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Sharing three values with small weights

Indrajit LAHIRI
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Abstract. We prove a uniqueness theorem for meromorphic functions sharing three
values with small weights which improves some known results. We also exhibit some
applications of the main result.
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. For b € C U {oo} we say that f and g share the
value b CM (counting multiplicities) if f and g have the same b-points with
the same multiplicities. If we do not take multiplicities into account, we say
that f and g share the value b IM (ignoring multiplicities). For standard
definitions and notations of the value distribution theory we refer [1].

H. Ueda [9] proved the following result

Theorem A ([9]) Let f and g be two distinct nonconstant entire func-
tions sharing 0, 1 CM and let a (# 0, 1) be a finite complex number. If a is
lacunary for f then 1—a is lacunary for g and (f —a)(g+a—1) = a(l—a).

Improving Theorem A H.X. Yi [11] proved the following theorem.

Theorem B ([11]) Let f and g be two distinct nonconstant entire func-
tions sharing 0, 1 CM and let a (# 0, 1) be a finite complex number. If
d(a; f) > 1/3 then a and 1 — a are Picard exceptional values of f and g
respectively and (f —a)(g+a—1) =a(l —a).

Extending Theorem B to meromorphic functions S.Z. Ye [10] proved

the following results.

Theorem C ([10]) Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, co CM. Let a (# 0, 1) be a finite
complex number. If §(a; f) + 6(oc0; f) > 4/3 then a and 1 — a are Picard
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exceptional values of f and g respectively and also 0o is so and (f —a)(g+
a—1)=a(l—a).

Theorem D ([10]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, co CM. Let ai, as, ..., ap be p (> 1) distinct finite
complex numbers and a; # 0,1 for j =1,2,3,...,p. If 2?:1 daj; f) +
d(o0; f) > 2(p+1)/(p+2) then there exist one and only one ay, inay, az, ...,
ap such that ay, and 1 — ay, are Picard exceptional values of f and g respec-
tiely and also oo is so and (f —ax)(g+ ar — 1) = ar(l — ag).

Improving above results H.X. Yi [12] proved the following theorem.

Theorem E ([12]) Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, co CM. Let a (# 0, 1) be a finite
complex number. If N(r, a; f) # T(r, f)+S(r, f) and N(r, f) #T(r, f)+
S(r, f) then a and 1—a are Picard exceptional values of f and g respectively
and also oo is so and (f —a)(g+a—1)=a(l —a).

Definition 1 Let p be a positive integer and b € C U {oo}. Then by
N(r,b; f |< p) we denote the counting function of those b-points of f
(counted with proper multiplicities) whose multiplicities are not greater
than p. By N(r, b; f |< p) we denote the corresponding reduced counting
function.
In an analogous manner we define N(r, b; f |> p) and N(r, b; f |> p).
Also we put

DR 11 N(r, a; f |[< p)
opy(a; f) =1 hirisogp T )

Hua and Fang [2] proved that if two nonconstant distinct meromorphic
functions f and g share 0, 1, oo CM then N(r, a; f |> 3) = S(r, f) for any
complex number a (# 0, 1, c0).

Also Yi [12] proved that if two nonconstant distinct meromorphic func-
tions f and g share 0, 1, oo CM then N(r, oo; f |>2) = S(r, f).

Therefore Theorem E of Yi can easily be improved to the following
result.

Theorem F ([5]) Let f and g be distinct nonconstant meromorphic func-
tions sharing 0, 1, co CM. If a (# 0, 1) is a finite complex number such that
N(r, a; f1<2) #T(r, f)+5(r, f) and N(r, 00; f [< 1) #T(r, f)+5(r, [)

then a and 1 — a are Picard exceptional values of f and g respectively and
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also 0o is so and (f —a)(g+a—1) =a(l —a).
Following examples show that Theorem F'is sharp.

Example 1 ([5]) Let f=(e*—1)/(e*+1),9=(1—-¢*)/(1+¢€*),a1 =
—1 and az = 2. Then f, g share 0, 1, co CM. Also N(r,o00;f |< 1) =
T(T ) (7’, f) (7’, al;f |§ 2) #T(T, f)+S(T7 f) and N(Ta a?;f ’S
2)=T(r, f)+S(r, f). Clearly (f —a;)(g+a;i—1) # a;(1 —a;) fori=1, 2.

Example 2 ([5]) Let f =¢e*, g = e * and a = 2. Then f , g share
0,1, 00 CM. Also N(r, o003 f |< 1) £ T(r, f) +S(r, £) , N(r, a f |< 2) =
T(r, f) +S(r, f). Clearly (f —a)(g+a—1) #a(l —a).

It is shown in [5] by the following example that the condition N(r, a; f |
< 2) #T(r, f)+ S(r, f) of Theorem F cannot be replaced by any one of

N(r,a; f[<1) #T(r, f)+5(r, f) and N(r, a; f [<2) # T(r, f)+5(r, f).

Example 3 ([5]) Let f = e*(1 —¢*), g =¢*(1—¢*) and a = 1/4.
Then f , g share 0, 1, co CM. Also N(r, oo; f |< 1) # T(r, f) + S(r, f).
Since f —a = —(e* — 2a)?, we see the following

(i) Neafl<1)=0,

(i) N, a f |<2) = N(r, 2a;¢) = (1/2)T(r, f) + S(r, f) and

(i) N(r,a;f|<2)=2N(r, 2a;¢*) =T(r, )+ S(r, f).

Also clearly (f —a)(g+a—1) # a(l — a).

Following two examples show that in the above theorems the sharing
of 0 and 1 can not be relaxed from CM to IM.

Example 4 ([5]) Let f =e* —1, g = (¢ —1)?> and a = —1. Then f,
g share 0 IM and 1, oo CM. Also N(r, oo; f) = 0 and N(r, a; f) = 0 but
(f—a)lg+a—1)#a(l—a).

Example 5 ([5]) Let f =2 —¢* g = e*(2 —¢€*) and a = 2. Then f,
g share 1 IM and 0, oo CM. Also N(r, oco; f) = 0 and N(r, a; f) = 0 but
(f—a)(g+a—1)#a(l —a).

In [5] following question is asked: Is it really impossible to relax in any
way the nature of sharing of any one of 0 and 1 in the above theorems?

The notion of weighted sharing of values is used in [5] to deal this prob-
lem. We now explain the notion in the following definition which measures
how close a shared value is to being shared CM or to being shared IM.
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Definition 2 ([3, 4]) Let k be a nonnegative integer or infinity. For a €
CU {0} we denote by Ei(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m < k and k + 1 times if m > k. If
Ex(a; f) = Ex(a; g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k£ then
2o 1s a zero of f — a with multiplicity m (< k) if and only if it is a zero of
g — a with multiplicity m (< k) and z, is a zero of f — a with multiplicity
m (> k) if and only if it is a zero of g — a with multiplicity n (> k) where
m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integer p,
0 < p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a, 0) or (a, o0) respectively.

Improving Theorem C in [5] following result is proved.

Theorem G ([5]) Let fand g be two distinct meromorphic functions shar-
ing (0, 1), (1, 00) and (o0, 00). Ifa (# 0, 1) is a finite complex number such
that 309)(a; f)+201)(c0; f) > 3 then a and 1—a are Picard exceptional values
of f and g and also 0o is so and (f —a)(g+a—1) =a(l — a).

In [5] we were unable to relax the nature of sharing of values in Theo-
rem F. We now take up this problem and prove the following result which
improve Theorem F and so all previous results.

Theorem 1 Let f and g be two distinct meromorphic functions sharing
(0, 1), (1, m) and (oo, k), where (m — 1)(mk — 1) > (1 +m)2. Ifa(#0, 1)
is a finite complex number such that N (r, a; f |< 2) £ T(r, f)+S(r, f) and
N(r, o0; f|1<1) #T(r, f)+S(r, f) then a and 1 —a are Picard exceptional
values of f and g respectively and also 0o is so and (f —a)(g+a—1) =
a(l —a).

We note that the condition (m — 1)(mk — 1) > (1 +m)? is equivalent
to (m —1)(k — 1) > 4 and so is symmetric in m and k. We also note that

Theorem 1 holds for the following pairs of least values of m and k: (i) m =
3, k=4; (i) m=4,k=3; (ili) m=2,k=06; (iv) m=6, k=2.

Definition 3 Let f and g share a value a IM. Let z be an a-point of f
and g with multiplicities ps(z) and py(2) respectively.
We put
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p(z) =1 if pp(z) > py(2)
=0 if pr(2) < py(2)

and

fp(z)=1 if py(z) <

=0 if pp(z) >
Let n(r, a; f > g) = 32, 1<, Vr(2) and (r, a; f < g) = 30, <, fif(2). We
now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting

functions obtained from n(r, a; f > i) and 7i(r, a; f < g) respectively.
Finally we put N.(r, a; f,9) = N(r, a; f > g) + N(r, a; f < g).

Definition 4 Let f and g share a value a IM. Let z be an a-point of f
and g with multiplicities ps(z) and py(2) respectively.
We put
ve(z)=ps(2) if ps(z) > py(2)
=0 if ps(2) <py(2)

and

Let n(r, a; f > g) = >, 1<, vr(2) and n(r, a; f < g) = 3o, <, ur(2). We
now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting
functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively.

Throughout the paper we denote by f and g two nonconstant mero-
morphic functions defined in C.
2. Lemmas

In this section we present some lemmas which are needed in the sequel.

Lemma 1 ([3]) If f, g share (0,0), (1,0), (o0, 0) then (i) T(r, f) <
3T(r, g) + S(r, f), (i) T(r, g) < 3T(r, f) +S(r, g).

This shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2 ([6]) Let f, g share (0, 1), (1, m), (o0, k) and f # g, where
(m—1)(mk —1) > (1+m)2. Then N(r, a; f |>2) = S(r) and N(r, a;g |>
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2)=5(r) fora=0, 1, cc.

Following lemma can be proved in the line of statements (iii) and (iv)
of Lemma 2.3 of [7].

Lemma 3 Let f, g share (0, 0), (1, 0), (00, 0) and f # g. If a = (f —
1)/(g—1) and h = g/ f then B

(i) N(r,0;a) = N(r, 00, f < g)+ N(r, 1; f > g),

(i) N(r,00;a) = N(r, 00, f > g) + N(r, 1 f < g),

(iii) N(r, 0;h) = N(r, 0; f < g) + N(r, 00; f > g),

(iv) N(r, o00;h) = N(r, 0; f > g) + N(r, oo; f < g).

Lemma 4 Let f, g share (0, 1), (1, m), (o0, k) and f # g, where (m —
)(mk —1) > (1 +m)% If a and h are defined as in Lemma 3 then
N(r, a;a) = S(r) and N(r, a;h) = S(r) for a =0, .

Proof. The lemma follows from Lemmas 2 and 3 because N.(r, a; f,g) <
N(r,a;f|>2) fora=0,1, cc. O

Lemma 5 ([8]) Let f and g share (0, 0), (1, 0), (o0, 0). If f is a bilin-
ear transformation of g then f and g satisfy exactly one of the following:
Ag+1—A, (vi) f=Ag, (vii) f(¢9+A—1) = Ag, where A (#0,1) is a

constant.
Following lemma is of independent interest.

Lemma 6 Let f, g share (0, 1), (1, m), (o0, k) and f # g, where (m —
1)(mk —1) > (1+m)2. If f is not a bilinear transformation of g then each
of the following holds:

(i) T( ) (

+N(r, 159 [< 1)+ N(r, 003 g [< 1) 4+ No(r) + 5(r),

N(r, L f |[< 1)+ N(r, oo; f |[< 1)+ No(r) + 5(r),
1) + No(r) + 5(r),
1) + No(r) + 5(r),

I/\ I/\/—\
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where No(r)(N1(r)) denotes the counting function of those simple (multiple)
zeros of f—g which are not the zeros of g(g—1), 1/g and so are not the zeros
of f(f —1), 1/f, also Ny(r, 0;4" |> 2) (No(r, 0; f' |> 2)) is the counting
function of those multiple zeros of ¢'(f") which are not the zeros of g(g—1)
and so not of f(f —1).

Proof. We see that f = (1—a)/(1—ah) and g = (1 —a)h/(1 —ah), where
« and h are defined as in Lemma 3. Since f is not a bilinear transformation
of g, @, h and ah are nonconstant. Let b = o’h/(ah’ + o’h). Then

(1—a)—b(1—ah)
(1 —ah) '

Let F=(f—-b)(1—ah)=(1—a)—b(1l—ah). Also (f —g)(1 —ah) =(1—
a)(1—h)and (9—1)(1 —ah) =h—1sothat f—g=(g—1)(a—1). Again

I h’(l—ah)—i—(h—l)(a’h—i—ah’)‘

f-b=

g h(1 —a)(1 — ah)
Therefore
9'(g—f) WA —ah)+(h—1)('h+ah) 1)
9(g—1) h(1 — ah)
(1 —a)(ah' +a'h) —'h(1 — ah)
ah(l — ah) ‘
Again
(f=b)(1—ah)=(1—a)—>b(1l—ah)
(1 —a)(ah) +a’h) —a'h(1 — ah)
N ah’ +a’h
and so
(f—b)ah O—;Lah _ (1 —a)(aha—;(olz fi)a—h()l h(l—ah)' 2)
From (1) and (2) we get
g—f _,, (0 o
U (i) @

Since F' = —o/ = V(1 —ah) +b(d’h+ah’) = —o/ =V (1 —ah) +a'h, we get

F'oood =o' =V(1-ah)+d'h—(d/a)F
F a F
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(1—ah)(—a/ —ba+bd)
al(f—0b)(1 —ah)
:fl_b [Z(b —1) - b’}

and so

1 F'JF-d/a (4)
f=b  (dfa)(b—1)—b"
Since T(r, a) < T(r, f) + T(r, g) + O(1) and T(r, h) < T(r, f) +
T(r, g) + O(1), in view of Lemmas 1 and 4 we obtain

/ / /

()=l ) D)

<N(r, 0;a) + N(r, 00;00) + S(r, a) = S(r)

n(r ) 48 ()

< N(r, 0;h) + N(r, co; h) + S(r, h) = S(r).

and

()

Since 1/b =1+ ah’/a’h, we get

1) +0(1) §T<r, 3) —i—T(r, —) +0(1)

T(r, b) = T(r, -

T(r, %) +5(r) = ().
From (4) we now obtain

m(r, fib) Sm(r, Z)-FS(T):S(T, )+ S(r)=S(r). (5)

Since F'/F and o/« have no multiple pole and T'(r, ') < 2T(r, b)+S(r, b),
it follows from the above and (4) that

N(r,0;f—b|> 2)§2N(7‘, O;f;/(b—l)—b') + S(r)

/

< 2T<r, %(b 1) b’) +S(r)
<oT (r, Z) F2T(r, b— 1)+ 2T(r, V) + S(r)
<or(r, Z) 6T (r, b) + S(r) = S(r).  (6)
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Since f, g share (0, 1), (1, m), (oo, k) and b= f — (f — b), we see that
if zg is a zero, pole or 1-point of g which is also a simple zero of f — b, then
zp is a zero, pole or 1-point of b and so the counting function of such simple
zeros of f —bis S(r). So we get from (3) and (6)

N(Ta O;f_b):N(Ta Oaf_b|§ 1)+N(T7 O»f_b|2 2)
=N(r,0; f —=b|< 1)+ S(r)
=N(r, 03¢ |< 1) + No(r) + S(r). (7)
From (5) and (7) we obtain
T(r, f)=T(r, f —b)+ S(r)
1 1
=m<r f—b) +N( m) + S(r)
=N(r, 09" |[< 1) + No(r) + S(r), (8)
which is (iii).
Similarly we get

T(r, g) = N(r, 0; f" |< 1) + No(r) + S(r), (9)
which is (iv).
Again from (3) and (6) we obtain Ni(r) < N(r, 0; f —b|>2)+ S(r) =

S(r) and Ny(r, 0;¢" |[>2) < N(r, 0;f = b |> 2) + S(r) = S(r), which are
respectively (v) and (vi). Similarly we can prove (vii).

Since N(r, 0; ¢ |>2) < No(r, 0;¢" |[>2)+N(r, 0;9 |>2)+
and N(r, 0; f' |> 2) < No(r, 0; ' |> 2) + N(r, 0; f |> 2) + N(
(viii) and (ix) follow from (vi), (vii) and Lemma 2.

By the second fundamental theorem, Lemma 2 and (8) we get

T(r, f)+T(r, 9)
<T(r, f)+ N(r, 0;9 [< 1)+ N(r, g [< 1)
+N(r, 0039 |< 1) = No(r, 039') + 5(r)
=N(r, 0;9 |< 1)+ N(r, L;g [£1) + N(r, o059 [< 1)
+N(r, 059" [< 1) + No(r) — No(r, 0;¢") + S(r),  (10)
where Ny(r, 0;¢') denotes the reduced counting function of those zeros of

¢’ which are not the zeros of g(g — 1).
By Lemma 2 we see that

N(r, 0;¢" |[<1) = No(r, 054" [< 1) + S(r), (11)
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where Ny(r, 0;¢' |< 1) is the counting function of those simple zeros of ¢
which are not the zeros of g(g — 1).
Similarly
N(r, 0; f/|< 1) = No(r, 0; f |< 1) + S(r). (12)
From (10) and (11) we get
T(r, f)+T(r, g)
<N(r, 0;9[< 1)+ N(r, Lig|< 1)+ N(r, 0059 [< 1)
+No(r, 039" [< 1) + No(r) — No(r, 0;9') + S(r)
<N(r, 0;9[< 1)+ N(r, Lig|< 1)+ N(r, 009 [< 1)
+No(r) + S(r)

<N(r,0;f —g) + N(r, 0059 [< 1) + 5(r)
<T(r, f—g)+ N(r, o059 |< 1)+ S5(r)
<m(r, f)+m(r 9)

N(r, f—g)+ N(r, 00;9 [< 1) + S(r)
<m(r, ) m(f, g) + N(r, f)

N(r, 0059 > f)+ N(r, 0019 |[< 1)+ S(r)
<m(r, ) N(r, f) +m(r, g) + N(r, g) + S(r)

<T(r, f)+T(r, g) + 5(r),
from which (i) follows.
Now (ii) follows from (i) because N(r, a; f |< 1) = N(r, a;g |< 1) for
a =0, 1, co. This proves the lemma. O

Lemma 7 ([6]) Let f, g share (0, 1), (1, m), (0o, k) and f # g, where
(m —1)(mk — 1) > (1 +m)%. Then for any complex number a (# 0, 1, o),

N(r, a; f |>3)=S(r) and N(r, a;g |> 3) = S(r).
3. Proof of the main result

Proof of Theorem 1. If possible, let f be not a bilinear transformation of
g. Then by Lemma 6(vii), Lemma 2, Lemma 7 and the second fundamental
theorem we get

2T(r, f) < N(r, 05 f |< 1)+ N(r, 1; f [< 1)+ N(r, o0; f [< 1)
+N(r, a; f|<2) — Ni(r, 0; f |[< 1) + S(r), (13)



Sharing three values with small weights 139

where Ni(r, 0; f' |< 1) is the counting function of those simple zeros of f’
which are not the zeros of f(f —1)(f —a).
Since a double a-point of f is a simple zero of f, it follows that

N(r,a; f|<2) = Ni(r, 0; f/ |< 1)
= N(r, a; f |<2) — No(r, 0; f' |< 1).

So from (13) we get by (12) and Lemma 6 (ii) and (iv)

2T(r, f) <T(r, f) +T(r, g) — No(r)
+N(r, a; f |<2) = No(r, 0; f' |[< 1)+ S(r)
=T(r, )+ N(r, a; f |[<2) 4+ S(r, [)
<2T(r, )+ S(r, f),

which is a contradiction.

Hence f is a bilinear transformation of g. So any one of the possibil-
ities of (ii)-(vii) of Lemma 5 will occur. We now examine each of these
possibilities one by one.

Let f +g = 1 Since f, g share (0, 1), (1, m), it follows that 0 and 1
are Picard exceptional values (evP) of f and so by the second fundamental
theorem and Lemma 7 we get

a contradiction.

Let (f —1)(¢g —1) = 1. Since f, g share (1, m), (oo, k), it follows that
1 and oo are evP of f and so as above we get N(r, a; f |<2)=T(r, f) +
S(r, f), a contradiction.

If fg = 1. Since f, g share (0, 1), (o0, k), it follows that 0 and oo are
evP of f and so N(r, a; f |[<2)=T(r, f)+ S(r, f), a contradiction.

Let f = Ag+1— A, where A (# 0,1) is a constant. Since f, g
share (0, 1), it follows that 0, 1 — A are evP of f and so by the second
fundamental theorem and Lemma 2 we get T(r, f) < N(r,o00;f |< 1)+
S(r, f) <T(r, f)+ S(r, f), a contradiction.

Let f = Ag, where A (# 0, 1) is a constant. Since f, g share (1, m), it
follows that 1, A are evP of f and so N(r, oo; f |< 1) =T(r, f)+ S(r, f),
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a contradiction.

Let f(9g+ A—1) = Ag, where A (# 0, 1) is a constant. Since f, g share
(00, k), it follows that oo is an evP of f and so of g.

If A # a, by the second fundamental theorem and Lemma 7 we get

T(r, [Y<N(r,a; f|<2)+ N(r, a; f) + S(r, f)
<N(r, a; f |<2)+ N(r, 00;9) + S(r, f)
N(

r, CL;f|§ 2)+S(T7 f)
<T(r, f)+S(r, ),

a contradiction.
Therefore A =a and so (f —a)(g+a—1) = a(l —a). This proves the
theorem. 0

Remark 1 If in Theorem 1 we remove the condition N(r, co; f |< 1) #

T(r, f)+ S(r, f), in a like manner we can prove that one of the following

possibilities occurs, which improves Theorem 4 [12]:

(i) (f—a)(g+a—1)=a(l—a). This occurs only when oo is an evP of
f. In this case a, 1 — a are evP of f and g respectively and oo is an
evP of g.

(ii) f+ (a—1)g = a. This occurs only when 0 is an evP of f. In this case
ais an evP of f and 0, a/(a — 1) are evP of g.

(iii) f = ag. This occurs only when 1 is an evP of f. In this case a is an
evP of f and 1, 1/a are evP of g.

4. Applications
In this section we discuss two applications of Theorem 1.

Definition 5 ([3]) For S C CU {oo} we define Ef(S, k) as E¢(S, k) =
UaesEx(a; f), where k is a nonnegative integer or infinity.

H.X. Yi [12] proved the following result.

Theorem H ([12]) Let S1 = {a1, a2} and Sy = {b1, ba} be two pairs of
distinct elements with a1 + ag = by + by but ajas # biby and let S3 = {oo}.
If E¢(S;, 00) = Ey4(S;, 00) fori=1,2,3 and §(c/2; f) > 0 for c = ay + az
then one of the following holds: (i) f =g, (ii) f+ g = a1 + ae, (iii) (f —
c/2)(g — ¢/2) = (a1 — a2)?/4, which occurs only for (a1 — az)? + (b1 —
be)? = 0.
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H.X. Yi [12] considered the following example to establish the necessity
of the condition §(c¢/2; f) > 0 for Theorem H.

Example 6 ([12]) Let f=1—-4e*, g=1—¢e¢%* a1 =—-1,a2=1,b =
—i\/g, b2 = i\/g, Sl = {al, CLQ}, SQ = {bl, bg} and 53 = {OO} Then clearly
(f —a1)(f — a2) = —8¢*(g — a1)(g — az) and (f — b1)(f — b2) = 4e*(g —
b1)(g — b2) so that Ef(S;, 0o) = E4(S;, 00) for i =1, 2, 3. Also we see that
c=a1+a=0,0(c/2f)=0and f#£g, f+g#ar+a2, (f—¢/2)(g-
c/2) # +(a1 — az)?/4.

In the following theorem we improve Theorem H and show that the
condition d(¢/2; f) > 0 can further be relaxed.

Theorem 2 Let S; = {ai, as} and Sy = {b1, ba} be two pairs of dis-
tinct elements with a; + ag = by + be but ajas # bibe and let S5 = {oo}.
Suppose that E¢(S1, 1) = E4(S1, 1), E¢(S2, m) = Ey4(S2, m), Ef(Ss, k) =
Ey(S3, k) and 61y(c/2; f) > 0, where (m —1)(mk — 1) > (1+m)? and ¢ =
a1 + az. Then the conclusion of Theorem H holds.

Proof. Let A= (by —b2)?/4 — (a1 — az)?/4 and

1 c\2 (a1 —az)? 1 c\2 (a1 —az)?

F=7 [(f‘g) ‘4]7 “=7 [(9‘2) ‘4]‘

If F' = G then clearly either f = g or f 4+ g = a1 + as. So we suppose
that F' # G. Also let (a3 — a2)? + (by — b2)?> = 0 and a = 1/2. Then we see
that A(F —a) = (f —¢/2)* and so N(r, oo; F |[< 1) =0 and N(r, a; F |<
2) =2N(r,¢/2;f | 1) #20(r, f)+ S(r, f) = T(r, F) 4+ S(r, F). Since
F, G share (0, 1), (1, m), (o0, k), by Theorem 1 we get (F —a)(G + a —
1) =a(l —a) and so (f —¢/2)(g — ¢/2) = (a1 — a2)?/4. This proves the
theorem. g

Remark 2 Example 6 shows that the condition d1)(c/2; f) > 0 is essen-
tial.

In [5] following result is proved.

Theorem I ([5]) Leta andb (# 0, 1) be two finite complex numbers and
Si={a+a:a"+b=0}, So={a+p8: f"+b=1}, S3 = {oco} wheren (>
3) be a positive integer. If E;(S1, 1) = E¢(S1, 1), E¢(S2, 00) = E4(S2, 00),
E¢(S3, 00) = E4(S3, 00) then one of the following holds: (i) f —a =t(g —
a), where t" =1 and (ii) (f —a)(g — a) = s, where 4s™ = 1.
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In the next theorem we improve Theorem I.

Theorem 3 Theorem I holds if E¢(Si,1) = E4(Si, 1), Ef(S2, m) =
E4(S2, m) and E¢(Ss, k) = E4(Ss, k), where (m — 1)(mk — 1) > (1 +m)?.

We omit the proof as it can be done in the line of Theorem I using
Theorem 1.
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