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A characterization of 42 ovoids

with a certain property in PG(3,2)
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Abstract. In this paper, we characterize 42 ovoids with a certain property in a
projective space PG(3,2) described in Yucas [6]. As a corollary, we construct the
Steiner 4-wise balanced design S(4, {5,6},17) with 252 blocks which is an extension of
the point-plane design A of an affine space AG(4,2). The construction leads to not
only the uniqueness of such an extension, but also a (usual) extension of the 2-repeated
design 2. A.

Key words: Steiner 4-wise balanced design, affine space, orthogonal group, exterior
algebra, alternating forms, quadratic forms

1. Introduction

A t-(v,IC, X) structure is a pair (P,B) where P is a set of v elements
(called points) and B is a multi-set of subsets of P (called blocks) such that
the size of every block is contained in K and every t-subset of P is contained
in exactly A blocks. If A = 1 then the structure, which does not allow
repeated blocks, is called a Steiner t-wise balanced design and denoted by
S(t,K,v), and furthermore denoted by S(t, k,v) if K = {k}.

For two t-(v, IC, A) structures D and &, we define an isomorphism ¢ from
D onto £ to be a one-to-one mapping from the points of D onto the points
of £ and the blocks of D onto the blocks of £ such that p is in B if and only
if o(p) is in p(B) for each point p and each block B of D, and say that D
and & are isomorphic.

Let D := (P, B) be a t-(v, K, A) structure and p € P. A pair (P\{p},B’)
where B’ is a multi-set of B\ {p} for all B € B containing p is called the
derived structure of D at p and denoted by D,. Let D := (P,B) be an
S(t,k,v). A pair (P,B’) where B’ is a multiple set in which each block of
D is repeated A times is clearly a t-(v, k, ) structure and denoted by A.D,
which is extendable if there exist a (¢ + 1)-(v + 1,k + 1, ) structure £ and
a point p of £ such that &, is isomorphic to A\.D. The structure £ is called
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a (usual) extension of \.D.

Let V be a 4-dimensional vector space over [F5. The 15 non-zero vectors
of V together with the 35 blocks (called lines) of I\ {0} for 2-dimensional
subspaces | form an S(2,3,15). The 16 vectors of V together with 140
blocks of cosets of 2-dimensional subspaces of V' form an S(3,4,16), which
is denoted by A2 (4,2) according to Dembowski [2], but for convenience we
call it A.

Kramer and Mathon [3] have showed by exhaustive computer search
that there is a unique S(4, /K, 17) with || > 2. In Yucas [6], the Steiner
4-wise balanced design S(4,{5,6}, 17) with 252 blocks has been constructed
by extending A. There are 42 blocks of the design which do not contain
a new point co and contain the zero vector 0. These blocks are ovoids in
the projective space PG(V) and also cover the triangles of PG(V') once
each. We will characterize the 42 ovoids in PG(V') with this property. As
a corollary, we will give another construction of the S(4,{5,6},17) which is
an extension of A. The construction is based on a set of certain alternating
forms on V associated with the alternating group Ay of degree 7 (see Section
3) and leads to not only the uniqueness of such an extension of A, but also
a (usual) extension of 2. A. Finally, such a set of certain alternating forms
could not be found in [3] and [6].

The paper is divided into four sections. In Section 2, we give some
observations of the affine space AG(V'), and study the alternating forms and
the quadratic forms on V. Since it is known that there is a bijection between
the non-degenerate alternating forms on V' and the non-singular vectors of an
orthogonal geometry (W, @), where W is a 6-dimensional vector space and
@ is a non-degenerate quadratic form on W whose the Witt index is 3 (see
e.g. Taylor [5, p.195]), Section 3 contains some detailed observations about
non-singular vectors of (W, Q) and the introduction of such a bijection. In
Section 4, we characterize the 42 ovoids which cover the triangles of PG (V)
once each as mentioned above.

2. The Affine Space AG(V)
We begin with a detailed study of AG(V).

A triangle is a 3-subset of V'\ {0} which is linearly independent. A double
triangle is the set {p} Ul where (p,l) is a non-incident point-line pair in
PG(V). An oval is a block of A not containing the zero vector 0. There are
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exactly 105 ovals. An ovoid is a 5-subset of V'\ {0} in which any four vectors

are linearly independent. The set of ovoids is denoted by O. We denote by

X the set of unordered bases and set £ = {IlUm | [,m : two disjoint lines}.
Elementary counting arguments show the following lemma:

Lemma 2.1 There are exactly:

—_

) 420 triangles,
2) 420 double triangles,
3) 840 unordered bases,

one ovoid containing a given X € X,

)
)
)
) 168 owoids,
)
)
)

ot

6
7
8

four ovoids containing a given triangle,
three elements of L containing a given X € X,
280 elements of L.

AAA/—\/A;\/—\/—\A

Remark 2.2 Given a X := {e1,e3,€3,e4} € X, the unique ovoid contain-
ing X is X U{e; +ea+e3+eq}.

A k-cap is a k-subset of V' \ {0} in which any three vectors are linearly
independent.

Lemma 2.3 Any 5-subset of V' \ {0} is one of following four types:

e a union of two meeting lines.

e a form {x,y,z,w,x +y} for some {x,y,z,w} € X.
® a 5-cap which contains exactly one oval.

e an ovoid.

Proof. Let S be a 5-subset of V' \ {0}. If S is a 5-cap and not an ovoid,
then some 4-subset {s1, sq, s3,54} of S is a 4-cap and linearly dependent, so
S4 = 81+ 82+ s3. If we take s5 € S\ {s1, 2, 3,84} then s5 ¢ (s1, 59, s3), S0
ovals contained in S are just the {s1, s2, $3,84}. If S is not a 5-cap, then we
can take some line | := {x,y,x + y} contained in S. Let S =1U {z,w} and
m be the line containing {z,w}. If [Nm|=1then S =1Um. If [[Nm| =0
then S = {z,y,z,w,x + y}, where {x,y, z,w} € X. O

Next, to see the intersection of any two elements of O U L, we describe
the elements of O U £ which correspond to the non-degenerate quadratic
forms.
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Let I" be the set of non-degenerate alternating forms and F the set of
non-degenerate quadratic forms. We define the action of GL(V) on I' by
left multiplication:

1

o-y:VXV3(xy) — yo z,07y) € Fy

for all o € GL(V) and v € T, and similarly define the action of GL(V') on
F by left multiplication:

o-f:Voxr— flo'z) €Ty
for all c € GL(V) and f € F. For f € F, we set
Qr={z eV | f(z)=0},

and call the type of f minus or plus according as the Witt index of f is 1
or 2. If f is a minus type then Q¢ \ {0} is in O and |Q¢| = 6. If f is a plus
type then the complementary set Qf :==V \ Qs of Q¢ is in £ and |Q¢| = 6.

Let v € I and F, be the set of quadratic forms whose polar form is .
Set

Fr={feF, | fisaplus type} and

F, ={f €F, | [fis aminus type}.
For the following lemma, we refer to Cameron and van Lint [1, Example
5.17] and Taylor [5, Exercise 11.17].
Lemma 2.4 |F|=10,|F| =6 and the pair

(VAQs I feF yu{Qs | feFY)

is a symmetric 2-(16,6,2) design. Thus any two blocks in the design have
two common points.

Moreover, since |I'| = 28 and |, F, | = 28-6 = |O|, we see that the
map f — Q5 \ {0} is a bijection between UveF F, and O. Similarly, the

map f — Qy is also a bijection between (J, .p Fif and L since |, p Fif | =
2810 = |£].
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Lemma 2.5 For v, € I' such that v+ 0 is non-degenerate, let f € F,
and g € F;.

(i) If both f and g are minus types, then |Qf N Q4| =1 or 3.
(ii) If both f and g are plus types, then |Qf N Q4| =1 or 3.
(iii) If f is a minus type and g is a plus type, then |Q; N Q,| =1 or 3.

Proof.  We give the proof only for (i) because the other cases are similar to
(i). Noting that f+g is non-degenerate and Q;AQ, ={z € V | (f+g)(z) =

1} = Qf+g, we have [Qr NQg| = (|Qr[+Qg[ —|Qr AQy|)/2 = 1 or 3, where
Qr A Qg is the symmetric difference of Q; and Q. O

Remark 2.6 For ~,6 € I" such that v+ § is degenerate, we have similar
results which are not needed in this paper.

3. The Orthogonal Geometry for OT(6,2)

To define appropriate new blocks which we need to extend A to the
S(4,45,6},17) with 252 blocks, we consider the geometry for an orthogonal
group O (6,2). Here the notation are consistent with [5].

Let W be an orthogonal geometry of dimension 6 over Fy defined by a
non-degenerate quadratic form ) whose polar form is 8 and suppose that
the Witt index is 3. Let

OW) ={f e GL(W) | Q(f(w)) = Q(w) for all w € W7},

where GL(W) is the group of invertible linear transformations from W to
itself, and Q (W) the derived subgroup of O(W). O(W) is also denoted by
O*(6,2). For a non-singular vector w, the map t,, defined by

tw(x) =+ Bz, w)w

for all x € W is an element of O(W) and is called a reflection. In the
graph A with as vertex set the non-singular vectors and join two vertices
v, w whenever 3(v,w) = 0, the following holds:

Lemma 3.1

(1) There are exactly eight 7-cocliques in A.
(2) For any T-coclique C in A, the sum of all vectors in C is 0 and any siz
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vectors in C are linearly independent.
(3) Any two T-cocliques in A meet in a unique non-singular vector. More-
over, the size of the intersection of any three 7-cocliques in A is 0.

Proof. Regarding Fy as Z /27, we define the subspace
U={zeF;|2wt(z)}

of F§, where wt(x) denotes the number of ones in x, and the quadratic form
f U — ]FQ by

f@ﬁzzwg$)(mod2)

for all x € U. Then the polar form of f is equal to

f(x+y) — f(z) — f(y) = supp(z) Nsupp(y)| (mod 2)
8

for all z := (x1,...,28) and y := (y1,...,ys) € V, where supp(z) := {i €
{1,...,8} | i-th entry in = 1}. Since U contains the all-1 vector 1 and
{z € radU | f(z) = 0} = (1), so f induces the non-degenerate quadratic
form f from U := U/(1) to F3 by f(Z) := f(x) for all T := z + (1) € U.
Moreover f is a plus type, that is, the Witt index of f is 3. Therefore two
orthogonal geometries (U, f) and (W, Q) are isomorphic. For non-singular
vector T, since we may have wt(x) = 2 and identify = with supp(x), we write
ij in the place of {7, j}, where 1 < i # j < 8. Then it is straightforward to
see that there are exactly eight 7-cocliques in A as follows:

{18, 28, 38,48,58,68,78},...,{21,31,41,51,61,71,81}.

This easily yields (2) and (3). O

Suppose that G is a group acting on a set 2 and X C . Then we set
Gixy={9€G|gX =X}

Lemma 3.2 Let C = {wy,...,wr} be a T-coclique in A.
(1) OW )iy = (tw;w; | 1 <0< <T) and it is isomorphic to Sy.
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(2) QW)iey = (twitw;twetw, | {8,511k, 1} two disjoint 2-subsets of
{1,...,7}) and it is isomorphic to Az.

Proof.  O(W){cy acts faithfully on C and is identified with the subgroup
of S(C) = S7. If {v1,...,v7} is another 7-coclique in A then there ex-
ists f € O(W) such that f(w;) = v; for all i € {1,...,7}. This implies
O(W)icy = S(C) since [O(W)¢cy| = |[O(W)]/8 = |S7]. The derived sub-
group of O(W)y¢y is A(C) = A7 and clearly contained in Q(W)cy. Any
transposition (w; w;) of S(C) is identified with a reflection t.,4.,, but
tw,+w; & QW) and so [QW);cy| < |A7|. This implies that Q(W)cy =
A(C). Thus the result follows. O

The lemmas above show the following;:

Proposition 3.3 Q(W) acts transitively on the set of eight 7-cocliques in
A.

We next apply the above observations to the special orthogonal ge-
ometry for O7(6,2). The exterior algebra of V is introduced in [5]. Let
e1,€a,e3,e4 be a basis for V and € := e; Aex Aeg Aey. For &€ =
Zl§i<j§4pijei Nej € AV, where AoV is the second ewterior power of
V, we put

Q(&) = p12p34 + P13P24 + P1aP23.

Then @ is a non-degenerate quadratic form of the Witt index 3 on AsV. We
let B denote the polar form of Q. We note that () does not depend on the
basis chosen for V' and it is uniquely determined. By [5, Theorems 12.17,
12.20], the map

GL(V) = f — Agf S Q(AQV)

is an isomorphism, and furthermore by [5, p. 195] there is a bijection ¢ from
the set of all non-singular bivectors of A2V to I' defined by

o) (x ANy) =Bz Ny,¢)

for any non-singular bivector £ of AoV and all x,y € V.
Let &, 1 be the non-singular bivectors corresponding to distinct v, € I,
respectively. Since v+ d = [(—,€ + n)ae, it is seen that v + ¢ is non-
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degenerate if and only if 5(¢,n) = 1. Take eight 7-cocliques C1,...,Cs in
the graph A and put Cy = {&1, ..., &7}. Moreover, take 7; € I' corresponding
to each & and put C; = {71,...,77}. Foreachi € {2,...,8}, we similarly let
C; denote the image of C; under the correspondence. We define the following
four sets:

7
Oy = J{@\ {0} Fe 7T}, O1=0\0,

7
L= J{@r rer}, Li=L\L.
i=1
From Lemma 2.5 we have |O1| =7-6 =42, |£1] = 7-10 = 70. In this way,
for each of Cs, . .., Cs, we give the other seven sets of ovoids which we denote
Oy,...,0s.

We let (Slz) denote the set of all k-subsets of a set €.
Lemma 3.4

(1) Each triangle is contained in a unique ovoid of Oy.
(2) FEach double triangle is contained in a unique element of L.

Proof. We have

{T| T is a triangle} D U (2)

0e0,

and so equality holds by Lemmas 2.4 and 2.5, thus (1) follows. The proof
of (2) is similar to that of (1). O

Proposition 3.5 GL(V) acts transitively on {O1,...,Os}.

Proof. 1t is enough to show that, for i € {1,...,8}, there exists 7 € GL(V)
such that 7O; = O;. From Proposition 3.3 there exists 0 € Q(A2V') such
that 0Cy = C;. Therefore, take 7 € GL(V') such that Ay = o, put n; =
o(¢&;) for each j € {1,...,7} and take d; € C; corresponding to each ;.
Then
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(T-9)(@,y) =7 (@), 7' (v) =B (@) AT (1), &)
= B((Aam M) (x A y), &) = Blo (A y), &)
=Bz Ny,a(&5)) = Bz Ay, my) = 0;(,y)

for all z,y € V and so 7 - v; = ¢;. Hence 7C; = C,;.

For O € Oy, there exist f € 7. and j € {1,...,7} such that OU {0} =
Qf. Then 7(OU{0}) C Q.5 and the polar form of 7- f is 7-y; = §;. For
distinct ,y € Q.5 \ {0}, taking 2’,3y’ € V such that z = 7(2'), y = T(y ),
we have f(2') = f(y/) = 0 and 1 = v;(2",y') = (7-v;)(z,y) = 6;(z,y).
Thus no two vectors of Q. \ {0} are orthogonal with respect to d; and so
we must have 7 f € F; . This proves that 7O; C O;, so equality holds, as
required. ’ O

4. Extending A to an S(4,{5,6},17) with 252 blocks

In this section, we first characterize O; which covers the triangles
of PG(V) once each. As a corollary, A is uniquely extended to an
S(4,4{5,6},17) with 252 blocks.

Lemma 4.1 For distinct i,5 € {1,...,8}, O; N O; contains exactly sic
ovoids of which any two ovoids meet in a unique point. Moreover, for all
distinct i,j,k € {1,...,8}, |0;NO; N O] = 0.

Proof.  Lemma 3.1(3) shows that two 7-cocliques C;, C; in A corresponding
to C;, C;, respectively, meet in a unique non-singular vector, and so |C;NC;| =
1. Therefore from Lemma 2.4 the first half of the lemma follows. Moreover,
from Lemma 3.1(3) again, the latter half of the lemma holds. O

By Proposition 3.5, each O; is characterized in the following:

Theorem 4.2  There are exactly eight members S of (g) satisfying the
following condition:

each triangle is contained in a unique ovoid of S. (%)

Proof.  For distinct p,q € V '\ {0}, we define O(p, ¢) to be the set of ovoids
containing {p, q}. Define the set of (T',0) where T is a triangle containing
{p,q}, O € O(p,q) and T C O, and counting the set in two ways, we have
|O(p, q)| = 16. So the pair (V' \ {0}, O) is a 2-(15, 5, 16) design. Fix distinct
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p,q € V '\ {0}. Applying the method of intersection triangles to this design
(see [1, p.21]), we have {B € O | BNO = {p,q}} = 6 for each O € O(p, q).
We define the set N; of i-subsets of O in which the intersection of any two
is equal to {p,q} for each i € {2,4}. Then a counting argument shows that
IN2| =16 -6/2 = 48. For {O1, 02} € N3, we define a;; to be the number of
ovoids O of O(p, q) satisfying |ONO;| =i and |ONO;| = j fori,j € {2,3,5}.
Then we have the following four equations:

16 = [O(p, q)| = a2 + ags +azz +azz +1+1,

8{(r,0) € (01 U0\ {p,q}) x O(p,q) | r € O}
=6-4=a3 +az +2a33+3+3,

#{(r,0) € (01 \ {p,q}) x O(p,q) | r € O}
:3-4:(132—1—(133—1—3,

#{(r,0) € (02 \ {p,q}) x O(p,q) | r € O}
=3-4=a3 +azz+3.

Put e; = p,es = q. We write O; as {ej,ez,e3,€e4,61 + €2 + €3 + €4}
for some {e1,ea,e3,e4} € X and temporarily write 1,2,3,4,12,123,... for
€1,€2,€3,€4,€1 + €2,€1 + €2 + €3,..., respectively. In particular, we can
enumerate the 6 ovoids of {B € O(1,2) | BN Oy = {1,2}} as follows:

By = {1,2} U{13,124,134}, B, :={1,2}U{13,24,34},
By = {1,2}U{23,14,34}, By := {1,2} U {23,124,234},
Bs = {1,2} U{123,14,134}, Bg:={1,2} U {123,24,234}.
By suitably interchanging e;, eo, e3 and e4, we may assume that O, = B; or
Bs.
(i) If Oy = By, then we can enumerate all the ovoids of {O € O(1,2) |
|01 NO| =|02N 0| =3} as follows:
(1,2} U{3,124,34},  {1,2} U{3,134,24},
(1,2} U{4,13,234},  {1,2} U{4,134,23},
(1,2} U {1234,13,14}, {1,2} U {1234,124,123}.
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(ii) If Oy = By, then we can enumerate all the ovoids of {O € O(1,2) |
|01 N O| = 102N 0| = 3} as follows:
{1,2} U{3,24,134},  {1,2} U{3,34,124},
{1,2} U {4,13,234}, {1,2} U {4, 34,123},
{1,2} U{1234,13,14}, {1,2} U{1234,24,23}.
Hence a3z = 6,a03 = azo = 3 and agy = 2. Therefore we can determine the

unique element of N containing {O7, O2}, which is first row or second row
of the following array (by adding {O;,O3}) according as Oy = By or Ba:

{1,2} U{23,14,34}  {1,2} U {123,24,234}
{1,2} U{23,124,234} {1,2} U {123,14,134}

Thus a counting argument shows that [NVy| =48 -1/(3) = 8.

First, it is immediate from Lemma 3.4(1) that each O; satisfy the con-
dition (x). To prove the converse, let S be a set of 42 ovoids satisfying (x).
An elementary counting argument shows that, for distinct r,s € V' \ {0},
{r, s} is in exactly four ovoids of S. This implies that

Ny ={01NO(r,s),...,0sNO(r,s)}

for all {r,s} € (V\Q{O}). Therefore there exists ¢ € {1,...,8} such that
SNO(p,q) = O;NO(p,q). To show that i is independent of {p,q}, for
{r,s} € (V\Z{O}), we take j € {1,...,8} such that SNO(r,s) = O; N O(r, s),
and it is enough to show that i = j. Suppose that i # j. Then we will lead
a contradiction. Since there exist two triangles 73,75 such that {p,q} C
Ty, {r,s} C To,|TA NTs| = 2 and T1 NT> ¢ {{p,q},{r,s}}, we take k €
{1,...,8} such that SN O(T1 NTy) = O, N O(T1 N T3). Let By and B be
the ovoids in S containing 77 and T5, respectively. We note the following
lemmas:

Lemma 4.3  Let i,j be distinct elements of {1,...,8}. If O € O; N O;
and {z,y} € ((2)), then

(1) There are exactly three ovoids of O; which meet O in {x,y}.
(2) {B€ O | BNO ={x,y}} is the disjoint union of {B € O; | BNO =
{z,y}} and {B€ O; | BNO = {z,y}}.
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Lemma 4.4  All the elements of {O;NO; | {i,j} is a 2-subset of {1,...,8}}
partition O.

Indeed, Lemma 4.3 (1) follows from the fact that the pair (V' \ {0}, O;)
is a 2-(15,5,4) design. By Lemma 4.1, Lemma 4.3(2) and Lemma 4.4 follow.

We turn to the proof of Theorem 4.2. Suppose first that k € {i,j}. By
interchanging 7 and j, we may assume that k = 1.

(i) Suppose that By = Bs. There exists t € V \ By such that T3 :=
{p,q,t} is a triangle. Taking B3 € S containing T3, by Lemma 4.3(2), we
have [ € {1,...,8}\ {i} so that B3 € O; N Oy, and | # j by Lemma 4.1. By
interchanging p and ¢, we may assume that p € T1 NT5. Let

n; ::ﬁ{BE(SﬁO(TlﬂT2)>\{Bl}|‘BQB3|:i}, 0<¢ <5,

Since By ¢ SN O(T1 N'Ty), we obtain i < 3. Since p € B3, we have ng = 0,
and the condition (x) implies ng = 0. Therefore it follows that n; <1 and
ng > 2. Let B and C be two elements of (SNO(T1NT3))\ {B1} which meet
Bs in exactly two points. From Lemma 4.3(1) we have B,C € O;UQ; and so
we may assume that B € O; and C € ;. Thus it follows that C' € O; N Oy,
which contradicts Lemma 4.1.

(ii) Suppose that B; # By. Taking I € {1,...,8} \ {i} so that B; €
O; U Oy, we have | # j. By interchanging r and s, we may assume that
r € Ty NT,. Then the argument similar to (i) shows that there are two
elements of (SN O(r,s)) \ {Bz} which meet B; in exactly two points, but
one of these elements lies in O; N O,, which contradicts Lemma 4.1.

Suppose finally that & ¢ {i,7}. Lemma 4.1 shows that B; # Bs. By
interchanging r and s, we may assume that r € Ty N T,. Similarly there are
two elements of (SN O(r,s)) \ {B2} which meet By in exactly two points,
but one of these elements lies in O, N O;, which contradicts Lemma 4.1.

Therefore it follows that i = j and SNO(p, q) C O; for all the 2-subsets
{p,q} of V'\ {0}, which implies S C O;, so equality holds. This completes
the proof. O

We can now obtain the main result of [6]. We define the pair D := (P, B)
as follows:

P =V U{oo1} (where co; is a new point not in V),

B={BU{oco1}| Bisablockof A} U{BU{0} | Be€ O;}UL.
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There are 140 blocks of size 5 and 112(= 42 + 70) blocks of size 6. Since
(147) = 140 - (i) + 112 (2), it is enough to show that each X € (E) is in at
least one block. We have

x2 <Z>U U{xex|xcr},

00, Lely

and the size of the right side is 840(=42-5+ 70 -9) from Lemmas 2.4 and
2.5, so equality holds. Therefore it is easily seen from Lemma 3.4 that D is
an S(4,{5,6},17) with 252 blocks.

Lemma 4.5

(1) For O € Oy and X € (2), X s contained in a unique element of L4
and in exactly two elements of L.
(2) For L€ Ly andY € (é), there exists X € X contained in'Y such that

a unique ovoid containing X is contained in O1.

Proof. (1) By Lemma 2.1, the unique block of D containing X is in Ly,
and the other two elements of £ containing X are both in £;.

(2) For distinct elements X7, Xo € X contained in Y, the triangle T :=
X1 N X5 is in a unique ovoid O; € O;. Putting T' = {e1,ez,e3} and X; =
T U {es}, we have Xy = T'U{e3 + e4}. By Lemma 2.1(6), O is one of
following four ovoids:

TU{eg,e1+ex+es+es}, TU{er+eq,ea+e3+e4},
TU{ex+eg,e1+es+es}t, TU{es+eq,e1+ea+ ey}

We assume that Oy = T'U{e; +e4,ea+e3+e4} or TU{ea+eq4,e1+e3+e€4}
and will show that this leads to a contradiction. By interchanging e; and e,
we may assume that O; = T'U{e; + e4,e2 + €3+ e4}. Then the other three
ovoids containing T are all in O7. Applying (1) to TU{e4,e1 + ez +e3+eq}
and X7, we have L; := {e1,e3,e1 + e3} U {ea,eq,62 + €4} € Lq. Applying
(1) to T U {es + eq,e1 + e2 + e4} and Xo, we next have Ly := {e1,e3 + ey,
e1+es+eq} U{ea, e3,ea+e3} € L1. We assume that the ovoid containing
X3 := {e1,ea,e4,e3 + e4}(C Y) is in O;. Then the other three elements
of £ containing X3 are all in £, since O; € O; and Ly, Ly € Ly, but this
contradicts (1). Thus (2) follows. O
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We can now prove the uniqueness of an S(4,{5,6}, 17) with 252 blocks
of which the derived design at some point is A.

Corollary 4.6 A is uniquely extended to an S(4,{5,6},17) with 252
blocks.

Proof. Let S be an S(4,{5,6},17) with 252 blocks of which the derived
design at a new point co is A and it is enough to show that D (described
above) and S are isomorphic. Since A = 1, for any triangle 7', T"U {0} is in
a unique block B and oo ¢ B, and each double triangle is in a unique block
B and [{0,00} N B| = 0. We define two sets

B = {B :block of § |0 € B and oo ¢ B},
¢ = {C : block of S |[{0,00} NC| = 0}.

For any B € B, B\ {0} must be in X if |B| = 5 and in O if |B| = 6.
For any C' € €, if |C| = 5 then we must have C € O or C = {z,y, z,w,
x +y} for some {x,y,z,w} € X. If |C| = 6 then we will show that C' € L.
Suppose first that C' contains at least three lines and we take the three
lines I,m,n in C, which are mutually meeting and [l N m N n| = 0 since
|C| = 6. Then C contains an oval, a contradiction. Suppose next that C
contains no line. For p € C, from Lemma 2.3 C'\ {p} is an ovoid. Putting
C\ {p} ={e1,ea,e3,e4,e1 + €2 + €3 + e4} for some {e1,e3,€3,e4} € X, we
have p € {e1 + e3 + e3,€1 + €2 + e4,e3 + €4}, but in any case C' contains an
oval, a contradiction. Suppose that C' contains exactly one line and we take
the line [ in C. Put H = (z,y,2) \ {0} for the triangle C'\ | := {z,y, z}.
Since [N H| € {1,3}, if INH| =3 then | = {z +y,y + 2,2 + x}, but C
contains the line {z,y,z + y}(# 1), a contradiction. If |l N H| = 1 then it
is easily seen that C' contains at least two lines, a contradiction. Therefore
C contains exactly two lines, which are disjoint since C' contains no oval.
Hence C € L.
Set

§={Ce€||C]=5and C ¢ O}
and let

b=|B|, c=|€¢|, d={Be€B||B|=5}, e=[€NO|and f = ||
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Then by counting arguments we have the following three equations:

#{(T,B) € {T | T is a triangle} x B | T U {0} C B}

came (Vo (o0

#{(S,C) € {S | S is a double triangle} x € | S C C'}
=420 =2f+6(c—e— f),
H(X,Y) e X x (BUC) | X CY)

— 80— d+ (Z)(b—d)+ <i>e+3f+9(c—e—f).

Moreover we have b + ¢ = 112. Since the four equations yield

c 112 ~1
a|l | =70 5/3
e| = =1a| "0 s
f 84 —2

it follows that b =42, e = f =0, and so ¢ =70, d = 0.

By Proposition 3.5 and Theorem 4.2, there exists p € GL(V) such that
{B\ {0} | B € B} = pO4, and by Lemma 4.5(2) it follows that € C pL4,
so equality holds. Thus the map p* : V U {oco1} — V U {oco} defined by
001 — o0 and z — p(z) is clearly an isomorphism. O

Remark 4.7 We can see that D is not 3-wise balanced. In fact, each
{z,y} € (V\Q{O}) is in exactly 4 ovoids of O;. Therefore {z,y,0} is in exactly
5(= 1+ 4) blocks, whereas {z,y, 001} is in exactly 7(= 1 + 6) blocks since
{z,y} is in exactly 6 ovals.

In Ostergard and Pottonen [4], it has been shown that an S(4,5,17)
does not exist, so that A is not extendable, but the 3-(16,4,2) structure
2.A (in which each block of A is repeated 2 times) has a (usual) extension.

Corollary 4.8 2.A is extendable (in the usual meaning).
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Proof.  Set

=4 (5)

Lely

and let A be the multi-set of B U {oo} for all the blocks B of 2. A, where oo
is a new point not in V. We define the pair (P, B) as follows:

P =V U{oo},
B=AU{XU{0}| XeO[} UL, UO;.

There are 2140+ 210+ 420 + 42 = 952 blocks since |O}| = 42-5 = 210 and
|£}| =70-6 = 420. Since (147) -2 =952 (%), it is enough to show that each
S € (74)) is in at least two blocks. If S' contains 0 or oo, then it is clear that
S is in at least two blocks. Thus we may assume that [{0,00} N S| =0 and
S is not an oval. If S is a double triangle, then there is a unique element of
L1 containing S, thus S is in at least two blocks. For X € X, we denote by
X the unique ovoid containing X. Suppose that S € X. If S € Oy, then S
is in at least two blocks. If S € O, then from Lemma 4.5(1) there exists
L € £y containing S, from which S is in at least two blocks. This yields the
result. O
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