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Sharing three values with small weights

Indrajit Lahiri
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Abstract. We prove a uniqueness theorem for meromorphic functions sharing three

values with small weights which improves some known results. We also exhibit some

applications of the main result.
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. For b ∈ C ∪ {∞} we say that f and g share the
value b CM (counting multiplicities) if f and g have the same b-points with
the same multiplicities. If we do not take multiplicities into account, we say
that f and g share the value b IM (ignoring multiplicities). For standard
definitions and notations of the value distribution theory we refer [1].

H. Ueda [9] proved the following result

Theorem A ([9]) Let f and g be two distinct nonconstant entire func-
tions sharing 0, 1 CM and let a (6= 0, 1) be a finite complex number. If a is
lacunary for f then 1−a is lacunary for g and (f−a)(g+a−1) ≡ a(1−a).

Improving Theorem A H.X. Yi [11] proved the following theorem.

Theorem B ([11]) Let f and g be two distinct nonconstant entire func-
tions sharing 0, 1 CM and let a (6= 0, 1) be a finite complex number. If
δ(a; f) > 1/3 then a and 1 − a are Picard exceptional values of f and g

respectively and (f − a)(g + a− 1) ≡ a(1− a).

Extending Theorem B to meromorphic functions S.Z. Ye [10] proved
the following results.

Theorem C ([10]) Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, ∞ CM. Let a (6= 0, 1) be a finite
complex number. If δ(a; f) + δ(∞; f) > 4/3 then a and 1 − a are Picard
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exceptional values of f and g respectively and also ∞ is so and (f − a)(g +
a− 1) ≡ a(1− a).

Theorem D ([10]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. Let a1, a2, . . . , ap be p (≥ 1) distinct finite
complex numbers and aj 6= 0, 1 for j = 1, 2, 3, . . . , p. If

∑p
j=1 δ(aj ; f) +

δ(∞; f) > 2(p+1)/(p+2) then there exist one and only one ak in a1, a2, . . . ,

ap such that ak and 1− ak are Picard exceptional values of f and g respec-
tively and also ∞ is so and (f − ak)(g + ak − 1) ≡ ak(1− ak).

Improving above results H.X. Yi [12] proved the following theorem.

Theorem E ([12]) Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1, ∞ CM. Let a (6= 0, 1) be a finite
complex number. If N(r, a; f) 6= T (r, f) + S(r, f) and N(r, f) 6= T (r, f) +
S(r, f) then a and 1−a are Picard exceptional values of f and g respectively
and also ∞ is so and (f − a)(g + a− 1) ≡ a(1− a).

Definition 1 Let p be a positive integer and b ∈ C ∪ {∞}. Then by
N(r, b; f |≤ p) we denote the counting function of those b-points of f

(counted with proper multiplicities) whose multiplicities are not greater
than p. By N(r, b; f |≤ p) we denote the corresponding reduced counting
function.

In an analogous manner we define N(r, b; f |≥ p) and N(r, b; f |≥ p).
Also we put

δp)(a; f) = 1− lim sup
r→∞

N(r, a; f |≤ p)
T (r, f)

.

Hua and Fang [2] proved that if two nonconstant distinct meromorphic
functions f and g share 0, 1, ∞ CM then N(r, a; f |≥ 3) = S(r, f) for any
complex number a (6= 0, 1, ∞).

Also Yi [12] proved that if two nonconstant distinct meromorphic func-
tions f and g share 0, 1, ∞ CM then N(r, ∞; f |≥ 2) = S(r, f).

Therefore Theorem E of Yi can easily be improved to the following
result.

Theorem F ([5]) Let f and g be distinct nonconstant meromorphic func-
tions sharing 0, 1, ∞ CM. If a (6= 0, 1) is a finite complex number such that
N(r, a; f |≤ 2) 6= T (r, f)+S(r, f) and N(r, ∞; f |≤ 1) 6= T (r, f)+S(r, f)
then a and 1 − a are Picard exceptional values of f and g respectively and
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also ∞ is so and (f − a)(g + a− 1) ≡ a(1− a).

Following examples show that Theorem F is sharp.

Example 1 ([5]) Let f = (ez − 1)/(ez + 1) , g = (1− ez)/(1 + ez) , a1 =
−1 and a2 = 2. Then f , g share 0, 1, ∞ CM. Also N(r, ∞; f |≤ 1) =
T (r, f) + S(r, f) , N(r, a1; f |≤ 2) 6= T (r, f) + S(r, f) and N(r, a2; f |≤
2) = T (r, f) + S(r, f). Clearly (f − ai)(g + ai− 1) 6≡ ai(1− ai) for i = 1, 2.

Example 2 ([5]) Let f = ez , g = e−z and a = 2. Then f , g share
0, 1, ∞ CM. Also N(r, ∞; f |≤ 1) 6= T (r, f) + S(r, f) , N(r, a; f |≤ 2) =
T (r, f) + S(r, f). Clearly (f − a)(g + a− 1) 6≡ a(1− a).

It is shown in [5] by the following example that the condition N(r, a; f |
≤ 2) 6= T (r, f) + S(r, f) of Theorem F cannot be replaced by any one of
N(r, a; f |≤ 1) 6= T (r, f) + S(r, f) and N(r, a; f |≤ 2) 6= T (r, f) + S(r, f).

Example 3 ([5]) Let f = ez(1 − ez) , g = e−z(1 − e−z) and a = 1/4.
Then f , g share 0, 1, ∞ CM. Also N(r, ∞; f |≤ 1) 6= T (r, f) + S(r, f).
Since f − a = −(ez − 2a)2, we see the following
( i ) N(r, a; f |≤ 1) ≡ 0,
( ii ) N(r, a; f |≤ 2) = N(r, 2a; ez) = (1/2)T (r, f) + S(r, f) and
(iii) N(r, a; f |≤ 2) = 2N(r, 2a; ez) = T (r, f) + S(r, f).
Also clearly (f − a)(g + a− 1) 6≡ a(1− a).

Following two examples show that in the above theorems the sharing
of 0 and 1 can not be relaxed from CM to IM.

Example 4 ([5]) Let f = ez − 1, g = (ez − 1)2 and a = −1. Then f ,
g share 0 IM and 1, ∞ CM. Also N(r, ∞; f) ≡ 0 and N(r, a; f) ≡ 0 but
(f − a)(g + a− 1) 6≡ a(1− a).

Example 5 ([5]) Let f = 2 − ez, g = ez(2 − ez) and a = 2. Then f ,
g share 1 IM and 0, ∞ CM. Also N(r, ∞; f) ≡ 0 and N(r, a; f) ≡ 0 but
(f − a)(g + a− 1) 6≡ a(1− a).

In [5] following question is asked: Is it really impossible to relax in any
way the nature of sharing of any one of 0 and 1 in the above theorems?

The notion of weighted sharing of values is used in [5] to deal this prob-
lem. We now explain the notion in the following definition which measures
how close a shared value is to being shared CM or to being shared IM.
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Definition 2 ([3, 4]) Let k be a nonnegative integer or infinity. For a ∈
C∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then
zo is a zero of f − a with multiplicity m (≤ k) if and only if it is a zero of
g − a with multiplicity m (≤ k) and zo is a zero of f − a with multiplicity
m (> k) if and only if it is a zero of g − a with multiplicity n (> k) where
m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k) then f , g share (a, p) for all integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) or (a, ∞) respectively.

Improving Theorem C in [5] following result is proved.

Theorem G ([5]) Let f and g be two distinct meromorphic functions shar-
ing (0, 1), (1, ∞) and (∞, ∞). If a (6= 0, 1) is a finite complex number such
that 3δ2)(a; f)+2δ1)(∞; f) > 3 then a and 1−a are Picard exceptional values
of f and g and also ∞ is so and (f − a)(g + a− 1) ≡ a(1− a).

In [5] we were unable to relax the nature of sharing of values in Theo-
rem F. We now take up this problem and prove the following result which
improve Theorem F and so all previous results.

Theorem 1 Let f and g be two distinct meromorphic functions sharing
(0, 1), (1, m) and (∞, k), where (m− 1)(mk − 1) > (1 + m)2. If a(6= 0, 1)
is a finite complex number such that N(r, a; f |≤ 2) 6= T (r, f)+S(r, f) and
N(r, ∞; f |≤ 1) 6= T (r, f)+S(r, f) then a and 1−a are Picard exceptional
values of f and g respectively and also ∞ is so and (f − a)(g + a − 1) ≡
a(1− a).

We note that the condition (m − 1)(mk − 1) > (1 + m)2 is equivalent
to (m − 1)(k − 1) > 4 and so is symmetric in m and k. We also note that
Theorem 1 holds for the following pairs of least values of m and k: (i) m =
3, k = 4; (ii) m = 4, k = 3; (iii) m = 2, k = 6; (iv) m = 6, k = 2.

Definition 3 Let f and g share a value a IM. Let z be an a-point of f

and g with multiplicities pf (z) and pg(z) respectively.
We put
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νf (z) = 1 if pf (z) > pg(z)

= 0 if pf (z) ≤ pg(z)

and

µf (z) = 1 if pf (z) < pg(z)

= 0 if pf (z) ≥ pg(z).

Let n(r, a; f > g) =
∑
|z|≤r νf (z) and n(r, a; f < g) =

∑
|z|≤r µf (z). We

now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting
functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively.

Finally we put N∗(r, a; f, g) = N(r, a; f > g) + N(r, a; f < g).

Definition 4 Let f and g share a value a IM. Let z be an a-point of f

and g with multiplicities pf (z) and pg(z) respectively.
We put

νf (z) = pf (z) if pf (z) > pg(z)

= 0 if pf (z) ≤ pg(z)

and

µf (z) = pf (z) if pf (z) < pg(z)

= 0 if pf (z) ≥ pg(z).

Let n(r, a; f > g) =
∑
|z|≤r νf (z) and n(r, a; f < g) =

∑
|z|≤r µf (z). We

now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting
functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively.

Throughout the paper we denote by f and g two nonconstant mero-
morphic functions defined in C.

2. Lemmas

In this section we present some lemmas which are needed in the sequel.

Lemma 1 ([3]) If f , g share (0, 0), (1, 0), (∞, 0) then (i) T (r, f) ≤
3T (r, g) + S(r, f), (ii) T (r, g) ≤ 3T (r, f) + S(r, g).

This shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2 ([6]) Let f , g share (0, 1), (1, m), (∞, k) and f 6≡ g, where
(m− 1)(mk− 1) > (1 + m)2. Then N(r, a; f |≥ 2) = S(r) and N(r, a; g |≥
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2) = S(r) for a = 0, 1, ∞.

Following lemma can be proved in the line of statements (iii) and (iv)
of Lemma 2.3 of [7].

Lemma 3 Let f , g share (0, 0), (1, 0), (∞, 0) and f 6≡ g. If α = (f −
1)/(g − 1) and h = g/f then
( i ) N(r, 0;α) = N(r, ∞; f < g) + N(r, 1; f > g),
( ii ) N(r, ∞;α) = N(r, ∞; f > g) + N(r, 1; f < g),
(iii) N(r, 0;h) = N(r, 0; f < g) + N(r, ∞; f > g),
(iv) N(r, ∞;h) = N(r, 0; f > g) + N(r, ∞; f < g).

Lemma 4 Let f , g share (0, 1), (1, m), (∞, k) and f 6≡ g, where (m −
1)(mk − 1) > (1 + m)2. If α and h are defined as in Lemma 3 then
N(r, a;α) = S(r) and N(r, a;h) = S(r) for a = 0, ∞.

Proof. The lemma follows from Lemmas 2 and 3 because N∗(r, a; f, g) ≤
N(r, a; f |≥ 2) for a = 0, 1, ∞. ¤

Lemma 5 ([8]) Let f and g share (0, 0), (1, 0), (∞, 0). If f is a bilin-
ear transformation of g then f and g satisfy exactly one of the following:
( i ) f ≡ g, ( ii ) f + g ≡ 1, ( iii ) (f − 1)(g − 1) ≡ 1, ( iv ) fg ≡ 1, ( v ) f ≡
Ag + 1 − A, ( vi ) f ≡ Ag, (vii) f(g + A − 1) ≡ Ag, where A (6= 0, 1) is a
constant.

Following lemma is of independent interest.

Lemma 6 Let f , g share (0, 1), (1, m), (∞, k) and f 6≡ g, where (m −
1)(mk− 1) > (1 + m)2. If f is not a bilinear transformation of g then each
of the following holds:
( i ) T (r, f) + T (r, g)

= N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1) + N(r, ∞; g |≤ 1) + N0(r) + S(r),
( ii ) T (r, f) + T (r, g)

= N(r, 0; f |≤ 1)+N(r, 1; f |≤ 1)+N(r, ∞; f |≤ 1)+N0(r)+S(r),
( iii ) T (r, f) = N(r, 0; g′ |≤ 1) + N0(r) + S(r),
( iv ) T (r, g) = N(r, 0; f ′ |≤ 1) + N0(r) + S(r),
( v ) N1(r) = S(r),
( vi ) N0(r, 0; g′ |≥ 2) = S(r),
( vii ) N0(r, 0; f ′ |≥ 2) = S(r),
(viii) N(r, 0; g′ |≥ 2) = S(r),
( ix ) N(r, 0; f ′ |≥ 2) = S(r),
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where N0(r)(N1(r)) denotes the counting function of those simple (multiple)
zeros of f−g which are not the zeros of g(g−1), 1/g and so are not the zeros
of f(f − 1), 1/f , also N0(r, 0; g′ |≥ 2) (N0(r, 0; f ′ |≥ 2)) is the counting
function of those multiple zeros of g′(f ′) which are not the zeros of g(g− 1)
and so not of f(f − 1).

Proof. We see that f = (1−α)/(1−αh) and g = (1−α)h/(1−αh), where
α and h are defined as in Lemma 3. Since f is not a bilinear transformation
of g, α, h and αh are nonconstant. Let b = α′h/(αh′ + α′h). Then

f − b =
(1− α)− b(1− αh)

(1− αh)
.

Let F = (f − b)(1−αh) = (1−α)− b(1−αh). Also (f − g)(1−αh) = (1−
α)(1−h) and (g− 1)(1−αh) = h− 1 so that f − g = (g− 1)(α− 1). Again

g′

g
=

h′(1− αh) + (h− 1)(α′h + αh′)
h(1− α)(1− αh)

.

Therefore

g′(g − f)
g(g − 1)

=
h′(1− αh) + (h− 1)(α′h + αh′)

h(1− αh)
(1)

=
(1− α)(αh′ + α′h)− α′h(1− αh)

αh(1− αh)
.

Again

(f − b)(1− αh) = (1− α)− b(1− αh)

=
(1− α)(αh′ + α′h)− α′h(1− αh)

αh′ + α′h
and so

(f − b)
αh′ + α′h

αh
=

(1− α)(αh′ + α′h)− α′h(1− αh)
αh(1− αh)

. (2)

From (1) and (2) we get

g′(g − f)
g(g − 1)

= (f − b)
(

h′

h
+

α′

α

)
. (3)

Since F ′ = −α′− b′(1−αh)+ b(α′h+αh′) = −α′− b′(1−αh)+α′h, we get

F ′

F
− α′

α
=
−α′ − b′(1− αh) + α′h− (α′/α)F

F
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=
(1− αh)(−α′ − b′α + bα′)

α(f − b)(1− αh)

=
1

f − b

[
α′

α
(b− 1)− b′

]

and so
1

f − b
=

F ′/F − α′/α

(α′/α)(b− 1)− b′
. (4)

Since T (r, α) ≤ T (r, f) + T (r, g) + O(1) and T (r, h) ≤ T (r, f) +
T (r, g) + O(1), in view of Lemmas 1 and 4 we obtain

T
(
r,

α′

α

)
= m

(
r,

α′

α

)
+ N

(
r,

α′

α

)

≤N(r, 0;α) + N(r, ∞;α) + S(r, α) = S(r)

and

T
(
r,

h′

h

)
= m

(
r,

h′

h

)
+ N

(
r,

h′

h

)

≤N(r, 0;h) + N(r, ∞;h) + S(r, h) = S(r).

Since 1/b = 1 + αh′/α′h, we get

T (r, b) = T
(
r,

1
b

)
+ O(1)≤ T

(
r,

α

α′
)

+ T
(
r,

h′

h

)
+ O(1)

= T
(
r,

α′

α

)
+ S(r) = S(r).

From (4) we now obtain

m
(
r,

1
f − b

)
≤ m

(
r,

F ′

F

)
+ S(r) = S(r, f) + S(r) = S(r). (5)

Since F ′/F and α′/α have no multiple pole and T (r, b′) ≤ 2T (r, b)+S(r, b),
it follows from the above and (4) that

N(r, 0; f − b |≥ 2)≤ 2N
(
r, 0;

α′

α
(b− 1)− b′

)
+ S(r)

≤ 2T
(
r,

α′

α
(b− 1)− b′

)
+ S(r)

≤ 2T
(
r,

α′

α

)
+ 2T (r, b− 1) + 2T (r, b′) + S(r)

≤ 2T
(
r,

α′

α

)
+ 6T (r, b) + S(r) = S(r). (6)
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Since f , g share (0, 1), (1, m), (∞, k) and b = f − (f − b), we see that
if z0 is a zero, pole or 1-point of g which is also a simple zero of f − b, then
z0 is a zero, pole or 1-point of b and so the counting function of such simple
zeros of f − b is S(r). So we get from (3) and (6)

N(r, 0; f − b) = N(r, 0; f − b |≤ 1) + N(r, 0; f − b |≥ 2)

= N(r, 0; f − b |≤ 1) + S(r)

= N(r, 0; g′ |≤ 1) + N0(r) + S(r). (7)

From (5) and (7) we obtain

T (r, f) = T (r, f − b) + S(r)

= m
(
r,

1
f − b

)
+ N

(
r,

1
f − b

)
+ S(r)

= N(r, 0; g′ |≤ 1) + N0(r) + S(r), (8)

which is (iii).
Similarly we get

T (r, g) = N(r, 0; f ′ |≤ 1) + N0(r) + S(r), (9)

which is (iv).
Again from (3) and (6) we obtain N1(r) ≤ N(r, 0; f − b |≥ 2) + S(r) =

S(r) and N0(r, 0; g′ |≥ 2) ≤ N(r, 0; f − b |≥ 2) + S(r) = S(r), which are
respectively (v) and (vi). Similarly we can prove (vii).

Since N(r, 0; g′ |≥ 2)≤N0(r, 0; g′ |≥ 2)+N(r, 0; g |≥ 2)+N(r, 1; g |≥ 2)
and N(r, 0; f ′ |≥ 2) ≤ N0(r, 0; f ′ |≥ 2) + N(r, 0; f |≥ 2) + N(r, 1; f |≥ 2),
(viii) and (ix) follow from (vi), (vii) and Lemma 2.

By the second fundamental theorem, Lemma 2 and (8) we get

T (r, f) + T (r, g)

≤ T (r, f) + N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1)

+N(r, ∞; g |≤ 1)−N0(r, 0; g′) + S(r)

= N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1) + N(r, ∞; g |≤ 1)

+N(r, 0; g′ |≤ 1) + N0(r)−N0(r, 0; g′) + S(r), (10)

where N0(r, 0; g′) denotes the reduced counting function of those zeros of
g′ which are not the zeros of g(g − 1).

By Lemma 2 we see that

N(r, 0; g′ |≤ 1) = N0(r, 0; g′ |≤ 1) + S(r), (11)
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where N0(r, 0; g′ |≤ 1) is the counting function of those simple zeros of g′

which are not the zeros of g(g − 1).
Similarly

N(r, 0; f ′ |≤ 1) = N0(r, 0; f ′ |≤ 1) + S(r). (12)

From (10) and (11) we get

T (r, f) + T (r, g)

≤N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1) + N(r, ∞; g |≤ 1)

+N0(r, 0; g′ |≤ 1) + N0(r)−N0(r, 0; g′) + S(r)

≤N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1) + N(r, ∞; g |≤ 1)

+N0(r) + S(r)

≤N(r, 0; f − g) + N(r, ∞; g |≤ 1) + S(r)

≤ T (r, f − g) + N(r, ∞; g |≤ 1) + S(r)

≤m(r, f) + m(r, g)

+ N(r, f − g) + N(r, ∞; g |≤ 1) + S(r)

≤m(r, f) + m(f, g) + N(r, f)

+ N(r, ∞; g > f) + N(r, ∞; g |≤ 1) + S(r)

≤m(r, f) + N(r, f) + m(r, g) + N(r, g) + S(r)

≤ T (r, f) + T (r, g) + S(r),

from which (i) follows.
Now (ii) follows from (i) because N(r, a; f |≤ 1) = N(r, a; g |≤ 1) for

a = 0, 1, ∞. This proves the lemma. ¤

Lemma 7 ([6]) Let f , g share (0, 1), (1, m), (∞, k) and f 6≡ g, where
(m− 1)(mk− 1) > (1 + m)2. Then for any complex number a (6= 0, 1, ∞),
N(r, a; f |≥ 3) = S(r) and N(r, a; g |≥ 3) = S(r).

3. Proof of the main result

Proof of Theorem 1. If possible, let f be not a bilinear transformation of
g. Then by Lemma 6(vii), Lemma 2, Lemma 7 and the second fundamental
theorem we get

2T (r, f)≤N(r, 0; f |≤ 1) + N(r, 1; f |≤ 1) + N(r, ∞; f |≤ 1)

+N(r, a; f |≤ 2)−N1(r, 0; f ′ |≤ 1) + S(r), (13)
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where N1(r, 0; f ′ |≤ 1) is the counting function of those simple zeros of f ′

which are not the zeros of f(f − 1)(f − a).
Since a double a-point of f is a simple zero of f ′, it follows that

N(r, a; f |≤ 2)−N1(r, 0; f ′ |≤ 1)

= N(r, a; f |≤ 2) −N0(r, 0; f ′ |≤ 1).

So from (13) we get by (12) and Lemma 6 (ii) and (iv)

2T (r, f)≤ T (r, f) + T (r, g)−N0(r)

+N(r, a; f |≤ 2)−N0(r, 0; f ′ |≤ 1) + S(r)

= T (r, f) + N(r, a; f |≤ 2) + S(r, f)

≤ 2T (r, f) + S(r, f),

which is a contradiction.
Hence f is a bilinear transformation of g. So any one of the possibil-

ities of (ii)-(vii) of Lemma 5 will occur. We now examine each of these
possibilities one by one.

Let f + g ≡ 1 Since f , g share (0, 1), (1, m), it follows that 0 and 1
are Picard exceptional values (evP) of f and so by the second fundamental
theorem and Lemma 7 we get

T (r, f)≤N(r, a; f |≤ 2) + S(r, f)

≤N(r, a; f |≤ 2) + S(r, f)

≤ T (r, f) + S(r, f),

a contradiction.
Let (f − 1)(g − 1) ≡ 1. Since f , g share (1, m), (∞, k), it follows that

1 and ∞ are evP of f and so as above we get N(r, a; f |≤ 2) = T (r, f) +
S(r, f), a contradiction.

If fg ≡ 1. Since f , g share (0, 1), (∞, k), it follows that 0 and ∞ are
evP of f and so N(r, a; f |≤ 2) = T (r, f) + S(r, f), a contradiction.

Let f ≡ Ag + 1 − A, where A (6= 0, 1) is a constant. Since f , g

share (0, 1), it follows that 0, 1 − A are evP of f and so by the second
fundamental theorem and Lemma 2 we get T (r, f) ≤ N(r, ∞; f |≤ 1) +
S(r, f) ≤ T (r, f) + S(r, f), a contradiction.

Let f ≡ Ag, where A (6= 0, 1) is a constant. Since f , g share (1, m), it
follows that 1, A are evP of f and so N(r, ∞; f |≤ 1) = T (r, f) + S(r, f),
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a contradiction.
Let f(g +A−1) ≡ Ag, where A (6= 0, 1) is a constant. Since f , g share

(∞, k), it follows that ∞ is an evP of f and so of g.
If A 6= a, by the second fundamental theorem and Lemma 7 we get

T (r, f)≤N(r, a; f |≤ 2) + N(r, a; f) + S(r, f)

≤N(r, a; f |≤ 2) + N(r, ∞; g) + S(r, f)

= N(r, a; f |≤ 2) + S(r, f)

≤ T (r, f) + S(r, f),

a contradiction.
Therefore A = a and so (f − a)(g + a− 1) ≡ a(1− a). This proves the

theorem. ¤

Remark 1 If in Theorem 1 we remove the condition N(r, ∞; f |≤ 1) 6=
T (r, f) + S(r, f), in a like manner we can prove that one of the following
possibilities occurs, which improves Theorem 4 [12]:
( i ) (f − a)(g + a− 1) ≡ a(1− a). This occurs only when ∞ is an evP of

f . In this case a, 1 − a are evP of f and g respectively and ∞ is an
evP of g.

( ii ) f +(a− 1)g ≡ a. This occurs only when 0 is an evP of f . In this case
a is an evP of f and 0, a/(a− 1) are evP of g.

(iii) f ≡ ag. This occurs only when 1 is an evP of f . In this case a is an
evP of f and 1, 1/a are evP of g.

4. Applications

In this section we discuss two applications of Theorem 1.

Definition 5 ([3]) For S ⊂ C ∪ {∞} we define Ef (S, k) as Ef (S, k) =
∪a∈SEk(a; f), where k is a nonnegative integer or infinity.

H.X. Yi [12] proved the following result.

Theorem H ([12]) Let S1 = {a1, a2} and S2 = {b1, b2} be two pairs of
distinct elements with a1 + a2 = b1 + b2 but a1a2 6= b1b2 and let S3 = {∞}.
If Ef (Si, ∞) = Eg(Si, ∞) for i = 1, 2, 3 and δ(c/2; f) > 0 for c = a1 + a2

then one of the following holds: ( i ) f ≡ g, ( ii ) f + g ≡ a1 + a2, (iii) (f −
c/2)(g − c/2) ≡ ±(a1 − a2)2/4, which occurs only for (a1 − a2)2 + (b1 −
b2)2 = 0.
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H.X. Yi [12] considered the following example to establish the necessity
of the condition δ(c/2; f) > 0 for Theorem H.

Example 6 ([12]) Let f = 1 − 4ez, g = 1 − e−z, a1 = −1, a2 = 1, b1 =
−i
√

3, b2 = i
√

3, S1 = {a1, a2}, S2 = {b1, b2} and S3 = {∞}. Then clearly
(f − a1)(f − a2) = −8e2z(g − a1)(g − a2) and (f − b1)(f − b2) = 4ez(g −
b1)(g− b2) so that Ef (Si, ∞) = Eg(Si, ∞) for i = 1, 2, 3. Also we see that
c = a1 + a2 = 0, δ(c/2; f) = 0 and f 6≡ g, f + g 6≡ a1 + a2, (f − c/2)(g −
c/2) 6≡ ±(a1 − a2)2/4.

In the following theorem we improve Theorem H and show that the
condition δ(c/2; f) > 0 can further be relaxed.

Theorem 2 Let S1 = {a1, a2} and S2 = {b1, b2} be two pairs of dis-
tinct elements with a1 + a2 = b1 + b2 but a1a2 6= b1b2 and let S3 = {∞}.
Suppose that Ef (S1, 1) = Eg(S1, 1), Ef (S2, m) = Eg(S2, m), Ef (S3, k) =
Eg(S3, k) and δ1)(c/2; f) > 0, where (m− 1)(mk − 1) > (1 + m)2 and c =
a1 + a2. Then the conclusion of Theorem H holds.

Proof. Let A = (b1 − b2)2/4− (a1 − a2)2/4 and

F =
1
A

[(
f − c

2

)2
− (a1− a2)2

4

]
, G =

1
A

[(
g− c

2

)2
− (a1− a2)2

4

]
.

If F ≡ G then clearly either f ≡ g or f + g ≡ a1 + a2. So we suppose
that F 6≡ G. Also let (a1 − a2)2 + (b1 − b2)2 = 0 and a = 1/2. Then we see
that A(F − a) = (f − c/2)2 and so N(r, ∞;F |≤ 1) ≡ 0 and N(r, a;F |≤
2) = 2N(r, c/2; f |≤ 1) 6= 2T (r, f) + S(r, f) = T (r, F ) + S(r, F ). Since
F , G share (0, 1), (1, m), (∞, k), by Theorem 1 we get (F − a)(G + a −
1) ≡ a(1 − a) and so (f − c/2)(g − c/2) ≡ ±(a1 − a2)2/4. This proves the
theorem. ¤

Remark 2 Example 6 shows that the condition δ1)(c/2; f) > 0 is essen-
tial.

In [5] following result is proved.

Theorem I ([5]) Let a and b (6= 0, 1) be two finite complex numbers and
S1 = {a + α : αn + b = 0}, S2 = {a + β : βn + b = 1}, S3 = {∞} where n (≥
3) be a positive integer. If Ef (S1, 1) = Eg(S1, 1), Ef (S2, ∞) = Eg(S2, ∞),
Ef (S3, ∞) = Eg(S3, ∞) then one of the following holds: ( i ) f − a ≡ t(g −
a), where tn = 1 and (ii) (f − a)(g − a) ≡ s, where 4sn = 1.
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In the next theorem we improve Theorem I.

Theorem 3 Theorem I holds if Ef (S1, 1) = Eg(S1, 1), Ef (S2, m) =
Eg(S2, m) and Ef (S3, k) = Eg(S3, k), where (m− 1)(mk − 1) > (1 + m)2.

We omit the proof as it can be done in the line of Theorem I using
Theorem 1.
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