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Another general inequality for CR-warped products
in complex space forms
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Abstract. We prove that every CR-warped product N Xy N1 in a complex space
form Mm(4c) of constant holomorphic sectional curvature 4c satisfies a general inequality:
llo]1?2 > 2p{||V(In f)||? + A(In f)} + 4hpc, where h = dimc N7, p = dimg N, and o
is the second fundamental form. We also completely classify CR-warped products in a
complex space form which satisfy the equality case of this inequality.
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1. Introduction

A submanifold N of a Kahler manifold is called a CR-submanifold if
there exists on NV a differentiable holomorphic distribution D whose or-
thogonal complementary distribution D is a totally real distribution, i.e.,
J Daf C TiLN (cf. ) Throughout this paper we denote the complex rank
of D by h and the real rank of D+ by p. The study of CR-submanifolds
has been a very active field of research during the last two decades (see, for
instance, [1-4, 6-9, 11, 13, 14]).

A CR-submanifold is called a CR-product if it is the direct product
Nt x N of a holomorphic submanifold Ny and a totally real submanifold
N . It was proved in [3] that a CR-product in a complex Euclidean space is a
direct product of a holomorphic submanifold and a totally real submanifold
of complex linear subspaces. It was also proved in that there do not
exist non-proper CR-products in complex hyperbolic spaces. Moreover,
CR-products in the complex projective space CP" P+ are obtained from
the Segre imbedding in a natural way.

Let B and F' be two Riemannian manifolds with Riemannian metrics
gp and gr, respectively, and f be a positive differentiable function on B.
The warped product B x; F' is the product manifold B x F' equipped with
the Riemannian metric ¢ = gg+ f2gr. The function f is called the warping
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function. A warped product is said to be proper if its warping function is
non-constant. The warping function is the main structure of a warped prod-
uct manifold. It is well-known that warped products play some important
roles in differential geometry as well as in mathematical physics (cf. [12]).

It was shown in 4] that there do not exist warped products of the form:
N xy Nt in a Kahler manifold beside CR-products, where N is a totally
real submanifold and Ny is a holomorphic submanifold. By contrast, it was
also shown that there exist many CR-submanifolds which are warped prod-
ucts of the form Nt x ¢ N by reversing the two factors Nt and N,. Such
a warped product C'R-submanifold is simply called a CR-warped product.

It was known in [4]| that every CR-warped product satisfies a general
inequality: ||o||? > 2p||V(In f)||?, where V(In f) is the gradient of In f and
o is the second fundamental form. CR-warped products in complex space
forms satisfying the equality case of this inequality have been completely
classified in [4].

In this paper we prove that every CR-warped product Nt x; N in a
complex space form M " (4c) satisfies another general inequality:

o] > 2p {||V In fI|* + A(ln f)} + 4hpe, (1.1)

where A denotes the Laplacian operator of the CR-warped product.

For any three natural numbers h, p, a satisfying a < h, we introduce
a map ¢°7 : Ch x §P — Corth Ch = Ch — {0}, in a way similar to Segre
imbedding. We show that each ¢>ZP is a CR-warped product in the complex
Euclidean space CoPTh (Theorem 3.1). We also prove that, up to rigid
motions, every CR-warped product in a complex Euclidean space satisfying
the equality case of inequality (1.1) is one of the qsﬁp (Theorem 4.1)). Finally,
we prove that every CR-warped product satisfying the equality in a complex

projective space or a complex hyperbolic space is obtained from a gbgp via
the Hopf fibration (Theorems 5.1 and 6.1).

2. Preliminaries

Let M be a Riemannian n-manifold with inner product (, ) and
e1,...,e, be an orthonormal frame fields on M. For differentiable func-
tion ¢ on M, the gradient V¢ and the Laplacian Ay of ¢ are defined
respectively by

(Vp, X) = X, (2.1)
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Ap =) {ejejo— (Vese)p) (2.2)
j=1

for vector field X tangent to M, where V is the Riemannian connection on
M. If M is isometrically immersed in a Riemannian manifold M. Then the
formulas of Gauss and Weingarten for M in M are given respectively by

VxY =VxY +0(X,Y), (2.3)
6)({ =—-A: X + Dx¢§ (2.4)

for vector fields X, Y tangent to N and £ normal to M, where V denotes the
Levi-Civita connection on M , 0 the second fundamental form, D the normal
connection, and A the shape operator of M in M. The second fundamental
form and the shape operator are related by (A¢X,Y) = (0(X,Y), ), where
(, ) denotes the inner product on M as well as on M.

The equation of Gauss is given by

R(X,)Y;Z W)=R(X,Y;Z, W)+ (0(X,Z),0(Y,W))
— <J(X7 W)aU(Y7 Z)>’ (25)
for X, Y, Z~, W tangent to M, where R and R denote the curvature tensors
of M and M, respectively.

For the second fundamental form o, we define its covariant derivative
Vo with respect to the connection on TM & T+M by

(Vxo)(Y,Z)=Dx(o(Y,Z))—o(VxY,Z) —o(Y,VxZ). (2.6)
The equation of Codazzi is
(R(X,Y)2)* = (Vxo)(Y, Z) - (Vyo)(X, Z), (2.7)

where (R(X,Y)Z)1 denotes the normal component of R(X,Y)Z.

For a CR-submanifold M in a Kahler manifold M with complex struc-
ture J, we denote by v the complementary orthogonal subbundle of JD+
in the normal bundle T+ M. Hence we have the following orthogonal direct
sum decomposition:

T M =JDt®v, JD' Lu (2.8)

We recall the following lemma from (3] for later use.
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Lemma 2.1 Let M be a CR-submanifold in a Kdhler manifold M. Then
we have

(1) (VuZ,X)=(JA;zU, X),

(2) AJZW = AJWZ, and

(3) AJEX = —AgJX,
for any vectors U tangent to M, X, Y in D, Z, W in D+, and £ in v.

Let (z,u) be a point in a CR-warped product Nt x NN 1. Then, for each
X € T;(Nt), there is a unique vector in D at (x,u) whose projection under
mr : Ny Xy N — Nris the vector X. In this way, one may regards a vector
field U on Np as a vector field U lying in the holomorphic distribution D
in a natural way. Similarly, one may also regard a vector field Z on N, as
a vector field in the totally real distribution D+.

For CR-warped products in Kéhler manifolds we have the following [4].

Lemma 2.2 If Ny xy Ny is a CR-warped product in a Kdhler manifold
M, then we have

(1) (o(D, D), JDL) = 0;
(2) VxZ=VzX =(XInf)Z;
3) (¢(JX,Z),JW)=(XInf)(Z,W)
for any vector fields X on Np and Z,W in N .

Recall that the Riemann curvature tensor of a complex space form
M™(4c) of constant holomorphic sectional curvature 4c is given by

R(X,Y;Z,W)
=c{ (X, W)(Y,Z) — (X, Z) (Y, W) + (JX,W) (JY, Z)
—(JX,Z)(JY,W) +2(X,JY)(JZ,W) }. (2.9)

3. A class of CR-warped products in complex Euclidean space

Let C* = C" — {0} and j : SP — EP*! be the inclusion of the unit
hypersphere SP centered at the origin into EP*1. For a natural number
a < h and a vector X tangent to C¢ at a point z € C¢, we decompose X
as X =X LI + X7, where X l' is parallel to z and X;- is perpendicular to z.

For any given three natural numbers h, p, a satisfying a < h, we
introduce a map ¢P : Ct x SP — CoP+h by

d(z,w) = (wozl, e WpZL, - WOZas -+ - WpZar Zatly - - - zh) (3.1)
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for z = (21,...,2n) € CP and w = (wp,...,wp) € SP C EPt! with

p
P owi =1.

Theorem 3.1 For 1< a < handp > 1, the map ot . Ch x 5P — Corth

defined by (3.1) satisfies the following properties:

1 g : Ch X SP — C P h 'iS an i80m6t7 Z.C immGJSiO'rL 'U}Zth, waﬂpin
’U'nction: ’ =

] —1 %j%j-

(2) qba is a CR-warped product.
(3) The second fundamental form o of cba satisfies the equality:
ol = 2p{|[V(n )II* + A(ln ) }. (3.2)

Proof. For tangent vector fields X of C? and Z of SP, we obtain from (3.1)
that

Xo? = (XM &4, Xas1,- - Xn), (3.3)

ze? = (M ® 2,0,...,0), (3.4)
where

XD @)= (woXu,...,wpX1, -, woXas- - WpXa), (3.5)

XD Z=(Zyz,..., Zpz1, -y Z0%ay - - - LpZa),s (3.6)

XxW=(Xy,...,Xa), XP=(Xot1,.--, Xn), (3.7)

X=X X Z=(Zo,...,2), 2V =(21,...,2). (3.8)

From and we know that the tangent space of C? x SP at
a point (z,w) is spanned by vectors given by [3.3) and [3.4). Since S? is
the unit hypersphere centered at the orlgln it follows from [[3.3) and [3.4)
that the induced metric on C? x SP via cj)a is the warped product metric

g = go + f%g1 with warping function f = 1/23 | %jZj, where go and g

denote the metrics of C? and SP, respectively. This proves statement (1),
It follows from that C? is immersed as a holomorphic submanifold

of CPth. From [(3.3) and [3.4) we also know that S? is immersed as a totally

real submanifold of C®P+*, Hence we have statement (2).
Applying (3.1) and [3.3)-(3.8) yields

XY ¢eb = (vxu)Y(l) ® 7, @X@)Y@)), (3.9)
ZWelr = (Y @ VL W,0,...,0), (3.10)
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Xz = (xWez,0,...,0), (3.11)

for vector fields X, Y tangent to Cf and Z, W tangent to SP, where V de-
notes the Levi-Civita connection for Euclidean space as well as for complex
Euclidean space.

From [3.3}-(3.4) and [3.9}-{3.11), we find
1
o(X,Y)=0(Z,W)=0, o(X,Z)=(X\)*®2z0,...,0) (312

2(

for vector fields X, Y tangent to C? and Z, W tangent to SP. Therefore,
the squared norm of the second fundamental form is given by

5 2p(2a —1) L
J=1
On the other hand, it is straightforward to verify that
5 1 2(a—1)
Hv(hlf)HZ:P, A(lnf):—fa—-
By combining and we obtain statement (3). O

(3.14)

4. CR-warped products in complex Euclidean space
The purpose of this section is to prove the following.

Theorem 4.1 Let ¢ : Ny xy N — C™ be a CR-warped product in com-
plex Fuclidean m-space C™. Then we have

(1) The squared norm of the second fundamental form of ¢ satisfies
lo]1* = 2p{[[V(In f)|* + A(ln f) }. (4.1)

(2) If the CR-warped product satisfies the equality case of (4.1), then
we have

(2.a) N is an open portion of CI;
(2.b) N, is an open portion of SP;
(2.c) There exists a natural number a < h and a complex coordinate

system {z1,...,zn} on C* such that the warping function f is given by f =

Z?:l ZjZ; ;
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(2.d) Up to rigid motions of C™, the immersion ¢ is given by d)ﬁp i
a natural way; namely, we have
d(z,w) = (wozl, ey WpZTs e WOZas - - s WpZa, Zatls - -« 5 Zhs 0, .. .,0)
(4.2)
for z=(z1,...,21) € C! and w = (wy, ..., w,) € SP C EPFL,
Proof. Let Nt x; N be a CR-warped product in a complex space form
M™(4c) of constant holomorphic sectional curvature 4c. Then the equation
of Codazzi implies
R(X,JX,JZ, Z)
= (Dyxo(X,Z)-0(VyxX,Z) - 0(X,VxZ),JZ)
—(Dxo(JX,Z) - o(VxJX,Z)-0(JX,VxZ),JZ), (4.3)
for vector fields X on Np and Z on N . Since Np is totally geodesic in
Nr xy N, VxZ and V ;xZ lie in DL and VyJX and V, x X lie in D.
Hence, by applying statements (2) and (3) of Lemma 2.2, we get
2(X, X)(Z,Z)yc=—-JX((Z,Z)JX Inf) - (0(X,Z),D,;xJ]Z)
- X({Z,Z2)XInf)+(0(JX,Z),DxJZ)
+{(JVyxX)Inf — (JVxJIJX)Inf}(Z, Z)
+{(XIn )2+ (JXInf)?}(Z,2). (4.4)
Applying we find

JX((2,2)JXInf)+ X({Z,Z) X In f)
={(JX)?Inf+X?*Inf+2(JXInf)>+2(Xlnf)*}(Z,2Z). (4.5)
Since M™(4c) is Kéhlerian, we have
IVxZ =Jo(X,Z)=—AyzX + DxJZ. (4.6)
Applying and statements (1), (2) and (3) of Lemma 2.2, we find

(0(JX,Z),DxJZ) =(0(JX,Z),IVxZ) + (c(JX,Z),Jo(X, Z))
= (XInf)*(Z,Z)+ (0(JX, Z),Jo(X,Z)) (4.7)

for vector fields X in D and Z in D*.
On the other hand, if we denote by o0,(X,Z) the v-component of
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o(X, Z), then, by applying statement (3) of Lemma 2.1, we also have
(0(JX,Z2),Jo(X,2))=(c(JX, Z),Jo, (X, Z))
= (Aso,(x, 20X, Z) = (Ag,x, )X, Z) = llou(X, Z)|*. (4.8)
Combining (4.7) and (4.8) yields
(0(JX,Z),DxJZ) = (X In f)*(Z,Z) + |0, (X, Z)|]*. (4.9)
Similarly, we also have
(0(X,2), DyxJZ) = —(JXIn f)*(Z,Z) — lo,(X, Z)[[*.  (4.10)

Because Nt is a holomorphic submanifold of a Kahler manifold and N
is totally geodesic in Nt x; N, we find

JVix X =V xJX, JVxJX =-VxX. (4.11)
Combining (4.4), (4.5) and (4.9)-{4.11) we obtain
20X, X)(Z,Z) e = {(VxX +VixJX)Inf - X?In f
~(JX)*Inf}(Z,Z) + 2||ou(X, 2)I]>.  (4.12)

Assume that {Xi,...,Xop} is an orthonormal frame of Nr and
{Z,,...,Z,} an orthonormal frame on N,. Then (4.12) implies

22 Z o (X5, Z)||* = 4hpe — 2p A(In f). (4.13)

1=1t=1

On the other hand, statement (3) of implies

2h p

YD Moupi (X5, Z)|P =plIVIn fI, (4.14)

j=1 t=1

where o ;p1 (Xj, Z;) denotes the JD+-component of ¢(Xj, Z;). Combining
(4.13) and (4.14) gives

2|a(D, DH)||*> = 2p{||IV In f||> + A(In f) + 2he}, (4.15)
where ||o(D, DY)||? = Z P le(X;, Z)||?. Equation (4.15) implies

olf? > zp{nvaan + A(In f)} + dhpe. (4.16)
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In particular, if M "™(4c) is the complex Euclidean m-space, inequality
reduces to inequality [4.1}.

Now, let us assume that ¢ : N7 x; N; — C™ is a CR-warped product
satisfying the equality case of [4.1)]. Then (4.15) and the equality case of

imply
o(D,D)=0, o(D*+, DY) =0. (4.17)

Since Nt is totally geodesic in Nt x ¢ N, the first equation in
and the totally geodesy of Nt in Nr x ¢ N imply that Np is isometrically
immersed as a totally geodesic holomorphic submanifold of C™. Hence, Nt
is a open portion of a complex Euclidean h-space C".

For vector fields X in D and Z, W in D+, implies

(VwZ, X) = (JAszW, X) = — (c(JX, W), ] Z). (4.18)
Hence, by applying statement (2) of and [4.18), we find
(VwZ,X)=—(XInf)(Z,W). (4.19)

On the other hand, if we denote by o+ the second fundamental form
of Ny in M = Nt x; N, we get <0l(Z, W),X> = (Vw Z, X). Combining
this with (4.19) yields

o (Z,W)=—(Z,W)VInf (4.20)

Hence, by applying (4.20) and the second equation of [4.17), we see that
N, is immersed as a totally umbilical submanifold of C™. Hence, V| is an
open portion of an ordinary p-sphere SP (or R when p = 1).

If p > 2, we may assume that SP is of radius one, by rescaling the
warping function f if necessary. Consequently, N7 x ;N is an open portion
of Ch X SP (or o X s R when p = 1). Hence, we may choose a complex
Euclidean coordinate system {z1,...,2,} on C* and a coordinate system
{u1,...,up} on SP (oron R if p = 1) so that the metric tensor on Ny x s N
is given by

h
g= Zdzjdij + f2{du% + cos? uldug 4+ -+ cos?uy - - - cos? up_lduf)},
j=1
(4.21)
where z; = x; +1y;, 1 = v/ —1.
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Equation (4.21) and a straightforward computation imply that the Levi-
Civita connection on Nt X N | satisfies

Vdr 8; Vaxjazk:V%E%;ZO’ g k=1,... h,  (4.22)

Vs ait f;jait j=1,...,h; t=1,...,p, (4.23)

Vaijgﬁ_%iait j=1,....h; t=1,....p, (4.24)

Vazsb—%:—tanusam, 1<s<t<p, (4.25)
t—1 h

Vo= BICEDS (#og + Tnz)
+:Z§(bln2uqstlz£100§ us)g?_ t=1,...,p.

(4.26)
From equations [4.17), (4.22), (4.25) and (4.26), we know that the

immersion ¢ satisfies

szjzk - (ijZk = ¢Zj2k - 07 ja k= 17 .- .,h, (427)
¢U3Ut = - ta‘n us¢u“ 1 S s < t S p; (428)
t—1 h
¢’U,t1l.[, - - H C082 Us Z (ffask(bmk + ffyk(byk)
s=1 k=1
L /sin2u, '
+Z< d H cos u3>¢uq, t=1,...,p, (4.29)
g=1 s=q+1
where ¢, .z, = 0¢/02;0%, ..., etc., and
0 1 0 0 0 1/ 0 0
—_— — — — == 4+i=—]. 4.30
9z (axj ayj) 0z 2 (axj * Zay) (4.30)

Solving [(4.27) gives
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h

P21, .-y 2Ry UL, - oy Up) = ZAj(UL oo Up)zi + Blug, ..o up)  (4.31)
j=1

for some C™-valued functions Ay, ..., Ay, B. From (4.29) with t = 1, we
find

Lgn (02, Of
uiul T o 4.
burm =~ kz( ) (4.32)
Substituting (4.31) into yields
WA R Y
— — A 4.3:
< 5e T G jg: 9z, (4:33)

Case (1): Z?Zl(an/azj)Aj is independent of zy, ..., zp.
In this case, (4.33) implies

0% A
0, j=1,...,h, (4.34)
ou?
6°B o f2 ]
8_'“% - Z 8—2314] (4 30)
j=1

Solving (4.34) gives

Aj(u, ..., up) = Dj(ug, ..., up)ur + Ej(ug, ..., up),
j=1,...h (4.36)

for some vector functions D;(us, .. up) E;(ug,...,up). Applying (4.31)
and yields (¢.;,¢.,) = |D; \2 + 2<D3,E >u1 + |E;|?, where (, )
denotes the standard Fuclidean inner product on C". On the other hand,
(4.21) gives <¢>Zj,¢zj> = 1 which is independent of u;. Thus, we obtain

D, =---= Dy =0. Hence, reduces to
Aj(ul,...,up):Ej(UQ,...,up), jZl,...,h, (437)
From [(4.35) and [4.37), we find
h
1 <« 0f2
B=—— ——]; i(ug, .. .,up)u% + F(ug, ..., up)ur + G(ug, ..., up)
2j=l 82]'

(4.38)
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for some vector functions F,G. Thus, we obtain from (4.31), and
(4.38) that

2
¢ = ZE( laf )+Fu1+G (4.39)

=1

o,

Substituting into with s =1 and 1 <t < p gives

1 «— Of? 8E OF
5 Z

sz 8ut Ouy

of? OF; 2 oF 0G
=t P — = — 3. .
an ul{ g 8ut E sz 0ut 3ut uy + am} (4.40)

Since Ej, F, G and 8f?/0z; are independent on the variable u;, equa-
tion (4.40) implies OF;/0us = OF /Ouy = 0G/Ouy = 0 for j = 1,...,h and
t=2,...,p. Thus, Ey,..., Ey, F,G are constant vectors in C™.

From we also have

o
by =—)_ 8—%Eju1 + F. (4.41)

On the other hand, using (4.21) we find (¢y,¢u,) = f? which is a non-
constant function independent of u;. Hence, implies

h
> (0%/0%;)E; = 0.
7=1

Thus, f? = |F|? is constant which contradicts to properness of the CR-
warped product.

Case (2): 2?21(82]”2/82]-),43- depends on z, ..., 2.
In this case, by taking the derivative of with respect to 9/0z;,
we find

%A, P92

2 a5
ouf — 02;0Z

Ae, j=1,...h (4.42)

On the other hand, by applying (4.31), we find ¢.; = A;(uy,...,up).
Thus, Aj,..., Ay form an orthonormal frame according to (4.21). There-
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fore, by using the fact that 024;/0u and Aj,..., Ap are independent of
21, .., 2hH, We know from that 02f2/02,0z;, j,k = 1,..., h, are con-
stant. Thus, we may put

02 f2 :
J

for some constants 7,i.

Solving yields

h
fz(zl, C iy ZR) = Z Yik%iZk + H+ K (4.44)
Jk=1

for some functions H, K satisfying
OH 0K _

afj N 62:j N
Equation [4.43) implies that (v;;) is a Hermitian matrix, that is 7,z =
Yi;- Therefore, the Spectral Theorem in matrix theory implies that there

is a unitary matrix which diagonalizes (7,;). Hence, there exists a suitable

complex Euclidean coordinate system {zi,..., 2} on C" such that (4.44)
reduces to the form:

0, j=1,...,h (4.45)

h
f2 = ijZij + H(Zl, .. .,Zh) + K(Zl, .. .,Zh). (446)
j=1

Since f is a real-valued function, we may put

H=X+1iY, K=U-1Y, (4.47)

for some real-valued functions X, Y, U. From (4.45) and [(4.47), we obtain
the following Cauchy-Riemann equations:

0X  9Y oYy o0X oU oY oY __QE]_

81']' B ayj’ 8.’Ej B 8yj’ 61']' B 6yj’ 8£Ej B 8yj'

From (4.48) we find that H + K = X + U is constant, say 6. Hence,
becomes f? = Z?:l bjzjZ;+6. We may assume 6 = 0 by applying a suitable
translation on C™ if necessary. Thus, we have

(4.48)

h
f2 = Za?zjij, (4.49)
=1
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for some real numbers ay,...,ap > 0, since f > 0. Combining [4.33) and
(4.49) yields

=—a%A;, j=1,...,h, (4.50)
8u% 77
0B
— =0. 4.51
8u% ( )

Since f > 0, there exists at least one a; greater than zero. Without loss
of generality, we may assume

a1y...,a6 >0, age1=---=ap=0. (4.52)

for some natural number oo < h. From (4.50), (4.51) and (4.53), we obtain

Aj = Dj(uy, ..., up)cos(ajui) + E;(us, ..., up)sin(ajuy),  (4.53)
Ap = Di(ug, ..., up)ur + Ex(ug, ..., up), (4.54)
B = F(ua,...,up)u; + G(ug, ..., up) (4.55)

foryj=1,...,a,andk=a+1,..., h.
Substituting (4.53), (4.54) and (4.55) into (4.31) gives

¢ = Z (Dj(us, ..., up) cos(ajur) + Ej(ug, ..., up) sin(aju))z;
j=1
h
+ Y (Drlua, . up)ur + Brlua, . .. up)) 2 (4.56)
k=a+1

+ F(ug, ..., up)ur + G(ug, ..., up).

By differentiating with respect to zp, we obtain ¢, = Dju; +
Ei for k = a+1,...,h. Thus, (¢,,,¢,.) = |Dp|*u? + 2 (Dy, Ep) + |Ex|?.
Comparing this with (4.21) yields Dyt = - -+ = Dp, = 0. Therefore,
becomes

«
¢ = Z (Dj(ug, ..., up) cos(ajur) + Ej(ug, . . ., up) sin(ajur))z;
j=1
h
+ Z Er(ug, ... up)zr + F(ug, ..., up)ur + G(ug, . .., up).
k=a+1
(4.57)
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From with s =1, ¢ > 1 and (4.57), we find

a; aDjsin(a-ul —%COS a;u z-+—8£
7 7 8 J 7]

; 8Ut Ut aut
j=1
* E;
= tanu; {Z (5; cos(ajuy) + %u— sm(aju1)>zj
" 9E, OF  8G
+ ) ot gt } (4.58)
k=a+1 ur Ht tt
which implies 0Fy/0u; = OF /Ouy = 0G/Ou; = 0, k = a+1...,h, t =
2,...,p. Hence, Eqi1,...,Ep, F and G are constant vectors. Equation
(4.58) also implies
0D; OE;
a; 8u] sin(ajui) — a; 8u] cos(ajur)
0D; OF,;
= tanu; {(9—ut cos(ajuy) + a—ul sm(ajul)} , J=1,...,a, (4.59)

which are equivalent to

%{(% — 1) sin((a; + D)uy) — (a; + 1) sin((a; — 1)u;)}
_ OE;
T ou

for j=1,...,a. By letting u; =0, we get OF;/0u; = 0. Thus, Ey, ..., E,
are constant vectors. Consequently, we obtain from (4.57) that

(aj —1)cos((aj + 1)uy) + (a;j + 1) cos((a; —1)u1)} (4.60)

¢ = Z i(u2, ..., up) cos(ajur) + Ejsin(ajur))z;
h
+ Y Epzk+ Fui +G (4.61)
k=a+1

where Fy, ..., Ey, F, G are constant vectors. From we obtain
¢z, = Djcos(ajur) + Ejsin(a;u1), j=1,...,q, (4.62)
¢y, = iDjcos(ajur) + iEjsin(aju1), j=1,...,q, (4.63)
GOz, = By, kE=a+1,... h, (4.64)
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by =Bk, k=a+1,.. . h (4.65)
[0
Z (E; cos(ajur) — Djsin(aju1))z; + F. (4.66)

By applying (4.21) and (4.62), we find
28;0 = (Dj, Dg) (cos((a; + ag)ur) + cos((a; — ag)uy))
+ (Ej, E¢) (cos((aj — ag)ur) — cos((aj + ag)u1))
+ (Dj, Ey) (sin((a; + ag)u1) — sin((a; — ar)u))
+ (Dy, Ej) (sin((a; + ag)ur) + sin((a; — ag)u1)) (4.67)
for 7,0 =1,.

Since cos((a; — a¢)u), cos((a; + ag)ur) and sin((a; + ag)u1) are inde-
pendent functions, (4.67) implies (D;, Ey) +(Dy, Ej) =0for j,{=1,...,
By setting u; = 0, (4.67) also yields (D;, Dy) = é;,. Thus, by combining
these with (4.67), we have (E;, Ey) = §;,. Consequently, we obtain

(Dj, Do) = (Ej, E¢) = djo, (Dj, Eg) + (Ej, Do) =0,
1<y, £<L . (4.68)
Similarly, by differentiating (4.67) with respect to u;, we find
ay <Dj, Eg) + a; <De, Ej> =0, 45,¢4=1,...,qa. (4.69)
Also, from (4.21), (4.62) and (4.63), we find

(Dj,iDg) = (Ej,iEq) = bje, (Dj,iEq) + (Ej,iDg) =0, (4.70)

a¢ (Dj, iEg) + aj (D, iE;) =0, 4, 4=1,...,0. (4.71)
From (4.21) and (4.62)—(4.65), we also have
(E, Dj) = (Ek,Ej> = (B, 1D;) = (Ek, iEj) =0 (4.72)

forj=1,...,;k=a+1,...,h.
Equations (4.21), (4.49), (4.66), and (4.70) imply

(6 (81
5:2.—._2:2.—.
j=1 j=1

+22a3 ((E; cos(ajuy) — Djsin(ajur))zj, F) + |F|*.
1=1
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Thus, we obtain F' = 0. Therefore, [4.61) reduces to

a h
¢ = Z j(ug, ..., up) cos(ajur) + E; sin(a;u1))z; + Z Evz + G,
7j=1 k=a+1
(4.73)
where F1, ..., Ey, G are constant vectors.
Using (4.60) we know that either D; is a constant vector or a; = 1.
Without loss of generality, we may assume that ai,...,a, # 1 and a,4; =
= aq = 1. Then, Dy, ..., D, are constant vectors; hence (4.73) reduces
to
= Z(Dj cos(ajuy) + Ejsin(aju))z;
j=1
-+ Z (U2, ..., up) cosuy + Ejsinug)z;
j=r+1
+ Y Epz +G, (4.74)
k=a+1

where Dy,..., Dy, Ey, ..., Ep, G are constant vectors satisfying [4.68)-

(4.72).
Substituting (4.49) and into (4.29) with ¢t = 2 yields

2 82D, <
Z cos ’u1——J-Zj = — cos? Uy Z aj (Dj COS(ajul) + Ej sin(ajul))zj

2
j=r+1 Ouj j=1
(e
— sinwu; cosuq Z a;(Djsin(ajui) — Ejcos(ajuy))z;,
i=1
(4.75)
where a,11 =+ =a, = 1.

If » > 1, then (4.75) implies
cosu (Dj cos(ajur) + E; sin(a;juy))
+ sinu; (Dj sin(aju;) — E; cos(aju1)) =0, j=1,...,r. (4.76)

Since ay,...,a, # 1, equation (4.76) implies Dy = --- =D, = E; = --- =
E, = 0 which is a contradiction. Therefore, a; = --- = a, = 1. Hence,
(4.75) implies 82D;/0u3 = —Dj for j =1,...,a. Solving these equations
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gives
D; = Fj(us,...,up)cosug + Gj(us, ..., up)sinug.

Consequently, (4.73) becomes

b = Z {Fj(’l],g, coyUp) cosug cosup + Gy(us, . . ., Up) COS UL SIN U2
j=1

h
+Ejsinu}z;+ Y Erzm+G. (477)
k=a+1

By substituting (4.77) into [4.28) with s = 2 and t > 2, we know that G
are constant vectors. Continuing these procedures sufficiently many times,
we obtain

a P
= E {cchosut—l—czjsinul-i—cgsinugcosul-l—---
t=1

p—1 h
+ CZZ+1 sinup H COS ’U,t}zj + Z Erzi + G, (4.78)
t=1 k=a+1

where ctj , B, G are constant vectors in C™.
Because Ny x f N is a CR-warped product in C™, we may choose the
following initial conditions:

¢(1,0,...,0) = (1,0,...,0,...,0),

p+ 2-th
~ =
¢2,(1,0,...,0)=(0,0,...,0, 1 ,0, ., 0),
ap — p + a-th
=
¢ZQ(]‘7O? ‘70) = (07 707 1 707 ’70)?
1+ ap+ a-th
=
¢20.,(1,0,...,0)=(0,...,0, 1 ,0,...,0),
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ap+ h-th

=

1,0,...,0),

p+ 3-th 1+ ap—p+ a-th
N N
1.,0,...,0,71°,0,...,0),

p+ 1-th a(p+ 1)-th
=~ ~ =
éu,(1,0,...,0)=(0,...,0,”1 ,0,...,0,”1°,0,...,0).  (4.79)

Applying (4.78) and (4.79) gives

¢ = (Woz1, .-, WpZl, - - -, W0Zas - - - WpZas Zatls - - - Zhy 0, - - .,0), (4.80)
where
p
wo = Hcosut, wi = sinuq,
t=1
p—1
Wy = SIN U COSUL, . .., Wpt] = SIN Uy, H COS Uy.
t=1
Since ¢ is an immersion, (4.80) implies that N7 is contained in C%. O

5. CR-warped products in CP™ satisfying the equality

In this section we determine CR-warped products in complex pro-
jectable spaces which satisfy the equality case of [4.16). In order to do
so, we recall briefly a procedure via Hopf fibration to obtain the desired
submanifolds of complex projective spaces.

Let C* = C — {0}. Consider the C*-action on C7"*! defined by X -
(20, -, 2m) = (Azoy...,Azp). The set of equivalent classes obtained from
this action is denoted by CP™. Let 7(z) denote the equivalent class contains
z. Then 7 : C™*!1 — CP™ is a surjection. It is well-known that the CP™
admits a complex structure induced from the complex structure on C™*!
and a Kahler metric g with constant holomorphic sectional curvature 4.

Assume ¢ : M — CP™(4) is an isometric immersion. Then M =
7~1(M) is a C*-bundle over M and the lift ¢ : 771 (M) — C™*! of ) is an
isometric immersion satisfying 7 o zZ = 9 onw. Conversely, if V:Q — cmtl
is an isometric immersion invariant under the C*-action, then there is a
unique isometric immersion ¢ : 7(Q) — CP™(4) satisfying 7 o b=1on.
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There is an alternate way to view the lift 1 : 71 (N) — C™! via the
Hopf fibration as follows: Let S?™*! denote the un it hypersphere of C™+1
centered at the origin and let U(1) = {A € C : A\ = 1}. Then we have a
U(1)-action on S?™*1 defined by z — Az. At z € §?™+1 ¢ C™*1 the vector
V =iz is tangent to the flow of this action. The quotient space S?™+1/ ~
obtained from this U(1)-action is exactly the CP™(4). Let ¢ : S+l —
CP™(4) denote the projection via the U(1)-action. The projection ¢ is
known as the Hopf fibration.

When ¢ : M — CP™(4) is an isometric immersion, M = ¢~ (M)
is a prmmpal circle bundle over M with totally geodesic fibers. The lift
1,/) M — §2m+1 of 4 is an isometric immersion satisfying ¢ o w P o .
Conversely, if ¢ : U — S?™*! is an isometric immersion which is invariant
under U(1)-action, there is a unique isometric immersion ¢, : @(U) —
CP™(4) satisfying ¢ o 1&‘, = 1), 0 .

For each vector X tangent to CP™(4), we denote by X* a horizontal
lift of X via the Hopf fibration ¢. The horizontal lift X* and X have the
same length, since the Hopf fibration is a Riemannian submersion. Since
V = iz generates the vertical subspaces of the Hopf fibration, we have an
orthogonal decomposition:

T,5*"*! = (T, CP™)* & Span {V'}, (5.1)

where (T,,) CP™)* is the set consisting of all horizontal lifts of T,y CP™
via .

For an isometric immersion ¢ : M — CPm( ), M = n~1(M) is diffeo-
morphic to R* x M where R* = R—{0} and M = ¢~}(M). The immersion
Y : M — C™1 ig related to the immersion ¥ : M — S2m+1 by

U(t,q) =td(q), teR*, qeM. (5.2)

Clearly, M is the cone over M with the vertex at the origin of C™*+1. The
metric g of M and the metric § of M are related by

g =t*g+ dt*. (5.3)
The purpose of this section is to prove the following.

Theorem 5.1 Let ¢ : Ny xy Ny — CP™(4) be a CR-warped product.
Then
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(1) The squared norm of the second fundamental form of ¢ satisfies
lo]1* = 2p{|IV(In f)||* + A(ln £)} + 4hp. (5.4)

(2) The CR-warped product satisfies the equality case of (5.4) if and
only if

(2.1) N is an open portion of complex projective h-space CPh(4);

(2.ii)) N, is an open portion of unit p-sphere SP; and

(2.iii) There exists a natural number o < h such that, up to rigid mo-
tions, ¢ is the composition T o du), where

qub(z,w):(wgz(),...,wpzo,...,woza,...,wpza,za+1,...,zh,O...,O)
(5.5)
for z = (20,...,2n) € CM1 and w = (wo,...,wp) € SP C ErPtl and 7

being the projection m : CT"t1 — CP™(4).

Proof. Inequality [(5.4) is a special case of [4.16)
Let ¢ : M — CPm( ) be an isometric immersion and let V,V and V

denote the Levi-Civita connections on M, M and M respectively. Denote
by & the second fundamental form of the lift b M — §2™+1 of & via Hopf’s
fibration. Then we have

Vx-Y* = (VxY) — (PX,Y)V, (

VyX* =Vx-V = (PX)", (

VyV =0, (

G(X*,Y") = (o(X,Y))", 6(X"V)=(FX)", a(V,V)=0, (
for vector fields X, Y tangent to M, where PX and F'X are the tangential
and the normal components of JX, respectively.

For a vector U tangent to M c §2m+l ¢ C™*+l we extend U to a

vector field, also denoted by U, in C™*! by parallel translation along the
rays of the cone M over M. We obtain from that

1 ~
5(U,W)(t,q) = 36(U W)(q), teR", qeil. (5.10)

&(U, %) - &(%, %) — 0, (5.11)

for U, W tangent to M, where & denotes the second fundamental form of



436 B.-Y. Chen

the lift ¢ : M — C™*! of ¢ via 7.

Now suppose that ¢ : M = Np xy N — CP™(4) is a CR-warped
product in CP™(4). As before, we denote by D and D+ the holomorphic
and the totally real distributions of Ny x ¢ N | , respectively. Let D denote the
distribution on M = ¢~!(M) spanned by D* = {X* X € D} and V =
where X™ is a horizontal lift of X via ¢. Since D is integrable, [5.6}-{5.8) m
implies that the distribution D is also integrable. From (5.6) m we also
know that each leaf of D is a totally geodesic submamfold of M.

Let DY = {Z* € TM : Z € D1}. Then D is the orthogonal com-
plementary distribution of D in TM. For vector fields Z , W in D+,

implies
V- W* = (VzW)*. (5.12)
Since D is integrable, implies that D is also an integrable distri-

bution.

On the other hand, gives
(VwZ, X)=—(XInf)(Z,W) (5.13)

for vector field X in D and Z,W in D'. Thus, by [5.12), (5.13),
(VZzW)*, V) = 0, and the fact that the Hopf fibration is a Rlemanman
submersion, we obtain

(Vg W*, X*) = ~(XInf)(Z*,W*), (VW5 V)=0. (5.14)

Thus, each leaf of D' is an extrinsic sphere in M, that is, a totally umbilical
submanifold with parallel mean curvature vector. Therefore, by applylng a
result of Hiepko , we know that M is also a warped product NT X j NT,

where Np is a leaf of D, N7 a horizontal lift of N and f the Warplng
function. From the deﬁmtlons of D, Np and ¢, we may choose N7 to be
¢! (Nr). Because the Hopf fibration ¢ : $2™+! — CP™(4) is a Riemannian
submersion, dp preserves the length of vectors normal to fibres. Therefore,
the warping function f of Ny X N7 is given by f o . Since M is the
i Ny,
where NT = w“l(NT), f = fom, and NL is a horizontal lift of N| via .
Because N 1 is isometric to NV, M is thus isometric to NT X, va 1. It follows

punctured cone over M with 0 as its vertex, M is nothing but NT X

from our constructions that ]VT = 7r_1(NT) is a holomorphic submanifold
of C™*! and N, is a totally real submanifold in C”*!. Therefore, M is
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isometrically immersed in C™"! as a CR-warped product.
Now, suppose that ¢ : M = Ny x ¢ N; — CP™(4) satisfies the equality
case of [5.4). Then we obtain from (4.15) and that

o(D,D) =0, o(D*+, DY) =0. (5.15)

Let D be the distribution on M spanned by D and 0/0t and D+ the
orthogonal distribution of D in TM. Then D% is spanned by vectors in
C™*! obtained from Dt by parallel translation along rays of the cone M

over M. Thus, from (5.9), and the second equation of [5.15), we
obtain

(D, DY =o. (5.16)
Also, from (5.9)(5.11) and the first equation in [5.15), we find
§(D,D) = 0. (5.17)

Therefore, by (4.15), 7= 1(M) = Np X, N1 satisfies the corresponding

equality: ||5]|? = 2p{||V(In tf)||2+A(lntf)} in C™*1. Hence, Theorem 4.1
implies that, up to rigid motions, the immersion of M is the ¢ defined by
(5.5) for some natural number a@ < h. Thus, up to rigid motions, ¢ is the
composition 7 o (5

Conversely, it is easy to see that the immersion ¢ defined by (5.5) is
a CR-warped product CP*! x 5 SP in C™*! which is invariant under the
C*-action. Thus, the projection 7 o ¢ of ¢ under 7 crtl — CP™(4)
defines a submanifold M in CP™(4). It is easy to verify that M is indeed
a CR-warped product CP"(4) x 7S in CP™(4) for some suitable warping
function f. Moreover, it follows from (5.9) that the CR-warped product M
satisfies condition (5.15). Hence, by applying (4.15), we know that M =
m(CH! x ; SP) satisfies the equality case of [5.4). 0

6. CR-warped products in complex hyperbolic space

Let CT“ denote a complex number space endowed with pseudo-
Euclidean metric go = —dzodzo + )., dz;dz;. Put crtl = ¢t — {o}.
Consider the C*-action on Cﬂ“ by A (20,.-.,2m) = (Az0,. .., Az;n). The
set of equivalent classes obtained from this action is denoted by CH™. The
CH™ admits a natural Kahler structure (J, g) with constant holomorphic
sectional curvature —4. Let 7 : C™"! — CH™(—4) denote the projection
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obtained from the C*-action.
Just like CP™, there is an alternate way to view CH™ as follows: Let

H?mH ={z=1(z1,29,...,2Zm+1) € CTH: (z,2) = —1}, (6.1)

where ( , ) is the inner product on CT“ induced from the pseudo-Euclidean
metric gg. H 12m+1 is known as the anti-de Sitter space-time.

We have an U(1)-action on H2™*! defined by z +— Az. At each point
z € H i?mH, the vector V' = iz is tangent to the flow of the action. The
orbit lies in the negative definite plane spanned by z and ¢z. The quotient
space Hfm“/ ~ under the U(1)-action is exactly the complex hyperbolic
space CH™ with constant holomorphic sectional curvature —4. The com-
plex structure J on CH™ is induced from the canonical complex structure

J on C]”H via the Riemannian submersion:

@: HI™M — CcH™(-4), (6.2)

which has totally geodesic fibers. The submersion is called the hyper-
bolic Hopf fibration.

Assume ¢ : M — CH™(—4) is an isometric immersion. Then M =
7 1(M) is a C*-bundle over M and the lift v M — Cini“ of ¢ is an
isometric immersion satisfying m o ¥ = om. Conversely, if zb M — CTthl
is an isometric immersion which is invariant under the C*-action, then there
is an isometric immersion 1 : 7(M) — CH™(—4) atlbfylng o ¢ Y om.

For an isometric immersion ¢ : M — CH™(—4), M = (M ) is
diffeomorphic to R* x M, where M = ¢~ '(M). The iIIlmGI‘bIOH Y M —
Cﬁ“ is related to ¢ : M — Hfm+1 by

U(t,q) = ti(g), teR", gqeM. (6.3)
The purpose of this section is to prove the following.

Theorem 6.1 Let ¢ : Np xy Ny — CH™(—4) be a CR-warped product.
Then
(1) The squared norm of the second fundamental form of ¢ satisfies

llol]* > 2p{ V(I f)[I* + A(ln )} — 4hp. (6.4)

(2) The CR-warped product satisfies the equality case of (6.4) if and
only if
(2.a) Np is an open portion of complex hy perbolic h-space CH"(-4),
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(2.b) N, is an open portion of unit p-sphere SP (or R, when p = 1);
and

(2.c) up to rigid motions, ¢ is the composition m o &, where either ¢ is
given by

d(z,w) = (zo,...,zﬁ,wozgﬂ,...,wp25+1,...,wozh,...,wpzh,O...,O)

(6.5)

for 0 < B < h, z:(zo,...,zh)ECffrl and w = (wo, ..., wp) € SP, or & is
given by

d(z,u) = (zo cosh u, zgsinh u, 27 cosu, z1 sinw, . . .,
ey 20,COSU, 2o SINU, Za 11,y + .-, 2R, 0. ..,0) (6.6)

for z = (z0,...,21) € Cflﬂ and u € R, and 7 being the projection 7 :

Cmtl  CH™(—4).

Proof. Inequality (6.4) is a special case of [4.16). It follows from (4.15)
that a CR-warped product ¢ : M = Ny x5 N; — CH™(—4) satisfies the
equality case of if and only if the second fundamental form of ¢ satisfies

o(D,D)=0, o(D+, D) =0. (6.7)

Suppose that ¢ is a CR-warped product in CH™(—4) satisfying [6.7).
Since N is totally geodesic in N7 x ¢ N, the first equation of implies
that each leaf of D is totally geodesic in CH™(—4). Thus, Nt is an open
portion of CH"(—4); thus the preimage Np = 7~ Y(Nr) is an open portion
of Ci‘f 1. Moreover, by applying an argument similar to the proof of The-
orem 5.1 for CR-warped products in CP™, we know that M = 7~ }(M) is
isometric to Ny xtfuNl with f: fom and the lift (B : Np xthl — Cﬂ“
is a CR-warped product in Ci’i“.

Let V and V denote the Levi-Civita connections on M and M , respec-
tively, and & be the second fundamental form of the lift ¢ : M — H 12m+1.

Then we have
Vx:Y* = (VxY)* + (PX,Y)V, (6.8)
VyX*=Vx-V = (PX)*, VyV =0, (6.9)
&(X*,Y*) = (0(X,Y)), 6(X* V)= (FX)* 6(V,V)=0, (6.10)

for vector fields X, Y tangent to M.
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For a vector U tangent to M c H™1 ¢ C™*! we extend U to a

vector field in C™*! by parallel translation along the rays of the cone M
. *x1 g Y
over M. From [6.3), we find

1 .
o(U,W)(t.q) = 6(U,W)(g), teR", qeM, (6.11)

0 0 0
(U ) =55 ) =0, 12
"( o) = \ar ) =Y (6.12)
for U, W tangent to M, where & denotes the second fundamental form of
the lift ¢ : M = Np xthL — C™H of ¢ via 7.
By applying [6.7)-(6.12), we know that the second fundamental form
o of ¢ satisfies
5(D,D) =0, o(D+,DY) =0, (6.13)
where D and D' are the holomorphic and the totally real distributions
of M. Since N 1 is totally umbilical in the warped product NT Xy f N 1,

the second equation in implies that B, is immersed as a totally
umbilical submanifold in a complex Euclidean subspace. Hence, without
loss of generality, we may assume that N is an open portion of SP (or of R
when p = 1). Therefore, there is a complex coordinate system {zg, ..., zx}
on Cffl and a coordinate system on SP or R so that the metric on M =
Np X, N, is given by

h p s—1
g = —dzodZg + Z dz;dz; + N2 Z ( H cos? utduf) : (6.14)

j=1 s=1 “t=1

where A = A(zg, ..., zp) is the corresponding warping function.
From and (6.14) we know that ¢ satisfies the following system of
partial differential equations:

(EZjZk = (szzk - (ijzk = 07 j) k = 0? s '7h’ (615)
Pugu, = —tanUspy,, 1<s<t<p, (6.16)

t—1 h
(Euzut = A H cos” U’S{/\IOQSIO + AyoPyo — Z ()‘:vk Pz), + Ay, ¢yk)}
s=1

k=1

t—1 , . t—1
sin 2u o
+ E ( 5 4 H Cos2us>¢uq, t=1,...,p. (6.17)
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Solving (6.15) gives

h
quﬁ(zl,...,zh,ul,... ZAJ Uty ... Up)25 + Blur, ..., up)
3=0
(6.18)
for some anﬂ—valued functions Ay, ..., Ap, B. From (6.17) with t = 1, we

find
y ON? ON? o ON? . ON? .
Duyuy = _< ¢$o B ¢yo> ) ];( (pa:k E ¢yk> (6.19)

Substituting (6.18) into (6.19) yields

== A= L4, (6.20)

Zamj 0’B  10)? 12(‘»2
8u1 aul 2 0% 2 —

Applying the same argument as for Case (1) in the proof of Theo-
rem 4.1, we know that Z?zo(ﬁAj/ﬁul)Aj cannot be independent on all
20,---,2k. Then, by applying an argument similar to that given in the first
part of Case (2) of the proof of [Theorem 4.1, we know that the warping
function A can be chosen to be

n 1/2
A= (Za?zjzj> ,  ag,...,ap > 0. (6.21)
j=0
Substituting into gives

—_— A s —J = — 2A, ':1,...,h, 6~22

3u% ap40 0u% a; a5, ] ( )

0’B

— = 0. 6.23
Case (a): ap=---=ag =0, ag+1,...,ap > 0 for some f satisfying 0 <

B<h
In this case, by applying an argument similar to Case (2) in the proof
of [Theorem 4.1, we may obtain




442 B.-Y. Chen

B p
b= Z{C{Hcosut—t—césinul + ) sinugcosuy + - -

J=0 t=1

p—1 h
+c)y sinyy, H cos Ut}Zj + Z Epzr +G,  (6.24)
t=1 k=p+1

for some constant vectors ¢, Ex, G in C’;’i“. Thus, after choosing some
suitable initial conditions, we obtain (6.5).

Case (b): ag,...,aq > 0, ag4+1 = -+ = ap = 0 for some natural number
a < h.
In this case, after solving (6.22) and (6.23), we find

Ao = Do(ug, ..., up) cosh(aoui) + Eo(uz, . . ., up) sinh(agu,),

A; = Dj(ug, ..., up) cos(ajur) + Ej(ug, ..., up)sin(aju),

A = Di(ug, ..., up)us + Ex(ug, ..., up),

B = F(ug,...,up)u; + G(ug, ..., up) (6.25)

for some vector functions Dy, ..., Dy, Ey, ..., Ey, G,G, where j =1,...,q,

and k = a+1,..., h. Substituting (4.53), and into (4.31) gives

b = (Do(ug, ..., up) cosh(apui) + Eo(u, . . ., up) sinh(apui)) 2o
[e4
+ > (Dj(ug,...,up) cos(ajur) + Ej(ug, ..., up)sin(ajui))z;  (6.26)
j:

b

+ Y (Di(uz,. ., up)us + Brlug, .- -, up)) 2k (6.27)
k=a+1

+ F(ug, ..., up)ur + Glug, ..., up).

Because (B is invariant under the C*-action, we have F' = G = 0.

If p=1, then Dy,..., Dy, Ey, ..., B} are constant vectors.

If p > 1, then (6.26) and (6.16) with s = 1 and t = 2,...,p imply
that Dy and Egy are constant vectors. Also, by applying arguments similar
to that given in Case (2) of the proof of [[heorem 4.1, we also know that
Ey, ..., Ey are constant vectors and ag = - - - = aq = 1. The latter condition
implies

o
/\2 = sz'zj. (628)
J=0
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Thus, from (6.26), we get
quﬁ = (Dgcoshu; + Egsinhuj)zg

—I-Z i(ug, ..., up) cosu + Ej sinul)zj + }: Erzi.

(6.29)

If p > 1, then by substituting (4.27) and into (6.17) with t = 2,
we find

Z cos u1 8

= cos ul{ (Dg coshuy + Egsinhuy)zg +Z D cosuy + E; smul)z]}
7=1

sin 2uq
2

{(DO sinh u; + Eg cosh uy)zg +Z (Dj sinu; — E; cos ul)zj}.
j=1
(6.30)

By comparing the coefficients of z in (6.30) we find
cos u1 (Do coshuy + Egsinh uy) = sinuj (Dgsinhu; + Eg coshuy)

which is impossible. Hence, we must have p = 1 in Case (b). Thus, (6.29)
becomes

c;VS = (Dg coshu; + Egsinh u)zg

- h
+ Y (Djcosur + Ejsinur)z; + ) Eyze. (6.31)
J=1 k=a+1

for some constant vectors Dy, ..., Dy, Ey, ..., Ey. From (6.14) and (6.31),
we know that Dg is a unit time-like vector and D1,..., Dy, Ey, ..., Ey are
space-like orthonormal vectors in C’lnH. Therefore, after choosing suitable
initial conditions, we may obtain (6.6).

Conversely, it is straightforward to verify that (6.5) defines a CR-
warped product Cthl X »SP and (6.6) defines a CR-warped product Ch+1
R in C7; both cases satisfy [6.13). Since the immersions é defined by
(6.5) and (6.6) are invariant under the C*-action, their projections under
7 : C™tl . CH™(—4) give rise to CR-warped products CH"(—4) x s SP
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and CH"(—4) x; R in CH™(—4). Because the second fundamental form
of CH"(—4) x; SP and CH"(—4) x; R both satisfy condition in
CH™(—4), their second fundamental forms satisfy the equality case of [6.4).

L
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