_{-}, g) and the cod-
ifferential \partial^{*} : C^{n+1}(9-, 9) – C^{n} ( g_{-} , g) are adjoint with respect to B^{*} ,
i.e . B^{*}(\partial\varphi, \psi)=B^{*}(\varphi, \partial^{*}\psi) . In particular, for each n and \ell the space
C_{\ell}^{n}(9-, 9) splits as a direct sum of the image of \partial and the kernel of \partial^{*} , and
each cohomology class contains a unique representative, which is harmonic
( i.e . \partial -closed and \partial^{*} -closed).

Proof. As above let us denote by \langle . \rangle the dual pairing between C^{n} (9-, g)
and C^{n}(\mathfrak{p}_{+}, g) constructed using the Killing form. If \{\xi_{\alpha}\} is an orthonormal
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basis for g-with respect to B^{*} , then the dual basis of \mathfrak{p}_{+} with respect to the
Killing form is by construction given by \eta_{\alpha}=-\sigma(\xi_{\alpha}) . Using this, one easily
concludes that for \varphi , \psi\in C^{n} (9-, g) we get B^{*}(\varphi, \psi)=(-1)^{n+1}\langle\varphi, \mathcal{F}(\psi)\rangle ,
where \mathcal{F} : C^{*} (g_{-}, g) – C^{*}(\mathfrak{p}_{+}, g) is the map constructed above. But using
this we compute:

B^{*}(\varphi, \partial\psi)=(-1)^{n+1}\langle\varphi, \mathcal{F}(\partial\psi)\rangle=(-1)^{n+1}\langle\varphi, \partial(\mathcal{F}(\psi))\rangle

=(-1)^{n}\langle\partial^{*}\varphi, \mathcal{F}(\psi)\rangle=B^{*}(\partial^{*}\varphi, \psi) .

\square

2.7. Using the Hodge theory on the standard complex, the cohomology
H^{*}(g_{-}, g) can now be computed in the complex simple case using Kostant’s
version of the Bott-Borel-Weil theorem, see [13]. The result that we will
need directly in the prolongation procedure is the computation of the first
cohomology groups, which have been carried out in [23]. It should be noted
here, that in [23] the notation is slightly different from ours, namely what
we denote by H_{\ell}^{k} (9-, g) is denoted by H^{\ell-k+1,k}(\mathfrak{m}, g) there.

Proposition Let g be a complex simple |k| -graded Lie algebra. Then for
each \ell>0 the cohomology group H_{\ell}^{1}(9-, 9) is trivial, except in the following
cases (using the Dynkin diagram notation, see 2.3):

1. \cross , i.e . g=A_{1} , and \mathfrak{p} \subset g is the Borel subalgebra. In this case,
H_{2}^{1} ( \emptyset- , g) is the only nonzero component with \ell>0 .

2. \rangle\xi-arrow\cdot\cdot-\congrightarrow arrow* , i.e . g=A_{n} for some n>1 , and \mathfrak{p} is
the maximal parabolic corresponding to either the fifirst or the last root.
In this case, H_{1}^{1}(9-, 9) is the nonzero component.

3. *arrow\cdot 1R , i.e . g =C_{n} for some n\geq 2 , and \mathfrak{p} is the maximal
parabolic corresponding to the fifirst root. In this case, H_{1}^{1}(9-, 9) is the
nonzero component.

Proof. see [23, Proposition 5.1]. \square

This also completely solves the problem in the real simple case, since
by [23, Lemma 3.5] the first cohomology group of positive homogeneity
of of a complexification is the complexification of the corresponding real
cohomology group of the same homogeneity. To deal with the semisimple
case, we have the following

Proposition 2.8 Let g’ be a semisimple |k’| -graded Lie algebra such that
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no simple factor is contained in g_{0}’ and g’ be a semisimple |k’| -graded Lie
algebra such that no simple factor is contained in g_{0}’ , and put g=g’\oplus g’

Then for each \ell>0 we have H_{\ell}^{1} (9-, g) \cong H_{\ell}^{1}(g_{-}’, g’)\oplus H_{\ell}^{1}(g_{-}’, g’) . If
k’ , k’\geq 2 , then the result also holds for \ell=0 .

Proof Since we have 9-=g_{-}’\oplus g_{-}’ and g =g’\oplus g’ . we can write any

linear map \psi : 9-arrow g as a block matrix (\begin{array}{ll}A BC D\end{array}) , where A : g_{-}’arrow g’ .

B : g_{-}’arrow g’ . and so on. Now suppose that \psi is a cocycle. Then for all
X, Y\in 9- we have

0=[X, \psi(Y)]-[Y, \psi(X)]-\psi([X, Y]) .

Applying this to X, Y\in g_{-}’ , we get two equations. The first is exactly the
cocycle equation for A , while the second says that C([X, Y])=0 , for all X.,
Y This means exactly, that C vanishes on g_{-k}’, \oplus\cdot\cdot\oplus g_{-2}’ . Similarly, for
X, Y\in g_{-}’ we get that D is a cocycle, and B can be nonzero only on g_{-1}’ .
Finally, taking X\in g_{-}’ and Y\in g_{-}’ , we get [X, B(Y)]=0 and [Y, C(X)]=
0 . But by 2.2(4) this implies that B(Y)\in g_{-k}’ , and C(X)\in g_{-k}’,, , so B
and C can contain only components homogeneous of degree up to -k’+1
respectively -k’+1 , and the result follows. \square

2.9. Let g be a semisimple |k| -graded Lie algebra, and let G be a Lie
group with Lie algebra g. Since G is semisimple, each element of G is
determined by its adjoint action up to elements of the center of G. Let
P \subset G be the subgroup of those elements which satisfy Ad(g)(g_{i})\subset g_{i}\oplus

g_{i+1}\oplus \oplus g_{k} for each i =-k , \ldots , k. This can be interpreted as follows:
The |k| -grading of g gives rise to an associated filtration g =\mathcal{F}_{-k}(g)\supset

\mathcal{F}_{-k+1}(g)\supset .. \supset \mathcal{F}_{k}(g)\supset 0 , defined by \mathcal{F}_{i}(g) :=g_{i}\oplus\cdot . \oplus g_{k} , for all
i =-k , \ldots , k. Clearly, this filtration is compatible with the Lie bracket,
i.e. [\mathcal{F}_{i}(g), \mathcal{F}_{j}(g)]\subset \mathcal{F}_{i+j}(g) . (In fact, in many points in the sequel it will be
more natural to view this filtration as the main structure on g and not the
actual grading.) Then P \subset G is the subgroup of all elements whose adjoint
action is an automorphism of the filtered Lie algebra g.

We also define a second subgroup G_{0} of G as the set of all those g
which satisfy that Ad(g)(g_{i})\subset g_{i} for all i =-k , \ldots , k. By definition, G_{0}

is a subgroup of P, and it consists of those elements whose adjoint action
preserves even the grading of g.
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Proposition The subgroup P has Lie algebra \mathfrak{p} , and G_{0} has Lie algebra
90 .

Proof. In view of the equation Ad(exp(X)) =e^{ad(X)} for X\in g , it suffices
to show that \mathfrak{p} and go are precisely the subspaces of those X\in g such that
ad(X) preserves the filtration respectively the grading of g . So suppose
that ad(X) preserves the filtration of g . Then we can uniquely write X=
X_{-k}+\cdots+X_{k} with X_{i}\in g_{i} . Since ad(X) preserves the filtration, we must
have [X, E]\in \mathfrak{p} , where E is the element from 2.2(1). But by definition of
E , we have [X, E]=kX_{-k}+ +X_{-1}-X_{1} – \cdot-kX_{k} , and this is in \mathfrak{p}

if and only if X\in \mathfrak{p} . If ad(X) even preserves the grading then [X, E] must
be in go, so [X, E] must be zero in this case, which implies X\in 90 . \square

The structure of the group P is clarified in the following

Proposition 2.10 Let g\in P be any element. Then there exist unique
elements g_{0}\in G_{0} and X_{i}\in g_{i} for i=1 , \ldots , k , such that g=g_{0}\exp(X_{1})

\exp(X_{k}) .

Proof. (see [21, Lemma 2.6]) Consider the adjoint action Ad(g) : g arrow g .
This is an automorphism of the filtered Lie algebra g . In particular, Ad(g)
maps each g_{i} to \oplus_{j\geq i}g_{j} . If we just take the lowest component of this map,
we get an automorphism of the graded Lie algebra g , which we denote by
\varphi 0 . By construction, \varphi_{0}(Y) is congruent to Ad(g)Y modulo g_{i+1}\oplus\cdots\oplus g_{k}

for all Y\in g_{i} .
Thus, for \varphi_{1}:=\varphi_{0}^{-1}0 Ad(g) we get that \varphi_{1}(Y) is congruent to Y

modulo g_{i+1}\oplus\cdots\oplus g_{k} for all Y\in g_{i} . In particular, for the element E\in g0

from 2.2(1), we have E-\varphi_{1}(E)\in g_{1}\oplus\cdot\cdot\oplus g_{k} , and we denote by X_{1} the
component in g_{1} of this element. This means that \varphi_{1}(E) is congruent to
E-X_{1} modulo g_{2}\oplus \oplus g_{k} . Moreover, Ad(exp(-X_{1}) ) (E-X_{1})=E , so
for \varphi_{2}=Ad(\exp(-X_{1}))\circ\varphi_{1} we see that \varphi_{2}(E) is congruent to E modulo
g_{2}\oplus\cdots\oplus g_{k} , while for each Y\in g_{i} the element \varphi_{2}(Y) clearly is congruent
to Y modulo g_{i+1}\oplus \oplus g_{k} . Inductively, we find elements X_{j}\in g_{j} and
automorphisms \varphi_{j} of g of the form \varphi_{j}=Ad(\exp(-X_{j-1}))0\varphi_{j-1} , such
that \varphi_{j}(E) is congruent to E modulo g_{j}\oplus\cdots\oplus g_{k} , and such that \varphi_{j}(Y) is
congruent to Y modulo g_{i+1}\oplus \oplus g_{k} for each Y\in g_{i} .

Then consider \varphi_{k+1} . By construction, we have \varphi_{k+1}(E)=E . Then for
Y\in g_{i} we see that [E, \varphi_{k+1}(Y)]=\varphi_{k+1}([E, Y])=i\varphi_{k+1}(Y) , so \varphi_{k+1}(Y)\in

g_{i} . But by construction, \varphi_{k+1}(Y) is congruent to Y modulo g_{i+1}\oplus\cdots\oplus g_{k} ,
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so \varphi_{k+1}(Y)=Y This means that we can write the identity map as

Ad(\exp(-X_{k}))\circ 0 Ad(exp( -X_{1}) ) 0\varphi_{0}^{-1}\circ Ad(g),

so \varphi 0 is the adjoint action of \tilde{g}_{0}:=g\exp(-X_{k}) . exp (-X_{1}) , so this element
lies in G_{0} . Moreover, by construction \tilde{g}_{0}\exp(X_{1}) \cdot\exp(X_{k}) has the same
adjoint action as g , so since G is semisimple these two elements differ by an
element of the center of G , which by definition is contained in G_{0} . Putting
g_{0} the product of this element with \tilde{g}_{0} , we get a representation of g as
required.

For the uniqueness, assume that we have

g_{0} exp (X_{1})\cdots exp (X_{k})=\hat{g}_{0} exp (\hat{X}_{1})\cdots exp (\hat{X}_{k}) .

Then \hat{g}_{0}=\exp(-\hat{X}_{1})\cdots exp (-\hat{X}_{k})g_{0}\exp(X_{1}) \cdot\exp(X_{k}) . Considering the
adjoint actions of both these elements on each g_{i} and computing modulo
g_{i+1}\oplus\cdot\cdot\oplus g_{k} , we see that g_{0}^{-1}\hat{g}_{0} lies in the center of G . Thus, in particular
we see that Ad(\exp(X_{1}) \cdot\exp(X_{k}))=Ad(\exp(\hat{X}_{1}) \cdot\exp(\hat{X}_{k})) . Applying
this to E and computing modulo g_{2}\oplus \cdot 1 \oplus g_{k} , we see that X_{1}=\hat{X}_{1} .
Inductively, X_{i}=\hat{X}_{i} for all i=1 , . . ’ k , and thus also g_{0}=\hat{g}_{0} . \square

2.11. Next, we define a subgroup P_{+}\subset P as the image of \mathfrak{p}_{+}\subset \mathfrak{p} under
the exponential map. From Proposition 2.10 it follows that the exponential
map exp:\mathfrak{p}_{+}arrow P_{+} is a global diffeomorphism. Moreover, again using 2.10,
we see that P/P_{+}\cong G_{0} , so P is actually a semidirect product of G_{0} and
P_{+} . The powers of the nilpotent Lie group P_{+} are exactly the exponential
images of the powers of \mathfrak{p}_{+} , so we have P_{+}^{i}=\exp(\mathfrak{p}_{+}^{i}) for all i=1 , . , k .
In the sequel, we will heavily need the quotients P/P_{+}^{i} for i=1 , . , k .
Clearly, they are again semidirect products of G_{0} with the groups P_{+}/P_{+}^{i} .

Now let g\in P be an element, and write g=g_{0}\exp(X_{1})\cdots\exp(X_{k}) as in
Proposition 2.10. Take an element h=\exp(Y_{i}) \cdot\exp(Y_{k})\in P_{+}^{i} . Then by
the Baker-Campbell-Hausdorff formula we may write \exp(X_{i})\cdots\exp(X_{k})h

as an expression of the form \exp(Z_{i}) \cdot\exp(Z_{k}) for certain elements Z_{j}\in g_{j} .
Thus, if we decompose the product gh according to 2.10, we must get

gh=g_{0} exp (X_{1})\cdots exp (X_{i-1}) exp (Z_{i}) . exp (Z_{k}) .

In particular, this implies that the mapping G_{0}\cross(g_{1}\oplus\cdot\cdot\oplus g_{i-1})arrow P/P_{+}^{i}

which maps (g_{0}, X_{1}, . , X_{i-1}) to the class of g_{0}\exp(X_{1}) \cdot\exp(X_{i-1}) is a
global diffeomorphism.



Parabolic geometries 467

This construction can also be used to construct for each i=1 , \ldots , k a
canonical smooth section s : P/P_{+}^{i} – P/P_{+}^{i+1} of the natural quotient map
P/P_{+}^{i+1}arrow P/P_{+}^{i} . One simply pushes forward the inclusion G_{0}\cross(g_{1}\oplus\cdot\cdot\oplus

g_{i-1}) – G_{0}\cross(g_{1}\oplus \oplus g_{i}) with the diffeomorphism constructed above.
Note, however, that these are not group homomorphisms, unless i=1 .

2.12. By definition, the subgroup P\subset G acts on each of the filtration
components \mathcal{F}_{i}(g)=g_{i}\oplus\cdots\oplus g_{k} , and for j>i the component \mathcal{F}_{j}(g)\subset \mathcal{F}_{i}(g)

is a submodule. Thus, we can pass to the quotient \mathcal{F}_{i}(g)/\mathcal{F}_{j}(g) which is
isomorphic as a vector space to g_{i}\oplus\cdots\oplus g_{j-1} . In particular, this leads to a
P-action on g/\mathfrak{p}\cong g_{-} . We will denote all these actions by Ad (and all the
corresponding Lie algebra actions by ad) if there is no risk of confusion.

Using that Ad(exp(X)) =e^{ad(X)} it is clear that an element g\in P is
contained in P_{+}^{j} if and only if (Ad(g) – id) (\mathcal{F}_{i}(g))\subset \mathcal{F}_{i+j}(g) for all i . In
particular, this implies that P_{+}^{j} acts trivial on \mathcal{F}_{i}(g)/\mathcal{F}_{i+j}(g) , so the action
of P on this space factors to an action of P/P_{+}^{j} .

2.13. Using the action of P on g-constructed in 2.12 above, we get an
action of P on C^{n}(9-, g)=L(\Lambda^{n}g_{-}, g) .

Proposition The codifferential \partial^{*} : C^{n} (9-, g) – C^{n-1}(g_{-}, g) is P-
equivariant.

Proof. (see also [22, 1.12]) To define the codifferential, we have used the
Killing form to identify g -with the dual of \mathfrak{p}_{+} and g with its own dual. Now
for X\in 9- and b\in P we can write Ad(b)(X) (the adjoint action in g) as
the sum of the action of b on X constructed in 2.12 above plus a component
in \mathfrak{p} . Since the Killing form vanishes on \mathfrak{p} \cross \mathfrak{p}_{+} , we see that invariance of
the Killing form implies that g-is in fact dual to \mathfrak{p}_{+} as a P-module. The
identification of g with its own dual is, again by invariance of the Killing
form, an isomorphism of G- and thus of P-modules.

Thus, we see that for each n the spaces C^{n}(g_{-}, g) and C^{n}(\mathfrak{p}_{+}, g) are
actually dual P-modules. But then a simple direct computation shows that
the Lie algebra differential \partial : C^{n}(\mathfrak{p}_{+}, g) – C^{n+1}(\mathfrak{p}_{+}, g) is a P-module
homomorphism, and the result follows. \square
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3. P-frame bundles and the prolongation procedure

Throughout this section we fix a semisimple |k| -graded Lie algebra g

and a Lie group G with Lie algebra g . We continue to use the notation of
Section 2.

The aim of this section is to show how to construct principal P-bundles
equipped with Cartan connections from underlying structures.

3.1. The basic ingredient in our study is a manifold M together with a
filtration of the tangent bundle T^{-k}M=TM\supset T^{-k+1}M\supset\cdot . \supset T^{-1}M

by subvector bundles, such that for each i=-k , . . ’ -1 the rank of T^{i}(M)

equals the dimension of g_{i}\oplus\cdot\cdot\oplus 9-1 .
Next, let p:Earrow M be a locally trivial fiber bundle. Then we get an

induced filtration of the tangent bundle of E as T^{-k}E=TE\supset T^{-k+1}E\supset

. . \supset T^{-1}E\supset T^{0}E:=VE , where VE denotes the vertical bundle of E .
This filtration is simply given by T^{i}E:=(Tp)^{-1}(T^{i}M) , where Tp denotes
the tangent map to the projection p. Note that if E is a principal bundle
with some structure group H , then the principal action of H on E induces an
action of H on the tangent bundle TE, and by construction of the induced
filtration, each of the subbundles T^{i}E is invariant under this action.

3.2. Let p:Earrow M be a principal bundle with structure group P or P/P_{+}^{i}

for some i=1 , \ldots , k over a manifold with a filtration of its tangent bundle
as in 3.1. In this case, we can prolong the filtration of the tangent bundle
of E by putting T^{j}E the image of g_{j}\oplus\cdot 1 \oplus g_{i-1} under the fundamental
vector field mapping for j=1 , . , i-1 .

Definition Let \ell be an integer which is \leq i if the structure group of E is
P/P_{+}^{i} and \leq 2k+1 if the structure group is P . We define a frame form \theta of
length \ell on E as a k-tuple \theta= (\theta_{-k}, , \theta_{-1}) , where \theta_{j} is a smooth section
of the bundle L(T^{j}E, g_{j}\oplus\cdot\cdot\oplus g_{\min\{k,j+\ell-1\}}) of linear maps such that

1. The kernel of \theta_{j} in each point u\in E is exactly the subbundle T_{u}^{j+\ell}E .
2. The forms are mutually compatible, i.e. the restriction of \theta_{j} to T^{j+1}E

has vanishing g_{j} -component and its components in g_{j+1}\oplus \cdot t \oplus

9 \min\{k,j+\ell-1\} coincide with the components of \theta_{j+1} in that part.
3. Each \theta_{j} is P/P_{+}^{i}-equivariant, i.e . (r^{b})^{*}\theta_{j}= Ad (b^{-1})\circ\theta_{j} , where r^{b}

denotes the principal right action of b , and Ad denotes the action of
P/P_{+}^{i} on g_{j}\oplus\cdot\cdot\oplus 9\min\{k,j+\ell-1\} introduced in 2.12.

4. For A\in 90\oplus \oplus Qi-1 let \zeta_{A} be the fundamental vector field cor-
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responding to A . Then for j+\ell\leq 0 we have \theta_{j}(\zeta_{A})=0 , while for
j+\ell>0 , \theta_{j}(\zeta_{A}) gives the components of A in 90 \oplus\cdot.\oplus 9\min\{k,j+\ell-1\} .

Remarks 3.3
1. If \theta is a frame form of length \ell , then simply by forgetting components

it gives rise to frame forms of length 1, . , \ell-1 . The only point that is
not completely obvious is the equivariancy but this holds by definition
of the action Ad, see 2.12.

2. In the case \ell=1 , the second and last conditions become vacuous.
Thus, a frame form of length one is just a collection \theta=(\theta_{-k}, . , \theta_{-1})

such that each \theta_{j} is a smooth section of L(T^{j}E, g_{j}) which is equivariant
and for each point u\in E induces a linear isomorphism T_{u}^{j}E/T_{u}^{j+1}E -

g_{j} .
3. On the other hand, if the length \ell becomes bigger than k+2 , then some

components of \theta contain no information, since they arejust restrictions
of lower components. In the extremal case, \ell=2k+1 , the whole
information is contained in the form \theta_{-k} , which is by definition a
Cartan connection.

4. To avoid compicated subscripts, we will in the sequel follow the con-
vention that we simply view the component \theta_{j} of a frame form as
having values in g_{j}\oplus

, . \oplus g_{j+\ell-1} , i.e. that we agree that g_{i}=\{0\}

for |i|>k , and we simply forget the components with values in zero
spaces.

3.4. The structure equations
Let p : Earrow M be a principal bundle with group P/P_{+}^{i} for some

i=1 , . , k , and let \theta be a frame form of length one on E . The structure
equations impose a certain restriction to the frame form \theta (and through
that to M), which can be formally written as d\theta_{i+j}+[\theta_{i}, \theta_{j}]=0 . Since
the individual \theta_{i} are only partially defined, this does not make sense as it
stands but needs an appropriate interpretation:

The lowest component \theta_{-k} of \theta is simply a 9-k valued one-form on E .
Thus, we can differentiate it to obtain a 9-k-valued two form d\theta_{-k} on E .
Then for each pair (i, j) of negative integers such that i+j=-k, each
point u\in E , and elements \xi\in T_{u}^{i}E and \eta\in T_{u}^{j}E we consider

d\theta_{-k}(\xi, \eta)+[\theta_{i}(\xi), \theta_{j}(\eta)]\in 9-k ,

where we use the bracket [, ] : g_{i}\cross g_{j}
– 9-k . This gives a collection of well
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defined smooth functions T^{i}E\otimes T^{j}Earrow 9-k , which we call the structure
function of degree -k .

Now assume that \theta has the property that the structure function of
degree -k is identically zero, and take a pair of negative integers (i, j) such
that i+j>-k . Let \tilde{\xi} be a section of T^{i}E and \tilde{\eta} a section of T^{j}E . Then we
can also view \tilde{\eta} as a section of T^{-k-i}E , and since -k-i<j , we see that
\theta_{-k-i}(\tilde{\eta}) is identically zero, so vanishing of the structure function of order
k implies that 0=d\theta_{-k}(\tilde{\xi},\tilde{\eta}) . Since \theta_{-k}(\tilde{\xi}) and \theta_{-k}(\tilde{\eta}) are identically zero,
this means that \theta_{-k}([\tilde{\xi},\tilde{\eta}])=0 , so the Lie bracket [\tilde{\xi},\tilde{\eta}] is actually a section
of T^{-k+1}E .

But this means that if i+j\geq-k+1 , then \tilde{\xi},\tilde{\eta} and [\tilde{\xi},\tilde{\eta}] are all sections
of T^{-k+1}E . Thus, if we extend \theta_{-k+1} to a 9-k+1-valued one form and take
the exterior derivative, then the value of the resulting two form on (\tilde{\xi},\tilde{\eta})

is independent of the extension. Hence, for i+j=-k+1 , \xi\in T_{u}^{i}E and
\eta\in T_{u}^{j}E we get a well defined element

d\theta_{-k+1}(\xi, \eta)+[\theta_{i}(\xi), \theta_{j}(\eta)]\in g_{-k+1} .

As above, this gives rise to a smooth function T^{i}E\otimes T^{j}Earrow g_{-k+1} for
i+j=-k+1 , and the collection of these functions is called the structure
function of degree -k+1 .

Now this procedure can easily be iterated. If the structure function of
degree -k+1 vanishes identically, then for i+j>-k+1 , the Lie bracket
of a section of T^{i}E and a section of T^{j}E lies in T^{-k+2}E , so d\theta_{-k+2} is well
defined on such sections, and we get a well defined structure function of
degree -k+2 , and so on.

Definition
1. We say that the frame form \theta of length one satisfifies the structure

equations iff the structure functions of all orders -k , . , -1 vanish.
2. We say that a frame form of length \ell satisfies the structure equations

iff the underlying frame form of length one has this property.

Remark 3.5 The existence of a frame form which satisfies the structure
equations implies subtle conditions on the degree of non-integrability of the
sub-bundles T^{i}E of TE and thus also of the sub-bundles T^{i}M of TM. In
particular, if such a frame form exists, then the Lie bracket of a section of
T^{i}E with a section of T^{j}E is always a section of T^{i+j}E , but in general not
of T^{i+j+1}E . We will give a detailed discussion of the geometric meaning of
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the structure equations in 4.2.

Definition 3.6 Let M be a manifold with a filtration of its tangent bundle
as in 3.1. For \ell=1 , . , 2k+1 we define a P-frame bundle of degree \ell over
M as a principal fiber bundle p:Earrow M with group P/P_{+}^{\ell} together with a
frame form \theta of length \ell on E, which satisfies the structure equations.

3.7. By definition, a P-frame bundle of degree one over a manifold M
is a principal bundle Earrow M with group P/P_{+} together with a sequence
\theta= (\theta_{-k}, \ldots, \theta_{-1}) of smooth sections \theta_{i} of the bundle L(T^{i}E, g_{i}) , such that
for each point u\in E , each \theta_{i} induces an isomorphism between T_{u}^{i}E/T_{u}^{i+1}E

and g_{i} . Since moreover each \theta_{i} has to be P/P_{+} -equivariant, this means
exactly that the form \theta_{-k}\oplus\cdot\cdot\oplus\theta_{-1} identifies the bundle E as a reduction
to the structure group P/P_{+}\cong G_{0} of the associated graded vector bundle
(T^{-k}M/T^{-k+1}M)\oplus\cdots\oplus(T^{-2}M/T^{-1}M)\oplus T^{-1}M to the tangent bundle of
M . So P-frame bundles of degree one are just reductions to the structure
group G_{0} of the associated graded to the tangent bundle, which in addition
satisfy the structure equations.

Also, the other extremal case is fairly easy to describe. A P-frame
bundle of degree 2k+1 is by definition a principal bundle with group P,

which is equipped with a frame from of length 2k+1 , and we have already
remarked in 3.3(3) that this frame form is actually a Cartan connection.
So P-frame bundles of degree 2k+1 are just P-principal bundles equipped
with a Cartan connection which satisfies the structure equations. We shall
discuss later, how the structure equations are related to the curvature of
the Cartan connection.

3.8. Let (p:Earrow M, \theta) be a P-frame bundle of degree \ell . Since \theta satisfies
the structure equations, we know from 3.5 that the Lie bracket of a section
of T^{i}E with a section of T^{j}E is a section of T^{i+j}E for all i , j<0 . But this
means, that if i , j<0 are such that i+j\geq-k , then we have a well defined
tensorial map d\theta_{i+j} : T^{i}E\otimes T^{j}Earrow g_{i+j}\oplus \oplus g_{i+j+\ell-1} . In particular,
since T^{0}E=VE , the vertical bundle, we can form d\theta_{i}(\zeta_{A}, \xi) for elements
\xi\in T^{i}E and A\in g_{0}\oplus\cdots\oplus g_{\ell-1} .

Lemma In this situation, we have d\theta_{i}(\zeta_{A}, \xi)=-ad(A)(\theta_{i}(\xi)) , where ad
is the Lie algebra action corresponding to the group action introduced in
2.12.
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Proof. Equivariancy of \theta_{i} reads as (r^{b})^{*}\theta_{i}=Ad(b^{-1})\circ\theta_{i} for all b\in

P/P_{+}^{\ell} . In particular, we can apply this to b=\exp(tA) . Evaluating this
on an element \xi\in T_{u}^{i}E , we get a smooth curve in g_{i}\oplus\cdot . \oplus g_{i+\ell-1} , and
differentiating at zero we get

\frac{d}{dt}|_{t=0}((r^{\exp(tA)})^{*}\theta_{i})(\xi)=\frac{d}{dt}|_{t=0} Ad(exp(-tA) ) (\theta_{i}(\xi))

=-ad(A)(\theta_{i}(\xi)) .

Now we can extend \theta_{i} to a globally defined one form \tilde{\theta}_{i} with values in
g_{i}\oplus\cdots\oplus g_{i+\ell-1} . Then this one form still satisfies the above equation for \xi\in

T^{i}E , and the left hand side simply reads as \mathcal{L}_{\zeta_{A}}\tilde{\theta}_{i}(\xi) , the Lie derivative along
the fundamental vector field. But \mathcal{L}_{\zeta_{A}}\tilde{\theta}_{i}(\xi) equals d(i_{\zeta_{A}}\tilde{\theta}_{i})+i_{\zeta_{A}}(d\tilde{\theta}_{i}) , where
i_{\zeta_{A}} denotes the insertion operator. Since \zeta_{A} is a section of T^{0}E\subset T^{i}E , the
above equation holds on T^{i}E with \tilde{\theta}_{i} replaced by \theta_{i} . But since i_{\zeta_{A}}\theta_{i} is con-
stant, only the second term remains, and we get \frac{d}{dt}|_{t=0}((r^{\exp(tA)})^{*}\theta_{i})(\xi)=

d\theta_{i}(\zeta_{A}, \xi) . \square

3.9. In the situation of 3.8, let u \in E be a point. We define the torsion
of (E,\theta) in u as a linear map t_{\theta}(u) : 9-\wedge g_{-} –g, which has homogeneous
components of degrees 0, . . . ’

\ell-1 only, as follows: Take X \in g_{i}

. and Y \in g_{j} ,
where i+j+\ell>-k , and choose elements \xi\in T_{u}^{i}E and \eta\in T_{u}^{J}E such that
\theta_{i}(\xi)=X and \theta_{j}(\eta)=Y If i+j\leq-k , then we define t_{\theta}(u)(X,Y) as
the components in \emptyset-k\oplus\cdot . \oplus g_{i+j+\ell-1} of d\theta_{-k}(\xi, \eta) . If, on the other hand,
i+j>-k , then we put t_{\theta}(u)(X,Y) :=d\theta_{i+j}(\xi, \eta)\in g_{i+j}\oplus\cdot\cdot\oplus g_{i+j+\ell-1} .

We have to show, that this is well defined. Thus, let us assume that
we have two elements \xi_{1} , \xi_{2} such that \theta_{i}(\xi_{1})=\theta_{i}(\xi_{2})=X . Then their
difference is in the kernel of \theta_{i} , which by definition is T_{u}^{i+\ell}E . Now we have
to distinguish two cases:

(1) If i+\ell<0 , then both \xi_{2}-\xi_{1} and \eta lie in T_{u}^{i+j+\ell} , and so does the
Lie bracket of any two sections of T^{i+\ell}E and T^{j}E . Thus, if i+j\geq-k , then
by definition d\theta_{i+j}(\xi_{2}-\xi_{1}, \eta)=0 , while for i+j<-k the components of
d\theta_{-k}(\xi_{2}-\xi_{1}, \eta) that we consider are zero as well.

(2) If i+\ell\geq 0 , then by definition there is an element A \in g_{i+\ell} such
that \xi_{2}-\xi_{1}=(A(u) , the value of the fundamental vector field. But by
Lemma 3.8, this implies that d\theta_{i+j}(\xi_{2}-\xi_{1}, \eta)=-ad(A)(\theta_{i+j}(\eta)) (or the
respective equation with i+j replaced by -k). But if \theta_{i+j}(\eta) (respectively
\theta_{-k}(\eta)) is nonzero (which means that \ell is big enough), then it has values in
g_{j} , so - ad(A)(\theta_{i+j}(\eta)) is an element of g_{i+j+\ell} and hence plays no role.
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Definition 3.10 Let (E, \theta) be a P-frame bundle over M of degree \ell . Then

the homogeneous components t_{\theta}^{j} of degree j=0, \ldots , \ell-1 of the torsion
t_{\theta} define smooth functions on E with values in the space L_{j}(g_{-}\wedge 9-, 9)

of homogeneous maps. In 2.5 we have introduced the codifferential \partial^{*} :
L_{j}(g_{-}\wedge 9-, 9)arrow L_{j}(g-, g) . We call the P-frame bundle (E, \theta) harmonic
if and only if for all j=1 , . , \ell-1 we have \partial^{*}\circ t_{\theta}^{j}=0 . (Note that the
component t_{\theta}^{0} is already completely determined by the requirement that \theta

satisfies the structure equations.)

3.11. Underlying P-frame bundles of lower degree

Let (p:Earrow M, \theta) be a P-frame bundle of degree \ell>1 . We construct
from this a P-frame bundle (\underline{E}, \underline{\theta}) of degree \ell-1 over M , which is called
the underlying P-frame bundle.

If \ell>k+1 then this construction is completely trivial, since in this case
both E and \underline{E} have to be principal P-bundles, so we keep the same bundle
and define the new frame form \underline{\theta} by letting \underline{\theta}_{i} be the first \ell-1 components
of \theta_{i} . Obviously, (\underline{E}, \underline{\theta}) is a P-frame bundle of degree \ell-1 .

So let us assume that \ell\leq k+1 . Then E is a principal bundle with
group P/P_{+}^{\ell} , and we have the non trivial subgroup P_{+}^{\ell-1}/P_{+}^{\ell} , which acts
freely on E . Now we define \underline{E}:=E/(P_{+}^{\ell-1}/P_{+}^{\ell}) , the space of orbits under
the action of this group. Then \pi : Earrow\underline{E} is a principal bundle with this
group, and clearly \underline{E}arrow M is a principal bundle with group P/P_{+}^{\ell-1} Next,

we define a frame form \underline{\theta} of length \ell-1 on \underline{E} as follows: Let \xi be an element
of T_{u}^{i}\underline{E} for some i=-k, \ldots, -1. Choose a point x\in E with \pi(x)=u and
an element \xi\sim\in T_{x}^{i}E with T\pi\cdot\tilde{\xi}=\xi , and put \underline{\theta}_{i}(\xi) the components of \theta_{i}(\tilde{\xi})

in g_{i}\oplus\cdots\oplus g_{i+\ell-2} .
To show that this is well defined, let us first assume that we have two

choices \tilde{\xi}_{1} and \tilde{\xi}_{2} for one point x . Then there is an element A\in g_{\ell-1} such
that \tilde{\xi}_{2}-\tilde{\xi}_{1}=\zeta_{A}(x) , so the difference lies in T^{\ell-1}E , which is contained
in the kernel of \theta_{i} . So let us assume that we have two choices x_{1} and x_{2}

for the point in E . Then there is an element b\in P_{+}^{\ell-1}/P_{+}^{\ell}\subset P/P_{+}^{\ell} such

that x_{2}=x_{1} b , and if \tilde{\xi}_{1}\in T_{x_{1}}^{i}E is such that T\pi \tilde{\xi}_{1}=\xi , then Tr^{b} \tilde{\xi}_{1}

is an appropriate choice for \tilde{\xi}_{2}\in T_{x_{2}}^{i}E . But then \theta_{i}(\tilde{\xi}_{2})=((r^{b})^{*}\theta_{i})(\tilde{\xi}_{1})=

Ad(b^{-1})(\theta_{i}(\tilde{\xi}_{1})) . Now by Proposition 2.10, there is an A\in g_{\ell-1} such that
b=\exp(A) , so the right hand side of this equation becomes e^{ad(A)}(\theta_{i}(\tilde{\xi}_{1})) ,

which differs from \theta_{i}(\tilde{\xi}_{1}) only in the component g_{i+\ell-1} , so it again plays no
role.
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Thus, we have defined \underline{\theta}_{i} for all i , and one easily verifies that this
actually defines a frame form of length \ell-1 on \underline{E} . To verify that this frame
form satisfies the structure equations, we proceed as follows: Let \sigma be a local
section of the bundle \pi : Earrow\underline{E} . Since T\sigma(T^{i}\underline{E})\subset T^{i}E for all i , we can
form the pullback \sigma^{*}\theta_{i} which is a local section of L(T^{i}\underline{E}, g_{i}\oplus\cdot\cdot\oplus g_{i+\ell-1}) .
By construction, \underline{\theta}_{i} coincides with the first \ell-1 components of this pullback.

Let us denote by \Theta and \underline{\Theta} the frame forms of length one underlying \theta

and \underline{\theta} , respectively. Then \underline{\Theta}_{-k} locally equals \sigma^{*}-O_{-k} , so d\underline{\Theta}_{-k} locally equals
\sigma^{*}d\Theta_{-k} . Thus, for \xi\in T_{u}^{i}\underline{E} and \eta\in T_{u}^{j}\underline{E} such that i+j=-k and u is in
the domain of \sigma we have

d\underline{\Theta}_{-k}(\xi, \eta)=d\ominus_{-k}(T\sigma\xi, T\sigma\eta)

=-[\Theta_{i}(T\sigma\cdot\xi), \Theta_{j}(T\sigma\cdot\eta)]=-[\underline{\Theta}_{i}(\xi), \underline{-O}_{j}(\eta)] ,

so the structure function of degree -k on \underline{E} vanishes identically.
Now if we extend \Theta_{-k+1} to a one form and pull back this extension along

\sigma , then we get an extension of \underline{O_{-k+1}-} , so locally we must have d\underline{\Theta}_{-k+1}=

\sigma^{*}d\Theta_{-k+1} on T^{i}\underline{E}\otimes T^{j}\underline{E} with i+j\geq-k+1 , so as above we conclude that
the structure function of degree -k+1 on \underline{E} vanishes identically. Iterating
this argument we see that \underline{\Theta} satisfies the structure equations, so (\underline{E}, \underline{\theta}) is
really a P-frame bundle of degree \ell-1 .

The same argument shows that d\underline{\theta}_{i} equals the first \ell-1 components of
\sigma^{*}d\theta_{i} on the domain of \sigma .

Proposition 3.12 If (E, \theta) is a harmonic P-frame bundle of degree \ell>

1 , then the underlying P-frame bundle (\underline{E}, \underline{\theta}) is harmonic, too.

Proof If \ell>k+1 then this is completely obvious, so let us assume
\ell \leq k+1 . For negative integers i and j take X\in g_{i} and Y\in g_{j} , and let
\xi\in T_{u}^{i}\underline{E} and \eta\in T_{u}^{j}\underline{E} be elements such that \underline{\theta}_{i}(\xi)=X and \underline{\theta}_{j}(\eta)=Y

Then let \sigma be a local section of \pi : Earrow\underline{E} as in 3.11 above. By the
last observation in 3.11, t_{\underline{\theta}}(u)(X, Y) equals the first \ell-1 components of
d\theta_{i+j} (T\sigma\xi, T\sigma \eta) . But now let \tilde{\xi}\in T_{\sigma(u)}^{i}E and \eta\in T_{\sigma(u)}^{j}E be elements
such that \theta_{i}(\tilde{\xi})=X and \theta_{j}(\tilde{\eta})=Y By construction, the differences \tilde{\xi}-T\sigma\cdot\xi

and \tilde{\eta}-T\sigma\cdot\eta lie in g_{i+\ell-1} and g_{j+\ell-1} , respectively. But then arguments as
in 3.9 show that the first \ell-1 components of d\theta_{i+j}(T\sigma\cdot\xi, T\sigma\eta) coincide
with the first \ell-1 components of d\theta_{i+j}(\tilde{\xi},\tilde{\eta}) , so the result follows. \square

3.13. Iterated application of the process of forming the underlying P-
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frame bundle shows that from a P-frame bundle of degree 2k+1 , i.e. a
principal P-bundle endowed with a suitably normalized Cartan connection,

one can construct a P-frame bundle of degree one, i.e. a reduction to the

structure group G_{0} of the associated graded vector bundle to the filtered
vector bundle TM . It is easy to see, that this process can also be carried out
in just one step: Given a principal P bundle Earrow M define E_{0}:=E/P_{+} ,

which is then a principal G_{0}-bundle over M . If \omega is a Cartan connection
on E then one verifies directly (using similar arguments as in 3.11) that for

i<0 the component \omega_{i} of \omega in g_{i} descends to a smooth section \theta_{i} of the

bundle L(T^{i}E_{0}, g_{i}) , and these define a frame form of length one on E_{0} .
The rest of this section is devoted to the question whether this process

can be inverted. We will show that under a cohomological restriction this

inversion is possible, i.e. we will construct from a harmonic P frame bundle
of degree \ell a unique (up to isomorphism) P-frame bundle of degree \ell+1 .

This process is closely related to the theory of prolongation of G-structures,

so we call it the prolongation procedure. An iterated application of this

procedure will lead to the construction of principal P-bundles equipped
with canonical Cartan connections.

Let (E, \theta) be a harmonic P-frame bundle of degree \ell over a manifold M.

We start by defining \hat{E} to be the subset of the bundle \oplus_{i=-k}^{-1}L(T^{i}E, g_{i}\oplus

\oplus g_{i+\ell}) which is formed by all k-tuples \varphi=(\varphi_{-k}, . , \varphi_{-1}) such that:

1. The first \ell components of \varphi_{i} coincide with \theta_{i}(u) , where u is the base
point of \varphi .

2. The restriction of \varphi_{i} to T_{u}^{i+1}E coincides with \theta_{i+1}(u) (so in particular
has zero g_{i}-component).

3. \varphi_{-1}(\zeta_{A})=A for all A\in 90\oplus\cdots\oplus g_{\ell-1} .
Note that for the components \varphi_{j} with j\neq-1 , a condition on compati-

bility with fundamental vector fields is implied by condition (2), since \theta_{j+1}

satisfies condition (4) of 3.2.
By \pi : \hat{E}arrow E we denote the obvious projection.

Proposition \pi : \hat{E}
– E is a locally trivial bundle, and each fifiber is an

affine space with modeling vector space L_{\ell}(9-, 9) , the space of linear maps

from 9-to g which are homogeneous of degree \ell .

Proof. Take two elements \varphi and \tilde{\varphi} of \hat{E} with \pi(\varphi)=\pi(\tilde{\varphi})=u . For

some i=-k , \ldots, -1 consider the difference \tilde{\varphi}_{i}-\varphi_{i} . By condition (1) from
above, this difference has values in g_{i+\ell} , and by condition (2) it vanishes
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on T_{u}^{i+1}E . Thus, we can view \tilde{\varphi}_{i}-\varphi_{i} as a linear map T_{u}^{i}E/T_{u}^{i+1}E - g_{i+\ell} .
Now let \Theta be the frame form of length one which underlies \theta . Then O-_{i}(u)

induces an isomorphism T_{u}^{i}E/T_{u}^{i+1}Earrow g_{i} . Hence, there is a unique linear
map \psi_{i} : g_{i}arrow g_{i+\ell} such that \tilde{\varphi}_{i}(\xi)-\varphi_{i}(\xi)=\psi_{i}(\Theta_{i}(\xi)) for all \xi\in T_{u}^{i}E .
Now we just have to collect together the \psi_{i} to a linear map 9— g which
is homogeneous of degree \ell to get the affine structure of the fibers.

To prove the local triviality, it suffices to construct local smooth sec-
tions. Consider a subset U\subset M such that all the bundles T^{i}M for
i=-k , \ldots, -1 and E are trivial over U . This means that we may assume
that TM|_{U}=U\cross 9- as a filtered vector bundle and that E|_{U}=U\cross P/P_{+}^{\ell} .
We construct a smooth section of \pi : \hat{E}arrow E over p^{-1}(U) as follows: The
tangent space to each point in E|_{U} is TU\cross T(P/P_{+}^{\ell}) , and we can identify TU
with U\cross 9- as a filtered vector space. From this trivialization we get pr0-
jections onto T^{i}E|_{U} for i=-k , \ldots , 0. Composing \theta_{i+1} with the projection
onto T^{i+1}E we can view it as being defined on T^{i}E (if i=-1 we take \theta_{0} to
be the inverse of the fundamental vector field mapping). The top component
of this together with \theta_{i} defines a smooth section \varphi_{i}\in L(T^{i}E, g_{i}\oplus\cdot\cdot\oplus g_{i+\ell}) ,
and one immediately verifies that (\varphi-k(u), . . ’ \varphi_{-1}(u))\in\hat{E} for all u . \square

3.14. The next step is to define a right action of the group P/P_{+}^{\ell+1} on
the bundle \hat{E} . Let \varphi be an element of \hat{E} , put u:=\pi(\varphi) , and let b be
an element of P/P_{+}^{\ell+1} By b_{0} we denote the class of b in P/P_{+}^{\ell} . For each
i=-k , . , -1 we define a linear map \varphi_{i} b : T_{u\cdot b_{0}}^{i}E – g_{i}\oplus \oplus g_{i+\ell} by
(\varphi_{i}\cdot b)(\xi):=Ad(b^{-1})(\varphi_{i}(Tr^{b_{0}^{-1}}\cdot\xi)) . We claim that \varphi\cdot b=(\varphi_{-k}\cdot b ,\ldots,_{\varphi_{-1}\cdot b)}

is again in \hat{E} , so we have to verify conditions (1), (2) and (3) of 3.13.
The first \ell components of (\varphi_{i} b) have to be compared with \theta_{i}(ub_{0}) .

But by 2.12 the first \ell components coincide with Ad(b_{0}^{-1}) acting on the first
\ell components of \varphi_{i} ( Tr^{b_{0 \xi)}^{-1}} . Since \varphi is in \hat{E} , these components equal
\theta_{i}(u)(Tr^{b_{0}^{-1}}, \xi) , which by equivariancy equals Ad(b_{0})(\theta_{i}(u\cdot b_{0})(\xi)) , so (1) is
satisfied.

Second, we have to compare the restriction of \varphi_{i} b to T_{u\cdot b_{0}}^{i+1}E with
\theta_{i+1}(u\cdot b_{0}) . But for an element \xi\in T_{u\cdot b_{0}}^{i+1}E the first component of \varphi_{i}(Tr^{b_{0}^{-1}}\cdot\xi)

is zero, so again by 2.12 this restriction coincides with Ad(b_{0}^{-1})(\varphi_{i}(Tr^{b_{0}^{-1}}\cdot\xi)) .
Now as above one concludes that (2) is satisfied as well.

To verify (3) we compute:

(\varphi_{-1} b)(\zeta_{A}(ub_{0}))=Ad(b^{-1})(\varphi-1(Tr^{b_{0 }^{-1}}\zeta A(ub_{0})))
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=Ad(b^{-1})(\varphi_{-1}(\zeta_{Ad(b_{0})(A)}(u))) ,

and since the action of P/P_{+}^{\ell+1} on 90\oplus\cdot.\oplus g_{\ell-1} factors over P/P_{+}^{\ell} , condition
(3) is satisfied, too.

If \varphi b=\varphi for some \varphi\in\hat{E} , we must have b_{0}=e , since the action of
P/P_{+}^{\ell} on E is free. But in this case by Proposition 2.10, there is an A\in g_{\ell}

such that b=\exp(A) , and thus (\varphi_{i}b)(\xi)=\varphi_{i}(\xi)-ad(A)(\varphi_{i}(\xi)) . Now for
each X\in 9-1 we can find a \xi\in T_{u}^{-1}E such that \varphi-1(\xi)=X . But then
\varphi\cdot b=\varphi implies [A, X]=0 for all X\in 9-1 , which implies A=0 by 2.2(4).

Thus, we have a free right action of P/P_{+}^{\ell+1} on \hat{E} , and by definition
the projection \pi : \hat{E}

– E is equivariant over the canonical projection
P/P_{+}^{\ell+1}arrow P/P_{+}^{\ell} .

3.15. Since \hat{E} is a locally trivial bundle over E we have the induced fil-
tration of the tangent bundle TE . Moreover, there is a natural analog of a
frame form on \hat{E} defined as follows: Let \varphi be a point in \hat{E} and put u:=\pi(\varphi) .
An element \xi\in T_{\varphi}\hat{E} is in T_{\varphi}^{i}\hat{E} if and only if T\pi \xi\in T_{u}^{i}E . If this is the
case, then we define \hat{\theta}_{i}(\xi):=\varphi_{i}(T\pi\cdot\xi) . Clearly, each \hat{\theta}_{i} is a smooth section
of the bundle L(T^{i}\hat{E}, g_{i}\oplus\cdots\oplus g_{i+}\ell) . Moreover, from the construction and
the properties of \varphi it follows immediately that \hat{\theta}= (\hat{\theta}_{-k}, . , \hat{\theta}_{-1}) satisfies
the obvious analogs of conditions (1), (2) and (4) of 3.2.

Since the projection \pi is equivariant, it follows that the subbundles T^{i}\hat{E}

are stable under the action of P/P_{+}^{\ell+1} . and we claim that the components
of \hat{\theta} are equivariant. Thus, let us consider ((r^{b})^{*}\hat{\theta}_{i})(\xi) for some \xi\in T^{i}\hat{E} .
By definition, this equals (\varphi_{i}\cdot b)(T\pi\cdot Tr^{b}\cdot\xi)=Ad(b^{-1})(\varphi_{i}(Tr^{b_{0}^{-1}}T\pi Tr^{b}\cdot\xi)) .
But equivariancy of \pi implies that this equals Ad(b^{-1})(\varphi_{i}(T\pi \xi))=

Ad(b^{-1})(\hat{\theta}_{i}(\xi)) .

3.16. Let \varphi\in\hat{E} be a point and put u:=\pi(\varphi)\in E . By Proposition
3.13, we can find a section \sigma of \hat{E}arrow E which is defined locally around
u and maps u to \varphi . For i=-k, \ldots, -1 we can form \sigma^{*}\hat{\theta}_{i} which is a
locally defined smooth section of L(T^{i}E, g_{i}\oplus \oplus g_{i+\ell}) . By definition of
the canonical form \hat{\theta} , we see that (\sigma^{*}\hat{\theta}_{i})(u)(\xi)=\sigma_{i}(u)(\xi) . Since \sigma(u)\in\hat{E} ,
the first \ell components of \sigma_{i}(u)(\xi) coincide with \theta_{i}(u)(\xi) , which means that
the first \ell components of \sigma^{*}\hat{\theta}_{i} coincide with \theta_{i} .

Note that since E is a P-frame bundle the derivative d\sigma^{*}\hat{\theta}_{i+j}=\sigma^{*}d\hat{\theta}_{i+j}

is well defined on T^{i}E\otimes T^{j}E locally around u , for all i , j such that i+j\geq-k .
In particular, for A\in 90\oplus \oplus g_{\ell-1} we have the fundamental vector field
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\zeta_{A}(u) and for \xi\in T_{u}^{i}E we can form d\sigma^{*}\hat{\theta}_{i}(\zeta_{A}(u), \xi) . Now the following
weaker analog of Lemma 3.8 holds:

Lemma For A as above and \xi\in T_{u}^{i+1} we have

d\sigma^{*}\hat{\theta}_{i}(\zeta_{A}(u), \xi)=-ad(A)(\sigma_{i}(u)(\xi)) ,

where the action ad is well defifined, since \sigma_{i}(u)(\xi) has trivial g_{i} -component

for \xi\in T_{u}^{i+1}E , see 2.12.

Proof. We have d\sigma^{*}\hat{\theta}_{i}(\zeta_{A}(u_{\wedge}), \xi)=d\hat{\theta}_{i}(T\sigma (A(u), T\sigma \xi) . If we denote
fundamental vector fields on E by (

\wedge

, then by equivariancy of the projection
\pi : \hat{E}

– E we have T\pi \hat{\zeta}_{A}=\zeta_{A} . Thus, there exists an element \lambda\in V_{\varphi}\hat{E}

such that T\sigma \zeta_{A}(u)=(A(u)\wedge+\lambda . Since \hat{\theta}_{i} is equivariant, the proof of
Lemma 3.8 shows that d\hat{\theta}_{i}(\hat{\zeta}_{A}(u), T\sigma \xi)=-ad(A)(\hat{\theta}_{i}(T\sigma \xi)) . Since by
definition \hat{\theta}_{i}(T\sigma\cdot\xi)=\sigma_{i}(u)(\xi) , we can conclude the proof by showing that
for an element \lambda of the vertical bundle of \hat{E}arrow E we have d\hat{\theta}_{i}(\lambda, T\sigma\cdot\xi)=0 .

In Proposition 3.13 we have seen that the fibers of \hat{E}arrow E are affine
spaces, so we can canonically identify each vertical tangent space with the
modeling vector space L_{\ell}(9-, g) . So for each element \psi in this space, we
can consider the constant vertical vector field \tilde{\psi} . Now we can imitate the
proof of Lemma 3.8 as follows: The flow of \tilde{\psi} up to time t clearly maps \varphi to
(\xi\mapsto\varphi_{i}(\xi)+t\psi(\Theta_{i}(\xi))) . Now for an element \overline{\xi}\in T_{\varphi}^{i}\hat{E} we have by definition
\hat{\theta}_{i}(\overline{\xi})=\varphi_{i}(T\pi\cdot\overline{\xi}) . Pulling this back with the above flow and differentiating
in zero we get \psi(\Theta_{i}(T\pi\overline{\xi})) , so this is just the Lie derivative \mathcal{L}_{\tilde{\psi}}\hat{\theta}_{i}(\varphi)(\overline{\xi}) .

We can write \mathcal{L}_{\tilde{\psi}}=d\circ i_{\overline{\psi}}+i_{\tilde{\psi}}od , and by definition i_{\overline{\psi}}\hat{\theta}_{i}=0 , so we finally

get d\hat{\theta}_{i}(\tilde{\psi}(\varphi),\overline{\xi})=\psi(\Theta_{i}(T\pi\overline{\xi})) . Since \xi\in T_{u}^{i+1}E and thus \Theta_{i}(\xi)=0 , we
are done. \square

3.17. Now we define the torsion of \varphi as a linear map t_{\varphi} : 9-,\Lambda g_{-}arrow g ,
which has homogeneous components of degree 0, . . . ’

\ell only, as follows: For
X\in g_{i} and Y\in g_{j} choose \xi\in T_{u}^{i}E and \eta\in T_{u}^{j}E such that \varphi_{i}(\xi)=X and
\varphi_{j}(\eta)=Y If i+j<-k , then we define t_{\varphi}(X, Y) to be the components in
9-k\oplus\cdots\oplus g_{i+j+\ell} of d\sigma^{*}\hat{\theta}_{-k}(u)(\xi, \eta) and if i+j\geq-k , we put t_{\varphi}(X, Y):=

d\sigma^{*}\hat{\theta}_{i+j}(u)(\xi, \eta)\in g_{i+j}\oplus\ldots\oplus g_{i+j+\ell} .
To show that this is well defined, let us first assume that we have two

elements \xi_{1} , \xi_{2}\in T_{u}^{i}E such that \varphi_{i}(\xi_{1})=\varphi_{i}(\xi_{2})=X . Then the differ-
ence \xi_{2}-\xi_{1} lies in the kernel of \varphi_{i} , which by condition (2) of 3.13 and
condition (1) of 3.2 equals T_{u}^{i+\ell+1}E . In particular, \varphi-1 is bijective, so there
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is no choice in \xi in this case. Now if i+\ell+1<0 , then one concludes
exactly as in case (1) of 3.9 that passing from \xi_{1} to \xi_{2} does not change
the torsion. On the other hand, if i+\ell+1\geq 0 , then there is an element
A\in g_{i+\ell+1} such that \xi_{2}-\xi_{1}=\zeta_{A}(u) . From above, we know that i<-1 ,
so i+\ell+1<\ell . Thus for j>-k we can immediately apply Lemma 3.16 to
see that d\sigma^{*}\hat{\theta}_{i+j}(\xi_{2}-\xi_{1}, \eta)=-ad(A)(Y) (or the respective equation with
i+j replaced by -k), and [A, Y] is an element of g_{i+j+\ell+1} , so it plays no
role. If j=-k, then the proof of Lemma 3.16 shows the difference between
d\sigma^{*}\hat{\theta}_{-k}(\xi_{2}-\xi_{1}, \eta) and- ad(A)(Y) lies in 9-k+\ell , so it can play no role either.

To prove independence of the choice of the section \sigma , we compute the
effect of a general change of \sigma on d\sigma^{*}\hat{\theta}_{i} . If we have two local sections
\sigma and \overline{\sigma} , then from the proof of Proposition 3.13 we see that there is a
smooth function \psi with values in L_{\ell}(9-, 9) , such that \overline{\sigma}_{i}(u)(\xi)=\sigma_{i}(u)(\xi)+

\psi(u)(\Theta_{i}(u)(\xi)) . But this means that \overline{\sigma}^{*}\hat{\theta}_{i}=\sigma^{*}\hat{\theta}_{i}+\psi\circ\Theta_{i} . Differentiating
this, we get for elements \xi\in T_{u}^{i}E and \eta\in T_{u}^{j}E :

d\overline{\sigma}^{*}\hat{\theta}_{i+j}(\xi, \eta)=d\sigma^{*}\hat{\theta}_{i+j}(\xi, \eta)+d\psi(\xi)(\Theta_{i+j}(\eta))

-d\psi(\eta)(\Theta_{i+j}(\xi))+\psi(d\Theta_{i+j}(\xi, \eta)) ,

and since \circ-_{i+j(\xi)} and \Theta_{i+j}(\eta) are zero and \Theta satisfies the structure equa-
tion, this reduces to

d\overline{\sigma}^{*}\hat{\theta}_{i+j}(\xi, \eta)=d\sigma^{*}\hat{\theta}_{i+j}(\xi, \eta)-\psi([\Theta_{i}(\xi), \Theta_{j}(\eta)]) .

In particular, this implies that the value of d\sigma^{*}\hat{\theta}_{i} in u depends only on \sigma(u) ,
so the torsion of \varphi is really well defined.

We have noted already in 3.16 that the first \ell components of \sigma^{*}\hat{\theta}_{i} c0-

incide with \theta_{i} , which implies that the homogeneous components of degrees
less than \ell of the torsion t_{\varphi} coincide with the torsion t_{\theta}(u) , so only the
homogeneous component of degree \ell is really relevant.

3.18. Using the last computation in 3.17, we next compute how the torsion
depends on \varphi . Let us change \varphi to \tilde{\varphi},\tilde{\varphi}_{i}(\xi):=\varphi_{i}(\xi)+\psi(\Theta_{i}(\xi)) , and take
elements X\in g_{i} and Y\in g_{j} . If \xi\in T_{u}^{i}E is such that \varphi_{i}(\xi)=X , then by
definition \Theta_{i}(\xi)=X , so \tilde{\varphi}_{i}(X)=X+\psi(X) , and \psi(X)\in g_{i+\ell} . If i+\ell\geq 0 ,
we put \xi’:=\zeta_{\psi(X)}(u) while for i+\ell<0 we choose an element \xi’\in T_{u}^{i+\ell}E

such that \varphi_{i+\ell}(\xi’)=\psi(X) . In both cases, we then have \varphi_{i}(\xi’)=\psi(X) and
\Theta_{i}(\xi’)=0 , so \tilde{\varphi}_{i}(\xi-\xi’)=X . Similarly we define \eta’
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Let \tilde{\sigma} be a section with \tilde{\sigma}(u)=\tilde{\varphi} . We have to compute

t_{\overline{\varphi}}(X, Y)=d\tilde{\sigma}^{*}\hat{\theta}_{i+j}(\xi-\xi’, \eta-\eta’) ,

or the corresponding expression with i+j replaced by -k if i+j<-k .
In any case, by the last computation in 3.17 this equals d\sigma^{*}\hat{\theta}_{i+j}(\xi-\xi’, \eta-

\eta’)-\psi([X, Y]) , since for i+j<-k the bracket [X, Y] is zero. The first of
these two terms splits into the sum of t_{\varphi}(X, Y) with three additional terms.
Among these, d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta’)=0 , since by construction \sigma^{*}\hat{\theta}_{i+j} vanishes on
both \xi’ and \eta’ , and the Lie bracket of two vector fields through these vectors
lies in g_{i+j+2\ell} , so it cannot contribute either. So we have to analyze the term
d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta) (or the respective term with i+j replaced by k). If i+\ell\geq 0 ,
then \xi’=\zeta_{\psi(X)}(u) , and by Lemma 3.16 this term gives - ad(\psi(X))(Y) . On
the other hand, let us assume that i+\ell<0 . Since \xi’\in T_{u}^{i+\ell}E we have
\sigma^{*}\hat{\theta}_{i+j}(\xi’)=0 (respectively, those terms of \sigma^{*}\hat{\theta}_{-k}(\xi) that we consider are
zero). Also, i+j+\ell<j , so \sigma^{*}\hat{\theta}_{i+j}(\eta)=0 as well. Consequently, we have

d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta)=-\sigma^{*}\hat{\theta}_{i+j}([\tilde{\xi}’,\tilde{\eta}](u))=-\varphi_{i+j}([\tilde{\xi}’,\tilde{\eta}](u)) ,

where \tilde{\xi}’ and \tilde{\eta} are vector fields through \xi’ and \eta , respectively. (If i+j<-k
a similar equation holds for the appropriate components with i+j replaced
by-k .) But by construction, [\tilde{\xi}’,\tilde{\eta}](u) is an element of T_{u}^{i+j+\ell}E , so applying
condition (2) of 3.13 and then several times condition (2) of 3.2, we see that
-\varphi_{i+j}([\tilde{\xi}’,\tilde{\eta}](u))=-\Theta_{i+j+\ell}([\tilde{\xi}’,\tilde{\eta}](u)) . Since \Theta_{i+j+\ell} vanishes both on \xi’

and \eta , the latter term equals d\Theta_{i+j+\ell}(\xi’, \eta) which by the structure equation
equals -[\psi(X), Y] .

Together these computations show that the torsion of \tilde{\varphi}=\varphi+\psi 0\Theta(u)

is given by

t_{\overline{\varphi}}(X, Y)=t_{\varphi}(X, Y)+[\psi(X), Y]+[X, \psi(Y)]-\psi([X, Y]) ,

so t_{\overline{\varphi}}=t_{\varphi}+\partial\psi , where \partial denotes the Lie algebra differential introduced in
2.4.

3.19. In 2.6 we have seen that the codifferential \partial^{*} : L_{\ell}(9-, g)arrow L_{\ell}(9-\wedge

9- , g) is the adjoint with respect to a certain metric of the differential \partial :
L_{\ell}(9-\wedge g_{-}, g)arrow L_{\ell}(9-, 9) used above. In particular, this implies that the
kernel of \partial^{*} and the image of \partial are complementary subspaces of L\ell(9-\wedge

9- , g) . This means, that for each \varphi\in\hat{E} , we can find a \psi\in L_{\ell} (9- , g)
such that for \tilde{\varphi}=\varphi+\psi oO-(u) we have \partial^{*}(t_{\tilde{\varphi}}^{\ell})=0 , where t_{\tilde{\varphi}}^{\ell} denotes
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the homogeneous component of degree \ell of the torsion of \tilde{\varphi} . Moreover,
from the last formula in 3.18 it is clear that the space of all \varphi over a point
u\in E such that \partial^{*}(t_{\varphi}^{\ell})=0 is an afBne space with modeling vector space
Ker(\partial)\subset L_{\ell}(9-, g) .

Proposition Let \varphi\in\hat{E} be a point such that \partial^{*}(t_{\varphi}^{\ell})=0 , and let b\in

P/P_{+}^{\ell+1} be any element. Then also \partial^{*}(t_{\varphi\cdot b}^{\ell})=0 .

Proof. To compute the torsion t_{\varphi\cdot b} , we first need a section. Starting from a
section \sigma defined locally around u=\pi(\varphi) , we define \overline{\sigma}:=r^{b}o\sigma or^{b_{0}^{-1}} , where
as before b_{0} is the class of b in P/P_{+}^{\ell} , and we denote by r the right actions on
\hat{E} and E, to get a section defined locally around u\cdot b_{0} with \overline{\sigma}(u\cdot b_{0})=\varphi\cdot b . For
each i=-k, . , -1, we then have \overline{\sigma}^{*}\hat{\theta}_{i}=(r^{b_{0}^{-1}})^{*}\sigma^{*}(r^{b})^{*}\hat{\theta}_{i} . Equivariancy
of \hat{\theta} reads as (r^{b})^{*}\hat{\theta}_{i}=Ad(b^{-1})\circ\theta_{i} . Differentiating this, we see that for
\xi\in T_{u\cdot b_{0}}^{i} and \eta\in T_{u\cdot b_{0}}^{j} we have

d\overline{\sigma}^{*}\hat{\theta}_{i+j}(\xi, \eta)=Ad(b^{-1})(d\sigma^{*}\hat{\theta}_{i+j} (Tr^{b_{0}^{-1}}\cdot\xi, Tr^{b_{0}^{-1}} \eta)) .

To get t_{\varphi\cdot b}(X, Y) for X\in g_{i} and Y\in g_{j} , we have to compute this (or the
respective expression with i+j replaced by -k if i+j<-k ) for \xi such
that (\varphi_{i} b)(\xi)=X and \eta such that (\varphi_{j} b)(\eta)=Y Since (\varphi_{i} b)(\xi)=X ,
we get \varphi_{i}(Tr^{b_{0}^{-1}} \xi)=Ad(b)(X) , so we may write Tr^{b_{0}^{-1}} \xi=\xi’+\xi’ .
where \varphi_{i}(\xi’)=Ad_{-}(b)(X) , the components of Ad(b)(X) in g_{i}\oplus \oplus 9-1 ,
and \varphi_{i}(\xi’)=Ad_{+}(b)(X)=Ad(b)(X) – Ad-(b)(X). Similarly, we split
Tr^{b_{0}^{-1}}

\eta=\eta’+\eta’ . Now we write

d\sigma^{*}\hat{\theta}_{i+j}(Tr^{b_{0}^{-1}} _{\xi} _{\eta)}

=d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta’)+d\sigma^{*}\hat{\theta}_{i+j}(\xi’, Tr^{b_{0}^{-1}}\cdot\eta)

+d\sigma^{*}\hat{\theta}_{i+j}(Tr^{b_{0}^{-1}}, \xi, \eta’)-d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta’) .

Since Ad(b^{-1}) never moves down in the grading, we may compute this
modulo g_{i+j+\ell+1}\oplus\cdots\oplus g_{k} . But modulo this, the term d\sigma^{*}\hat{\theta}_{i+j}(\xi’, Tr^{b_{0}^{-1}}\cdot\eta)

is by Lemma 3.16 congruent to - [Ad_{+}(b)(X) , Ad(6)(Y)], and the next
two terms are congruent to -[Ad(b) (X), Ad_{+}(b)(Y) ] and [Ad_{+}(b)(X) ,
Ad_{+}(b)(Y)] , respectively.

Finally, we claim that the remaining term d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta’) is congruent to
the torsion t_{\varphi}(Ad_{-}(b)(X), Ad_{-}(6)(Y)) . To see this, we have to split \xi’ and
\eta’ into sums of elements which are mapped by \varphi_{i} to one homogeneous com-
point of Ad-(b) (X) or Ad-(b) (Y), and we only have to consider elements
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corresponding to components in g_{i’} and g_{j’} if i’+j’\leq i+j+\ell . But in this
case, the components in g_{i’+j’}\oplus \oplus g_{i+j+\ell} of d\sigma^{*}\hat{\theta}_{i+j} of these elements
coincide with the components of d\sigma^{*}\hat{\theta}_{i’+j’} of these elements by condition
(2) of 3.13.

By the structure equation, the homogeneous component of degree zero
of the torsion t_{\varphi}(Ad_{-}(b)(X), Ad_{-}(6)(y)) equals - [Ad_{-}(6)(X) , Ad- (b)(Y) ],
which adds up with the terms from above to -[Ad(b)(X), Ad(b)(Y)] . TO-
gether, we see that

d\overline{\sigma}^{*}\hat{\theta}_{i+j}(\xi, \eta)=-[X, Y]+Ad(b^{-1}) ( t_{\varphi}^{\geq 1} (Ad-(b) (X), Ad-(b) (Y)))

modulo g_{i+j+\ell+1}\oplus \oplus g_{k} , where t_{\varphi}^{\geq 1} denotes the sum of homogeneous
components of degree \geq 1 of the torsion t_{\varphi} . By equivariancy of \partial^{*} (see
Proposition 2.13) the proposition follows. \square

3.20. Assume now that H_{\ell}^{1}(9-, 9)=0 . If \ell>k , then this implies that over
each point we find a unique \varphi with \partial^{*}t_{\varphi}=0 . Clearly, mapping each point
to this element defines a smooth section of \hat{E}arrow E , and by Proposition 3.19
above this section is P-equivariant. Thus, we can simply pull back \hat{\theta} along
this section to get a frame form of length \ell+1 on E , and with that pullback
E clearly is a harmonic P-frame bundle of degree \ell+1 .

If \ell\leq k , then denote by \tilde{E} the subset of all \varphi such that \partial^{*}(t_{\varphi}^{\ell})=0 ,

and denote by \tilde{p} : \tilde{E}
– M the projection and by \tilde{\theta} the restriction of \hat{\theta} to

\tilde{E} . By Proposition 3.19, we have a free right action of P/P_{+}^{\ell+1} on \tilde{E} , which
preserves the fibers of \tilde{p} . We claim that the action is transitive on each
fiber. To see this, assume that \varphi and \overline{\varphi} are points of \tilde{E} which are in the
same fiber of \tilde{p} . Then \pi(\varphi) and \pi(\overline{\varphi}) are in the same fiber of p : Earrow M ,
so there is an element b_{0}\in P/P_{+}^{\ell} such that \pi(\overline{\varphi})=\pi(\varphi) b_{0} . Now let
s : P/P_{+}^{\ell}arrow P/P_{+}^{\ell+1} be the canonical section introduced in 2.11. Then
\pi(\varphi 1 s(b_{0}))=\pi(\varphi) b_{0}=\pi(\overline{\varphi}) , so there is a map \psi\in Ker(\partial)\subset L_{\ell}(9-, 9)

such that \overline{\varphi}_{i}(\xi)=(\varphi_{i} s(b_{0}))(\xi)+\psi(\Theta_{i}(\xi)) . Since H_{\ell}^{1}(9-, 9)=0 we must
have \psi=ad(A) for some A\in 9\ell . But then for b_{1}:=\exp(A)\in P/P_{+}^{\ell+1} we
clearly have \varphi\cdot s(b_{0})b_{1}=\overline{\varphi} .

Since \hat{E}arrow E and Earrow M are locally trivial bundles, the projection
\tilde{p} : \tilde{E}

– M admits local smooth sections, and since it has a free right action
which is transitive on each fiber, it is actually a smooth principal bundle.
Moreover, from 3.15 it is clear that \tilde{\theta} is a frame form of length \ell+1 on \tilde{E} ,
and by construction it satisfies the structure equations, so \tilde{p} : \tilde{E}arrow M is a
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P-frame bundle of degree \ell+1 . Also, the underlying P-frame bundle to \tilde{E}

of length \ell clearly is just E .
To see that the P-frame bundle (\tilde{E},\tilde{\theta}) is harmonic, we compute

t_{\overline{\theta}}(\varphi)(X, Y) , for X\in g_{i} and Y\in g_{j} . To do this, we have to choose \xi\in T_{\varphi}^{i}\tilde{E}

and \eta\in T_{\varphi}^{j}\tilde{E} such that \tilde{\theta}_{i}(\xi)=\varphi_{i}.(T\pi\cdot\xi)=X and \tilde{\theta}_{j}(\eta)=Y We do this by
choosing \xi’\in T_{\pi(\varphi)}^{i}E and \eta’\in T_{\pi(\varphi)}^{J}E such that \varphi_{i}(\xi’)=X and \varphi_{j}(\eta’)=Y

and a local smooth section \sigma with \sigma(\pi(\varphi))=\varphi and putting \xi=T\sigma\cdot\xi’ and
\eta=T\sigma\eta’ . But then d\tilde{\theta}_{i+j}(\xi, \eta)=d\sigma^{*}\hat{\theta}_{i+j}(\xi’, \eta’)=t_{\varphi}(X, Y) (or the same
equation with i+j replaced by -k is i+j<-k ), so t_{\tilde{\theta}}(\varphi)=t_{\varphi} , and thus
(\tilde{E},\tilde{\theta}) is really harmonic.

3.21. To discuss the question of uniqueness, let us assume that (\tilde{E},\tilde{\theta})

is any P-frame bundle of degree \ell+1 , such that the underlying P-frame
bundle of degree \ell is (E, \theta) . In particular, this means that we have a smooth
mapping \tilde{p} : \tilde{E}

– E which is equivariant over the canonical projection
P/P_{+}^{\ell+1}arrow P/P_{+}^{\ell} . For a point \tilde{u}\in\tilde{E} with \tilde{p}(\tilde{u})=u we define f(\tilde{u})=

(f(\tilde{u})_{-k}, , f(\tilde{u})_{-1})\in\hat{E} as follows: For \xi\in T_{u}^{i}E choose an element \tilde{\xi}\in

T_{\tilde{u}}^{i}\tilde{E} such that T\tilde{p}\cdot\tilde{\xi}=\xi and define f(\tilde{u})_{i}(\xi):=\tilde{\theta}_{i}(\tilde{u})(\tilde{\xi}) . One immediately
verifies that this is well defined, and since (E, \theta) is the underlying P-frame
bundle to (\tilde{E},\tilde{\theta}) , it is an element of \^E. Clearly, f : \tilde{E}

-

\hat{E} is a smooth fiber
bundle homomorphism.

We claim that f is P/P_{+}^{\ell+1} -equivariant. So we have to compute f(\tilde{u}\cdot b)

for b\in P/P_{+}^{\ell+1} If we take \xi\in T_{u}^{i}E and \tilde{\xi}\in T_{\tilde{u}}^{i}\tilde{E} as before, then Tr^{b}\cdot\tilde{\xi} is
a lift of Tr^{b_{0}}

\xi , so we have by equivariancy of \tilde{\theta} :

f(\tilde{u}\cdot b)_{i}(Tr^{b_{0}} \xi)=\tilde{\theta}_{i}(\tilde{u}\cdot b)(Tr^{b}\tilde{\xi})=Ad(b^{-1})(\tilde{\theta}_{i}(u)(\tilde{\xi}))

=(f(\tilde{u})b)(Tr^{b_{0}} \xi) ,

so f is really equivariant.
Also, it follows immediately from the construction, that \tilde{\theta}_{i}=f^{*}\hat{\theta}_{i} for

all i , and finally a computation similar to the one in the end of 3.20 shows
that the torsion of \tilde{\theta} in a point \tilde{u} equals the torsion of f(\tilde{u}) in the sense of
3.17. In particular, in the situation of 3.20 it follows that f actually is an
isomorphism of P-frame bundles. Thus we have completed the proof of the
following theorem:

Theorem 3.22 Let E be a harmonic P-frame bundle of degree \ell , and
suppose that the cohomology group H_{\ell}^{1}(9-, 9) vanishes. Then there is an
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(up to isomorphism) unique harmonic P-frame bundle (\tilde{E},\tilde{\theta}) of degree \ell+1

whose underlying P-frame bundle of degree \ell is isomorphic to (E, \theta) .

Iterated application of this theorem immediately leads to

Corollary 3.23 Suppose that G is a semisimple Lie group whose Lie al-
gebra g is endowed with a|k| -grading, such that all cohomology groups
H_{\ell}^{1}(9-, 9) with \ell>0 are trivial. (In particular this is satisfified if none
of the simple factors of g is contained in 90 and none of the simple fac-
tors is of one of the three types listed in Proposition 2.7). Let M be a

smooth manifold with a fifiltration of its tangent bundle as in 3.1. Then there
is a bijective correspondence between isomorphism classes of reductions to
the structure group G_{0} of the associated graded vector bundle to the tan-
gent bundle, which satisfy the structure equations, and isomorphism classes

of principal P-bundles over M endowed with Cartan connections with \partial^{*}-

closed curvature and satisfying the structure equations.

3.24. The case of nontrivial cohomology

Using Proposition 2.7 together with Proposition 2.8 and the basic re-
sults on complexifications noted in 2.7, we see that, except in the case of A_{1}

(and the case of a simple factor contained in go, which is rather bizarre),
the only nontrivial cohomology which can occur is H_{1}^{1}(9-, 9) . This means
that the problems caused by this cohomology group occur actually in the
very first prolongation step, that is in the step where we try to construct a
P/P_{+}^{2}-bundle from a P/P_{+} -bundle. So in this case we have a principal bun-
dle E – M with group P/P_{+} and a frame form \theta on E of length one. Note
that in 3.13-3.20 we have not made any assumptions on the cohomology,
so all the results from there remain valid in this case. In particular, we can
construct the bundle \hat{E}arrow E , the action of P/P_{+}^{2} on \hat{E} , the canonical forms
\hat{\theta} on \hat{E} , define the torsion of elements of \hat{E} and the elements with c0-closed
torsion are stable under the action of P/P_{+}^{2} .

The group P/P_{+}^{2} is the semidirect product of G_{0}\cong P/P_{+} and P_{+}/P_{+}^{2} .
More explicitly, the canonical smooth section s:G_{0}arrow P/P_{+}^{2} introduced in
2.11 is a group homomorphism in this case. Using this, one easily shows that
one can find local G_{0}-equivariant sections from E to the space of elements
in \hat{E} with co-closed torsion. Moreover, using the fact that the exponential
map induces a diffeomorphism g_{1}\cong P_{+}/P_{+}^{2} one can glue such local sections
using a partition of unity to a global section, which is still G_{0}-equivariant
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(compare with the proof of Lemma 3.6 of [6]). Now choosing such a global
G_{0}-equivariant section from E to the space of elements in \hat{E} with c0-closed
torsion, we can then take the orbit of the image of this section under the
group P/P_{+}^{2} . By Proposition 3.19, this is still contained in the subspace
of all elements having co-closed torsion, and thus we can restrict the frame
form to the orbit to get a harmonic P-frame bundle of length two over M.

After making the choice of a section in the first step, we can then finish
the prolongation procedure as described before. Geometrically, one has to
view the choice of the equivariant section simply as a part of the struc-
ture. This is particularly transparent in the case of projective structures
(of dimension >1 ), in which the P-frame bundle of length one contains no
information at all (it is simply the full first order frame bundle), and the
whole structure is contained in the choice of the equivariant section (which
corresponds to choosing a class of connections in this case).

The second exceptional case is of quite similar nature: In that case, the
first order frame bundle is equivalent to specifying a contact structure, and
the whole rest of the structure is contained in the additional choice of a
section, which can again be interpreted equivalently as choosing a class of
partial connections compatible with the contact structure.

Thus, the only case we cannot deal with is the case of simple factors
which are either contained in 90 or correspond to one-dimensional projective
structures, and both these cases are quite degenerate.

4. Parabolic geometries

4.1. By Corollary 3.23 and 3.24, a harmonic P-frame bundle of degree
2\ell+1 is either already determined by the underlying P-frame bundle of de-
gree one, or by this bundle plus a section of an additional bundle. Thus, in
order to understand the geometrical meaning of parabolic geometries (or to
understand the structures for which we are able to construct canonical Car-
tan connections), the main step is to understand the geometrical meaning
of a P-frame bundle of degree 1.

So let g be a semisimple |k| -graded Lie algebra, G a group with Lie
algebra g , and denote the various subgroups and subalgebras as before. Let
p:Earrow M be a smooth principal bundle with structure group P/P_{+}\cong G_{0}

over a smooth manifold M which has the same dimension as 9-, and let
\theta be a frame form of length one on E . As we have noted in 3.3(2), for
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each point u\in E the component \theta_{i} of the frame form \theta induces a linear
isomorphism T_{u}^{i}E/T_{u}^{i+1}E\cong g_{i} for each i=-k , \ldots, -1.

Now let \xi\in T_{x}^{i}M and \eta\in T_{x}^{j}M be tangent vectors, choose a point u\in E

with p(u)=x and tangent vectors \tilde{\xi} and \tilde{\eta} over \xi and \eta . By definition of
the induced filtration on TE (see 3.1), we have \tilde{\xi}\in T_{u}^{i}E and \tilde{\eta}\in T_{u}^{j}E , so
we can form [\theta_{i}(\tilde{\xi}), \theta_{j}(\tilde{\eta})]\in g_{i+j} . Since \tilde{\xi} and \tilde{\eta} are unique up to vertical
vectors and \theta_{i} and \theta_{j} vanish on vertical vectors this element is independent
of the choice of \tilde{\xi} and \tilde{\eta} . There is an element \lambda\in T_{u}^{i+j}E (unique up to
elements from T_{u}^{i+j+1}E ) such that \theta_{i+j}(\lambda)=[\theta_{i}(\tilde{\xi}), \theta_{j}(\tilde{\eta})] , and we denote
by \{\xi, \eta\}\in T_{x}^{i+j}M/T_{x}^{i+j+1}M the class of Tp \lambda (which is independent of
the choice of \lambda ).

We claim that \{\xi, \eta\} is also independent of the choice of u\in E . If u_{1}

and u_{2} are two points with p(u_{1})=p(u_{2})=x , then there is an element
b\in P/P_{+}\cong G_{0} such that u_{2}=u_{1} b . If \tilde{\xi}\in T_{u_{1}}^{i}E and \tilde{\eta}\in T_{u_{1}}^{j}E are
tangent vectors over \xi and \eta , then Tr^{b} \tilde{\xi} and Tr^{b}

\tilde{\eta} are tangent vectors
over \xi and \eta with footpoint u_{2} . But by equivariancy of the frame form,
\theta_{i}(u_{2})(Tr^{b} \tilde{\xi})=((r^{b})^{*}\theta_{i})(u_{1})(\tilde{\xi})=Ad(b^{-1})(\theta_{i}(u_{1})(\tilde{\xi})) and similarly for
\tilde{\eta} . Now let \lambda in T_{u_{1}}^{i+j}E be such that \theta_{i+j}(\lambda)=[\theta_{i}(\tilde{\xi}), \theta_{j}(\tilde{\eta})] , and consider
Tr^{b}\lambda\in T_{u_{2}}^{i+j}E . Again by equivariancy we get

\theta_{i+j}(u_{2})(Tr^{b}\lambda)=Ad(b^{-1})(\theta_{i+j}(u_{1})(\lambda))

=Ad(b^{-1})([\theta_{i}(u_{1})(\tilde{\xi}), \theta_{j}(u_{1})(\tilde{\eta})])

=[Ad(b^{-1})(\theta_{i}(u_{1})(\tilde{\xi})), Ad(b^{-1})(\theta_{j}(u_{1})(\tilde{\eta}))]

=[\theta_{i}(u_{2})(Tr^{b}\tilde{\xi}), \theta_{j}(u_{2})(Tr^{b}\cdot\tilde{\eta})] ,

and since Tp\cdot Tr^{b}\lambda=Tp\cdot\lambda the independence follows.
Thus, from the bundle E together with the frame form \theta , we get vector

bundle homomorphisms T^{i}M\otimes T^{j}M – T^{i+j}M/T^{i+j+1}M which are skew
symmetric if i=j . In fact, these homomorphisms define on the associated
graded to each tangent space the structure of a graded Lie algebra, which
is isomorphic to 9-.

A very similar structure is however already intrinsic to the filtration of
the tangent bundle of M . Let \xi\in T_{x}^{i}M and \eta\in T_{x}^{j}M be as above, extend
them to local vector fields \tilde{\xi} and \tilde{\eta} which have values in T^{i}M and T^{j}M ,
respectively, and denote by L(\xi, \eta) the class of the Lie bracket [\tilde{\xi},\tilde{\eta}](x) in
T_{x}M/T_{x}^{i+j+1}M . If f is a smooth function on M, then [\tilde{\xi}, f\tilde{\eta}]=f[\tilde{\xi},\tilde{\eta}]+

(\tilde{\xi}f)\tilde{\eta} . Since i+1\leq 0 , we see that \tilde{\eta} is a section of T^{i+j+1}M , so passing
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to the class modulo this subbundle, we get something which is linear over
smooth functions in the second (and similarly in the first) variable. Thus,
L is a well defined tensorial map T^{i}M\otimes T^{j}M – TM/T^{i+j+1}M , which is
called the (generalized) Levi-form corresponding to the filtration of TM.
Actually, even the class of the Lie bracket in TM/T^{\min\{i,j\}}M would be well
defined, but we do not need this here.

Proposition 4.2 The frame form \theta of length one satisfifies the structure
equations if and only if the map \{ , \} : T^{i}M\otimes T^{j}M – T^{i+j}M/T^{i+j+1}M

coincides with the generalized Levi form L. In particular, the Lie bracket of
vector fifields on M has to be compatible with the fifiltration, i.e . the bracket

of a section of T^{i}M wilh a section of T^{j}M has to be a section of T^{i+j}M .

Proof. Let u\in E be a point, \xi\in T_{u}^{i}E and \eta\in T_{u}^{j}E tangent vectors such
that i+j=-k . Let us extend \xi and \eta to smooth sections \tilde{\xi} and \tilde{\eta} of T^{i}E

and T^{j}E , respectively. Since i , j>-k , we have \theta_{-k}(\tilde{\xi})=\theta_{-k}(\tilde{\eta})=0 , and
thus d\theta_{-k}(\xi, \eta)=-\theta_{-k}([\tilde{\xi},\tilde{\eta}](u)) . Thus, the structure function of degree
-k is identically zero if and only if \theta_{-k}(u)([\tilde{\xi},\tilde{\eta}])=[\theta_{i}(u)(\xi), \theta_{j}(u)(\eta)] . By
definition, this is equivalent to the fact that \{Tp\cdot\xi, Tp\cdot\eta\} equals the class
in TM/T^{-k+1}M of Tp\cdot([\tilde{\xi},\tilde{\eta}](u)) . But if we choose for \tilde{\xi} and \tilde{\eta} projectable
vector fields, then the last expression coincides with the Lie bracket of the
projected fields, which by construction extend Tp\xi and Tp\eta , and thus
the class in TM/T^{-k+1}M coincides with L(Tp \xi, Tp \eta) . Iterating this
argument we get the result. \square

Remark 4.3 At this place, an interesting relation to the cohomology
groups of 9- with coefficients in g shows up. Namely, suppose that
H_{0}^{1}(\emptyset-, g)=0 . By definition, this implies that any derivation 9-arrow 9-
which is homogeneous of degree zero is given by the bracket with an ele-
ment of go- But this implies that the group G_{0} is a (possibly not connected)
covering of the connected component of the group of automorphisms of the
graded Lie algebra 9-. Otherwise put, a reduction to the group G_{0} of the
associated graded to the tangent bundle imposes no further condition on
the individual fibers than the structure of a graded Lie algebra isomorphic
to 9-. Hence in these cases, the filtration giving rise to an appropriate
Levi form is the only essential ingredient for the corresponding parabolic
geometries. Further ingredients (depending on the choice of the group G)
can only be of the type of an orientation or an analog of a spin-structure.



488 A. \check{C}ap and H. Schichl

On the other hand, if H_{0}^{1}(9-, 9)\neq 0 , then there must be an additional
structure on the individual fibers of the associated graded to the tangent
bundle, which is intrinsic to the corresponding parabolic geometry. For
example, this can be a complex structure, or a further (local) decomposition
into a direct sum of subbundles or a tensor product of vector bundles.

There is a complete list of all complex simple |k| -graded Lie algebras
which have H_{0}^{1}(9-, 9)\neq 0 in [23, Proposition 5.1]. Clearly, this list contains
all the |1| -graded cases (in which the filtration is trivial), as well as all the
contact type structures, i.e. |2| -graded algebras with \dim(g_{-2})=1 , since
in this case the filtration only gives rise to a contact structure, which is
well known to be of infinite order. Apart from these obvious cases, there
are however only two more series, namely A_{\ell} with two crossed roots, one
of which is the very first (or last) root, and C_{\ell} with the first and last
roots crossed. Thus, the case in which the filtration with appropriate Levi
form is the only ingredient for the structure is rather typical for the general
situation, but most of the structures which have been studied in more detail
up to now do not fall into this group.

4.4. G_{0}^{\#}-structures of type \mathfrak{m}

Apart from the structure equations, a P-frame bundle of degree one over
a manifold M is just a reduction of the associated graded to the tangent
bundle. In particular, it is “less” than a first order G-structure. On the
other hand, for a group G corresponding to a |k| -graded Lie algebra consider
a principal P/P_{+}^{k} bundle over M, which is equipped with a frame form
\theta of length k (so if the frame form satisfies the structure equations, we
have a P-frame bundle of degree k ). Then the component \theta_{-k} of \theta is just
an equivariant 9–valued one-form on the bundle, so it gives a first order
P/P_{+}^{k}-structure on M. But clearly, at this step more information than this
first order structure is already encoded in the frame form \theta . So there is
no step in the prolongation procedure in which we deal exactly with first-
order structures (apart from the structure equations, which are always an
additional restriction).

There is a way, however, to formulate the degree one case equivalently
in terms of a first order structure. In our setting, this translation seems not
to be very natural, but we reproduce it here because of the important role
it plays in the papers of N. Tanaka, see [22].

Let us temporarily denote by GL_{grad}(9-) and GfL_{ifi1t}(9-) the groups of
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invertible linear maps on 9-, which preserve the grading or the filtration,

respectively. From 2.10 we see that the adjoint action identifies G_{0} with a
covering of a subgroup of GL_{grad}(g-) and P with a covering of a subgroup of
GfL_{ifi1t}(g-) . Obviously, GL_{grad}(g-) is a subgroup of GfL_{ifi1t}(g

-
) . On the other

hand, there is an obvious projection from \pi : GfL_{ifi1t}(g-) - GL_{grad}(g- ) ,

which corresponds to passing from the filtered vector space g-to the as-
sociated graded vector space, which can be canonically identified with 9-.
Let GL_{+}(9-) be the kernel of this projection. Then it is easy to see, that
GLfiit (g_{-}) is the semidirect product of GL_{grad}(g-) and GL_{+}(g

-
) .

Now we define G_{0}^{\#}:=\{(g, \varphi)\in G_{0}\cross GfL_{ifi1t}(g-) : \pi(\varphi)=Ad(g)\} . This

is a Lie subgroup, and we have a canonical inclusion G_{0}arrow G_{0}^{\#}.
, which

together with the first projection identifies G_{0}^{\#} with the semidirect product
of G_{0} and GL_{+}(g- ,

Let us consider a manifold M with a filtration of the tangent bundle
TM as in 3.1. Let p : Earrow M be a principal G_{0} bundle, and let \theta be

a frame form of length one on E . Then the frame form gives a map j
from E to the frame bundle of the associated graded bundle to the filtered
bundle TM, which can be viewed as the fibered product (over M) of the
bundles Iso(g;,T^{i}M/T^{i+1}M ) of linear isomorphisms for i=-k, . , -1.
Clearly, the latter bundle is a principal bundle with group GL_{grad}(g- ) , and
this map is a homomorphism of principal bundles over the homomorphism
G_{0}arrow GL_{grad}(g-) described above. This homomorphism is a reduction of
structure group (in the sense of G_{0} covering a subgroup of GL_{grad} (9-)).

Similarly, we can consider the bundle Isofiit (g_{-}, TM) of filtration pre-
serving linear isomorphism between g-and tangent spaces of Mr This is
a principal bundle with group GfL_{ifi1t}(g

-
) , and clearly it is a subbundle of

the frame bundle of M . Moreover, we have a natural projection II from
Isofiit (g_{-}, TM) to the frame bundle of the associated graded bundle to TM,

which is a homomorphism of principal bundles over the group homomor-
phism GfL_{ifi1t}(g-)arrow GL_{grad}(g-) from above.

Now starting from the bundle E from above, we define E\# :=\{(u, \psi)\in

E\cross c_{0}Isfo_{ifi1t}(g_{-}, TM) : j(u)=\square (\psi)\} . Since j and II are homomorphisms

of principal bundles over compatible group homomorphisms, this is well
defined, and one immediately verifies that it is a principal bundle with
group G_{0}^{\#} The obvious map E^{\neq}arrow Isfo_{ifi1t}(g_{-}, TM) clearly is a reduction

of structure group, so E^{\neq} gives rise to a first order G_{0}^{\#}-structure on M .

Conversely, starting from a first order G_{0}^{\#} -structure on M defined by a
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bundle \tilde{E}arrow M and a one-form \Theta\in\Omega^{1} (\tilde{E}, g-) , we can simply form the
principal G_{0}-bundle E=\tilde{E}/GL_{+}(g_{-}) over M . Similar arguments as in
3.11 show that for i=-k, \ldots, -1 the component \Theta_{i} of \Theta in g_{i} descends
to a smooth section \theta_{i} of the bundle L(T^{i}E, g_{i}) , and these together are a
frame form of length one on E .

If E and F are principal G_{0}-bundles over M equipped with frame forms
of length one such that there is an isomorphism Earrow F which is compatible
with the frame forms, then one easily sees that E^{\neq} and F^{\neq} are equiva-
lent first order G_{0}^{\#} -structures. On the other hand, it is easy to see that
GL_{+}(9-) is a vector group. Using this together with the fact that G_{0}^{\#} is
the semidirect product of G_{0} and GL_{+}(g

-
) , one shows similarly as in 3.24

that the bundle E^{\neq}-E always has a global G_{0}-equivariant section. Us-
ing this, one shows that if E^{\neq} and F\# are equivalent G_{0}^{\#}-structures, then
there is an isomorphism between E and F which is compatible with the
frame forms. Thus, we have established a bijective correspondence between
isomorphism classes of first order G_{0}^{\#}-structures on M and isomorphism
classes of principal G_{0}-bundles equipped with frame forms of length one
over M .

So it remains to discuss the structure equations in the G_{0}^{\#}-picture, and
this is fairly easy to do: Let \tilde{E}

– M be a principal G_{0}^{\#} -bundle together with
a one form \Theta\in\Omega^{1}(\tilde{E}, g-) as above, and form the quotient E=\tilde{E}/GL_{+}(9-)

with the induced frame form \theta of length one. Then the component \theta_{i} of \theta

is induced by restricting the g_{i} component \Theta_{i} of O- to T^{i}\tilde{E} . From this one
easily concludes that \theta satisfies the structure equations if and only if for
each i , j=-k, \ldots, -1 and \xi\in T^{i}\tilde{E} and \eta\in T^{j}\tilde{E} we have that dO-(\xi, \eta) is
congruent to [\Theta(\xi), \Theta(\eta)] modulo g_{i+j+1}\oplus\cdot \oplus 9-1 . In this case, Tanaka
calls the corresponding G_{0}^{\#} -structure “of type \mathfrak{m}”( \mathfrak{m} is his notation for 9-).
Thus, we recover the main result of [22] (which is proved in the case that
G is simple and has trivial center there):

Theorem 4.5 Suppose that G is a semisimple Lie group with |k| -graded
Lie algebra g , such that all cohomology groups H_{\ell}^{1}(9-, 9) for \ell>0 are
trivial Then for any manifold M with a fifiltration of the tangent bundle as
in 3.1, there is a bijective correspondence between isomorphism classes of
first order G_{0}^{\#} -structures of type \mathfrak{m} on M and ofprincipal P-bundle over M
equipped with a Cartan connection with \partial^{*} -closed curvature and satisfying
the structure equations.
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Remark 4.6 The main difference between the prolongation procedure of
Tanaka and the one described here, lies in the first k-1 steps. Roughly, it
can be described as follows: Tanaka starts with a G_{0}^{\#}-structure of type rn
and then works “down” , refining it step by step, until he arrives at a first
order P/P_{+}^{k}-structure with special properties (which corresponds to a P-
frame bundle of degree k in our picture). In contrast to this, our approach
is starting with the group G_{0} and work “up” step by step over the quotients
P/P_{+}^{i} , until we arrive at this point. So in these first steps, not only the
procedure is different, but also the data that we work with. From the step

of a P-frame bundle of degree k on, the prolongation procedures still differ,

but the data are the same.

4.7. The curvature of the canonical Cartan connection
Let (p : Earrow M, \theta) be a harmonic P-frame bundle of degree 2k+1 .

As we have already noted in 3.3(3), the component \omega:=\theta_{-k}\in\Omega^{1}(E, g)

of the frame form \theta is a Cartan connection in this case. This means that
\omega(u) : T_{u}Earrow g is a linear isomorphism for each u\in E , \omega is equivariant,
so (r^{b})^{*}\omega=Ad(b^{-1})0\omega for all b\in P , and it reproduces the generators of
fundamental fields, so \omega(\zeta_{A})=A for all A\in \mathfrak{p} .

In general, the curvature of a Cartan connection is defined to be the
g-valued tw0-form K:=d \omega+\frac{1}{2}[\omega, \omega] , i.e. for \xi , \eta\in T_{u}E we have K(\xi, \eta)=

d\omega(\xi, \eta)+[\omega(\xi), \omega(\eta)] . Now suppose that \xi is vertical, so \xi=\zeta_{A}(u) for
some A in \mathfrak{p} . Then by Lemma 3.8, we get d\omega((A(u), \eta)=-[A, \omega(\eta)] , and
thus K(\zeta_{A}(u), \eta)=0 , so the curvature is a horizontal form. Moreover,

equivariancy of \omega immediately implies that (r^{b})^{*}K=Ad(b^{-1})oK , so K is
equivariant, too. Hence, we can view K as a tw0-form on M with values
in the vector bundle E\cross_{P}g associated to the adjoint representation of P
on g .

There is another very convenient way to view the curvature as fol-
lows: Since K is horizontal, its value in u\in E is completely determined
by the function \kappa(u) : 9-\wedge 9-arrow g , which is defined by \kappa(u)(X, Y):=

K(\omega(u)^{-1}(X), \omega(u)^{-1}(Y)) . Thus, K is completely determined by the
smooth function \kappa : Earrow C^{2}(g_{-}, g) . By definition, \kappa coincides with the
torsion of \theta as introduced in 3.9. In particular, since (E, \theta) is harmonic, we
know that \partial^{*}0\kappa=0 .

There are two natural ways to split the function \kappa into components.
First, we may split \kappa=\kappa_{-k}+ +\kappa_{k} , according to the splitting g =
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9-k\oplus\cdots\oplus g_{k} . In traditional terminology, the form \kappa_{-}:=\kappa_{-k}+ +\kappa_{-1}

is called the torsion and the form \kappa_{\mathfrak{p}}:=\kappa_{0}+\cdots+\kappa_{k} is called the curvature
of \omega . If the form \kappa_{-} is identically zero, the corresponding P-frame bundle
is called torsion-free, and if the form \kappa is zero, the corresponding bundle is
called flat. Note that the P-frame bundle (G - G/P, \omega) , where \omega is the
left Maurer-Cartan form, is flat by the Maurer-Cartan equation.

The second natural way is to split \kappa as \sum_{i}\kappa^{(i)} according to homoge-
neous degrees. The importance of this splitting lies in the fact that since
\kappa coincides with the torsion of the P-frame bundle (E, \theta) in the sense of
3.9, we see from the proof of Proposition 3.12 that various homogeneous
components of \kappa are already visible on the P-frame bundles of lower degree
underlying (E, \theta) . In particular, the structure equation exactly means that
the homogeneous components \kappa^{(i)} are zero for all i\leq 0 , so the decomposi-
tion of \kappa reads as \kappa=\sum_{i=1}^{3k}\kappa^{(i)} .

4.8. To give a geometrical interpretation of torsion and curvature, note
that since the Cartan connection gives rise to a trivialization of the tangent
bundle of E , it can in particular be viewed as a generalized connection on
E, that is a projection onto the vertical bundle. This vertical projection
V : TEarrow VE is given by mapping \xi\in T_{u}E to \xi-\omega(u)^{-1}(\omega_{-}(\xi))=\zeta_{\omega_{\mathfrak{p}}(\xi)} ,
where we split \omega=\omega_{-}+\omega_{\mathfrak{p}} according to the splitting g =g_{-}\oplus \mathfrak{p} . Thus,
we also get a horizontal distribution given by H_{u}:=\omega(u)^{-1}(g-) .

Now for any X\in g we can consider the vector field \tilde{X}\in \mathcal{X}(E) defined
by \tilde{X}(u) :=\omega(u)^{-1}(X) , thus obtaining a map garrow \mathcal{X}(E) . Let \mathcal{X}_{h}(E)

denote the space of horizontal (with respect to \omega ) vector fields on E. This
space becomes a Lie algebra with the bracket [, ]_{h} given by the horizontal
projection of the usual Lie bracket, i.e. [\xi, \eta]_{h}:=[\xi, \eta]-V([\xi, \eta]) for \xi , \eta\in

\mathcal{X}_{h}(E) . Now we can characterize vanishing of torsion and curvature as
follows:

Proposition Let E – M be a P-frame bundle of degree 2k+1 , \omega\in

\Omega^{1}(E, g) the corresponding Cartan connection, \kappa its curvature and H the
horizontal distribution induced by \omega . Then

1. The curvature component \kappa_{\mathfrak{p}} is identically zero if and only if the hori-
zontal distribution H is integrable, i.e . the Lie bracket of two horizontal
fifields is horizontal, too.

2. The torsion component \kappa_{-} is identically zero if and only if the mapping
9-arrow \mathcal{X}_{h}(E) given by X\mapsto\tilde{X} is a Lie algebra homomorphism for the
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bracket [ . ]_{h} .

Proof. Let X, Y\in 9- and consider the Lie bracket [\tilde{X},\tilde{Y}] . Then the
horizontal part of this, which can be computed as \omega^{-1}(\omega_{-}([\tilde{X},\tilde{Y}])) is by
definition just [\tilde{X},\tilde{Y}]_{h} . Now since \omega(\tilde{X}) and \omega(\tilde{Y}) are constant, we see that
by definition of the exterior derivative, we have d\omega(\tilde{X},\tilde{Y})=-\omega([\tilde{X},\tilde{Y}]) ,
or equivalently \kappa(X, Y)=[X, Y]-\omega([\tilde{X},\tilde{Y}]) . The component of this in
9-equals by the above observation [X, Y]-\omega([\tilde{X},\tilde{Y}]_{h}) , so the second part
follows.

Also, if the horizontal distribution is integrable, then we must have
[\tilde{X}, \tilde{Y}]_{h}=[\tilde{X},\tilde{Y}] , and thus \kappa_{\mathfrak{p}}(X, Y)=0 , so the necessity in the first part
is clear. Finally, we can write each horizontal vector field \xi as \sum_{i}\xi_{i}\tilde{e}_{i} , where
\{e_{i}\} is a basis of g-and the \xi_{i} are smooth functions on E . Now

[ \sum\xi_{i}\tilde{e}_{i} ,
\sum\eta_{j}\tilde{e}_{j}]=\sum_{i,j}(\xi_{i}\eta_{j}[\tilde{e}_{i},\tilde{e}_{j}]+\xi_{i}(\tilde{e}_{i} ^{\eta_{j}})\tilde{e}_{j}+\eta_{j}(\tilde{e}_{j}\cdot\xi_{i})\tilde{e}_{i})

,

and this is horizontal if and only if [\tilde{e}_{i},\tilde{e}_{j}] is horizontal for all i and j . \square

4.9. In the general case, we can get more information on the curvature
using the following result, which is called the Bianchi identity (compare
with [6, 2.4] )

Proposition The curvature \kappa satisfifies the equation

( \partial 0\kappa)(X, Y, Z)+\sum_{cycl}(\kappa(\kappa_{-}(X, Y)
, Z)+\tilde{X}\kappa(Y, Z))=0

for all X, Y, Z\in g_{-} , where \partial is the Lie algebra differential introduced in
2.4, \sum_{cyd} denotes the sum over all cyclic permutations of (X, Y, Z) , and
\tilde{X} is the horizontal vector fifield corresponding to X as in 4.8.

Proof. The definition of \kappa , applied to the vector fields [\tilde{X},\tilde{Y}] and \tilde{Z} reads
as

\kappa(\omega_{-}([\tilde{X},\tilde{Y}]), Z)=d\omega([\tilde{X},\tilde{Y}],\tilde{Z})+[\omega([\tilde{X},\tilde{Y}]), Z] .

Using the fact that \omega(\tilde{Z})=Z is constant, we get from the definition of the
exterior derivative that

d\omega([\tilde{X},\tilde{Y}],\tilde{Z})=-\tilde{Z}\omega([\tilde{X},\tilde{Y}])-\omega([[\tilde{X},\tilde{Y}],\tilde{Z}]) .

Prom the proof of 4.8 we know that \omega([\tilde{X},\tilde{Y}])=[X, Y]-\kappa(X, Y) . Inserting
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this into the above equation and rearranging terms, we get

-[\kappa(X, Y), Z]-\kappa([X, Y], Z)+\kappa(\kappa_{-}(X, Y), Z)+\tilde{Z}\kappa(X, Y)

=\omega([[\tilde{X},\tilde{Y}],\tilde{Z}])-[[X, Y], Z] .

Forming the sum over all cyclic permutations of (X, Y, Z) , the right hand
side vanishes by the Jacobi identity for vector fields and for the Lie bracket
in g , and the first two terms on the left hand side add up to (\partial 0\kappa)(X, Y, Z) .

\square

Corollary 4.10 Let \kappa=\sum_{i=1}^{3k}\kappa^{(i)} be the splitting of the curvature into
homogeneous components as in 4.8. Then \partial\circ\kappa^{(1)} is identically zero. More
generally, if \kappa^{(j)} is identically zero for all j<i , the \partial 0\kappa^{(i)} is identically
zero.

Proof. We have to split the Bianchi identity into homogeneous parts
to see this. Evaluate the Bianchi identity on elements X , Y , and Z , which
are homogeneous of degree |X| , |Y| , and |Z| , and consider the homogeneous
component of degree |X|+|Y|+|Z|+i of the result for some i>0 . Since we
have observed that \partial preserves homogeneous degrees in 2.4, the first term in
the Bianchi identity contributes \partial 0\kappa^{(i)} in this degree. All contributions of
the second term in this degree must be of the form \kappa^{(j)} (\kappa_{-}^{(i-j)}(X, Y) , Z) (or
a cyclic permutation of the arguments) for some j with 0<j<i . Finally,
the last term can only contribute summands as \tilde{Z}\cdot\kappa^{(i+|Z|)}(X, Y) , and since
|Z|<0 , the result follows. \square

4.11. Using the adjointness of the codifferential and the differential that
we have proved in 2.6, one can split C^{n} (9-, g) as {\rm Im}(\partial)\oplus{\rm Im}(\partial^{*})\oplus(Ker(\partial)\cap

Ker(\partial^{*})) for each n . Moreover, {\rm Im}(\partial^{*})\oplus(Ker(\partial)\cap Ker(\partial^{*}))=Ker(\partial^{*}) and
(Ker(\partial)\cap Ker(\partial^{*})) (the harmonic part) can be identified with H^{n}(g_{-}, g) .
Since both \partial and \partial^{*} preserve the homogeneous degree, this decomposition
is compatible with the decomposition into homogeneous degrees.

The curvature \kappa has values in C^{2}(\emptyset-, g) , so we can also split it accord-
ing to this decomposition. By construction, \kappa is co-closed, so its {\rm Im}(\partial) -

component is zero. Now by Corollary 4.10 we also have \partial\circ\kappa^{(1)}=0 , so
\kappa^{(1)} has harmonic values and thus can be viewed as a smooth function
with values in the cohomology group H_{1}^{2}(9-, 9) . Similarly, if we already
know that \kappa^{(j)} is identically zero for all j<i , then \kappa^{(i)} can be viewed as
a smooth function with values in H_{i}^{2}(9-, \emptyset) . As we have mentioned be-
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fore, these cohomology groups can be computed using Kostant’s version of
the Bott-Borel-Weil theorem, so this gives computable information about
certain curvature components being automatically trivial. Moreover, this
result provides not only the 90-module structure of the cohomology but it
contains also an explicit description of harmonic representatives for the indi-
vidual irreducible components. In several cases, this can be used to restrict
the possibilities for the values of \kappa further.

Finally, the splitting from above allows us to consider the harmonic
part of the curvature \kappa , and as above we see that \kappa is identically zero if and
only if this harmonic part is identically zero.

Proposition 4.12 Let (Earrow M, \omega) be a P-frame bundle of degree 2k+1 .
Then the following are equivalent:
1. The P-frame bundle E is flat.
2. The harmonic part of the curvature \kappa is identically zero.
3. The mapping garrow \mathcal{X}(E) given by X –

\tilde{X} as in 4.8 is a homomorphism
of Lie algebras.

4. M is locally isomorphic to G/P, i.e . for each x\in M there are neigh-
borhoods U of x and V of 0=eP\in G/P such that E|_{U} is isomorphic
to G|_{V} as a P-frame bundle.

Proof. The equivalence of (1) and (2) was already observed in 4.11 above,
and the equivalence of (1) and (3) follows immediately from part (2) of
Proposition 4.8 and equivariancy of \omega . The fact that (4) implies (1) is
clear, since G/P is flat by the Maurer-Cartan equation. So it remains to
prove that (1) implies (4).

Consider the product E\cross G and the form \Omega:=pr_{1}^{*}\omega-pr_{2}^{*}\omega^{MC} , where \omega

denotes the Cartan connection on E and \omega^{MC} denotes the Maurer-Cartan
form on G . The kernel of \Omega is a distribution on E\cross G of constant rank
equal to the dimension of g . Now using the fact that both \omega and \omega^{MC} are
flat, we can compute the derivative of \Omega as

d \Omega=-\frac{1}{2}([pr_{1}^{*}\omega,pr_{1}^{*}\omega]+[pr_{2}^{*}\omega^{MC},pr_{2}^{*}\omega^{MC}])

=- \frac{1}{2}([\Omega,pr_{1}^{*}\omega]+[pr_{2}^{*}\omega^{MC}, \Omega]) .

But this implies that the differential of each component of \Omega lies in the ideal
generated by the components of \Omega , so the kernel of \Omega is an integrable dis-
tribution by the Frobenius theorem, so one has the corresponding foliation.
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Now let x\in M be a point, and let \sigma be a local section of E defined
around x . Let L be the connected component of the leaf of the foliation
through (\sigma(x), e) in a small neighborhood. Then by definition of the distri-
bution, the projections pr_{1} : Larrow E and pr_{2} : L – G are local diffeomor-
phisms, so they give rise to a local diffeomorphism \Phi from a neighborhood
of \sigma(x) to a neighborhood of e\in G (whose graph is exactly L). Now this
neighborhood contains a neighborhood of the form \{\sigma(y)\cdot b:y\in U, b\in W\} ,
where U is an open neighborhood of x in M and W is an open neighborhood
of the identity in P .

We then define \varphi : U – G/P by mapping y to the class of \Phi(\sigma(y)) .
Using that both pr_{1} and pr_{2} are equivariant, one concludes that \varphi is a
diffeomorphism locally around x . Moreover, we can obviously extend it
equivariantly to a local isomorphism of principal bundles (which coincides
with the equivariant extension of \Phi ), and by construction this map pulls
back \omega^{MC} to \omega . \square

4.13. AHS-structures
As a first special case of our general constructions, we discuss the case

of almost Hermitian symmetric structures or AHS structures. This is the
case of |1| -graded Lie algebras g =9-1\oplus 90\oplus g_{1} . Examples of these struc-
tures are conformal structures and almost Grassmannian structures. These
structures (particularly the conformal ones) have been studied in detail by
many authors, see [6] and the references therein. In this case, things sim-
plify considerably. First of all, the filtration on TM as introduced in 3.1 has
length one, so one can simply forget it. Frame forms of length \ell are simply
one forms with values in 9-1\oplus\cdots\oplus\emptyset\ell-2 . Moreover, the structure equations
as introduced in 3.4 become vacuous. Thus, in the AHS-case, a P-frame
bundle of degree one over a manifold M is just a (first order) G_{0} structure
on M described by a g_{-}i -valued one form \theta_{-1} on E (compare with [7, 1.2]).

To apply the prolongation procedure, we first have to consider the space
\hat{E} introduced in 3.13. By definition, this is the subspace of L(TE, g_{-1}\oplus go)

formed by all \varphi : T_{u}Earrow 9-1\oplus 90 which have \theta_{-1}(u) as g_{-1} component
and satisfy \varphi(\zeta_{A}(u))=(0, A) for all A\in 90 . So this is precisely the space
constructed (pointwise) in [7, 1.2]. The torsion of \varphi in the sense of 3.17 has
only one relevant component, namely the component \emptyset-1\wedge g_{-1}arrow g_{-1} . So in
this case we only need the component in 9-1 of the form \hat{\theta} on \hat{E} introduced
in 3.15. But then from 3.16 we see, that we may compute the torsion of \varphi
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simply as t_{\varphi}(X, Y)=d\theta_{-1}(u)(\varphi^{-1}(X), \varphi^{-1}(Y)) for X, Y\in 9-1 . Thus, we
see that the first step in our prolongation procedure coincides exactly with
the constructions carried out in [7, 1.2-1.6].

Similarly, one can analyze the second step in the prolongation proce-
dure and show that our procedure coincides with the one carried out in [7,
Section 2].

4.14. Partially integrable almost CR-structures
Next, we discuss the parabolic geometry containing codimension one

CR-structures. These correspond to a |2| -graded Lie algebra, and have
been is extensively studied in the literature. The construction of the canon-
ical Cartan connection for CR-manifolds is due to E. Cartan (see [11]) for
dimension three and to N. Tanaka (see [21]) and S.S . Chern and J. Moser
(see [12]) for arbitrary dimensions. As we shall see below, a parabolic geom-
etry for that case is a more general structure, namely a partially integrable
almost CR-structure. Hence by our general method we get canonical Car-
tan connections in this more general situation. Here we only outline how to
specialize our procedure to this case, a more detailed discussion will appear
in [5]. For simplicity, we will restrict the discussion to the case of positive
definite Levi form.

The basic setup in this case is as follows: Put g =\epsilon n(n+1,1) . Let us
number the coordinates on \mathbb{C}^{n+2} as x_{0} , \ldots , x_{n+1} , and choose as the Hermi-
tian form (x, y) – 2x_{0}\overline{y}_{n+1}+\langle(x_{1}, \ldots, x_{n}), (y_{1}, \ldots, y_{n})\rangle , where \langle

-
\rangle denotes

the standard positive definite Hermitian form on \mathbb{C}^{n} . Then g consists of all
matrices of the form

(\begin{array}{lll}z Z ibX A -Z^{*}ia -X^{*} -\overline{z}\end{array})

where the blocks are of sizes 1, n , and 1, z\in \mathbb{C} , X\in \mathbb{C}^{n} . Z\in \mathbb{C}^{n*} , A\in u(n)

with tr(A)=\overline{z}-z , and a , b\in \mathbb{R} . Now one defines a |2| -grading on g by giving
degree -2 to the entry corresponding to a , -1 to the one corresponding to
X , 0 to the ones corresponding to z and A , 1 to those corresponding to Z ,
and 2 to the one corresponding to b . From the block form it is obvious, that
this is actually a |2| -grading.

Next, let G be the adjoint group of su(n 1, 1) . We can identify G with
the quotient of SU(n+1, 1) by its center, which is isomorphic to \mathbb{Z}_{n+2} , given
by the roots of unity times the identity matrix. Thus, we will compute in
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SU(n+1, 1) keeping in mind that we work modulo the center. First, one
easily verifies that the matrices which are in the subgroup G_{0} (see 2.9)
must be block diagonal (with blocks of sizes 1, n , and 1), and using this,
one verifies that they must be of the form

(\begin{array}{lll}\varphi 0 00 \Phi 00 0 \varphi/|\varphi|^{2}\end{array}) ,

for some \varphi\in \mathbb{C} and some \Phi\in U(n) such that \frac{\varphi^{2}}{|\varphi|^{2}} det \Phi=1 . We denote
this element by (\varphi, \Phi) .

We have to discuss the adjoint action of G_{0} on 9-=\emptyset-2\oplus 9-1 . In a
notation similar as above, let us denote an element of g-as a pair (a, X) .
A direct computation shows that Ad ( \varphi, \Phi)(a, X)=(\frac{a}{|\varphi|^{2}}, \varphi^{-1}\Phi X) . Now for
two elements X, Y\in 9-1 the bracket [X, Y] is just the imaginary part of
\langle X, Y\rangle . Clearly, the adjoint action preserves this bracket.

Conversely, let us assume that we have a complex linear automorphism

f of 9-1 such that [f(X), f(Y)]=\alpha[X, Y] for all X, Y\in 9-1 and some
(fixed) real number \alpha . Since {\rm Re}(\langle X, Y\rangle)=-{\rm Im}(\langle X, iY\rangle) , we get [X, iX]=
-i\langle X, X\rangle , and since f is complex linear, this implies on one hand that
\alpha must be positive and on the other hand that \langle f(X), f(Y)\rangle=\alpha\langle X, Y\rangle .
Thus, \frac{f}{\sqrt{\alpha}} is unitary, so the absolute value of the determinant of f is \alpha^{n/2} .
Now let \varphi\in \mathbb{C} be a complex number such that \varphi^{-n-2}=\alpha\det(f_{1}) . (The
non-uniqueness of \varphi exactly reflects the fact that we work modulo the center
of SU(n+1, 1) .) Taking the absolute value in that equation, we get \alpha=

1/|\varphi|^{2} , which immediately implies that \varphi f is unitary. Moreover, \det(\varphi f)=

\varphi^{n}\det(f)=\frac{|\varphi|^{2}}{\varphi^{2}} , so (\varphi, \varphi f) is an element of G_{0} . Thus, we can identify
G_{0} with the group of all pairs (\alpha, f) as above. (Clearly, the number \alpha is
determined by /.)

4.15. Now suppose that M is a smooth manifold of dimension 2n+1 with
a subbundle T^{-1}M\subset TM of real rank 2n and that p:Earrow M is a principal
G_{0}-bundle with a frame form \theta=(\theta_{-2}, \theta_{-1}) of length one on E . As we have
noticed in 3.3, in each point u\in E the form \theta_{-1}(u) gives an isomorphism
T^{-1}M\cong T_{u}^{-1}E/V_{u}E\cong g_{-1} and thus in particular a complex structure J onp(u)
T^{-1}M . It is independent of the choice of the point u since the adjoint actionp(u)
of G_{0} on 9-1 preserves the complex structure. Similarly, since the bracket
g_{-1}xg_{-1}arrow 9-2 is preserved by the adjoint action, it pulls back to a bilinear
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skew symmetric bundle map \{ . \} : T^{-1}M\cross T^{-1}Marrow(TM/T^{-1}M) . This
map is totally real in the sense that \{J(\xi), J(\eta)\}=\{\xi, \eta\} for all \xi , \eta\in T_{x}^{-1}M

and x\in M .
Conversely, assume that we have a smooth manifold M of dimension

2n+1 , together with a rank n complex subbundle T^{-1}M of TM and a
bilinear pairing \{ , \} : T^{-1}M\cross T^{-1}Marrow(TM/T^{-1}M) which is non-
degenerate at each point and totally real. Then for a point x\in M we can fix
an identification of T_{x}M/T_{x}^{-1}M with \mathbb{R} . Then one easily sees that on each
T_{x}^{-1}M the map \{ , \} is the imaginary part of a non degenerate Hermitian
form. Let us in addition assume that this Hermitian form is positive definite
for each x and an appropriate isomorphism T_{x}M/T_{x}^{-1}Marrow \mathbb{R} . Note that
this also fixes an orientation of the line-bundle TM/T^{-1}M (which means
just deciding between a positive definite or a negative definite form).

Then let E be the set of all pairs (\varphi_{1}, \varphi_{2}) , where \varphi_{1} : 9-1 – T_{x}^{-1}M

is a complex linear isomorphism and \varphi_{2} : 9-2arrow T_{x}M/T_{x}^{-1}M is a linear
isomorphism for some x\in M , such that \{\varphi_{1}(X), \varphi_{1}(Y)\}=\varphi_{2}([X, Y]) , for
all X, Y\in 9-1 . Let p : E – M denote the obvious projection. Then one
verifies directly that this is a smooth principal G_{0} bundle where G_{0} acts
by composition with the adjoint action from the right.

Moreover, we define a frame form \theta on E as follows: Let Tp : TEarrow TM

be the tangent map ofp . Take a point \varphi=(\varphi_{1}, \varphi_{2})\in E and a tangent vector
\xi\in T_{\varphi}E . Then Tp\cdot\xi is an element of T_{p(\varphi)}M , so we can form its class [\xi] in
T_{p(\varphi)}M/T_{p(\varphi)}^{-1}M . But the component \varphi_{2} of the point \varphi is an isomorphism of
the latter space with 9-2, and we define \theta_{-2}(\varphi)(\xi):=\varphi_{2}^{-1}([\xi]) . This gives
a well defined one form \theta_{-2}\in\Omega^{1}(E, g_{-2}) . Next, by definition an element
\xi\in T_{\varphi}E lies in the subbundle T_{\varphi}^{-1}E if and only if Tp\xi\in T_{p(\varphi)}^{-1}M . But
in this case we can define \theta_{-1}(\xi):=\varphi_{1}^{-1}(Tp\cdot\xi) . From the definitions, one
verifies directly that \theta=(\theta_{-1}, \theta_{-2}) is actually a frame form of length one
on E .

Thus, we see that giving a principal G_{0}-bundle with a frame form of
length one on it is equivalent to specifying a rank n complex subbundle
T^{-1}M in TM and a non-degenerate skew pairing \{ . \} : T^{-1}M\cross T^{-1}M -

(TM/T^{-1}M) which is positive definite and compatible with the complex
structure as explained above. Finally, by Proposition 4.2 it is clear that the
frame form \theta satisfies the structure equations if and only if the pairing is
actually given by the Levi-form.

Let us compare this to the usual concept of almost-CR-manifolds:
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Clearly, specifying a rank n complex subbundle T^{-1}M\subset TM is equiva-
lent to specifying a rank n complex subbundle V in the complexified tan-
gent bundle T_{\mathbb{C}}M such that V\cap\overline{V}=0 , by letting V be the holomorphic
part of T^{-1}M\otimes \mathbb{C} and conversely putting T^{-1}M=(V\oplus\overline{V})\cap TM . As
above, let J be the complex structure on T^{-1}M . The fact that the (real)
Levi-form on M is a totally real map is clearly equivalent to the fact that
for sections \xi , \eta of T^{-1}M the difference [\xi, \eta]-[J(\xi), J(\eta)] is also a sec-
tion of T^{-1}Mr In the complex picture, this is easily seen to be equivalent
to the fact that the bracket of two sections of V is a section of V\oplus\overline{V} .

which is exactly the definition of a partially integrable almost-CR-structure
(M, V) , see [14]. For general almost-CR manifolds, one defines the Levi-
form V\cross Varrow T_{\mathbb{C}}M/(V\oplus\overline{V}) via the class of- i[\xi,\overline{\eta}] . Now one easily verifies
that the real Levi form introduced above is up to a fixed scalar multiple ex-
actly the imaginary part of this Levi form. Consequently, the structures we
consider are exactly partially integrable almost-CR-structures with positive
definite Levi-form.

4.16. Integrability and torsion
Next, we want to characterize CR-structures with positive definite Levi-

form in our picture. By definition, an almost-CR-manifold M is CR if and
only if the subbundle V\subset T_{\mathbb{C}}M from 4.15 above is integrable. This can
be reformulated as follows: Let \xi and \eta be smooth sections of T^{-1}M , and
consider the sections [\xi, \eta]-[J(\xi), J(\eta)] and [J(\xi), \eta]+[\xi, J(\eta)] of TM . As
observed above, these are actually sections of T^{-1}M , and the integrability
is equivalent to the fact that [\xi, \eta]-[J(\xi), J(\eta)]=-J([J(\xi), \eta]+[\xi, J(\eta)]) .

This integrability problem can be related to our constructions as follows:
Suppose we have finished all the prolongations, so we have a principal P-
bundle p:Earrow M together with a Cartan connection \omega\in\Omega^{1}(E, g) . If \xi is
a local section of T^{-1}M , then we can lift it locally to a smooth section \tilde{\xi} of
T^{-1}E , which is p–related to \xi , i.e. such that Tp\cdot\tilde{\xi}(u)=\xi(p(u)) . Similarly,
for a second section \eta we find \tilde{\eta} . Since the bracket of p-related vector fields
is again p-related we get [\xi, \eta]=Tp . [\tilde{\xi},\tilde{\eta}] .

Now put X :=\omega_{-1}(\tilde{\xi}) , A:=\omega_{\mathfrak{p}}(\tilde{\xi}) . Then \tilde{\xi}(u)=\omega^{-1}(X(u))+\zeta_{A(u)} .
Similarly, we write \tilde{\eta}(u)=\omega^{-1}(Y(u))+(_{B(u)} . Moreover, Tp induces an is0-
morphism of T_{p(u)}^{-1}M with T_{u}^{-1}E/V_{u}E , which in turn is isomorphic via \omega(u)

to 9-1, and these are complex linear isomorphisms. Thus, to understand
the T^{-1} component of the Lie bracket [\xi, \eta] we have to compute \omega_{-1}([\tilde{\xi},\tilde{\eta}]) .
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By definition of the exterior derivative, we get

\omega_{-1}([\tilde{\xi},\tilde{\eta}](u))=\tilde{\xi}(u)Y(u)-\tilde{\eta}(u)X(u)-d\omega_{-1}(\tilde{\xi}(u),\tilde{\eta}(u)) .

Next, by definition of the curvature K of \omega (see 4.7), we can compute

d\omega_{-1}(\tilde{\xi}(u),\tilde{\eta}(u))=K_{-1}(\tilde{\xi}(u),\tilde{\eta}(u))-[A_{0}(u), Y(u)]-[X(u), B_{0}(u)] ,

where we split A and B according to the splitting \mathfrak{p}=90\oplus g_{1}\oplus g_{2} . Finally,
by definition K_{-1}(\tilde{\xi}(u),\tilde{\eta}(u))=\kappa_{-1}(X(u), Y(u)) , and since both X and Y
have degree -1, this equals \kappa^{(1)}(X(u), Y(u)) . Collecting the computations
together, we get

\omega_{-1}([\tilde{\xi},\tilde{\eta}](u))=\tilde{\xi}(u)Y(u)-\tilde{\eta}(u)X(u)-\kappa^{(1)}(X(u), Y(u))

+[A_{0}(u), Y(u)]+[X(u), B_{0}(u)] .

Next, observe that if \omega^{-1}(X(u))+\zeta_{A(u)} is p-related to \xi , then \omega^{-1}(iX(u))+

\zeta_{A(u)} is p-related to J(\xi) . Using this, one directly verifies that in the expres-
sion corresponding to [\xi, \eta]-[J(\xi), J(\eta)]+J([J(\xi), \eta]+[\xi, J(\eta)]) all terms
except those coming from \kappa^{(1)} cancel, so that integrability is equivalent to

\kappa^{(1)}(u)(X, Y)-\kappa^{(1)}(u)(iX, iY)

+i(\kappa^{(1)}(u)(iX, Y)+\kappa^{(1)}(u)(X, iY))=0 ,

for all u\in E and X, Y\in 9-1 . Note that since this involves only the
homogeneous component of degree one of the curvature it is already visible
in the first prolongation step.

We just outline briefly how to proceed further: By the Bianchi identity
(see 4.9), we know that for each u\in E the map \kappa^{(1)}(u) : \Lambda^{2}g_{-} -arrow g is \partial

-

closed and \partial^{*} -closed. Now we can extend this map to the complexification
g^{\mathbb{C}}=\epsilon \mathfrak{l}(n+2, \mathbb{C}) , which is |2| -graded using the same block form as for g . In
the complex case, the subspace 9-1 splits as a 90-module into a direct sum of
two irreducible modules, and the condition on \kappa^{(1)} from above is equivalent
to the fact that the complexification preserves both these submodules. But
now the complexification still is \partial

- and \partial^{*} -closed, so it is the harmonic
representative for a cohomology class in H_{1}^{2} (g_{-}^{\mathbb{C}}, g^{\mathbb{C}}) . But Kostant’s version
of the Bott-Borel-Weil theorem (see [13]) also gives an explicit description of
representatives of these cohomology classes. Looking at these, one sees that
they can never preserve the submodules, so that integrability is actually
equivalent to \kappa^{(1)}=0 . If this is the case, then one can analyze \kappa^{(2)} in a
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similar way and see that actually integrability implies that the structure is
torsion free, so all components of \kappa in g -vanish.

4.17. Examples related to twistor theory

To finish, we discuss a family of examples of parabolic geometries which
is closely related to twistor theory and Penrose transforms. These examples
are not interesting from the point of view of the prolongation procedure,
since one gets the canonical Cartan connections for free, but we think that
they show the importance of understanding the geometrical properties of
structures of this type. The basic idea underlying these examples is easy to
explain: Suppose that we have a Lie group G with |k| -graded Lie algebra g

and that q\subset \mathfrak{p} is a subalgebra which gives rise to an |\ell| -grading of g .

In the complex case, such subalgebras are particularly easy to find. In
this case, we know from 2.3 that the original |k| -grading on g is determined
by a standard parabolic subalgebra \mathfrak{p}\subset g , which corresponds to a set \Sigma\subset

\triangle 0 of simple roots, which is exactly the set of those simple roots whose
root spaces are contained in \mathfrak{p}_{+} . Now we simply take a second subset \Sigma’

of \triangle 0 such that \Sigma’\supset\Sigma . By construction, then the standard parabolic q

corresponding to \Sigma’ is a subalgebra of \mathfrak{p} .

Returning to the general case, we consider the corresponding subgroups
Q\subset P\subset G . If we have a manifold M with a parabolic geometry corre-
sponding to P , then we have a P-principal bundle Earrow M endowed with
a Cartan connection \omega\in\Omega^{1}(E, g) with \partial^{*}-closed curvature. Now since P
acts freely on E, also the subgroup Q of P acts freely on E, so we can form
the orbit space M’:=E/Q. Then the canonical projection p:Earrow M’ is
a principal Q-bundle, and one immediately verifies that the form \omega itself is
a Cartan connection on p : E – M’ Finally, the curvature \kappa of \omega is also
closed under the operator \partial^{*} corresponding to the subalgebra q . To see this,
one only has to notice that although the subalgebra g-corresponding to q is
bigger than the one corresponding to \mathfrak{p} , the additional elements correspond
to horizontal vectors on Earrow M’ but to vertical vectors on E - M, so
the curvature vanishes on these elements. Together with the formula for \partial^{*}

from 2.5 this implies the result. Thus, we see that the parabolic geometry
corresponding to P\subset G on M is almost the same thing as a parabolic
geometry corresponding to Q\subset G on M’ . Note that the corresponding
construction in the flat (homogeneous) case is the basis for applications of
Penrose transforms to representation theory as described in [4].
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For an explicit example, consider the case g=\epsilon \mathfrak{l}(4, \mathbb{R}) with the |1| -

grading corresponding to the block form (\begin{array}{ll}9o \mathfrak{g}_{1}9-1 9o\end{array}) , where all blocks are

of size 2 \cross 2 . The complexification of this corresponds to the Dynkin dia-
gram – in the notation of 2.3. The corresponding geometric struc-
ture is an almost Grassmannian (or paraconformal) structure of type (2, 2) .
This means that one deals with 4-dimensional manifolds equipped with a
volume form and two rank two bundles whose tensor product is isomor-
phic to the tangent bundle (see [2] for a discussion of almost Grassman-
nian structures and their twistor theory). Via the well known isomorphism
\epsilon \mathfrak{l}(4, \mathbb{C})\cong\epsilon o(6, \mathbb{C}) , upon complexification this gives also information on
4-dimensional conformal manifolds. (To have this directly in the real set-
ting one has to consider pseud0-Riemannian conformal manifolds in split-
signature (2, 2) .)

The simplest instance of the construction outlined above is now to con-
sider \Sigma’=\{\alpha_{1}, \alpha_{2}\}\supset\Sigma=\{\alpha_{2}\} . This gives a |2| -grading on g which is the
obvious real version of the example in 2.3 corresponding to \infty_{1} In this
case, the manifold E/Q can be easily described explicitly as follows: The
Lie algebra \mathfrak{p} has two obvious irreducible two dimensional representations
corresponding to the two diagonal 2\cross 2-blocks. The associated bundles to
these representations are exactly the two rank two bundles whose tensor
product gives the tangent bundle. Taking the first of these (which corre-
sponds to the upper block), one can pass to the projectivization (i.e. the
space of all lines in this representation), and the subgroup Q is exactly the
isotropy subgroup of a suitable point in this projectivization. Using this,
one easily proves that the manifold M’ is exactly the total space of the
associated bundle corresponding to this projectivization, so it is exactly the
projectivization of the rank two bundle from above. In the language of
twistor theory, this is the correspondence space. Thus, the correspondence
space carries canonically a parabolic geometry of the type \infty
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