Examples of compact Toeplitz operators on the Bergman space

Kazuhiro KASUGA

(Received August 2, 2000)

Abstract. R. Yoneda studied compact Toeplitz operators on the Bergman space for special symbols and he posed several problems. In this paper, we give counterexamples for some of these problems.

Key words: Bergman space, Toeplitz operator, compact operator.

1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} . Let dA be the normalized area measure on D. The Bergman space on D, denoted by $L^2_a(D)$, is the space of analytic functions f on D such that

$$||f||^2 = \int_D |f(z)|^2 dA(z) < \infty.$$

Let P be the orthogonal projection from $L^2(D, dA)$ onto $L^2_a(D)$. For ϕ in $L^{\infty}(D)$ the Toeplitz operator $T_{\phi} : L^2_a(D) \to L^2_a(D)$ is defined by $T_{\phi}f = P(\phi f), f \in L^2_a(D)$. Put

$$k_z(w) = \frac{1 - |z|^2}{(1 - \bar{z}w)^2}$$
 for $z, w \in D$,

and k_z is called the normalized reproducing kernel for z. For $z \in D$, define

$$\varphi_z(w) = \frac{z-w}{1-\bar{z}w}, \quad w \in D.$$

It is known several characterization for the compactness of T_{ϕ} . In [5, Theorem 4], Zheng proved the next theorem.

Theorem A Let ϕ be in $L^{\infty}(D)$. Then the following are equivalent.

- (i) T_{ϕ} is a compact operator on $L^2_a(D)$.
- (ii) $||T_{\phi}k_z|| \rightarrow 0 \text{ as } |z| \rightarrow 1-.$

¹⁹⁹¹ Mathematics Subject Classification: 47B35, 47B07.

(iii) $||P(\phi \circ \varphi_z)|| \to 0 \text{ as } |z| \to 1-.$

In [1, Corollary 2.5], Axler and Zheng proved the next theorem.

Theorem B Let ϕ be in $L^{\infty}(D)$. Then T_{ϕ} is a compact operator on $L^2_a(D)$ if and only if $\tilde{\phi}(z) \to 0$ as $|z| \to 1-$, where

$$\tilde{\phi}(z) = \int_D (\phi \circ \varphi_z)(w) dA(w) \quad z \in D.$$

Theorem B supplies the most useful characterization of the compact Toeplitz operators in the sense that to check the condition $\tilde{\phi}(z) \to 0$ as $|z| \to 1-$ is easier than the conditions in Theorem A.

Let

$$S_z = \{ w \in D : |z| < |w| < 1, \ |\arg z - \arg w| < 2\pi(1 - |z|) \}$$

be the Carleson square at z and $|S_z|$ be the *dA*-measure of S_z . The next theorem is an immediate consequence of Luccking's result [3, p.349].

Theorem C Let ϕ be a nonnegative function on D. Then T_{ϕ} is a compact operator on $L^2_a(D)$ if and only if $\hat{\phi}(z) \to 0$ as $|z| \to 1-$, where

$$\hat{\phi}(z) = \frac{1}{|S_z|} \int_{S_z} \phi(w) dA(w) \quad z \in D.$$

In [2], Korenblum and Zhu characterized the compactness of T_{ϕ} for a bounded radial function ϕ in D.

Theorem D Let ϕ be a bounded radial function in D. Then T_{ϕ} is a compact operator on $L^2_a(D)$ if and only if

$$\lim_{x \to 1-} \frac{1}{1-x} \int_{x}^{1} \phi(r) dr = 0$$

Recently, Yoneda generalized this theorem for some special symbols [4]. And he posed several problems. The purpose of this paper is to give counterexamples for some of his problems.

2. Examples

The following is one of Yoneda's problems.

Problem Let $\{a_n\}$ be a sequence in [0,1) such that $0 = a_0 < a_1 < \cdots < a_n$ and $a_n \to 1$ as $n \to \infty$. Let $E_n = [a_n, a_{n+1})$. Let $\phi(re^{i\theta}) =$

 $\sum_{n=0}^{\infty} e^{in\theta} \chi_{E_n}(r)$. Whether T_{ϕ} is compact or not?

We shall show that both cases occur. An example for which T_{ϕ} is not compact is given in Example 1 and an example for which T_{ϕ} is compact is given in Example 2.

Example 1 We choose a sequence $\{R_n\} \subset (\frac{1}{2}, 1)$ such that R_n increases to 1. By induction, we can choose sequences $\{a_n\}$ and $\{r_n\}$ which satisfy the following;

$$\left|\frac{1}{(a_n)^n} - 1\right| < \frac{1}{n} \quad \text{for} \quad n \ge 1,\tag{1}$$

$$0 = a_0 < a_n < r_n < a_{n+1} < 1 \quad \text{for} \ n \ge 1,$$
(2)

and

$$\varphi_{r_n}(R_n) = a_n, \quad \varphi_{r_n}(-R_n) < a_{n+1}. \tag{3}$$

First, put $r_0 = R_0$. Then $\varphi_{r_0}(R_0) = a_0 = 0$ and $a_0 < r_0$. We find a_1 such that $\left|\frac{1}{a_1} - 1\right| < 1$ and $\varphi_{r_0}(-R_0) < a_1$. Then $a_0 < r_0 < \varphi_{r_0}(-R_0) < a_1$. Suppose that r_0, \ldots, r_{k-1} and a_0, \ldots, a_k are chosen satisfying (1), (2) and (3). There exists r_k such that $\varphi_{r_k}(R_k) = a_k$. Then $a_k < r_k$. Choose a_{k+1} such that $\left|\frac{1}{(a_{k+1})^{k+1}} - 1\right| < \frac{1}{k+1}$ and $\varphi_{r_k}(-R_k) < a_{k+1}$. Then $a_k < r_k < a_{k+1}$. This completes the induction.

Put
$$E_n = [a_n, a_{n+1})$$
 and $\phi(re^{i\theta}) = \sum_{n=0}^{\infty} e^{in\theta} \chi_{E_n}(r)$. Then
 $\left| \int_D \phi \circ \varphi_{r_n} dA - \int_{D_{R_n}} \phi \circ \varphi_{r_n} dA \right| \to 0 \quad \text{as} \quad n \to \infty$ (4)

and

$$\left| \int_{D} z^{n} \circ \varphi_{r_{n}} dA - \int_{D_{R_{n}}} z^{n} \circ \varphi_{r_{n}} dA \right| \to 0 \quad \text{as} \quad n \to \infty, \tag{5}$$

where $D_{R_n} = \{z \in \mathbb{C} : |z| < R_n\}$. We have

$$\varphi_{r_n}(R_n) \le \left| \frac{r_n - w}{1 - r_n w} \right| \le \varphi_{r_n}(-R_n), \quad w \in D_{R_n}.$$

Then by (3),

$$\varphi_{r_n}(D_{R_n}) \subset \{ re^{i\theta} : a_n \le r < a_{n+1} \}.$$
(6)

Therefore

$$\int_{D_{R_n}} \phi \circ \varphi_{r_n} dA = \int_{D_{R_n}} e^{in\theta} \circ \varphi_{r_n} dA = \int_{D_{R_n}} \frac{z^n \circ \varphi_{r_n}}{|z^n \circ \varphi_{r_n}|} dA.$$
(7)

By (6) and (1),

$$\left| \int_{D_{R_n}} \left(\frac{z^n \circ \varphi_{r_n}}{|z^n \circ \varphi_{r_n}|} - z^n \circ \varphi_{r_n} \right) dA \right| \le \int_{D_{R_n}} \left| \frac{1}{(a_n)^n} - 1 \right| dA$$
$$\le \frac{1}{n} dA(D_{R_n}).$$

Then by (7),

$$\left|\int_{D_{R_n}}\phi\circ\varphi_{r_n}dA-\int_{D_{R_n}}z^n\circ\varphi_{r_n}dA\right|\to 0\quad\text{as}\quad n\to\infty.$$

Hence by (4) and (5),

$$\int_{D} \phi \circ \varphi_{r_n} dA - \int_{D} z^n \circ \varphi_{r_n} dA \to 0 \quad \text{as} \quad n \to \infty.$$

Now, by [6, p.52],

$$\int_D z^n \circ \varphi_{r_n} dA = \langle z^n k_{r_n}, k_{r_n} \rangle = (r_n)^n.$$

Therefore

$$\int_D \phi \circ \varphi_{r_n} dA - (r_n)^n \to 0 \quad \text{as} \quad n \to \infty.$$

By (1), $(a_n)^n \to 1$. Then by (2), $(r_n)^n \to 1$. Hence

$$\int_D \phi \circ \varphi_{r_n} dA \to 1 \quad \text{as} \quad n \to \infty.$$

By Theorem B, T_{ϕ} is not compact.

Example 2 Let $0 \le t < 1$. Then we have

$$\sup_{0 \le r \le t} \left| \int_0^{2\pi} \frac{e^{in\theta}}{|1 - re^{i\theta}|^4} d\theta / 2\pi \right| \to 0 \quad \text{as} \quad n \to \infty.$$

Let N_t be the smallest positive integer satisfying

$$\sup_{0 \le r \le t} \left| \int_0^{2\pi} \frac{e^{in\theta}}{|1 - re^{i\theta}|^4} d\theta / 2\pi \right| \le \frac{1}{2} \quad \text{for all} \quad n \ge N_t.$$
(8)

700

Then it is easy to see that $N_0 = 1$, N_t increase with respect to t, $N_t \to \infty$ as $t \to 1$, N_t is left continuous, and $N_t = 1$ for sufficient small t. Put

$$\{n_j\}_{j=0}^{\infty} = \{N_t : 0 \le t < 1\}, \text{ where } n_j < n_{j+1} \text{ for any } j.$$

Then $n_0 = 1$. For each positive integer j, we define $c_j = \inf\{t : N_t = n_j\}$. Then we get

$$0 = c_0 < c_1 < \dots < 1,$$

$$\{t : N_t = n_0\} = [0, c_1],$$

and

$$\{t: N_t = n_j\} = (c_j, c_{j+1}] \quad j \ge 1.$$

Next we divide the interval $[0, c_1]$ into n_1 equal intervals. And we divide the interval $(c_j, c_{j+1}]$ into n_{j+1} equal intervals. Then we get divided points $\{a_k\}$ such that

$$0 = a_0 < a_1 < \cdots < a_k < 1 \quad ext{and} \quad a_k o 1 \quad ext{as} \quad k o \infty.$$

For a sufficiently large k, there exist a unique $j_k \ge 1$ such that $[a_k, a_{k+1}) \subset [c_{j_k}, c_{j_k+1}]$. We put $E_k = [a_k, a_{k+1})$. Then by the above, we have

$$N_t \le n_{j_k}$$
 for all $t \in E_k$ and $n_{j_k} \le k$. (9)

Put $\phi(re^{i\theta}) = \sum_{k=0}^{\infty} e^{ik\theta} \chi_{E_k}(r)$. Let $r \in E_k$. By (9), $N_r \leq n_{j_k} \leq k$. Since N_t is left continuous, $N_{a_{k+1}} \leq k$. By (8),

$$\sup_{0\leq r\leq a_{k+1}}\left|\int_0^{2\pi}\frac{e^{ik\theta}}{|1-re^{i\theta}|^4}d\theta/2\pi\right|\leq \frac{1}{2}.$$

Therefore

$$\left| \int_0^{2\pi} \frac{e^{ik\theta}}{|1-|z|re^{i\theta}|^4} d\theta / 2\pi \right| \le \frac{1}{2}$$

for $r \in E_k$ and $z \in D$. Thus

$$\begin{aligned} \left| \int_{D} \phi \circ \varphi_{z} dA \right| &= \left| \int_{D} \phi |k_{z}|^{2} dA \right| = (1 - |z|^{2})^{2} \left| \int_{D} \frac{\phi(w)}{|1 - \bar{z}w|^{4}} dA(w) \right| \\ &= (1 - |z|^{2})^{2} \left| \int_{0}^{2\pi} \int_{0}^{1} \frac{\sum_{k=0}^{\infty} e^{ik\theta} \chi_{E_{k}}(r)}{|1 - \bar{z}re^{i\theta}|^{4}} 2r dr d\theta / 2\pi \end{aligned}$$

K. Kasuga

$$\leq (1 - |z|^2)^2 \sum_{k=0}^{\infty} \int_{a_k}^{a_{k+1}} 2r dr \left| \int_0^{2\pi} \frac{e^{ik\theta}}{|1 - \bar{z}r e^{i\theta}|^4} d\theta / 2\pi \right|$$

$$\leq (1 - |z|^2)^2 \sum_{k=0}^{\infty} \int_{a_k}^{a_{k+1}} r dr$$

$$= \frac{1}{2} (1 - |z|^2)^2 \to 0 \quad \text{as} \quad |z| \to 1.$$

Hence by Theorem B, T_{ϕ} is compact.

For any ψ in $L^{\infty}(D)$, we put

$$\psi_j(r) = \int_0^{2\pi} \psi(r e^{i heta}) e^{-i j heta} d heta/2\pi \quad (j \in Z),$$

where Z is the set of all integers. Yoneda asked whether the following conditions are equivalent or not;

- (i) T_{ψ} is compact,
- (ii) $\lim_{x \to 1^{-}} \frac{1}{1-x} \int_{x}^{1} \psi_{j}(r) dr = 0 \quad (j \in \mathbb{Z}).$

In [4, Theorem 1], Yoneda proved that condition (i) implies condition (ii). But condition (ii) does not imply condition (i). For, let Δ be a triangle with vertices $e^{i\alpha}$, $e^{i\beta}$, $e^{i\gamma}$, and ψ be the characteristic function of Δ . By Theorem C, it is easy to see that T_{ψ} is not compact. Since

$$|\psi_j(r)| \leq \int_0^{2\pi} \psi(re^{i\theta}) d\theta/2\pi \to 0 \quad \mathrm{as} \ \ r \to 1,$$

then we have

$$\lim_{x \to 1-} \frac{1}{1-x} \int_{x}^{1} \psi_{j}(r) dr = 0 \quad (j \in Z).$$

For any ϕ in $L^{\infty}(D)$, we put

$$\Phi(xe^{i\theta}) = rac{1}{1-x} \int_x^1 \phi(re^{i\theta}) dr$$

and if the limit exists as $x \to 1-$, we put

$$\Phi(e^{i\theta}) = \lim_{x \to 1^-} \Phi(xe^{i\theta}).$$

Then Yoneda showed the existence of ϕ such that $\Phi(e^{i\theta}) = 0$ a.e. θ and T_{ϕ} is not compact. And Yoneda asked whether the following assertion holds or

702

not; if $\phi(re^{i\theta})$ is a θ -continuous function for each $r \in [0, 1]$ and $\Phi = 0$ a.e. θ , then T_{ϕ} is compact. Let \triangle be a triangle with vertices $e^{i\alpha}$, $e^{i\beta}$, $e^{i\gamma}$, and χ_{\triangle} be the characteristic function of \triangle . There exists a sequence of continuous functions $\{\phi_n\}_n$ such that $0 \leq \phi_{n+1} \leq \phi_n \leq 1$ on D, $\phi_n(re^{i\theta}) \to 0$ as $r \to 1-$ for $e^{i\theta} \notin \{e^{i\alpha}, e^{i\beta}, e^{i\gamma}\}$, and $\phi_n \to \chi_{\triangle}$ pointwisely. Then $\Phi_n(e^{i\theta}) = 0$ a.e., and by Theorem C, it is not difficult to see that T_{ϕ_n} is not compact for a large n.

Also Yoneda asked [4, p.573] that there is an example of ϕ such that T_{ϕ} is compact and $\Phi(e^{i\theta}) \neq 0$. An example of such ϕ is the following. Let E be a concave triangle with vertices 1, $\frac{1}{2}i$, and $-\frac{1}{2}i$ such that the angle of E at 1 is zero. Let ϕ be the characteristic function of E. Then by Theorem C, T_{ϕ} is compact and $\Phi(1) = 1$.

The author expresses his deep appreciation to his adviser Professor Keiji Izuchi who guided him through each portion of this paper.

References

- Axler S. and Zheng D., Compact operators via the Berezin transform. Indiana Univ. Math. J. 47 (1998), 387-400.
- [2] Korenblum B. and Zhu K., An application of Tauberian theorems to Toeplitz operators. J. Operator Theory **33** (1995), 353–361.
- [3] Luecking D., Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), 345–368.
- [4] Yoneda R., Compact Toeplitz operators on Bergman spaces. Hokkaido Math. J. 28 (1999), 563-576.
- [5] Zheng D., Toeplitz and Hankel operators. Integral Equations Operator Theory 12 (1989), 280-299.
- [6] Zhu K., Operator Theory in Function Spaces. Dekker, New York, 1990.

Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata 950-2181, Japan E-mail: kasuga@scux.sc.niigata-u.ac.jp