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Examples of compact Toeplitz operators on
the Bergman space

Kazuhiro KASUGA

(Received August 2, 2000)

Abstract. R. Yoneda studied compact Toeplitz operators on the Bergman space for
special symbols and he posed several problems. In this paper, we give counterexamples
for some of these problems.

Key words: Bergman space, Toeplitz operator, compact operator.

1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} . Let dA be the
normalized area measure on D . The Bergman space on D , denoted by
L_{a}^{2}(D) , is the space of analytic functions f on D such that

||f||^{2}= \int_{D}|f(z)|^{2}dA(z)<\infty .

Let P be the orthogonal projection from L^{2} (D , dA) onto L_{a}^{2}(D) . For \phi in
L^{\infty}(D) the Toeplitz operator T_{\phi} : L_{a}^{2}(D) - L_{a}^{2}(D) is defined by T_{\phi}f=

P(\phi f) , f\in L_{a}^{2}(D) . Put

k_{z}(w)= \frac{1-|z|^{2}}{(1-\overline{z}w)^{2}} for z , w\in D ,

and k_{z} is called the normalized reproducing kernel for z . For z\in D , define

\varphi_{z}(w)=\frac{z-w}{1-\overline{z}w}, w\in D .

It is known several characterization for the compactness of T_{\phi} . In [5,
Theorem 4], Zheng proved the next theorem.

Theorem A Let \phi be in L^{\infty}(D) . Then the following are equivalent.
(i) T_{\phi} is a compact operator on L_{a}^{2}(D) .
(ii) ||T_{\phi}k_{z}|| -arrow 0 as |z|arrow 1-
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(iii) ||P(\phi 0\varphi_{z})||arrow 0 as |z|arrow 1-

In [1, Corollary 2.5], Axler and Zheng proved the next theorem.

Theorem B Let \phi be in L^{\infty}(D) . Then T_{\phi} is a compact operator on
L_{a}^{2}(D) if and only if \tilde{\phi}(z) –0 as |z|arrow 1- , where

\tilde{\phi}(z)=\int_{D}(\phi 0\varphi_{z})(w)dA(w) z\in D .

Theorem B supplies the most useful characterization of the compact
Toeplitz operators in the sense that to check the condition \tilde{\phi}(z)arrow 0 as
|z|arrow 1- is easier than the conditions in Theorem A.

Let

S_{z}= {w\in D : |z|<|w|<1 , | arg z- arg w|<2\pi(1-|z|) }

be the Carleson square at z and |S_{z}| be the dA-measure of S_{z} . The next
theorem is an immediate consequence of Luecking’s result [3, p.349].

Theorem C Let \phi be a nonnegative function on D. Then T_{\phi} is a compact
operator on L_{a}^{2}(D) if and only if \hat{\phi}(z)arrow 0 as |z|arrow 1- , where

\hat{\phi}(z)=\frac{1}{|S_{z}|}\int_{S_{z}}\phi(w)dA(w) z\in D .

In [2], Korenblum and Zhu characterized the compactness of T_{\phi} for a
bounded radial function \phi in D .

Theorem D Let \phi be a bounded radial function in D. Then T_{\phi} is a

compact operator on L_{a}^{2}(D) if and only if

\lim_{xarrow 1-}\frac{1}{1-x}\int_{x}^{1}\phi(r)dr=0 .

Recently, Yoneda generalized this theorem for some special symbols
[4]. And he posed several problems. The purpose of this paper is to give
counterexamples for some of his problems.

2. Examples

The following is one of Yoneda’s problems.

Problem Let \{a_{n}\} be a sequence in [0, 1) such that 0=a_{0}<a_{1}<
<a_{n} and a_{n}arrow 1 as n – \infty . Let E_{n}=[a_{n}, a_{n+1}) . Let \phi(re^{i\theta})=
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\sum_{n=0}^{\infty}e^{in\theta}\chi_{E_{n}}(r) . Whether T_{\phi} is compact or not?

We shall show that both cases occur. An example for which T_{\phi} is not
compact is given in Example 1 and an example for which T_{\phi} is compact is
given in Example 2.

Example 1 We choose a sequence \{R_{n}\}\subset(\frac{1}{2},1) such that R_{n} increases
to 1. By induction, we can choose sequences \{a_{n}\} and \{r_{n}\} which satisfy
the following;

| \frac{1}{(a_{n})^{n}}-1|<\frac{1}{n} for n\geq 1 , (1)

0=a_{0}<a_{n}<r_{n}<a_{n+1}<1 for n\geq 1 , (2)

and

\varphi_{r_{n}}(R_{n})=a_{n} , \varphi_{r_{n}}(-R_{n})<a_{n+1} . (3)

First, put r_{0}=R_{0} . Then \varphi_{r_{0}}(R_{0})=a_{0}=0 and a_{0}<r_{0} . We find a_{1} such
that | \frac{1}{a_{1}}-1|<1 and \varphi_{r_{0}} (-R_{0})<a_{1} . Then a_{0}<r_{0}<\varphi_{r_{0}} (-R_{0})<a_{1} .
Suppose that r_{0} , \ldots , r_{k-1} and a_{0} , , a_{k} are chosen satisfying (1), (2) and
(3). There exists r_{k} such that \varphi_{r_{k}}(R_{k})=a_{k} . Then a_{k}<r_{k} . Choose a_{k+1}

such that | \frac{1}{(a_{k+1})^{k+1}}-1|<\frac{1}{k+1} and \varphi_{r_{k}} (-R_{k})<a_{k+1} . Then a_{k}<r_{k}<

a_{k+1} . This completes the induction.
Put E_{n}=[a_{n}, a_{n+1}) and \phi(re^{i\theta})=\sum_{n=0}^{\infty}e^{in\theta}\chi_{E_{n}}(r) . Then

| \int_{D}\phi\circ\varphi_{r_{n}}dA-\int_{D_{R_{n}}}\phi\circ\varphi_{r_{n}}dA|arrow 0 as narrow\infty (4)

and

| \int_{D}z^{n}\circ\varphi_{r_{n}}dA-\int_{D_{R_{n}}}z^{n}\circ\varphi_{r_{n}}dA|arrow 0 as n - \infty , (5)

where D_{R_{n}}=\{z\in \mathbb{C} : |z|<R_{n}\} . We have

\varphi_{r_{n}}(R_{n})\leq|\frac{r_{n}-w}{1-r_{n}w}|\leq\varphi_{r_{n}}(-R_{n}) , w\in D_{R_{n}} .

Then by (3),

\varphi_{r_{n}}(D_{R_{n}})\subset\{re^{i\theta} : a_{n}\leq r<a_{n+1}\} . (6)
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Therefore

\int_{D_{R_{n}}}\phi 0\varphi_{r_{n}}dA=\int_{D_{R_{n}}}e^{in\theta}\circ\varphi_{r_{n}}dA=\int_{D_{R_{n}}}\frac{z^{n}\circ\varphi_{r_{n}}}{|z^{n}\circ\varphi_{r_{n}}|}dA . (7)

By (6) and (1),

| \int_{D_{R_{n}}}(\frac{z^{n}\circ\varphi_{r_{n}}}{|z^{n}\circ\varphi_{r_{n}}|}-z^{n}o\varphi_{r_{n}})dA|\leq\int_{D_{R_{n}}}|\frac{1}{(a_{n})^{n}}-1|dA

\leq\frac{1}{n}dA(D_{R_{n}}) .

Then by (7),

| \int_{D_{R_{n}}}\phi 0\varphi_{r_{n}}dA-\int_{D_{R_{n}}}z^{n}o\varphi_{r_{n}}dA| -0 as n -arrow\infty .

Hence by (4) and (5),

\int_{D}\phi 0\varphi_{r_{n}}dA-\int_{D}z^{n}\circ\varphi_{r_{n}}dAarrow 0 as narrow\infty .

Now, by [6, p.52],

\int_{D}z^{n}\circ\varphi_{r_{n}}dA=\langle z^{n}k_{r_{n}}, k_{r_{n}}\rangle=(r_{n})^{n}

Therefore

\int_{D}\phi\circ\varphi_{r_{n}}dA-(r_{n})^{n}arrow 0 as narrow\infty .

By (1), (a_{n})^{n}arrow 1 . Then by (2), (r_{n})^{n}arrow 1 . Hence

\int_{D}\phi\circ\varphi_{r_{n}}dAarrow 1 as narrow\infty .

By Theorem B , T_{\phi} is not compact.

Example 2 Let 0\leq t<1 . Then we have

\sup_{0\leq r\leq t}|\int_{0}^{2\pi}\frac{e^{in\theta}}{|1-re^{i\theta}|^{4}}d\theta/2\pi|arrow 0 as narrow\infty .

Let N_{t} be the smallest positive integer satisfying

\sup_{0\leq r\leq t}|\int_{0}^{2\pi}\frac{e^{in\theta}}{|1-re^{i\theta}|^{4}}d\theta/2\pi|\leq\frac{1}{2} for all n\geq N_{t} . (8)
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Then it is easy to see that N_{0}=1 , N_{t} increase with respect to t , N_{t}arrow\infty

as tarrow 1 , N_{t} is left continuous, and N_{t}=1 for sufficient small t . Put

\{n_{j}\}_{j=0}^{\infty}=\{N_{t} : 0\leq t<1\} , where n_{j}<n_{j+1} for any j .

Then n_{0}=1 . For each positive integer j , we define c_{j}= \inf\{t : N_{t}=n_{j}\} .
Then we get

0=c_{0}<c_{1}< . <1 ,

\{t : N_{t}=n_{0}\}=[0, c_{1}] ,

and

\{t : N_{t}=n_{j}\}=(c_{j}, c_{j+1}] j\geq 1 .

Next we divide the interval [0, c_{1}] into n_{1} equal intervals. And we divide
the interval (c_{j}, c_{j+1}] into n_{j+1} equal intervals. Then we get divided points
\{a_{k}\} such that

0=a_{0}<a_{1}<\cdots<a_{k}<1 and a_{k}arrow 1 as karrow\infty .

For a sufficiently large k , there exist a unique j_{k}\geq 1 such that [a_{k}, a_{k+1})\subset

[c_{j_{k}}, c_{j_{k}+1}] . We put E_{k}=[a_{k}, a_{k+1}) . Then by the above, we have

N_{t}\leq n_{j_{k}} for all t\in E_{k} and n_{j_{k}}\leq k . (9)

Put \phi(re^{i\theta})=\sum_{k=0}^{\infty}e^{ik\theta}\chi_{E_{k}}(r) . Let r\in E_{k} . By (9), N_{r}\leq n_{j_{k}}\leq k . Since
N_{t} is left continuous, N_{a_{k+1}}\leq k . By (8),

\sup_{0\leq r\leq a_{k+1}}|\int_{0}^{2\pi}\frac{e^{ik\theta}}{|1-re^{i\theta}|^{4}}d\theta/2\pi|\leq\frac{1}{2} .

Therefore

| \int_{0}^{2\pi}\frac{e^{ik\theta}}{|1-|z|re^{i\theta}|^{4}}d\theta/2\pi|\leq\frac{1}{2}

for r\in E_{k} and z\in D . Thus

| \int_{D}\phi\circ\varphi_{z}dA|=|\int_{D}\phi|k_{z}|^{2}dA|=(1-|z|^{2})^{2}|\int_{D}\frac{\phi(w)}{|1-\overline{z}w|^{4}}dA(w)|

=(1-|z|^{2})^{2}| \int_{0}^{2\pi}\int_{0}^{1}\frac{\sum_{k=0}^{\infty}e^{ik\theta}\chi_{E_{k}}(r)}{|1-\overline{z}re^{i\theta}|^{4}}2rdrd\theta/2\pi|
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\leq(1-|z|^{2})^{2}\sum_{k=0}^{\infty}\int_{a_{k}}^{a_{k+1}}2rdr|\int_{0}^{2\pi}\frac{e^{ik\theta}}{|1-\overline{z}re^{i\theta}|^{4}}d\theta/2\pi|

\leq(1-|z|^{2})^{2}\sum_{k=0}^{\infty}\int_{a_{k}}^{a_{k+1}}rdr

= \frac{1}{2}(1-|z|^{2})^{2}arrow 0 as |z|arrow 1 .

Hence by Theorem B , T_{\phi} is compact.

For any \psi in L^{\infty}(D) , we put

\psi_{j}(r)=\int_{0}^{2\pi}\psi(re^{i\theta})e^{-ij\theta}d\theta/2\pi (j\in Z) ,

where Z is the set of all integers. Yoneda asked whether the following
conditions are equivalent or not;

(i) T_{\psi} is compact,

(ii) \lim_{xarrow 1-}\frac{1}{1-x}\int_{x}^{1}\psi_{j}(r)dr=0 (j\in Z) .

In [4, Theorem 1], Yoneda proved that condition (i) implies condition
(ii). But condition (ii) does not imply condition (i). For, let \triangle be a triangle
with vertices e^{i\alpha} . e^{i\beta} . e^{i\gamma} , and \psi be the characteristic function of \triangle . By
Theorem C , it is easy to see that T_{\psi} is not compact. Since

| \psi_{j}(r)|\leq\int_{0}^{2\pi}\psi(re^{i\theta})d\theta/2\piarrow 0 as rarrow 1 ,

then we have

\lim_{xarrow 1-}\frac{1}{1-x}\int_{x}^{1}\psi_{j}(r)dr=0 (j\in Z) .

For any \phi in L^{\infty}(D) , we put

\Phi(xe^{i\theta})=\frac{1}{1-x}\int_{x}^{1}\phi(re^{i\theta})dr

and if the limit exists as xarrow 1- , we put

\Phi(e^{i\theta})=\lim_{xarrow 1-}\Phi(xe^{i\theta}) .

Then Yoneda showed the existence of \phi such that \Phi(e^{i\theta})=0a.e . \theta and T_{\phi}

is not compact. And Yoneda asked whether the following assertion holds or
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not; if \phi(re^{i\theta}) is a \theta-continuous function for each r\in[0,1] and \Phi=0a.e . \theta ,
then T_{\phi} is compact. Let \triangle be a triangle with vertices e^{i\alpha} . e^{i\beta} . e^{i\gamma} . and \chi\triangle

be the characteristic function of \triangle . There exists a sequence of continuous
functions \{\phi_{n}\}_{n} such that 0\leq\phi_{n+1}\leq\phi_{n}\leq 1 on D , \phi_{n}(re^{i\theta}) -0 as rarrow

1- for e^{i\theta}\not\in\{e^{i\alpha}, e^{i\beta}, e^{i\gamma}\} , and \phi_{n} –
\chi\triangle pointwisely. Then \Phi_{n}(e^{i\theta})=0

a.e. , and by Theorem C , it is not difficult to see that T_{\phi_{n}} is not compact
for a large n .

Also Yoneda asked [4, p.573] that there is an example of \phi such that T_{\phi}

is compact and \Phi(e^{i\theta})\not\equiv 0 . An example of such \phi is the following. Let E
be a concave triangle with vertices 1, \frac{1}{2}i , and - \frac{1}{2}i such that the angle of E
at 1 is zero. Let \phi be the characteristic function of E . Then by Theorem C ,
T_{\phi} is compact and \Phi(1)=1 .

The author expresses his deep appreciation to his adviser Professor Keiji
Izuchi who guided him through each portion of this paper.
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