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Mod p cohomology algebras of finite groups
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Abstract. We analyze mod p cohomology algebras of finite groups with extraspecial
Sylow p-subgroups by applying the theory of relative projectivity of modules, which is
of fundamental importance in the modular representation theory of finite groups, to the
cohomology theory. Especially we shall calculate the mod p cohomology algebras of the
general linear group GL(3, Fp).
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1. Introduction

Let p be a prime greater than three. In this paper we consider coho-
mology algebras of finite groups with extraspecial Sylow p-subgroup

P={(a,b|a? = = [a,b]" = 1,[[a,],a] = [[a,b],b] = 1)

of order p3 and exponent p with coefficients in fields of characteristic p.

Integral cohomology rings of these finite groups have been investigated
by some people. Among them we should mention D. J. Green [6] and
Tezuka-Yagita . Green’s work would be the first one dealing with such
finite groups and contains a useful proposition that can be applied to mod-
ular case. Tezuka and Yagita’s work is a comprehensive one considering
finite simple groups with P as Sylow p-subgroups and gave universally sta-
ble classes. Some of these results and methods are valid for modular cases.
The present paper is partly inspired by their works.

We should also mention Milgram-Tezuka [8]. There they calculated
the mod 3 cohomology algebra of the Mathieu group Mjs, whose Sylow
3-subgroup is extraspecial of order 27 and exponent 3; and they showed
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that the cohomology algebra is isomorphic with that of the general linear
group GL(3,F3). They used the theory of geometry of subgroups, as the
title suggests.

However, our aim in this paper is to understand mod p cohomology
algebras from a view point of modular representation theory of finite groups.
Our main tools include the theory of relative projectivity of modules and
theory of cohomology varieties of modules.

In Okuyama-Sasaki [10] we studied some applications of theory of rela-
tive projectivity of modules to the cohomology theory of finite groups; and
we calculated the mod 2 cohomology algebras of finite groups with wreathed
Sylow 2-subgroups. The crucial was to analyze a Carlson module. To do
that we used Green correspondence and the theory of projectivity of mod-
ules relative to modules. In this paper we apply our theory to finite groups
with extraspecial Sylow p-subgroups for a prime p > 3; as an example we
shall calculate the mod p cohomology algebra of the general linear group
GL(3,E,).

In Section 2 we quote some facts from Okuyama-Sasaki [10]. In Sec-
tion 3, following Leary [7], we state the mod p cohomology algebra of the
extraspecial p-group P and some properties. We also prove some facts on
which our further investigation depends. Sections 4 and 5 are devoted to
construct general framework to study mod p cohomology algebras of finite
groups in question. In Section 4 we shall define a universally stable homo-
geneous system of parameters {p,c} of the cohomology algebra H*(P, k)
such that p is regular. For a finite group G with P as a Sylow p-subgroup
let p denote the cohomology class in H*(G, k) that restricts to p in P. Since
the class p is regular in H*(G, k), we obtain

dim H™" (G, k)/H™(G, k)p = dim Ext}(Lz, k),

where r = degp. See Lemma 2.7, Here L; is the Carlson module of the
element p, whose definition will be given at the beginning of Section 2.
Therefore it would be useful to examine the Carlson module L;. To do
that we have to know vertices and sources of indecomposable direct sum-
mands of the module L;. See [Theorem 4.5 To obtain the extension groups
Exti;(Lz, k) we shall use Green correspondence. See [Corollary 4.7. Next
we have to describe explicitly the Green correspondents of indecomposable
direct summands of L;. This will be done in Section 5. A property of pro-
jectivity of modules relative to modules will be used there. In Section 6 we
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shall calculate the mod p cohomology algebra of the general linear group
GL(3,E,). Main results are Theorems [6.9, and 6.11.

Mod p cohomology algebras of other finite groups in question will be
investigated in another paper.

Here we fix notation. Let k be a field. Let G be a finite group. All
kG-modules are finitely generated. Let H be a subgroup of G. For a
class ¢ in H*(G, k) we shall sometimes write (g or Cg for the restric-
tion resy (. For a class n in H*(H, k) we shall write tr®n for the core-
striction cor®n. For a homogeneous element 7 in H"(H, k), where the
degree n is even, we shall denote by norm®n the image of Evens’ norm
map norm : H*(H,k) — HI!GHI"(G k). For a and b elements in G we
let a® = b~lab, the conjugate of a by b. For g an element in G we let
HY = g~'Hg, the conjugate of H by g. We shall write 9 for the conjugate
cond 7 in H *(HY,k). For ¢ an automorphism of G the induced isomor-
phism (¢™1)* of the cohomology algebra H*(H,k) — H*(H%,k) will be
written on the right with the convention of writing composition; the image
of a class n under this isomorphism will be written as n¥. For kG-modules
U and V we shall write (U,V)qg for the space of the kG-homomorphisms
Homys(U, V). We shall often write Uy or Ujg for the restiction of U to
H. For other notation and terminology we follow Benson [1], Carlson [3],
Evens , Gorenstein , or Nagao-Tsushima .

2. Preliminaries

In this section we quote some results from Okuyama-Sasaki [10]. Let p
be an arbitrary prime and let k¥ be a field of characteristic p. Let G be a
finite group of order divisible by the prime p.

Definition 2.1 The nth cohomology group H"(G, k) is isomorphic with
the vector space (2"(k), k)g. For an element « in H"(G, k) we denote by &
the kG-homomorphism of Q" (k) to k that corresponds to a. If the element o
is not the zero element, then we denote by L, the kernel of & : Q"(k) — k.
While if o = 0, then we define L, = Q™(k) & Q(k). We call such a module
a Carlson module.

Note by dimension shifting that H"(G, k) ~ Ext;-(Q"1(k),k). An
element o in H"(G, k) \ {0} corresponds to the extension

Ey:0—k— Q YL, — Q"1 (k) — 0.
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2.1. Relative projectivity
The following theorem deals with Green correspondence of indecompos-
able direct summands of Carlson modules.

Theorem 2.1 Let p in H*(G, k) be a homogeneous element. Let U be an
indecomposable direct summand of the Carlson module L, of p with vertezx
D. Let H be a subgroup of G containing the normalizer Ng(D) and let V
be a Green correspondent of U with respect to (G, D, H). Then the Green
correspondent V' is a direct summand of the Carlson module L(,,) of the
restriction py = resy p of the element p to the subgroup H. Conversely, if
an indecomposable kH-module V' with vertex D is a direct summand of the
Carlson module L,,), then the Green correspondent U of V with respect
to (G, D, H) is a direct summand of the Carlson module L,.

Remark 2.1 Every indecomposable direct summand of the Carlson mod-
ule of a homogeneous element that is not nilpotent has multiplicity one.

Next let us state briefly the theory of projectivity of modules relative
to modules. Refer for example Carlson 3] in detail.

Definition 2.2 For V a kG-module let
P(V) ={R| R is a direct summand of V ® A for a kG-module A}.

A kG-module belonging to P(V') above is said to be projective relative to
P(V) or P(V)-projective.

Definition 2.3 Let M be a kG-module. A short exact sequence E : 0 —
X — R — M — 0 is called a P(V)-projective cover of M if

(1) R is P(V)-projective;

(2) the tensor product

00— XQ®V —SRQqV —m MQV — 0

splits;
(3) the kernel X has no P(V)-projective direct summand.
A P(V)-projective cover of any kG-module exists and is uniquely deter-
mined up to isomorphism of sequences. Dually we can define P(V)-injective
hulls of modules.

A connection between the notion of relative projectivity above and co-
homology theory is given by the following fact, which is originally due to
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Carlson. This will be used in Section 5. Note, however, that this is not true
for p = 2.

Lemma 2.2 Let p be an odd prime. Let  in H**(G,k) be an arbitrary
class. Then the extension

Ec:0—k— QL) — 9" k) —0

associated with ¢ is a P(L¢)-projective cover of the syzygy Q*"~1(k) or
equivalently a P(L¢)-injective hull of the trivial module k.

The following can be used to show divisibility in cohomology algebras.
Lemma 2.3 Let
E,:0—k—Q YL, L a1k) — 0

be the extension corresponding to an element p in H" (G, k). Suppose that
the Carlson module L, is relatively H-projective, where H is a set of sub-
groups of G. If an element £ in H™ (G, k) satisfies

resy f*(§) =0 for every H in H,

where f* : Extzgr(k, k) — Extig(L,, k), then there exists an element n in
H™(G,k) such that

§=pm.

2.2. System of parameters
Let G have p-rank r. Fori =1,...,r let

Hi(G) = {Ce(F) | E is an elementary abelian p-subgroup of rank i}.
Our starting point is the following facts.

Theorem 2.4 (Carlson [2]) The cohomology algebra H*(G,k) has a

homogeneous system {(1,...,(-} of parameters with the property that for
everyit=1,...,r

Ge Y. tfH(HK).
HeH;i(G)

Corollary 2.5 (Okuyama) If a homogeneous system {(1,...,{-} of pa-
rameters is taken as in the theorem above, then the tensor product L, ®
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- ® Le,_, s H,(G)-projective.
In particular, if r = 2, then L¢, is Ho(G)-projective and the element (;
is regular in H*(G, k).

The following will be used to decompose a Carlson module.

Lemma 2.6 Let G be a finite group of p-rank two. Suppose that a set
{p,0} is a homogeneous system of parameters of H*(G, k). Then it holds
that

Lpo ~ L, ® L.

Lemma 2.7 Let G be a finite group. Let p in H"(G, k) be a regular el-
ement. Then we have the following short exact sequences:

0 — (Y (k), k)g — (QHL,), k)g — O;

0 — Extig(k, k) =5 Ext?A" (k, k) — Extlo(L,, k) — 0, n > 0.

3. Cohomology algebra of extraspecial p-group
Let

P={(ab|a? =t = [a,b]" = 1,[[a,b],a] = [[a,b],b] = 1)
be an extraspecial p-group of order p® and exponent p.
Definition 3.1 Let

¢ = [a,b].
Then Z(P) = (c). For j =0,...,p—1, let

E; = (aVV,c); a; =al’, b; =b.
Let

Exw =(b,c); G0 =b, bso =a"l.
We put

Q=1{0,1,...,p—1,00}; E={E;|jeN}.

The set £ is the collection of all elementary abelian subgroups of rank two.
We note that Cp(E) = E for E in £.
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Definition 3.2 For j in Q, regarding H'(E;,F,) as Hom(E;, E,), let

A =gt f) =

and let

W =a09), uf) = aw?),
where A : HY(E;,E,) — H?(E;,F,) is the Bockstein homomorphism.
Then the element b; acts on these elements as follows:

ODY =20 (DY = 30 4 4O

Definition 3.3 Let us fix some classes in the cohomology algebra
H*(P,E,), following Leary [7]. Regarding H!(P, F,) as Hom(P, E,), let

) =a¥, b1 = b*;

az = A1), B2 = A(Br),
where A : HY(P,E,) — H?%(P,F,) is the Bockstein homomorphism. Let
us, as in Leary [7], denote by (, , ) the Massey product. Let

m2 = {(a1,a1,61), 02 = (61,51, 01);

s = A(n2), 03 = A(62),

where A : H?(P,E,) — H3(P,F,) is the Bockstein homomorphism. We
let

X2i-1 = trgw u§°°)(u§°°))i‘1), 1=2,...,p—2,
X2i = trgoo (/’Lgoo))z)v 1= 2) ' P 27

X2p-3 = tr
X2p-2 = tr
X2p—1 = tr
Finally, we let
v=2z¢€ H*(P,E,) in Leary [7].

Theorem 3.1 (Leary [7] Theorem 6) Let p be greater than 3. Then the
cohomology algebra H*(P,F,) is generated by the classes a;, (i, 1 = 1,2,
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7i,0i,1=2,3, xi,t =17,8,...,2p—1, and v subject to the following relations:

a1 =0, af =pfra1, aime=pF102=0, aify = pFin,
M =05 =m0 =0, an3=oame, PGibs= [abs

361 = 226z + Bame, O3a1 = 202m2 + by,

nen3 = 0203 =0, Oamz = —mebl3, 203 = —Fans,

az(azl + Bame) = B2(a2bs + Bame) = 0,

b — a1 =0, obf2— Bhaz=0

by + Bine =0, ohbs + Bhns =0

0 0 for i<p-—1
X2i01 = { —al o X2 = { BB for i=p—1"
0 0 for i<p-—-1
X2ia2"‘{_a12) X2i02 = {—ﬁg for i=p—1"
0 0 for i<p-—1
X2iT2 = { —ol ", Xx2if2 = { B0, for i=p—1"
0 0 for i<p-—1
X213 = { ol x2i03 = { B0y for i=p—1"
0 for i+3<2p—2
X2iX2_7—_{a2p—2+52p 2_012 B for i=j=p—1 "
0 for i<p
X2i-101 = { —a8n, x2i-101 = {52_192 for i=p
0 0 for i<p-—1
X2i-102 = { "az ‘o1 xpicife=1{ —F5 B for i=p-1
By for i=p

x2i-1M2 = 0,  Xx2i— 192—0

0 0 for i#p—1
X2i—173 = —al X2i—103 = ﬁ2"102

for i=p—-1"
X2i-1X2j-1
_{0 fori<p—lorj<p-1
gp 3n2—,8§p_302+a72’_1ﬁ§_292 fOT"i:p andjzp—]. ’
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X2i—1X2j
0 fori<p—lorj<p-1
= agp_sal + ng_3ﬂ1 - ag""l g_zﬂl fori=j=p—1

_agp—an + ﬁ;p_393 - 03_155_293 fori=pand j=p—-1

Here we state the actions of the outer automorphisms of P on the
cohomology algebra. The outer automorphism group Out(P) is isomorphic
with the general linear group GL(2, E,); a nonsingular matrix

s t
i
acts on P as an automorphism as follows:
a¥ =a’bt, bY =¥,

The general linear group GL(2, F,) is generated by the following matrices:
1 1] Jo 1] . [d 0 \
B P R O AP T [

Lemma 3.2 (Leary [7] Theorem 6) Let p be greater than 3. The auto-
morphisms above act on the cohomology algebra H*(P,F,) as follows:

¢ ¢¥ ¢T ¢°
Q; Q; B; io« 1=1,2
1 1 1 dl 1 - Y
1 .
Bi | —ai+ B a; —PBi i=1,2
dy
1
i n; 0; a—%&;m 1=2,3
1 )
0; n +6; ua rdgez i=2,3,
, 1 }
X2i—1 X2i—-1 (—1)’X21—1 WX%—I 1=4,...,p
) 1
X2i X2i (—1)*x2i (dldg)ixm i=4,...,p-1
v 1 v
14 bt %4 —_—
dids
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Lemma 3.3 Let p be greater than 3. The images of the generators in
Definition 3.3 under the restrictions to subgroups E in £ are as follows:

¢ resg; ¢, J €K, resg_ ¢

o AP 0 i=1,2

B; jAY Alee) i=1,2

o A9, 0

0, A L) Alo2) (o0)

n AD L) _\@) ) 0

b3 | =i g =2 u) | ATl - AP u(™)
X2i—1 0 i=4,...,p—2

X2i 0 1=4,...,p—2
X2p—3 _(Agj))p—Q)\gj)
X2p—2 —(AFp1
- OP P00 2Pt

v (13 — 1 08"~

Henceforth we let p be a prime greater than three, unless otherwise
stated.

Proposition 3.4 The set {x2p—2,V} is a system of parameters for the
cohomology algebra H*(P, ).

Proof.  For every E in £ the tensor product Ly, , ® L, is projective over
F,E by Lemma 3.3 0

Lemma 3.5 (1) The cohomology groups H™(P,E,) of degree n up to 2p—
1 have the following bases over E,:
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basis
H! ai, P
H? ag, ﬁz, n2, 62
H% 1 a0, apab™6s, ..., cqaefi™?, anBe™t, BB |i=2,...,p
oy *n, b3 Bams, ..., B ns, By s, By 63,
X2i—1
H% o, o '8, ..., aoBBat, B, i=2,...,p—1
o ', a2 Bame, ..., 2By e, By 'ne, By 162,
X2i
(2) The factor spaces H"*P(P,E,)/H™(P,F,)v have the following
bases:
basis
H2H~2p/H2lV al“’, l+p lﬁ’ ., l+1ﬁp 1 l+p
s, ab P o, ., AbBE e, BT,
H2l+1+2p/H2l+1V alal2+P’ a1a12+17— ﬁQ, o al2+113 B ﬁH‘P,
05" 'ns, 0y " Boms, .., oY s, B3P

Let Agiio, be the complement of HX(P,F,)v in HX¥?(P,F,) spanned
by the classes above; let Bgji142, be the complement of H2l+1(P, EF,)v in
H?+1422(P F,) spanned by the classes above. Then we have forn > 1 and

t=0,...,p—1 that

H2i+2np(P’ Fp)

H2i+1+2np(P Fp)

n—1
D Azisa(n-jypv’ ® H* (P, E,)"
=0

1
@ B2i+1+2(n—j)p’/] & H2z+1 (P7 Fp)Vn
1=0

Remark 3.1 The actions of automorphisms ¢, 7, d on the classes x3, x4,
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X5, X6 are similar to those on x; in Lemma 3.2
The following is the key fact for our investigation.

Lemma 3.6 [t holds that
X2p—2 = Ztr (J))p_

JEN

Proof. For j in € let
() — P ((,,G)\p—1 2(p—1)
¢ =trg ((ug")P~") € H*® V(P F,)

and we let

(= Zc(j).

JjeN
Then we have
. _ (4) p—1 —
resg, ¢ = (A37) =3 .
0 L#3]
Indeed, for [ # j

resg, CU) = resg, e (u§) )
= tr& TeSE;NE, (,ugj))"’_1
= 0;

and for [ = j

resg, ¢O) = resg, (tr (u( ))p )

— Z (J) p——

=0
p—l . .

= > (g -0y
=0

= -3y

Therefore, implies for all F in £ that

resg(Xxzp—2 — ¢) = 0,
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and hence x2p—2 — ¢ is nilpotent. Thus by we can write, using
a homogeneous polynomial f(X,Y) of total degree p — 2,

X2p-2 — ¢ = (o2, Bo)m2 + 585 262, s€F,.
Nonsingular matrices ¢, 7, and § act on (s as follows:
(e = (Ut j€F,
¢ j=o0
1 . "
(O = U je K
O
(COY = (“dd) | € F,
(=), j=o0
Applying these matrices on both sides, we obtain by that
x2p—2 — ¢ =0,
as desired. O

Corollary 3.7 The element v is regular in the cohomology algebra
H*(P,F,); and the Carlson module L, is €-projective; in fact we have

L= L#gj)P.

JEN

Proof. Lemma 3.6, [Proposition 3.4, and [Corollary 2.5 imply that the
Carlson module L, is £-projective. For every Ej in € we have by
that

resg, v = (1 (J))p ()\(J))

A\ b
= H (7).
1=0
Hence leads us to the decomposition asserted. O

Though the following will not be used later, it would be worthy to be
noticed.

Lemma 3.8 We have that
v = normE (ugoo)) € H*(P,F,).
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Proof. Let ( = normgw(ug’o)). Then we have that for j # oo
P( (00))

H2
= norm? (resenE, ugoo))

= norm® (res e ,ugoo))

- Gy - 0P

resg, ( = resg; norm

and that
_ P, (c0)
resg,, ¢ = resg,, norm’ (py ')
p—1 Bl
T16)
=0

= (1) = i OF
Thus implies for each F in & that
resg(v — () = 0.
Therefore, by we have that v = (. O

4. Finite groups with extraspecial Sylow p-subgroups

Henceforth we let k be a field of characteristic p containing F,:. We
let G' denote a finite group with P as a Sylow p-subgroup, unless otherwise

stated. We shall often represent by E a subgroup E; in &; in this case we
shall write Ao and p9 for )\gj ) and ugj ), respectively.
Definition 4.1 We let
p =Vl = xpp2F € HPP"U(P k),
o = P x99 € HXP*-D(P k).
Note that

o€ trh HXP V(B k).
Ee&

As in Tezuka-Yagita [11], we have, using Lemma 4.2, which we also
need to investigate direct sum decomposition of the Carlson module L,, the
following.



Mod p cohomology of finite groups with extraspecial Sylow p-subgroups 277

Theorem 4.1 The cohomologies p and o are universally stable.
Lemma 4.2 For E in £ we have

(1)
resg p = H (12 — EXa);

ﬁEFpg \Fp

p—1
resp o = — (/\2 H (/J,g —j)\g)) .

j€F,
Proof. (1) First we note that

tP=Dp 4 4(p=1)% L 4(=1)(p=2) 4 .. 4 4(p-1) L1 = H (t — ).
§€F, 2 \F,
Now by we have for E in £ that
respp=MP+ MP I A+ + MAPT 4 AP (M=p57 ", A=X071)
= H (12 — &EX2).

§€Fp2 ~F,

(2) It follows that

—1,\P~1
respo = — (Az(ug—uz)\g l))
p—1
= —</\2 IT (e —j)\2)) :
JEFR

U

For E; in £ the factor group P/E; = (b;), where bj = E;bj, acts by
conjugation on the set

{Lus-2, | € € Ep NFp}.

Since

b.
Lyp—exa” = Lyy—(e41)205

this action induces the action of P/E; = (b;) on the set F,2 \ F, such that
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€% =14¢ for € in F,2 \E,. Thus, if we write (F,2 \ F;)/ P for the quotient
set of Fy2 \ F, under this action, then the set

{L.uz—é)\z | § € (Fp2 N Fp)/P}

is a complete set of representatives of the conjugation on {L,, ¢, | £ €
F: \F,}.

Theorem 4.3 (1) The set {p,0} is a system of parameters of the coho-
mology algebra H*(P, k).

(2) The element p is regular in H*(P, k).

(3) The Carlson module L, is E-projective. In fact,

L= & L.

Eecg {G(Fpg \F,)/P

Proof. (1) This follows from Lemma 4.2.

(2) Applying [Corollary 2.5 to the system of parameters {p,o}, we
have our assertion.

(3) The Carlson module L, is £-projective because of [Corollary 2.5
Then [Lemma 2.6/ and [Lemma 4.2 imply that

L= @ Lu-en
ger2\Fp

Thus we obtain

L= @ L.’

E€E ¢€(F 2 ~F,)/P
O

Definition 4.2 By Theorem 4.1 we can take a class p in H2®-1(G, k)
such that

resp(p) = p;
and a class & in H2?*~1(G, k) such that

resp(o) = 0.

Lemma 4.4 The centralizer Cg(E) of a subgroup E in € has a normal
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p-complement:

Cg(E) = E x Oy (Cg(E)).

Proof.  The subgroup E is the Sylow p-subgroup of C¢(E). O

Definition 4.3 The Carlson module L is projective relative to the family
H2(G) = {Cq(E) | E € £} because of Corollary 2.5. Since Cg(E) has a
normal p-complement, the module L; is £-projective. Theorem 4.3 implies
that every indecomposable direct summand has vertex some F in £ and a
source some L, ¢x,, £ € E2 \F,. For E in £/G we denote by

(x{? |ie 1)y

the set of indecomposable direct summands of the Carlson module L5 with

vertices E¥. Theorem 4.3 also says that if ¢ # 7, then Xi(E) and X J(.E) have

different sources. We denote by X the direct sum of X,L-(E)s: XE) =
(E)

Dicrm X

Thus we have

Theorem 4.5 The Carlson module L decomposes as follows:
E
;= @ D X7,
Ee€&/G icI(E)

where Xi(E) s an indecomposable kG-module with vertezx E and a source

L,,_¢x, and if © # 3, then Xi(E) and XJ(-E) have different sources.

Definition 4.4 Let Yi(E) be a Green correspondent of X,L-(E) with respect

to (G, E,Ng(E)). The module Y;(E) is a direct summand of the Carlson
module L of the restriction p’ = res Ng(E) o by Theorem 2.1. Let us denote

by Y (B) the direct sum of Y,i(E)s: Y(E) = D,crm Yi(E).
Proposition 4.6 It holds that

(YENG = x(B) g (projective).

Proof. Let
X={Q|Q<E‘NE, ge G\ Ng(E)}.
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In what follows we omit the superscript (&) of X i(E) and Yi(E). Because the
induced module Y;¢ decomposes

Y€ = Xi® X/,

where X’ is X-projective, it is enough to show that the X-projective mod-
ule X;' is projective. If Z is an indecomposable direct summand of X’
and vtxZ = @Q < E9N FE, then a source of Z is a direct summand of
(Lpy—ex,? | genp)Q- Now for g an element in G the intersection EY N E is
not cyclic if and only if E = E9N E, that is g belongs to Ng(FE). Hence we
see for g outside Ng(E) that L, _¢),7 \BINE is projective; consequently, we
have that X-projective module X;’ is projective, as required. U

Corollary 4.7 We have that

Extio(Ls k) ~ @) Extiy.m P, k).
EcE/G

In particular

dim H?P-D-1(G k) = dim(Q N Y EN, )y (&
c(E)

EeE/G
and
dim H™*?#P-1(G, k) = dim H*(G, k)
+ > dimExtRy 55 k).
E€€/G

Proof. The isomorphism follows from [Proposition 4.6 and Eckmann-
Shapiro Theorem. Since the element p is regular, gives the
dimension formula. O

Thus if we could know a direct summand Y (&) of the Carlson module
Ly of the restriction p’ = res Ng(E) P, then we would know X (E),

Lemma 4.8 Under the notation above, for each i in I'EF) take Ly _gn,

as a source of the indecomposable kNg(FE)-module Y;(E). Then the set
{Lyy—en, |7 € IB)} is a complete set of representatives of the action of the
factor group Ng(E)/Cg(E) on the set {Ly,—¢x, | € € Fpz N Fp}.
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Proof. Let N = Ng(F) and let
Hi={9€ N | Lyy-e2.? ~ Lyp—g2.}

be the inertia group of the source L,, ¢, in N. Then the indecomposable

kN-module Yi(E) is the induced module M} of an extension M; of Ly —gx,
to the inertia group H;. The Carlson module L, decomposes as follows:

Ly=YP o (Pz),

where Z is indecomposable with vertex E; # E with source L“(J-)_ A0
2 ]2
The kN-modules Zs are projective over kE. Thus we obtain

Lyg = Y E) @ (projective).
On the other hand, it holds that

Lyg= @ Ly,—¢x, ® (projective).
E€Fp2 N 28

Consequently we have

D Liu-o.=Y"s

€EFp2\Fp
N
- @ s
i€I(E)
_ g
=P D Lu-ear’
i€I(E) geN/H;
which means our assertion. |

For each 7 in I(®), the module Yi(E) would be investigated in the fol-
lowing way. In what follows we omit the super script (E) and the subscript
i; namely, we denote by Y an indecomposable direct summand of L, with
vertex £ and by L,,_¢», a source of Y.

(1) First we investigate the inertia group
He ={g € NG(E) | Lyy—ex,® = Lyy—ex }-

In general the factor group H¢/Cg(F) is cyclic of order [ dividing p?—1
(see Lemma 5.11).
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2) Let us denote by Lo the extension of L,, ¢y, to Cg(F), which is
p2—EA2

guaranteed by Lemma 4.4. The induced module Lo™¢ has | indecom-
posable direct summands:

-1
LCHE = @ Mj.
=0

The module Y is the induced module MjNG(E) of some M;.

(3) Let p"” = resy, p’. The Carlson module L, has M; above as a direct
summand.

(4) The module M; would be determined by investigation of H*(Hg, k).

5. Green correspondents

Let the general linear group GL(2,F,) act on a group F = (c,a | P =
a? =1, ac = ca) by

¢

s
a? = a®cd, &I =a*c" for g=
u v

] € GL(2, F,);

and let

N = E »x GL(2,E,).

Remark 5.1 The group N is called a “Pal group” in Tezuka-Yagita [11].

A Sylow p-subgroup of N is generated by a and a matrix

o 1)

which we denote by b; we identify this p-group with our extraspecial p-group
P; hence the group E is identified with Ep in Section 3. Since the class p
in H*(P, k) is universally stable, we can take a homogeneous class p’ in
H*»®P-1) (N k) such that

resp p' = p.

Our aim is to examine the indecomposable direct summands of the Carlson
module L, with vertex FE.
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Definition 5.1 Regarding H(E, k) as Hom(E, k), we let
At=a", p=ch

and let
Ay =A(M), w2 =A4A(wm),

where A : HY(E, k) — H?*(E, k) is the Bockstein map.

Definition 5.2 For an arbitrary element £ in F,2 \ F, we denote by I(§)
the inertia group in GL(2, E,) of the Carlson module L, _¢»,:

I(¢) ={g € GL(2,F,) | Ly;—ex,? ~ Lyy—¢x, as kE-modules}.

Lemma 5.1 Let X2 —eX + f be the minimal polynomial of £ in F: \Fp.
Then we have

I(¢) = {s [(1) (1)] + u [(1) ;f] l (s,u) € B, x Fp \ {(0,0)}};
the group I(€) is cyclic of order p* — 1.

Proof. A nonsingular matrix g = f) :: belongs to I(§) if and only if
(B2 — €X2)9 = w(pa — €Xg) for some w in F,2 \ {0}, which is equivalent to
the condition that

wyg [“16] = [——f:l for some w € F,2 \ {0}.

Our assertion follows immediately. O

Corollary 5.2 The general linear group GL(2,F,) acts transitively on the
set {L#2—€)\2 | € € F2 \ F,}.

Proof. Let £ be an arbitrary element in Fp: \ F,. Then the orbit of
L,,—¢x, has length |GL(2,F,)|/(p* — 1) = p* — p, which coincides with the
number of modules in the set {L,,_¢x, | £ € Fpz N Fp}. O

Corollary 5.2 together with implies that there exits a unique
indecomposable direct summand of the Carlson module L, with vertex E,
which we denote by Y. We take L, ¢, as a source of Y, where { in F,2
is a primitive (p?> — 1)st root of unity. If we denote by X 2 _eoX + fo the
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minimal polynomial of &, then we have by that

_ /10 —fo
H§0-<[1 J DKE

Let H&) = Hj and let

o= [0 ]

1 €0

Since E is normal in N, the module Y is the induced module of an
extension M (&o) of Ly, ¢, to the inertia group Ho: Y = M(&)N. We
have to specify the extension M(&p). The induced module L,—¢or, Ho de-
composes as a direct sum of p? — 1 extensions My, ..., M2 _y:

LM2—§0)\2H0 — MO DD Mp2—2'

The extension M (&) is one of these extensions.
Let us investigate the p?> — 1 extensions My, ..., Mpz_.

Definition 5.3 We let
p*-2 |
up =1+ Z &5 (cho — 1),
i=0

P2
u, = 1+ Z &P (M —1).
i=0

The elements u; and wy, are units in kE; and kE = k{uy, u,). Moreover
it holds that

We describe the Carlson module L,,_¢,», using these units.

Lemma 5.3 It holds that

Lu2—€o>\2 = <((u1 - 1)p—1’0)7 (up —1u — 1))

Proof.  First we see the values of u; — 1 and up — 1 under the homomor-
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phisms Ay, p1 : F — k. Since

M:ia’ct— s, m:a’cdt—t
and
hi - 1 [_ g+i +§é+pi _ (1)+p+i +§é+p+pi
0 60 _ 5(;1; 66 . Egz é+i . g+pz ’
we see that
1 ‘
)\1 LU — 1 +— ) Z (1 — 5(()”—1)1)
=% 3
_ 1
o — &
1A
—-1)2
p1:u; —1+— P (& €§+(p ))
50_ 0 ;=0
)
§o— &
and
.
Aiup—1 — E€Pr 1)
’ o — & g °
. 1
o — &’
1 AR
1+(1-p)i
pH1:up—1 — pZ(€O+( p)z—ég)
=% i3
&
o — &

Therefore, we obtain

uy—1 +—0

p1 — EoAr : {

up—1 +— -1~
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Considering the Bockstein homomorphism, we see that

((up —1)P71,0) 0
p2 —&oA2: q (up—Liuy—1) +—0 ;
(0, (up - 1)p_1) — —1

and hence we have

L,uz—&oz\z - <((u1 - 1)p—1’0), (up —1u; - 1)>

O
Definition 5.4 We define primitive idempotents in kHy by
1 P2
=57 Y &7 hh, j=0,...,p" -2
It holds that
ejh() = Egej.

We also define one-dimensional kHy-module k; on which the group E acts
trivially and the matrix hg acts as multiplication by &].

Definition 5.5 Let us define a kHp-module M, by
Mo = {(e1(u1 — 1)P71,0), (e1(up — 1), ep(ur — 1))),

which is an extension of the module L,,_¢,», to the inertia group Hy. For
j=1,...,p° — 2 we let

Mj =M0®kj.

By direct calculation we obtain the following.
Lemma 5.4 It holds that
(8np+1(U1 - l)P—l’ 0 )a >

(enp-i-l(up - 1) ) e(n+1)p(u1 - 1))

Q2n(M0) — <
and that
Q2n+1(M0) — < (e(n+1)P(u1 o 1)’ 0 )’ > '

(e(n-f-l)p(up - 1)3 e(n+1)p+1(u1 - l)p_l)
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Therefore, the heads and socles of the extensions M;s are described as
follows.

Lemma 5.5 We have

(Mj) = kni1)p+i © knt1)p+i455
50 Q*"(M;) = knpt1+5 ® Kns)ptss

(M;) = Kns1)ps1+5 © Knt2)prs

(M;) =

Ent)p+i D Emt1)p+1+5-

In particular, each extension M; is periodic of period 2(p? — 1).

Proof.  The heads and socles of the extension My are as follows by
0.4:

hd Q*"(Mo) = kn11)p © K(nat)p+1;
soc 2" (Mp) = knpt1 ® K(n+1)pi
hd Q"+ (Mo) = k(ni1yps1 ® Kn+2)ps
soc Q2 (M) = Knt1)p ® k(nt1)p+1-

O

The extension M (&) we need is one of the M;s above; and at the same
time it is a direct summand of the Carlson module L, of p"” = resy, p'.

Lemma 5.6 We have

M(é-()) == Mp2_2.

Proof.  First let us show that
M(&) =My or Mpy_,.
The extension
Ey:0—k— Q YLy) — QPP D1y —0

is a P(L,»)-injective hull of the trivial module k by Lemma 2.2; therefore,
the image of the inclusion K — Q~1(L,/) above projects non-trivially to
every direct summand of Q_I(Lpn). Namely, we obtain

(k’ Q_1(1\4(50)))H0 76 0.
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The modules among M;, 7 =0,..., p? — 2, that satisfy the condition above
are

M() and Mp2—2'

By calculating a minimal projective resolution of k over kHy, we see that

n—1

hd Q°"(kp,) = @ (K(n—iypti ® kn—iyptri+1) D kn,
i=0

hd Q2+ (kg ) = @ (K(n—i)ptit1 D K(n—it1)p+i) -

1=0

Therefore, we have for ng = p? — p — 2 that
H2n0+1(H0, k) =0, H2(no+p(p—1))+1(H0, k) =0;
hence, by the cohomology exact sequence

0 — HZoH(Hy k) — H2(otp(e=1)+1 (k)

— Exti’}}’o+l(Lp//, k) — 0,

we have

Exti?{o:l(Lpu, k) =0.
In particular, we obtain

Exti ! (M (&), k) = 0.
Now because

hd Q> (M) = kp2_y @ ko,
we conclude that

M (&) = Mp2—2'

Consequently, we have
Proposition 5.7 It holds that

Y = My "
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and that

EthN (Y, k )

___{k when n=2p—3,2p—2,2p°> —4,2p> -3 (mod 2p? — 2)
0 otherwise

Proof.  Our assertions hold from Lemma 5.5. O

6. The cohomology algebra of the general linear group GL(3, )

In this section, using the facts we have proved in the preceding sections,
we calculate the mod p cohomology algebra of the general linear group
GL(3,E,).

Let G = GL(3,F,). The set

1
P = 0 t,u,v e F,
0

O =
_ e

is a Sylow p-subgroup of G, which is extraspecial of order p? and exponent
p. Let

1 1 0 1 0 0
a=|0 1 0|, b=1]0 1 1
0 01 0 0 1
Let us take
{E(])ElaEOO}

as a complete set £/G of representatives of conjugacy classes of elemen-
tary abelian p-subgroups of G of rank two. Then the Carlson module L3
decomposes as follows:

L;= @ x¥),

E€E/G

where X(E) is the sum of the indecomposable direct summands of L5 with
vertex F (see Definition 4.3). To investigate each X (E) we have to know the
normalizers Ng(FE). The following three lemmas follow from [Corollary 5.2
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Lemma 6.1 We have
Ng(Eo)

) P
' |:’U wjl GGL(Z’FP), Sv,y,zer, x#0

Il
o O 8
€ & n

t
v
The factor group Ng(Eo)/Ca(Eo) is isomorphic to Aut Ey (~ GL(2,E,));
this factor group acts transitively on the set {Lu(o)— 20 RS E: \F,}.

2 2

N—

Lemma 6.2 We have

(r Yy z
NG(El)——-J 0 zt wu ,m,y,z,t,uEFp,x;ﬁO,t;&O ;
([0 0 xt?
([z v =z
Ca(E) =4 |0 = y||2u2€F, 40
(L0 0 =z

The factor group Ng(E1)/Cq(E) is isomorphic to the subgroup

{[O tzl ItuEFp, t#O}

of the automorphism group Aut Ey. For an element £ in F,2 \F, the inertia
group H¢ of the module L OENG is the centralizer CG(El)' and hence the

factor group NG(El)/Cg(El) acts transitively on the set {L (_gx(M | € €
2 \E}.

Lemma 6.3 We have

Ng(Eoo)

t u b w
= vow y ' [ } € GL(2,F,), z,y,2€ Fy, 2#0
00 2| V"

The factor group Ng(Ew)/Cc(Ew) is isomorphic to Aut Eo, (~ GL(2, E,));
this factor group acts transitively on the set {L”(oo) X&) | € € Bz N F,}.
2 TS

For each Ej in £/G the factor group Ng(E;)/Cg(E;) acts, by Lemmas
6.1, 6.2, 6.3, transitively on the set {Lu(j) Ay | € € F2 \ Ey}. Therefore,
2 T8N2
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there exists only one indecomposable direct summand of L; with vertex Ej
by Lemma 4.8. Thus by Theorem 4.5 the Carlson module Lz decomposes
as

L'E:X()@Xl@Xoo,

where X; is an indecomposable module with vertex F;. Let Y; be a Green
correspondent of X; with respect to (G, E;, Ng(E;)). The modules Yy and
Y are the ones obtained in the previous section. Let us examine the module
Y1. Let Cy = Cg(E1). The inertia group He in Ny = Ng(E)) for an element
¢ in Ej2 \ F, is the centralizer C';. Hence, if we denote by L¢, an extension
of L”(zl)_ ex(V to the centralizer C, then we see that Y; = L¢, N Therefore

we have

dim Extgy, (Y1,k) = dimExtyg (L ) ., ,1),k) =2, n>0.
1 1Y uy " =€Ay

This together with [Proposition 5.7 leads us to the following.
Theorem 6.4 It holds that

dim Ext} (L3, k)

_ {4 when n=2p—3,2p—2,2p* — 4,2p* — 3 (mod 2p? — 2)
2 otherwise

Theorem 6.5 (1) We have

dim H"*?%P=1)(@, k) = dim H™(G, k)

. {4 when n = 2p—3,2p — 2,2p* — 4,2p*> -3 (mod 2p? — 2)
2 otherwise

(2) We have
dim H?P-D-1(@q k) = 4.

Proof.  These follow from [Corollary 4.7 and [Theorem 6.4l O
Let

r=2p(p—1), s=2(p*1).

Corollary 6.6 Let h; = dim H (G, k). Then the Poincaré series of the
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cohomology algebra H*(G, k) is

r—1 s—1
(Z hin) (l - XS) +2X7 ZXi+2(XS—1 + X5 +X1‘+s—2 + Xr+s—1)
=0 i=0
(1-X7)(1-X9)

Proof. Let P(X) =32 hpX™and f(X)=ho+m X+ - 4+h 1 XL

n=0
Then we have from the dimension formula above the following equation

P(X)-f(X)=X"P(X)+2X"(14+ X +--)
+2(Xs—1 + X8 +Xr+s—2+Xr+s—1)(1+Xs _._XQS_'_'-_).

Resolving this equation we have our Poincaré series. O

We have to determine the dimensions of the cohomology groups of de-
gree up to r — 1. To do that we use Green [6] Proposition 18 as in Tezuka-
Yagita, and Milgram-Tezuka [8]. We can also find generators by the
same method. Since the classes p in H"(G,k) and ¢ in H%(G, k) form a,
system of parameters, the cohomology algebra H*(G,k) is generated by
finitely many homogeneous classes of degree up to r + s — 2 over the poly-
nomial subalgebra k[p,c]. First we find the classes that are stable under
the Sylow normalizer Ng(P). We have observed the actions of automor-
phisms of the Sylow p-subgroup P in [Lemma 3.2. Then among the classes
obtained above we find the classes which restrict to Ng(FE)-invariant classes
in the subgroups F in £/G. We have observed the images under the restric-
tions to the subgroups F in £ in Lemma 3.3. Thus we have the following
Propositions and [6.8.

Definition 6.1 Let
A=of"! B= ﬁg_l, N =vi 1

We identify the classes in H*(G, k) with its restrictions to H*(P, k).

Proposition 6.7 The cohomology groups H"™(G,k) of degree n up to
2p(p — 1) — 1 have the following bases over k :
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Bases of H**(G, k), 2n < 2p(p — 1) — 2

degree basis
2(p-1) A+ B+ x2(p-1)
2(p—-1)7, A71B,
71=2,...,p—3 Xz(,,_j)l/j”l
2(p-1)(p-2) AP=B,
XavP~3,
BanpvP 3
2(p-1)(p-1) AP=2B,
BamarP 3 A
2i+2(p—1)7, 0

0<j<p—4,1<i<p-3-j

2(p—-2-j)+2(-1)j,
1<j<p-3

p—2—j gp—1—j j—1
Qg By N2V’

2(p—1-j)+2(p— 1)
2<j<p-3

p—1—j op—j j—~2
o By "mriTA

2i +2(p — 1)7,
1<i<p-3,p—-i<j<p-1

. . —1—i L ,
a%ﬁé,/p ZAJ p+l,

a%ﬁ%+1n2yp—3—iAj—p+2+i

2(p - 2)

0

2p—-2)+2(p—-1)

0

2(p—2)+2(p—1)4,
2<j<p-2

p—2 gp—2 j—2
oy By “vAl

2p-2)+2(p-1(p-1)

p—2 op—2 -3
oy ‘35 VAP,
p—2 -2
a2 772,/13 )

B 07"

293
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Bases of H?"*t1(G,k), 2n+1<2p(p—1) — 1

degree basis
2i+1+42(p—1)j, 0
0<j<p-3,0<i<p—-3-—j
2(p-2~j)+1+2(p-1)j, A
0<i<p-3
21+ 14+ 2(p—1)j, apob Bt lyp=2=i AT Pt
2<j<p-1,p-1-3<i<p—3| By tnaP3-tAT-pt2+i
2(p-2)+1 a2 4+ 31802+ X2p—3
2p—2)+1+2(p-1)j7, a1y ?AIT1B,
1 S.] Sp-Sv Xg(p_l_j)_lllj
20p—-2)+1+2(p—1)(p-2) ajob 2AP-3B
2p-2)+14+2(p-1)(p—-1) o108 2AP2B,

b P2,

By 05072,

X2p—11/p_2

Proposition 6.8  The factor spaces H™?*P=1)(G k)/H™(G,k)p, 0 <
n < 2(p? — 1) — 2 have the following bases:

Bases of H2"*7(G,k)/H*"(G,k)p for 0 < 2n < s — 2

2n basis
0 BanerP~3 A2,
AP-1B

continued on next page



Mod p cohomology of finite groups with extraspecial Sylow p-subgroups

continued from previous page

2n basis
2(p—1) BamevP 3 A3,
APB,
AN,
BN
2(p—1)7, BamorP 3 ATt
j=2,...,p AP-l1+ipB
2i 4+ 2(p — 1)5, ab BsvPT T AT

7J=0,...,p, 0 =1,...

,p—3

agﬂ%+ln2,/p-—3—iA2+i+j

2(p—2) +2(p - 1)j,
j=0,...,p—1,

pP—2 gp—2 —2+43
az /82 I/Ap +J’

ab " “nP 2AB

Bases of HZ"*1*7(G, k)/H?" (G, k)pfor 0 <2n+1 < s—2

2n+1

basis

%+ 1+ 2(p — 1),

7=0,...,p,1=0,...,p—3

0 Bipr—2 A,

agﬁgﬂnwp—s—i/liﬂﬂ

2p—-2)+1

-2 Ape

a;ab " APTIB,
p—2 -2

oy “m3vPT4B,

2 1

—92 _ - _
b navP 2 A + b vl

—05 6307 *B + 55 vP~!

2(p—2)+1+2(p—1)j,
j=1,...,p—1

—2 i
a1l 2 AT 1+P B,

ol P2 4B

295
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Definition 6.2
follows:

H. Sasaki

Let us define some cohomology classes of H*(G,k) as

class definition degree

X A+ B+ xa(p-1) 2(p-1)

Xj, X2(p—j)1/j—1 2(p - 1).7

j = 21 ey D — 2

v ajab” >4 ﬁlﬁg + X2(p-2)+1 | 2(p—2)+1

?;, X2(p—j—2)+1¥° 2p-2)+1+2(p-1)j
) =1,...,p—3

2 X2(p—1)+1VF 2 2p—2)+1+2(p—1)?
X AN 2(p? — 1)

T BN 2(p? - 1)

ry, o} ™I pE Iy 2(p—j) +2(p— 1)j
J=2,...,p—1

4;, ayeh gy 2(p—1~7)+1+2(p—1)j
j = 27 D — 1

E;, AT il 2p-2-j)+2(p—1)j
j = 1’ P — 2

Z;, oI B Iyl 2p—2-j)+1+2(p—1)j
j = 11 Y U 2

H, o P2 2(p—2) +2(p — 1)

6, — L 2g,P2 2(p — 2) + 2(p — 1)?

H, a’z’_zngup"z 2(p—2)+1+2(p—1)?2

continued on next page
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continued from previous page

class definition degree

Os —~ B 203072 2(p—2)+1+2(p— 1)
E oG P2 A+ arah TPt | 2(p—2)+ 14 2(p - 1)p
11 —BE 20307 2B + (1887 | 2(p—2) + 1+ 2(p— 1)p

By Propositions 6.7 and 6.8 we have the following theorem. Note that

the classes p, o, and the classes defined in Definition 6.2 are defined over
the prime field F,.

Theorem 6.9 The cohomology algebra H*(GL(3,F,),F,) is generated by
the classes p, o, and the classes defined in Definition 6.2.

By the definitions of our generators and the relations in [Theorem 3.1
we obtain

Theorem 6.10 The generators above satisfy the relations in the tables
below, where

p=p-XP

classes attached with dagger marks are of odd degrees; a blank entry in the
upper right triangle means that corresponding product of generators has no
relations; and entries lower than main diagonal are obtained from entries
in the upper right triangle:
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¢ |CX|CXi|CP (¢ (2 (CX (KT |Ch 4 CEr ¢4
X 0 0 |HsX |X2% |X2F
X; 0 |0 |0 |0 0 0 0 0 0 0
Il 0 |0 |—HoX|UXp|¥Xp |AX 0 0 E X
o, 0 |0 0 0 0 0 0 0
ot 0 H3Y |—63T | Zi_1Xp |Ei-1 X0 |0 0
by X29? |\MLXP |AXP |EXP|ZXp
T nLXxpy |AXp |EXp|ZiXp
I; See below
At 0 0 I;E,
E; 0 0
Z;t 0
H,
62
Hj!
04!
=t
It
p
o

¢ | Iy CA CEy CZy

j+i-pP Ajtri—pp Ejri-pp Zjvi—pp, JHI>Pp




Mod p cohomology of finite groups with extraspecial Sylow p-subgroups 299

¢ |CH2 (62 CHs (63 < ¢l1 ¢p |Co
X H, X H3X HsX? H3X? -X2%5

+ UXp | +¥Xp
X; |0 0 0 0 0 0 0
ARY 0 HoX H, X H:X? H:X? —-UXp
&7 10 0 0 0 0 0 0
2t o 0 0 0 —-H,Y | 6.T —H3; X — 6T

+ H3 Xp'
z Ho Xp' Hs X7 H3X?p .
- UXp?

T |H)Xp HsXp H3X?%p —T?

+ U Xp?
Ij |EjorXP | Ejor X0 | 21 XP | Z5-1XP | 251 X7 | Zi-1 X2F ~I; X7

+ A; X0 | +A4;Xp
A;t|o 0 E; 1 XP |Ej-1 XP |E;-1 X0 | —Ej 1 X2%p ~A; Xp
E; |0 0 0 0 0 0 —E; Xp
z;t o 0 0 0 -E;Xp |-E;Xp -Z; X7
Hy |0 0 0 0 0 0 ~H, Y
O, 0 0 0 0 0 6.T
Hst 0 0 —H,Y |-H.Xp —-H3%
65t 0 H:Xp |-6,T 65T
=t 0 0 -Ex
mt 0 —~IT
p
g 22472

_ X2p~v2
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Theorem 6.11 The generators of the cohomology algebra H*(GL(3, Fp),
F,) in Theorem 6.9 and relations in Theorem 6.10 are fundamental defining

relations.

Proof. Let A =@, ,An, Ao = F,, be a commutative graded algebra
over F, defined by the homogeneous elements as in Definition 6.2 and two
homogeneous elements that have the same degrees as p, o with relations
described in [T’heorem 6.10. It is enough to show for each n that the homo-
geneous submodule A, has the same dimension as H"(G, F,). We use the
same notation for the generators of A as H*(G,F,). Then we see from the
relations that the elements of A are linear combinations of the following

elements:

H. Sasaki

element of even degree

degree

Xip

2(p - 1)1 + pj)

Xip, 2(p — 1)(I + pj)

[=2,...,p—-2

zup 2(p—1)(pj + (p+ 1)u)

Tup 2(p—1)(pj + (p+ 1)u)

nXw@, 20— 1)+ 2(p—1)(I + i+ pj)

l = ) P — 1

EX'Y, 20—-2-0)+2(p-1)(+i+pj)

l= ’ ap_2

Hy X' 20 -2)+2(p-1)(p—1+i+pj)
HyXvp 20—-2)+2(p—D(p—1+pj+ (p+1)u)
O T 20-2)+2(p-1)(p—1+pj+ (p+1)u)
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element of odd degree | degree

A X, 20—-1-0)+1+2(p-1)(1+i+pj)
l=2,...,p—-1

ZI X, 20—-2-0)+1+2(pp-1)(+i+pj)
l=1,....,p—-2

X'y 200-2)+1+2(p - 1)(i + pj)

H3X'p 20-2)+1+2(p-1)(p—1+i+pj)

&7, 2(p—2)+1+2(p - 1)(I + pj)
I=1,...,p-3

02p 20p—2)+1+2(p—1)(p— 1 + pj)

B3p” 2(p—=2)+1+4+2(p-1)(p—1+pj)

H32vp 2p-2)+1+2(p-1)(p—1+pj+(p+1u)
3T p 2p-2)+1+2(p-1)(p—1+pj+(p+1)u)
EXvp 2p-2)+1+2(p-1)(p+pj+ (p+1)u)
arp 2p—-2)+1+2(p-)(p+pj+ (p+ u)

From these tables we see that
(1) for n < 2p(p — 1) — 1 the homogeneous submodules A, and
H"(G,E,) have the same dimensions;
(2) the factor space A, op(p—1)/Anp has the same dimension as that
in H*(G, F,) for each n > 0.
We conclude that the algebra A is isomorphic to the cohomology algebra
H*(G,E,). a
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