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Rational solutions of the Sasano system of type A:(ll)
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Abstract. In this paper, we completely classify the rational solutions of the Sasano
system of type A<11>, which is a degeneration of the Sasano system of type Af). These
systems of differential equations are both expressed as coupled Painlevé II systems.
The Sasano system of type A(ll) is a higher order version of the second Painlevé equa-

tion, Py, with the same affine Weyl group symmetry of type A(ll) as Pry.
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Introduction

Paul Painlevé and his colleagues [18], [1] intended to find new transcen-
dental functions defined by second order nonlinear differential equations. In
general, nonlinear differential equations have moving branch points. If a
solution has moving branch points, it is too complicated and is not worth
considering. Therefore, they determined second order nonlinear differential
equations with rational coefficients which have no moving branch points. As
a result, the standard forms of these equations turned out to be given by
the following six equations:
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where " = d/dt and «, 3,7, are all complex parameters.
While generic solutions of the Painlevé equations are “new transcen-
dental functions,” there are special solutions which are expressible in terms

of classical special functions. In particular, the rational solutions of P;
(J=1II,1I1,1V,V,VI) were classified by Yablonski and Vorobev [22], [21],
Gromak [3], [2], Murata [10], [11], Kitaev, Law and McLeod [4], Mazzoco
[9], and Yuang and Li [23].

Each of Py (J = II,1I1,1V,V,VI) has Backlund transformations,
which transform solutions into another solutions of the same equation with
different parameters. It was shown by Okamoto [14], [15], [16], [17] that the
Béacklund transformation groups of the Painlevé equations except for P; are
isomorphic to the extended affine Weyl groups. For Prr, Prrr, Prv, Py, and
Py 1, the Backlund transformation groups correspond to Agl), Agl) b Agl),
Aél), Aél), and Dz(ll), respectively.

Noumi and Yamada [13] discovered the equation of type Al(l) (1 >2),
whose Bécklund transformation group is isomorphic to the extended affine
Weyl group W(Al(l)). The Noumi and Yamada systems of types Agl) and
Agl) correspond to the fourth and fifth Painlevé equations, respectively.
Furthermore, the rational solutions of the Noumi and Yamada systems of
types Ail) and Aél) are classified in [5], [6].

Sasano [19] found the coupled Painlevé V and VI systems which have
the affine Weyl group symmetries of types Dél) and Dél). Moreover, he [20]
obtained equations of the affine Weyl group symmetries of types Af) and
Agl). They are called the Sasano systems of types Af) and Agl), which are
defined by
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ﬂj‘/ = 4l’y - 2@1 + 22”(1), y/ = —2y2 —4x — 2t — w,
AP ())ocjcnl s =22 —w+az+2y2, w = —22w — ap — 2yw,

ag + 201 + 205 =1,

and

¥ =2xy —ag+ 2w, Yy =—y>—2x—t,

Agl)(ao,al) 2= —w/2+yz, w = —2/2 — yw,

ag+ar =1,

respectively. Agl)(ao, aq) is a degenerate system of Af) (aj)o<j<2. We note
that the rational solutions of the Sasano systems of types Af) and Dél) are
classified in [7] and [8].

In this paper, we classify the rational solutions of the Sasano system
of type Agl), Agl) (g, v1). This system of differential equations is also ex-
pressed by the Hamiltonian system:

de OH dy 9H dz 9H dw  9H

dt 9y’ dt  9x’ dt ow’ dt 9z’
where the Hamiltonian H is given by
H = Hyj(z,y,t,a0) + Hs(z,w) + yzw

= (zy® + 22+t — apy) + (22/4 — w?/4) + yzw.

Agl)(ag,al) has the Béacklund transformations sg, s;, which are given
by

( ¢ ) o 2007, +2
So - \T Z, W, T, g, X — | T _— =, 2, W — —F=,1l;, —Qp, «
0 y Y, 2, W, 15 Qg, (g 'Y $+2’27 ) .'IZ'+227 ) 0, &1 0/
s1: (2, Y, 2, w, a0, 1)
2« a? « 2001w
—><$+ 1y—;ay_1az+17w7t3040+20417—041>7
h 1 fi fi

where f; := x4+ 9% +w? +t and ag + a; = 1. The Béicklund transformation
group (S, 1) is isomorphic to the extended affine Weyl group W(Agl)).
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Our main theorem is as follows:

Theorem 0.1  For a rational solution of Agl)(ao, a1), by some Backlund
transformations, the parameters and solution can be transformed so that
(g, 1) = (1/2,1/2) and (x,y,z,w) = (—t/2,0,0,0), respectively. Fur-
thermore, for Agl)(ao,al), there exists a rational solution if and only if
oy — 1/2 e Z.

This paper is organized as follows. In Section 1, we determine the
meromorphic solution at ¢t = oo for Agl)(ao,al). Then, we find that the
residues of y at t = oo are expressed by the parameters aq, a1, that is,

boo,—1 1= —tli%iy =1/2 — ayp.

In Section 2, we calculate the Laurent series of x,y,z,w at t = ¢ € C.
Then, we see that Res;—.y € Z. By the residue theorem, we obtain the
necessary condition for Agl)(ag,()él) to have a rational solution, which is
given by 1/2 — o € Z.

In Section 3, we compute the residues of the Hamiltonian H at ¢t = oo
and t = ¢ € C, which are given by

hoo,—1 := —tfi%iH =1/2(ap —1/2)(1/2 — ovp) and Pt{:ecsH =0,1,3,

respectively.

In Section 4, for a rational solution of Agl)(ao, a1), we transform the
parameters to (ap, 1) = (1/2,1/2).

In Section 5, we determine a rational solution of Agl) (1/2,1/2) and prove
our main theorem.

1. Meromorphic Solution at t = co

In this section, for Agl) (v, a1 ), we determine the meromorphic solutions
at t = oo. For the purpose, we set
xr = aoo,notno + aoo,no—ltno_1 + -+ aoo,—kt_k +---,
Y = boopy t™ + boo,nl—ltmil 4ot boo,—ktik 4o,
2= Coonat"™ F Coomp—1t™ 14t oot TR 4o

W = doonst™ + doo,n3—1tn3_1 NI doo,—k:t_k +n
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where ng,n1,n9,ng are all integers.
The aim of this section is to show that for A§1)(a0,a1), the Laurent
series of (z,y, z,w) at t = co are uniquely determined and are given by
r=-1/2-t4+0(t72), y=(1/2— )t +0(t3),
z=0(t2), w=O0(t?),
respectively. For the purpose, we treat the following five cases:
0) z,y,z,w are all holomorphic at ¢t = oo,
1

) one of x,y, z,w has a pole at t = oo,

(

(

(2) two of z,y, z, w have a pole at t = oo,
(3) three of z,y, z, w have a pole at t = oo,
(

4) all of x,y, z,w have a pole at t = oco.

1.1. The case where x,y, z, w are all holomorphic at t = oo
Proposition 1.1  For Agl)(ao,al), there exists no solution such that

x,Yy, z,w are all holomorphic at t = oo.

Proof. Suppose that Agl)(ag, a1) has such a solution. We first note that
ng, n1,N2,ng < 0. Then, comparing the coefficients of the term ¢ in

y = -y’ -2z —t,

we have 0 = —1, which is impossible. O

1.2. The case where one of (x,y, z,w) has a pole at t = oo
In this subsection, we consider the following four cases:

(1) « has a pole at t = oo and y, z,w are all holomorphic at ¢t = oo,
(2) y has a pole at t = 0o and x, z, w are all holomorphic at ¢t = oo,
(3)

(4) w has a pole at t = co and z,y, z are all holomorphic at ¢ = co.

z has a pole at t = co and z,y,w are all holomorphic at ¢ = oo,

1.2.1 The case where x has a pole at t = o©

Proposition 1.2  Suppose that for A§1)(a0,a1), there exists a solution
such that © has a pole at t = co and y, z,w are all holomorphic at t = oo.
Then,
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r=-1/2-t+O0(t™?),
y=(1/2=a)t™ " +0(t™?),
z=0(t?),

w=0(t?).

Proof. Let us first note that ng > 1 and ny,n9,n3 < 0. Considering

/ J—

y = —y> -2z —t,

we find that ng = 1 and aso1 = —1/2.
Comparing the constant terms in

we obtain
Uoo,1 = 2000,1b00,—1 — 00 + Co0,0d50,0, 00,0 =0, dooo =0, Coo,0=0,

respectively. Thus, it follows that bos —1 = 1/2 — .
Furthermore, comparing the coefficients of the terms ¢t~! in
' =2xy — ag + 2w,
y = —y* -2z —t,
2= —w/2+yz,
w = —z/2 — yw,
we have by 2 = Goo,—1 = doo,—1 = Coo,—1 = 0, Tespectively. O

Proposition 1.3  Suppose that for Agl)(aojal), there exists a solution
such that x has a pole at t = oco and y, z,w are all holomorphic at t = co.

Then, it is unique.
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Proof. By Proposition 1.2, we set

T=—1/2t+ Qoo 1t + - oo, kgt F 4,
Y =boo 1t Fboo ot 24 Hbog it TF +boo gyt FFY 4
2= Cop 1t 4+ oo it TF 4
W=doo 1t + - tdoo gt 4,

where aoo,—1, boo,~1, boo,—2, Coo,—1, doo,—1 have been determined and
Ooo,—1 = Coo,—1 = doo,—l = Oa boo,—l = 1/2 — Q, boo,—2 =0.
Comparing the coefficients of the term ¢t=% (k > 2) in

' =2xy — ag + 2w,
y' = —y? -2z —t,
2= —w/2+yz,

/ p—

w' = —2z/2 —yw,
we obtain

boo,—(k+1) = (B = 1) oo, —(k—1) + 2 too,~1boo,—m + D Coo,~ 100, —m,
2000,k = (k= 1)boo,—(k—1) = 2 boo,~1bs0,—m,
1/2 - doo,— = (k — 1)Coo,—(k—1) + 2 Doo,~1Co0,—m>
1/2 - oo,k = (b — 1)doo,—(k—1) = 2 boo,~1do0,~m>
where the sums extend over positive integers [, m such that [ + m = k.

Therefore, doo,—k, boo,—(k+1) Coo,—k, doo,—k are inductively determined,
which proves the proposition. U

1.2.2 The case where y has a pole at t = oo
Proposition 1.4 For Agl)(ao,al), there exists no solution such that y
has a pole at t = oo and x, z,w are all holomorphic at t = co.

Proof.  Suppose that Agl) (g, 1) has such a solution. Then, we see that
boo,n, # 0, n1 > 1 and ng,na,nz < 0.
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On the other hand, comparing the coefficients of the term t2™* in

/ J—

Y =—y* -2 —t,

we have 0 = —bgom, which is impossible. 0

1.2.3 The case where z has a pole at t = c©
Proposition 1.5 For Agl)(ao,al), there exists no solution such that z
has a pole at t = oo and x,y,w are all holomorphic at t = co.

Proof. Suppose that Agl)(ao, a1) has such a solution. Then, we see that
Coony 7 0, m2 > 1 and ng,nq,nz < 0.
On the other hand, comparing the coefficients of the term ¢"2 in

w' = —z/2 — yw,
we have 0 = —coo,n, /2, which is contradiction. O

1.2.4 The case where w has a pole at t = o©
Proposition 1.6 For Agl)(ao,al), there exists no solution such that w
has a pole att = oo and x,y, z are all holomorphic at t = oo.

Proof. Suppose that Agl)(ao, a1) has such a solution. Then, we see that
doo,ny 7 0, n3 > 1 and ng,n1,ne < 0.
On the other hand, comparing the coefficients of the term ¢" in

/ J—

2= —w/2+yz,
we obtain 0 = —ds n, /2, which is impossible. O

1.3. The case where two of (x,y,z,w) have a pole at t = oo
We consider the following six cases:

(1
(2
(3
(
(
(

) x,y both have a pole at t = oo and z, w are both holomorphic at ¢ = oo,
)
)
4) y, z both have a pole at t = oo and x, w are both holomorphic at t = oo,
)
)

x, z both have a pole at t = oo and y, w are both holomorphic at ¢ = oo,
x,w both have a pole at ¢ = co and ¥, z are both holomorphic at ¢ = oo,

5
6

y, w both have a pole at t = oo and z, z are both holomorphic at ¢t = oo,
z,w both have a pole at t = oo and x, y are both holomorphic at t = oc.
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1.3.1 The case where x,y have a pole at t = co
Proposition 1.7 For Agl)(ao, ay1), there exists no solution such that x,y
both have a pole at t = oo and z,w are both holomorphic at t = oco.

Proof. Suppose that A(ll)(ao, aq) has such a solution. Then, we see that
aoo,noboo,nl # 0, np, n1 > 1 and ng, ng < 0.
On the other hand, comparing the coefficients of the term ¢t in

¥ = 2xy — ag + 2w,

we have 0 = 2a.0,n,bo0,n, » Which is contradiction. O

1.3.2 The case where x,z have a pole at t = oo
Proposition 1.8 For Agl)(ag,al), there exists no solution such that x, z
both have a pole at t = 0o and y,w are both holomorphic at t = co.

Proof. Suppose that Agl)(ozo, a1) has such a solution. Then, we see that
Uoo,ngCoo,ng 75 07 ng, N2 > 1 and ny, n3 < 0.
On the other hand, comparing the coefficients of the term ¢™2 in

! J—

w = —2/2 — yw,
we obtain 0 = —ce n,/2, which is impossible. O

1.3.3 The case where x,w have a pole at t = oo
Proposition 1.9 For Agl)(ao, o), there exists no solution such that x,w
both have a pole at t = oo and z,w are both holomorphic at t = oco.

Proof. Suppose that A(ll)(ao, a1) has such a solution. Then, we see that
aoo,nodoo,ng 7& 07 No, N3 > 1 and ni, N2 < 0.
On the other hand, comparing the coefficients of the term ¢"2 in

2= —w/2+yz,

we have 0 = —dsg n,/2, which is impossible. O

1.3.4 The case where y,z have a pole at t = c©
Proposition 1.10 For A(ll)(ao, o), there exists no solution such that y, z
both have a pole at t = 0o and x,w are both holomorphic att = occ.
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Proof. Suppose that Agl)(ao, aq) has such a solution. Then, we see that
boo,nlcoo,nz # 0, n1, ng > 1 and ng, ng < 0.
On the other hand, comparing the coefficients of the term ¢"17"2 in

2= —w/2+yz,

we have 0 = bog 5, Coo,n,, Which is impossible. O

1.3.5 The case where y,w have a pole at t = oo
Proposition 1.11  For Agl)(ao, aq), there exists no solution such that y, w
both have a pole at t = co and x,z are both holomorphic at t = oco.

Proof. Suppose that Agl)(ao, a1) has such a solution. Then, we see that
boo,nldoo,ng 7’5 07 ny, n3 > 1 and No, N2 < 0.
On the other hand, comparing the coefficients of the term ¢ 7" in

4 J—

w = —z/2 —yw,
we have 0 = —bs n, doo ny, Which is impossible. O

1.3.6 The case where z,w have a pole at t = oo
Proposition 1.12  For Agl)(ao, o), there exists no solution such that z, w
both have a pole at t = oo and x,y are both holomorphic at t = occ.

Proof. Suppose that Agl)(ao, a1) has such a solution. Then, we see that
COO,TLQdOO,’)’Lg 7£ 07 n2, N3 Z 1 and No, N1 S 0.
On the other hand, comparing the coefficients of the term ¢"27"3 in

' = 2zy — ag + 2w,

we obtain 0 = Coo n,doo,ny, Which is contradiction. O

1.4. The case where three of (z,y, 2, w) have a pole at t = oo
In this subsection, we treat a solution such that three of (z,y, z, w) have
a pole at t = co. For the purpose, we consider the following four cases:

(1) z,y, z all have a pole at t = oo and w is holomorphic at t = oo,
)

(3) z,z,w all have a pole at t = co and w is holomorphic at ¢ = oo,
(4) y, z,w all have a pole at ¢t = oo and z is holomorphic at t = occ.

x,y,w all have a pole at ¢ = oo and z is holomorphic at ¢t = oo,
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In order to deal with the four cases, we prove the following lemma:

Lemma 1.13 For Agl)(ao,al), there exists no meromorphic solution at
t = oo such that x,y both have a pole at t = oc.

Proof. It can be proved in the same way as Proposition 1.7. [l
By Lemma 1.13, we have only to consider cases (3) and (4).

1.4.1 The case where x,z,w have a pole at t = oo
Proposition 1.14 For Agl)(ag,al), there ewists mo solution such that
x,z,w all have a pole at t = 0o and y is holomorphic at t = co.

Proof. Suppose that Agl)(ao, aq) has such a solution. Then, we see that
aoo,nocoo,ngdoo,ng # 0, ng, n2, n3 > 1 and n; <0.
On the other hand, considering

y' = —y® -2z —t,
we have ng = 1 and as,1 = —1/2. Moreover, comparing the coefficients of
the term t™21"3 in

' = 2xy — ag + 2w,

we obtain 0 = Co,n,doo,ny, Which is contradiction. O

1.4.2 The case where y, z, w have a pole at t = co
Proposition 1.15 For Agl)(ag,al), there exists no solution such that
Yy, z,w all have a pole at t = 0o and x is holomorphic at t = oco.

Proof. Suppose that A(ll)(ao, a1) has such a solution. Then, we see that
boo,ny Coo nyloo.ng 7 0, N1, na, ng > 1 and ng < 0.
On the other hand, comparing the coefficients of the term t2™ in

/

y' = —y* -2z —1t,

we obtain 0 = —bgo’n ,» Which is impossible. (]

1.5. The case where x,y, z, w all have a pole at t = co
Proposition 1.16 For Agl)(ag,al), there ewists mo solution such that
x,y,z,w all have a pole at t = oo.
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Proof. The proposition follows from Lemma 1.13. O

1.6. Summary
Let us summarize the results in this section.

Proposition 1.17  Suppose that for Agl)(ao, aq), there exists a meromor-
phic solution att = co. Then, x,y,z,w are uniquely expanded as
r=-1/2-t+O0(t™?),
y=(1/2 - ap)t 1 +O(t™3),
z=0(t7?),
w=0(t?).

2. Meromorphic Solution at t =c€ C

In the same way as Proposition 1.17, we find which of (z,y, z,w) can
have a pole at t = c € C.

Proposition 2.1  Suppose that for Agl)(ao,al), there exists a meromor-
phic solution at t = ¢ € C. Moreover, assume that some of (z,y,z,w) have
a pole at t = c. Then, one of the following occurs:

(1) y has a pole at t = ¢ and xz, z,w are all holomorphic at t = ¢,

(2) x,y both have a pole at t = ¢ and z,w are both holomorphic at t = ¢,
(3) y,w both have a pole att = ¢ and x, z are both holomorphic at t = c.
(4) x,y,z all have a pole at t = ¢ and w is holomorphic at t = c,

(5) x,y,z,w all have a pole at t = c.

For the computation of a meromorphic solution at ¢t = ¢ € C, we define
the Laurent series of (z,y,z,w) at t = c € C by
T = Aep,T™ + ac,n0+1Tn0+1 4+ e+ ac,n0+an0+k o
Yy = bc,annl + bc,n1+1Tnl+1 + -+ bc,n1+an1+k + - 5
z = Cc,nngZ + Cc,n2+1Tn2+1 4+ 4+ Cc,n2+an2+k + e
W =dep, T + dc’n3+1Tn3+1 4ot dc7n3+an3+k +oe,
where T :=t — ¢ and ng,n1,n2,ng are all integers.

The aim of this section is to prove that for a meromorphic solution at
t = ¢, the residue of y at ¢ = ¢ is an integer, and for a rational solution of
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Agl)(ao, aq), the residue of y at ¢t = oo is expressed by

boo,—1 1= —tfi%iy: 1/2 —ap € Z.

2.1. The case where y has apoleatt=ce€ C
Proposition 2.2 Suppose that for Agl)(ag,al), there exists a solution
such that y has a pole att = c € C and z,z,w are all holomorphic at t = c.
Then,

x:a0T+’ y:T_1+’

z=0(T), w = O(T?).
Proof. Let us first note that n; < —1, b.,, # 0 and ng,n2,n3 > 0.

Considering

! J—

y = —y* -2z —t,

we have ny = —1 and —b. 1 = —bg,l, which implies that b, 1 = 1.
Comparing the coefficients of the term 7! in

' = 2xy — ag + 2w,
2= —w/2+yz,

w' =—2z/2 —yw,

we obtain 2a. gbe,—1 = bc,—1€c,0 = be,—1dc,0 = 0, which implies that a.o =
e,0 = deo = 0. Moreover, comparing the constant terms in

! J—

' =2zy — ag + 2w,
w = —2z/2 — yuw,

we have

Qc1 = 2ac,1bc,—1 — Qp, dc,l = _bc,—ldc,la

which shows that a.1 = ag and d.; = 0. U



240 K. Matsuda

2.2. The case where x,y have a pole at t =c€ C

Lemma 2.3 Suppose that for Agl)(ao,al), there exists a solution such
that x,y both have a pole at t = ¢ € C and z,w are both holomorphic at
t=-c. Then, ng = —2,n1 = —1.

Proof. Let us first note that ng,n; < —1, ac¢nyben, # 0, and ng, ng > 0.
Then, considering

{x’ =22y — o + 2w,

/ J—

y = —y* -2z —t,

we have n1 = —1, ng = —1, —2, respectively.
We next prove that ng = —2. For the purpose, we suppose that ng = —1.
Then, comparing the coefficients of the term 72 in

' = 2zy — ag + 2w,
we have —a. 1 = 2a.,_1bc,—1, which implies that b._; = —1/2. On the
other hand, comparing the coefficients of the term 72 in

/

y = —y* — 22—t

we obtain —b. _1 = —bg’_l, which shows that b, _; = 1. This is impossible.
O

Proposition 2.4  Suppose that for Agl)(ao,al), there exists a solution
such that x,y both have a pole at t = ¢ € C and z,w are both holomorphic
att = c. Then,

r=-T2—-¢/3-1/2-T+---,

y=-T""1'+¢/3- T+ (3/4—a/2)T*+---,

z=0(T),

w = 0(T).

Proof. By Lemma 2.3, we set
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T =ac, 2T ?+ac, 1T " +aco+-,

Y =be 1T +beg+be 1T +beoT?+ -,
zZ=0Ceot Cenl +-- -,
w=deo+de T +---.

Comparing the coefficients of the terms 772,772 in

/ p—

' =2xy — ag + 2w,
y' = —y* -2z —t,

we have —2ac,_o = 2a¢,—2be,—1, —be,—1 = —b2 _; — 2a., 2, which implies
that a. 2 = —1, b.._1 = —1. Moreover, comparing the coefficients of the
term 77! in

{z’ =—w/2+yz,

w = —2/2 — yw,

we have b, _1c.0 = —be,—1dc,0 = 0, which shows that c. o = d.o = 0.
The other coefficients, a. 1, ac0,Gc,1,b¢,0,bc,1,be,2 can be computed by
considering
' =2xy — ap + 2w,
y =—y* -2zt
in the same way. O

2.3. The case where y,w have a pole at t=c€ C

Lemma 2.5 Suppose that for Agl)(ag,al), there exists a solution such
that y,w both have a pole at t = ¢ € C and x,z are both holomorphic at
t=rc. Then, n1 =ng = —1.

Proof. Let us first note that ny, ng < —1, b p,dcny 7 0 and ng, na > 0.
Then, considering

y = —y* -2 —t,
2 =—w/2+yz,

we have ny =n3 = —1 O
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Proposition 2.6 Suppose that for Agl)(ao,al), there exists a solution
such that y,w both have a pole att = ¢ € C and x,z are both holomorphic
att =c. Then,

T = —d37_1/4+ac,1T+ s,

y=T"'+b T+,

z = dc,—1/2+cc,1T+ )

w=de 1T ' +de T+,

where the coefficients satisfy ac,1 — o + cc1de,—1 = 0.
Proof. By Lemma 2.5, we set

X :ac,0+ac,1T+"’ s

Yy = bc,fljj_1 + bc,O + bc,lT +

Z:CC,O+CC,1T+"' 5

w = dc’_lT_l + dc70 + dc’lT 4+
Then, comparing the coefficients of the term T2 in

/ J—

y' = —y* - 22—t

we have —b. 1 = —ba_l, which implies that b, 1 = 1. Moreover, compar-

ing the coefficients of the term T-! in
7 = 2xy — agp + 2w,
2= —w/2+yz,

we have 2a.,0be, 1+ Ccode,—1 = —de,—1/24be,—1¢c0 = 0, which implies that
G0 = —dz 1 /4, ceo = de,1/2.
Comparing the coefficients of the terms 7%, 7?0 in

Y =—y* -2z —t,
2= —w/2+yz,

we have
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_2bc,—1bc,0 = 07 Ce,1 = _dc,0/2 + bc,—lcc,l + bc,OCc,07

which implies that b.o = d.o = 0. Furthermore, comparing the constant
term in

' = 2xy — ag + 2w,
we obtain

Qc1 — Qo + CC71dcy_1 =0. O
2.4. The case where x,y,z have a pole at t =c € C
Lemma 2.7 Suppose that for Ag)(ag,al), there exists a solution such

that x,y,z all have a pole at t = ¢ € C and w is holomorphic at t = c.
Then, ng = =2, n; = nz = —1.

Proof. Let us first note that ng, ni, ne < —1, @cnoben, Cen, # 0, and
n3 > 0. Then, considering

2= —w/2+ yz,
we have ny = —1. Furthermore, considering
y = —y* -2z —t,
w = —z/2 — yw,

we have ng = —1, —2, ng = —1, respectively.
We next prove that ng = —2. For the purpose, suppose that ng = —1.
Then, comparing the coefficients of the term 772 in

/ p—

' =2xy — ag + 2w,
y =—y’ -2z —t,
we have
—Qc,—1 = 2ac,—lbc,—la _bc,—l = —b?

c,—1»

which implies that a. 1 = 0, b, = 1. This is impossible. U
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Proposition 2.8 Suppose that for Agl)(ao,al), there exists a solution
such that x,y, z all have a pole att = ¢ € C and w is holomorphic at t = c.
Then,

r=-T724+ (2 _1/12—¢/3)-1/2- T+,

Yy = -T-1 4+ (637_1/6 + C/3)T + (3/4 — a0/2 + Cc771dc’1/2)T2 + -

z=ceaT P e T+,

W=Ce,—1/2+de T+~ .

Proof. By Lemma 2.7, we set

r=ac 2T 2+ ac 1T ' +aco+ac T+,
Y =be 1T  +beg+be 1T +beoaT?+ -,
z=ce 1T +eeotce T+,
w=deo+de1T+de1T+---.

Then, comparing the coefficients of the terms 73,772, T~ ! in

' =2xy — agp + 2w,

y = —y* -2z —t,
w = —2/2 — yw,
we have
_2ac,72 = 2&0’,2bc7,1, _bc,fl =-b2 -1~ 2&0772,

C,

0= _Cc,—l/2 - bc,—ldc,Oa

which implies that a.,_o = —1, be,—1 = —1, deo = ¢c,—1/2.
Comparing the coefficients of the terms 772, 71, T~ in

' =2xy — ap + 2w,
y = —y* -2z —t,
2= —w/2+yz,

we obtain
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—Qc,—1 = 26Lc,—2bc,0 + 2ac,—1bc,—17
0= _ch,flbc,O - 2&0’,1, 0= bc,flcc,O + bC,OCC,fla

which implies that a. 1 = b.o = cc0 = 0.
Comparing the coefficients of the terms 77!, 70 in

we have
0= 2ac,—2bc,l + 2ac,0bc,—l + Cc,—ldc,Oa bc,l = _2bc,—lbc,1 - 2ac,0 — ¢,

which shows that aco = ¢2_;/12 — ¢/3, be1 = ¢2_1/6 + ¢/3. The other
coefficients, a. 1,b.2 can be computed by comparing the coefficients of the
terms T, T in

' = 2zy — ag + 2w,
y =y’ -2z -1,

in the same way. ([

2.5. The case where x,y,z,w have a pole at t =c € C

Lemma 2.9 Suppose that for Agl)(ag,al), there exists a solution such
that x,y,z,w all have a pole at t = ¢ € C. Then, (ng,ni,na,ng) =
(-2,—-1,-1,-2), (-2,—-1,-2,-1).

Proof.  Let us note that ng, ni, ng, ng < —1, and a¢ nyben, Cenydeng 7 0.
We first show that ny = —1. For the purpose, suppose that n; < —2. Then,
considering

' =2xy — ag + 2w,
y = —y* -2z —t,
2 =—-w/2+yz,

/ —

w' = —2z/2 —yw,

we have
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ng +mn1 =mng +n3, 2ny=ng, nz=ni+nz, ng=ni-+ns,

which implies that ng = 2n1, ns = 3n1, ng = 2ny. Since ng + n1 = no + ngs,
it follows that n; = 0, which is impossible. Therefore, we have n; = —1.
We show that ng = —2. Considering

y =y’ -2zt

we obtain ng = —1, —2. Then, we suppose that ng = —1. Thus, considering

' = 2zy — ag + 2w,

we have ny = nz = —1. Comparing the coefficients of the term 72 in
y' =y’ -2z -1,
Z=—w/2+yz,
we obtain —b. 1 = —ba_l, —C¢,—1 = be —1C¢,—1, which implies that b, 1 =

1, ¢c,—1 = 0. This is impossible. Therefore, it follows that ng = —2.
We last prove that (ng,ng) = (—1,—2),(—2,—1). For the purpose,
considering

' = 2xy — ag + 2w,

we have (ng,ng) = (—1,—-1),(—1,-2),(—=2,—1). Let us suppose that
(na,ng) = (—1,—1). Then, comparing the coefficients of the term
T-3.7-2 72 in

' =2xy — ag + 2w,

y' = —y® -2z —t,

/ —

w = —z/2 — yw,
we obtain
2
—2ac, -2 = 20,07,2()0’,1, _bc,fl = _bc7_1_2ac,727 _dc,fl = _bc,fldc,fla

which shows that a._o = —1, b..—1 = —1, d.,—1 = 0. This is impossible.
Therefore, it follows that (ng,ng) = (-1, -2), (-2, —1). O
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Proposition 2.10 Suppose that for Agl)(ag,al), there exists a solution
such that x,y, z,w all have a pole att = ¢ € C. Then, one of the following
occurs:

r=—(t—c) 2+ (1/12—¢/3) = 1/2-(t—c)+ -,
y=20t—c)" 4 (=1/30 — ¢/15)(t —c) + 0(t — )% + - - -,

0 z=(t—c) V4 (c/6—1/24)(t —c) + (1/d+ag/6)(t —c)> + -,
w="6(t—c) 24 (c/5—3/20) +0(t —c)+---,
r=—(t—0c)?4+(1/12—¢/3) = 1/2(t—c)* + -,

@ y=2(t—c)" "+ (=1/30 — ¢/15)(t — ) + O(t —¢)> + -+~

z=—(t—c)"t+(1/24—¢/6)(t —c) + (=1/4 —ap/6)(t —c)? + -,
(w=—6(t—0c)"2+(3/20—¢/5)+0(t—c)+---,
(v =-3(t—c)"2+ (1/20 — 2¢/5) — 1/2(t —¢c) + - -+,
y=—2(t—¢c)" P+ (1/30 +¢/15)(t —c) +0(t —c)® +---,
(B) 4z2=06V—=1(t—¢)"+(¢/5-3/20)V/=1+0(t —¢) +---,
w=+/=1(t—c)"t +(c/6 — 1/24)/=1(t — ¢)

+(5/12 — ag /6)V=1(t —c)* +- -,
r=-3(t—c)"2+(1/20 —2¢/5) —1/2(t —c)?> + -+,
y=—2(t—c) 1+ (1/30+¢c/15)(t —c) + 0(t —c)® + -,
(4) S2=—6y=1(t—c)"2+(3/20 — ¢/5)v/—1+0(t —¢) + -+ -,
w=—/—1(t — )" + (1/24 — ¢/6)v/—1(t — ¢)
{ +(ag/6 —5/12)y/—1(t —c)? + -+ .

Proof. We treat the case where (ng,ni,ne,n3) = (=2,—1,—-1,-2). If
(ng,n1,n9,n3) = (—2,—1,—2,—1), the coefficients can be computed in the

same way.
Comparing the coefficients of the term 772,72 in

{y’ =—y® -2z —t,

/ pa—

w = —z/2 — yw,
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we have —b, 1 = —bi,l —2a¢,—2, —2d. 2 = —b. _1d. 2, which implies
that ac,—o = —1, b, —1 = 2.
Furthermore, comparing the coefficients of the term 772,72 in

' =2xy — ap + 2w,
2= —w/2+yz,

we have
_2ac,—2 = 2ac,—2bc,—l + Cc,—ldc,—2a —Cc,—1 = _dc,—2/2 + bc,—lcc,—la

which implies that (c._1,d¢,—2) = (1,6),(—1,—6). The other coefficients
can be computed in the same way. O

2.6. Summary
Proposition 2.11

(1) Suppose that for Agl)(ao,al), there exists a meromorphic solution at
t =€ C. Moreover, assume that some of (x,y, z,w) have a pole at t = c.
Then, y is holomorphic at t = ¢ or y has a pole of order one at t = c.
And Resi—. y € Z.

(2) Suppose that for Agl)(ao,al), there exists a rational solution. Then, it
follows from Proposition 1.17 and the residue theorem that

boo,—1:=1/2 —ap=—Res y € Z.
t=o00
Proof.  Case (1) is obvious. We treat case (2) and suppose that Agl) (g, 1)

has a rational solution. Then, it follows from Proposition 1.17 and case (1)
that

_ init_1<+§(ci/t)k>

i=1 k=0
= (1 +no+ -+ n)t7 0,

where each of ¢; (i =1,2,...,m) is a pole of y and each of n; is an integer.
If y is holomorphic in C, the sum is considered to be zero.
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Comparing the coefficients of the term ¢~! of Laurent series of y at
t = 00, we have boo,—1 = 1/2 — ap € Z. O

3. The Laurent Series of the Hamiltonian H

In this section, using the results in Section 1 and 2, we compute the
residues of H at t = oo, c € C.

The aim of this section is to show that for a meromorphic solution at
t = c € C, the residue of H at t = ¢ is an integer, and for a rational solution
of Agl) (Ot(), Oél),

hoo,—1 1= —tli%gH =1/2(ag — 1/2)(ap +1/2) € Z.

3.1. The Laurent series of H at t = oo
For the computation of the Laurent series of H at t = 0o, using Propo-
sition 1.17, we can set

H = hoo2t? + hooat + hooo + hoo, 1t L 4+,

where ho, —1 = —Resi—oc H.

Proposition 3.1  Suppose that for for Agl)(ao,al), there exists a mero-
morphic solution at t = co. Then, —Resi—oo H = 1/2(cg — 1/2)(cvg + 1/2).

3.2. The Laurent series of H at t =c € C

3.2.1 The case where y has a poleat t=c€ C

Proposition 3.2  Suppose that for Agl)(ag,al), there exists a solution
such that y has a pole att = c € C and z, z,w are all holomorphic at t = c.
Then, H is holomorphic at t = c.

3.2.2 The case where z,y have a pole at t =c € C

Proposition 3.3  Suppose that for Agl)(ao,al), there exists a solution
such that x,y both have a pole att = c € C and z,w are both holomorphic
att =c. Then, H has a pole of order one att = c and Res;—. H = 1.

3.3. The case where y,w have a pole at t =c€ C

Proposition 3.4  Suppose that for Agl)(ag,al), there exists a solution
such that y,w both have a pole att = ¢ € C and x,z are both holomorphic
at t = c. Then, H is holomorphic at t = c.
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3.4. The case where x,y,z have a pole at t =c € C
Proposition 3.5 Suppose that for Agl)(aojal), there exists a solution
such that x,y, z all have a pole at t = ¢ € C and w is holomorphic at t = c.
Then, H has a pole of order one att = ¢ and Res;—. H = 1.

3.5. The case where x,y,z,w have a pole at t =c € C
Proposition 3.6 Suppose that for Agl)(ao,al), there exists a solution
such that x,y, z,w all have a pole att = c € C. Then, H has a pole of order
one att = c and

1 if case (1) or (2) occurs in Proposition 2.10,

ResH =
t=c 3 if case (3) or (4) occurs in Proposition 2.10.

3.6. Summary
Proposition 3.7

(1) Suppose that for Agl)(ao,al), there exists a meromorphic solution at
t=ce C. Then, H is holomorphic at t = ¢, or has a pole of order one
at t = c. Furthermore, if H has a pole at t = ¢, then Res;—. H = 1, 3.

(2) Suppose that for Agl)(ao,al), there exists a rational solution. Then, it
follows from Proposition 3.1 and the residue theorem that

hoo,fl = 1/2(&0 — 1/2)(040 + 1/2) = _tR:eoiH €.

Proof. Case (1) is obvious. We treat case (2). For the purpose, let us
suppose that for A§1)(ag,a1), there exists a rational solution. Then, it
follows from Proposition 1.17 and case (1) that H is a rational function of
t and given by

i €
H = hooot® + hoo 1t + hooo + 3 ———,
P t—cg

n +oo J
_ 2 Z —1 Z Ck
- hoo,Qt + hoo,lt + hoo,(] + €t < ( n ) >

k=1 §=0

= hoo,2t2 + hoo,it + hooo + (Z 5k>t_1 +oen,
k=1

where each of ¢, € C (k=1,2,...,n) is a pole of some of x,y, z, w and each
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of € is given by e, = 0,1,3. If x,y, z, w are all holomorphic in C, the sum
is considered to be zero.
Comparing the coefficients of the Laurent series of H at t = oo, we have

n

hoos1 =Y _ € €Z,

k=1

which proves the proposition. O

4. Necessary Condition And The Reduction of The Parameters

In Proposition 2.11, we have obtained a necessary condition for
Agl)(ao,al) to have a rational solution, which is given by 1/2 — o € Z.
In this section, using Backlund transformations, we transform the parame-
ters to (ap, 1) = (1/2,1/2).

4.1. Shift operators
Following Sasano [20], we introduce the shift operator T

Proposition 4.1  Let the shift operator T be defined by T := s1s9. Then,
T(ap, 1) = (g + 2,1 — 2).
Proof. From the definitions of sy and s1, it follows that
T (g, 1) = $150(a, 1)
= s1(—ap, a1 + 2ayp)
= (—ap + 2(a1 + 2a9), — (a1 + 2a))
=(—a0+2(1+ag),—(2—a1))
= (ap + 2,1 — 2),
where in the fourth equality, we use the relation, ag + a; = 1. U

4.2. The properties of the Backlund transformations
Proposition 4.2

(0) Ifx+22=0 for Agl)(ao, o), then ag = 0.

(W) If fi=2x+y?>+w?+t=0 for Agl)(ao,al), then ap = 0.
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Proof. We first treat case (0). If z 4+ 2% = 0, it follows that 2’ + 222" = 0.
Considering

' =2xy — ap + 2w,
2= —w/2+yz,

we find that 2/ + 222’ = 2y(x + 2%) — ap = 0, which implies that oy = 0.
We next deal with case (1). If z + y? + w? +t = 0, it follows that
'+ 2yy’ + 2ww’ + 1 = 0. Considering

' =2xy — agp + 2w,
y = —y* -2z —t,
w = —2/2 — yw,
we see that

242y + 2w +1 =2z +y*+w?+1t)—ap+1=0,

which implies that a; = 0, because ag + a7 = 1. Il

By this proposition, we can consider sy or s; as the identical transfor-
mation, if z + 22 = 0 for Agl)(ag,al), orif fi = x+y?* +w?+t=0 for
Agl) (g, v1), respectively.

4.3. The reduction of the parameters

In Proposition 2.11, we have obtained a necessary condition for
Agl)(ao,al) to have a rational solution, which is given by 1/2 — o € Z.
Then, by shift operator 1', we can prove the following proposition.

Proposition 4.3  Suppose that for Agl)(ao,al), there ezists a rational
solution. Then, by some Bdcklund transformations, the parameters can be
transformed to (o, 1) = (1/2,1/2).

Proof. 1f Agl)(ao, a1) has a rational solution, it follows from Proposition
2.11 that 1/2—aq € Z. Let us consider the following two cases: (1) 1/2—ayg €
27, (2) (1/2 — ag) — 1 € 2Z.

We first treat case (1). Then, by T', the parameters can be transformed
to (g, 1) = (1/2,1/2).
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We next deal with case (2). Then, by T', the parameters can be trans-
formed to (ap,a1) = (3/2,—1/2). In addition, by s1, the parameters are
transformed to (g, 1) = (1/2,1/2). O

5. Classification of Rational Solutions

5.1. Rational solutions of Agl)(1/2, 1/2)

Proposition 5.1 For Agl)(l/Z, 1/2), there exists a rational solution such
that (z,y,z,w) = (—t/2,0,0,0) and it is unique.

Proof. The proposition follows from direct calculation and Proposition 1.3.
O

5.2. Proof of Main Theorem
Proof. Suppose that for Agl)(ao,al), there exists a rational solution.
Then, it follows from Proposition 2.11 that 1/2 — oy € Z. Furthermore,
Proposition 4.3 shows that by some Béacklund transformations, the param-
eters can be transformed to (ag, 1) = (1/2,1/2).

By Proposition 5.1, we see that for Agl) (1/2,1/2), there exists a unique
rational solution such that (z,y,z,w) = (—t/2,0,0,0), which proves our
main theorem. O
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