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Some results on the heat kernel asymptotics

of the Laplace operator on Finsler spaces
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Abstract. In this paper we consider Bao-Lackey’s extension of the Laplace operator

on a Finsler space. We prove that this operator is of Laplace type on scalars and on top

degree forms, and compute the first heat coefficients. In exchange, the BL Laplacian on

1-forms is nonminimal and a study of its heat kernel asymptotics is more difficult. The

results obtained in this paper for the 1-formed Laplacian concern Finsler surfaces and

direct products of Finsler surfaces. We apply our computation of the heat coefficients to

prove that, on Randers spaces, the scalar BL Laplacian and the scalar Laplacian of the

metric aij have the same eigenvalues if and only if the Randers space is Riemann.
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1. Introduction

Throughout this paper (M, F ) is a compact n-dimensional Finsler man-
ifold. Thus, the Finsler function F (x, y) defined on the slit tangent bundle
T̃M is positive homogeneous of degree one in y and the Finsler metric tensor
gij := (1/2)∂2F 2/∂yi∂yj is positive definite.

In a known paper ([7]), Bao and Lackey introduced the Laplacian on
the base manifold M and obtained a Hodge decomposition theorem.

We will denote this extension by ∆BL and, when it is restricted to
Ap(M), by (∆BL)p. Let us recall below the Bao-Lackey method ([7], [8]).

Consider the indicatrix bundle SM with base manifold M and fibers
SxM := {y ∈ TxM : F (x, y) = 1}. The volume form of SxM is well-known:

θx :=
√
g

n∑

i=1

(−1)i−1yidy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 ∧ . . . ∧ dyn.

It is a fact that vol(x), the volume of SxM , generally depends on x. For
this reason one considers the normalized volume form ζx := (1/ vol(x))θx.

There are several ways to introduce a volume form on M . For instance,√
Gdx := (

∫
SxM

√
g(x, y)ζx)dx is a volume form. Then, the metric on
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Ap(M) is defined by G(ω, θ) = (1/p!)ωIθJG
IJ , where ω = (1/p!)ωIdx

I ,
θ = (1/p!)θJdx

J , I = (i1, . . . , ip), J = (j1, . . . , jp) and

GIJ(x) := Gi1j1···ipjp(x) =
1√
G

∫

SxM

√
ggi1j1 · · · gipjpζx.

One can see that Gi1j1···ipjp(x) does not reduce to Gi1j1(x) · · ·Gipjp(x),
so that we have different metrics on each space Ap(M). If

〈ω, θ〉M :=
∫

M
G(ω, θ)

√
Gdx

denotes the global scalar product on Ap(M) and 〈 , 〉SM is the standard
global scalar product on SM given by the Sasaki lift of g, then it can be
checked the fundamental property: 〈π∗ω, π∗θ〉SM = 〈ω, θ〉M

Consider d, the exterior differential on M and d∗BL, the adjoint of d
with respect to 〈 , 〉M . The BL Laplacian is defined by

∆BL := dd∗BL + d∗BLd.

It is clear that ∆BL reduces to the standard Laplacian if the Finsler struc-
ture is Riemannian.

At this point, it is natural to investigate other ways to extend the
Laplacian on Finsler spaces. Certainly, we expect that such an extension
reduce to the standard Laplacian for Riemannian structures. Such is the
case of the Laplacian introduced by Antonelli and Zastawniak from the
viewpoint of diffusion theory ([3]), or of the so-called Mean-Value Laplacian
of Centore ([9]) and of the non-linear Laplacian defined by Shen ([18]). The
excellent book [2] gathers some interesting results concerning these non-
equivalent extensions.

In a study of the heat kernel asymptotics, the BL Laplacian has the
advantage of being defined in a way that enables us to make connections
with Laplace type operators and with the so-called nonminimal operators.

2. Heat kernel asymptotics of ∆BL

Our objective in this section is to obtain information on the asymptotic
expansion of the heat kernel of ∆BL. This makes sense because the BL-
Laplacian is an elliptic operator. There are several methods for effective
calculation of the heat kernel invariants ([4]). We will use the so-called
invariant method of P. Gilkey.
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We begin with two useful settings. Let us consider the strictly positive
functions K, µ ∈ C∞(M),

K :=
√
G ·

√
det

∫
g] and µ :=

∫
det g]

det
∫
g]
,

where det
∫
g] := det(Gij) and

∫
det g] := (1/

√
G)

∫
SxM (1/

√
g)ζx.

It is a consequence of Jensen’s inequality that K and µ satisfy K2µ ≥ 1.
Equality holds iff

√
g depends only on x, that is iff gij depends only on x.

These two functions play an important role in the theory of Finslerian
Laplacians. For instance, for Finsler surfaces, (∆BL)1 admits a Weitzenböck
formula if and only if the ’geometric ratio’ µ satisfies: 1/3 ≤ µ ≤ 3 (see
[8]). Both functions become constant equal to 1 for Riemannian Finsler
structure, i.e., gij = gij(x).

Let 〈 , 〉 be the Riemannian global scalar product on M , defined by
the metric Gij . We stress that for ω, θ ∈ A1(M) and for ϕ, ψ ∈ An(M) we
have

〈ω, θ〉M = 〈ω, Kθ〉, 〈ϕ, ψ〉M = 〈ϕ, Kµψ〉.
These two formulas will be used when we discuss on the heat kernel asymp-
totic expansion of (∆BL)0 and (∆BL)n.

2.1. Heat kernel asymptotic expansion of the scalar Laplacian
In order to obtain the formula of the scalar Laplacian (∆BL)0, observe

that for ω ∈ A1(M) and f ∈ C∞(M) it holds:

〈d∗BLω, f〉M = 〈ω, df〉M = 〈d∗(Kω), f〉 =
〈

1
K
d∗(Kω), f

〉

M

.

Now, using the formula d∗(Kω) = Kd∗ω −G(ω, dK), it follows that

(∆BL)0f = ∆0f −G(df, d logK),

where ∆0 is the standard Laplacian on M , defined by Gij .
It is useful to regard A0(M) = C∞(M) as a vector bundle with the

(conformal) metric K( , ) and the base manifold M with the metric Gij ,
the inverse of Gij . Then the scalar Laplacian is of Laplace type and one
can verify that

(∆BL)0 = ∇̃∗∇̃ − E ,
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where the connection ∇̃ and the endomorphism E on C∞(M) are given by:

∇̃Xf =Xf +
1
2
(X logK)f ;

E =
1
2

(
∆logK − 1

2
G(d logK, d logK)

)
.

Such a Weitzenböck formula was investigated in [15] for 1-forms. In the
quoted paper, the Laplace-type operator acts on a fiber bundle (for instance
SM) and the function K normalizes the volumes of the fibers (the function
vol(x) on SM).

Now let us return to our framework. As a direct consequence of Theo-
rem 4.8.16 from [11], for the heat kernel asymptotics of the scalar Laplacian

Tr(e−t(∆BL)0) ∼
∑

k≥0

(4π)−n/2t(k−n)/2ak

(
(∆BL)0

)

one can compute the following coefficients

a0

(
(∆BL)0

)
=

∫

M
dv

a2

(
(∆BL)0

)
=

1
6

∫

M
(τ + 6E)dv

a4

(
(∆BL)0

)
=

1
360

∫

M

(
5(τ + 6E)2 + 2|R|2 − 2|Ric|2)dv,

where R, Ric and τ are the curvature tensor, the Ricci tensor and the scalar
curvature of the metric Gij , respectively.

Now let spec(M,F ) denote the spectrum of the scalar Laplacian (∆BL)0.
Consider another compact Riemannian manifold (M

′
, g

′
). At this point we

ask whether some geometric properties of (M
′
, g

′
) are reflected by spectral-

ity.

Proposition 1 Suppose that dimM = 3, (M
′
, g

′
) has constant curvature

and spec(M, F ) = spec(M
′
, g

′
). Then K is constant and M is of the same

constant curvature as M
′
.

Proof. We use that |R|2 ≥ |Ric|2, where equality holds if and only if M
has constant curvature. Therefore,

∫

M
(τ + 6E)dv =

∫

M ′
τ
′
dv

′
,

∫

M
(τ + 6E)2dv ≤

∫

M ′
(τ
′
)2dv

′
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and by the Schwartz inequality we get

vol(M)
∫

M
(τ + 6E)2dv ≤

(∫

M
′
τ
′
dv

′
)2

=
(∫

M
(τ + 6E)dv

)2

.

Again, the Schwartz inequality implies that τ+6E is constant on M . There-
fore, τ + 6E = τ

′
and |R|2 = |Ric|2. Clearly, M has constant curvature and

E = const. Moreover, since
∫
M Edv ≤ 0 we obtain that E ≤ 0. The proof is

now obvious using the maximum principle of E. Hopf. ¤

It is a fact that generally K is not a constant function on M . Then
the Finsler space cannot be isospectral to a Riemannian space of constant
curvature. The two-dimensional analogue of Proposition 1 is given by

Proposition 2 If dimM = 2, (M
′
, g

′
) has constant positive curvature

and spec(M, F ) = spec(M
′
, g

′
), then K is constant and M is of the same

constant positive curvature as M
′
.

Proof. As a whole, this proof is similar to the one given above. We have:
∫

M
(τ + 6E)dv = τ

′
vol(M

′
),

∫

M

(
5(τ + 6E)2 + τ2

)
dv = 6(τ

′
)2 vol(M

′
).

Next, use that

6
(∫

M
(τ + 6E)dv

)2

= 6(τ
′
)2 vol(M

′
)2

= vol(M)
∫

M

(
5(τ + 6E)2 + τ2

)
dv

≥ 5
(∫

M
(τ + 6E)dv

)2

+ vol(M)
∫

M
τ2dv

to obtain the following inequality: vol(M)
∫
M τ2dv ≤ (

∫
M (τ + 6E)dv)2.

We also have 0 ≤ τ
′
vol(M

′
) =

∫
M (τ + 6E)dv ≤ ∫

M τdv, so that
(
∫
M (τ + 6E)dv)2 ≤ (

∫
M τdv)2. This implies τ = const. and, the same as

above, we get K = const. ¤

2.2. Heat kernel asymptotic expansion of the Laplacian on forms
At this moment, our purpose is to determine the leading symbol of

(∆BL)n. It is important to notice that for any ω, θ ∈ An(M), G(ω, θ) =
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µ(ω, θ), where (ω, θ) is the usual Riemannian scalar product defined by
Gij . Further, we wish to express simpler the metrics on An−1(M). This
is necessary since the Laplacian involves the metrics on both An(M) and
An−1(M). Let us denote by N := (1, . . . , n) and for r ∈ {1, . . . , n} by
Nr := (1, . . . , r − 1, r + 1, . . . , n). Then any n − 1 forms ϕ and ψ have
local expressions

ϕ =
∑

r

ϕNrdx
Nr , ψ =

∑
s

ψNsdx
Ns

and the metrics act on An−1(M) by

G(ϕ, ψ)=
∑
r, s

(−1)r+sḠrsϕNrψNs , (ϕ, ψ)=
∑
r, s

(−1)r+sG∗rsϕNrψNs ,

where Ḡrs and G∗rs are given by

Ḡrs :=
1√
G

∫

SxM

grs√
g
ζx and G∗rs :=

Grs

detG
.

Now we are ready to compute the leading symbol of (∆BL)n. First, note
that we have

〈d∗BLω, θ〉M = 〈ω, dθ〉M = 〈µKω, θ〉 = 〈d∗(µKω), θ〉.
Next, it follows that

∑

i

(−1)iḠri(d∗BLω)Ni =
∑

j

(−1)jG∗rj

(
1
K
d∗(µKω)

)

Nj

.

Let (Ḡri) denote the inverse matrix of (Ḡri); then the following formula
holds:

(d∗BLω)Ni =
∑

j

(−1)i+jG∗rjḠ
ri

(
1
K
d∗(µKω)

)

Nj

.

If we want to determine only the leading symbol, we may neglect the
0-order terms of d∗(µKω). Then, modulo 0-order terms, by direct calculus
is found that for ω = fdv, f ∈ C∞(M),

(d∗BLω)Ni =
∑

h

(−1)iµ
Ḡhi

detG

(
∂f

∂xh

)√
detG.

Therefore, the leading symbol of (∆BL)n is simply



Some results on the heat asymptotics of the Laplacian on Finsler spaces 519

(∆BL)n = −σih
n ∂i∂h + · · · , where σih

n := µ
Ḡhi

detG
.

Notice that one can naturally define the metric

Hij :=
√
G

∫

SxM

gij√
g
ζx.

Then σih
n and Hij are tied by σih

n = µK2H ij , where (H ij) is the inverse
of (Hij). However, we see that (∆BL)n is of Laplace type: choose on M

the conformal Riemannian metric (1/(µK2))Hij ; then the leading symbol
is given precisely by this metric tensor. Clearly, (∆BL)n is self-adjoint with
respect to µK2(

√
G/
√
H)G( , ), where

√
H :=

√
det(Hij).

Albeit the Weitzenböck formula of (∆BL)n can be obtained taking into
account the 0-order terms of d∗(µKω), we restrict below to Finsler surfaces,
i.e. dimM = 2. The reason is that for Finsler surfaces K2H ij = Gij .

The Weitzenböck formula can be obtained by direct calculus:

(∆BL)2 = ∇̃∗∇̃ − Σ,

where the following settings were made

∇̃X := ∇̄X +
1
2
X logK;

Σ :=−1
2
µ

(
∆logK +

1
2
G(d logK, d logK)

)
.

Here ∇̄ is the Levi-Civita connection of the metric Ḡij := µGij .
As a consequence, we get the heat kernel asymptotic expansion of

(∆BL)2

Tr
(
e−t(∆BL)2

) ∼
∑

k≥0

1
4π
tk/2−1ak

(
(∆BL)2

)
,

where the coefficients are given by

a0

(
(∆BL)2

)
=

∫

M

1
µ
dv

a2

(
(∆BL)2

)
=

1
6

∫

M

1
µ

(τ̄ + 6Σ)dv = a2

(
(∆BL)0

)

a4

(
(∆BL)2

)
=

1
360

∫

M

1
µ

(
5(τ̄ + 6Σ)2 + 2|R̄|2 − 2|Ric|2)dv.
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Here R̄, Ric and τ̄ are the curvature tensor, the Ricci tensor and the scalar
curvature of the metric Ḡij , respectively.

Different from the cases studied above, the leading symbol of (∆BL)1
is generally not given by a metric tensor on M . For example, for Finsler
surfaces (∆BL)1 is of Laplace-type if and only if µ = 1.

The leading symbol of (∆BL)p is computed in [8] for an arbitrary man-
ifold. For Finsler surfaces and p = 1, it has the simple formula

(σij
1 )s

k = µGijδs
k + (1− µ)Gsjδi

k.

Notice that if µ is constant onM , then σ1 is the leading symbol of a weighted
Laplacian: σ

(
(∆BL)1

)
= σ(dd∗ + µd∗d).

Let us return to the case dµ 6= 0. Without using the Weitzenböck
formula (which, however, is complicated enough even for Finsler surfaces)
we can obtain the heat kernel invariants of the Laplace operator.

Theorem 1 The heat kernel of the BL-Laplacian on 1-forms has the fol-
lowing asymptotics

Tr
(
e−t(∆BL)1

) ∼
∑

k≥0

1
4π
tk/2−1ak

(
(∆BL)1

)
,

where the coefficients ak

(
(∆BL)1

)
are given by:

a0

(
(∆BL)1

)
=

∫

M

(
1 +

1
µ

)
dv

a2

(
(∆BL)1

)
=− 1

6

∫

M

(
4τ + 3G(d logK, d logK)

)
dv.

Proof. First, let us write down the eigenvalues of the leading symbol
(σij

1 ξiξj)
s
k = µG(ξ, ξ)δs

k + (1 − µ)ξsξk, where ξ = ξkdx
k ∈ A1(M). By

direct calculus the eigenvalues are found to be λ1(ξ) = G(ξ, ξ) and λ2(ξ) =
(1/µ)G(ξ, ξ).

The first coefficient a0 can be computed directly, for example using
Lemma 1.7.4 of [11].

To prove the formula for the second coefficient, recall that χ(M) =
(1/4π)

∫
M τdv = index(d+d∗). It is easy to prove that dim Ker

(
(∆BL)p

)
=

dimKer(∆p), thus index(d+ d∗) = index(d+ d∗BL). The index of an elliptic
operator can be computed in terms of its heat kernel invariants, in our
context

∫
M τdv = a2

(
(∆BL)0

)− a2

(
(∆BL)1

)
+ a2

(
(∆BL)2

)
.
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Now, a2

(
(∆BL)1

)
follows from the formula for the conformal scalar

curvature: τ̄ = µ(τ+∆ log µ). It is worthwhile to mention that a0

(
(∆BL)1

)
and a4

(
(∆BL)1

)
can be computed too as a consequence of the index formula.

¤

Nonminimal operators have been extensively studied by many authors,
we mention here only [5] and [12]. Our viewpoint is that the nonminimal
operators introduced by Bao and Lackey are interesting too. We consider
an open problem to determine the heat coefficients of the 1-formed Lapla-
cian on an arbitrary Finsler manifold of dimension > 2. First, one must
compute the eigenvalues of the leading symbol. What we know for sure is
that on a Finsler space of arbitrary dimension the symbol (σij

1 ξiξj)
s
k has

always the eigenvalue λ1 = G(ξ, ξ). Indeed, observe that (σij
1 ξiξj)

s
k =

Grk

(∫
SxM (gijgrs − girgjs)

√
gζx

)
ξiξj +Gsjξjξk and therefore (σij

1 ξiξj)
s
kξs =

G(ξ, ξ)ξk. Yet, generally the eigenvalues of the symbol are not even of
the form fG(ξ, ξ), for f ∈ C∞(M). This can be seen by taking its trace:
(σij

1 ξiξj)
k
k = Grk(Gijrk −Girjk)ξiξj +G(ξ, ξ).

It results that the sum of the other n − 1 eigenvalues is precisely the
first term in the trace and generally Grk(Gijrk − Girjk) 6= fGij . Before
we study a particular case, namely product manifolds, let us notice that
although eigenvalues may have an intricate form, the corresponding eigen-
vectors remain orthogonal to ξ. Indeed, suppose that η is an eigenvector of
the symbol, (σij

1 ξiξj)
s
kηs = λ(ξ)ηk. Then λ(ξ)G(ξ, η) = (σij

1 ξiξj)
shηsξh =

G(ξ, ξ)G(ξ, η). We assumed that λ 6= G(ξ, ξ), therefore G(ξ, η) = 0.

2.2.1. Product Manifolds Consider two arbitrary Finsler manifolds,
(Mi, Fi), i ∈ {1, 2} and the product Finsler manifold (M, F ), where M =
M1 ×M2 and F =

√
(F1)2 ⊕ (F2)2.

To distinguish various objects on Mi and M , to any object that lives on
Mi it will be assigned the subscript index i, while objects on M will have
no subscript index. For instance,

F (x, y) = F (x1, x2, y1, y2) =
√
F 2

1 (x1, y1) + F 2
2 (x2, y2),

where x = (x1, x2) and y = y1 + y2. It is easy to check that g = g1 ⊕ g2,
but as far as the indicatrix is concerned things are not so simple. In fact,
dim(SxM) = m1 + m2 − 1, while dim(Sx1M1 × Sx2M2) = m1 + m2 − 2.
This is the main reason that makes us work with {y ∈ TxM : F 2(x, y) ≤ 1}
rather than with the indicatrix.
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Consider the indicatrix in r, S(r) = {y ∈ Rm : F (y) = r}. Here we omit
the point x for simplicity. r = F (y) is usually called the radial variable. The
volume form of S(r) is (1/r)θ, where θ is the volume form of S(1), while the
volume form of {y ∈ Rm : F (y) ≤ 1} is

√
gdy = dr ∧ (1/r)θ. Consequently,

if f(y) is a 0-homogenous function, then
∫

F 2(y)≤1
f(y)

√
gdy=

∫ 1

0
dr

∫

S(r)
f(y)

1
r
θ

=
∫ 1

0

1
r
rmdr ·

∫

S(1)
f(y)θ

=m
∫

F (y)=1
f(y)θ

Notice that the integral in r is improper in 0 and
√
g =

√
g1
√
g2 usu-

ally has mild singularities on yi = 0. However, all functions involved are
integrable.

One can alternatively use a careful manipulation of Stokes theorem or
spherical coordinates to obtain the above formula.

The same reasoning for two 0-homogenous functions, f1(y1) and f2(y2),
on Mi yields:

∫

SxiMi

fiθi =mi

∫

F 2
i (xi, yi)≤1

fi
√
gidyi

∫

SxM
f1f2θ=m

∫

F 2(x, y)≤1
f1f2

√
g1
√
g2dy1 ∧ dy2

In the following Lemma, vol(Sd−1) denotes the euclidean volume of the
standard unit sphere in Rd.

Lemma 1 We have the following formula
∫

SxM
f1(y1)f2(y2)θ(y) =α

(∫

Sx1M1

f1(y1)θ1(y1)
)

·
(∫

Sx2M2

f2(y2)θ2(y2)
)
,

where α=
vol(Sm−1)

vol(Sm1−1) · vol(Sm2−1)
.
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Proof. We use the above observations and the Fubini theorem:
∫

SxM
f1f2θ(y)

= m

∫

F 2(y)≤1
f1(y1)f2(y2)

√
g1
√
g2dy1dy2

= m

∫

F 2
2 (y2)≤1

f2(y2)
(∫

F 2
1 (y1)≤1−F 2

2 (y2)
f1(y1)

√
g1dy1

)√
g2dy2

= m

∫

F 2
1 (y1)≤1

f1
√
g1dy1 ·

∫

F 2
2 (y2)≤1

(
1− F 2

2 (y2)
)m1/2

f2
√
g2dy2.

We now use again the radial variable to compute
∫

F 2
2≤1

(
1− F 2

2 (y2)
)m1/2

f2
√
g2dy2

=
∫ 1

0
(1− r2)m1/2rm2−1dr ·

∫

Sx2M2

f2θ2,

thus, there exists a constant C such that:
∫

F 2
2≤1

(1− F 2
2 )m1/2f2

√
g2dy2 = C ·

∫

F 2
2≤1

f2
√
g2dy2.

Returning now to the first formula, we see that
∫

SxM
f1f2θ=mC

(∫

F 2
1≤1

f1
√
g1dy1

)
·
(∫

F 2
2≤1

f2
√
g2dy2

)

=
mC

m1m2

(∫

Sx1M1

f1θ1

)
·
(∫

Sx2M2

f2θ2

)
.

One may select f1 = f2 = 1 and F1, F2 given by Riemannian metrics
to obtain that mC/(m1m2) = α. ¤

Remark 1 This Lemma could also be justified working directly on the
indicatrix. One can see that

θ(y) =
(
dF1(y1)− dF2(y2)

) ∧ 1
F1(y1)

θ1(y1) ∧ 1
F2(y2)

θ2(y2)

Now, if r = F1(y1) is the radial variable, Lemma 1 can be proved by a
similar argument, taking into account that F2(y2) =

√
1− r2.

Let us use Lemma 1 to prove the following fundamental result.
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Theorem 2 We have the identities:
1. vol(SxM) = α · vol(Sx1M1) · vol(Sx2M2).
2. vol(M) = vol(M1) · vol(M2).
3. G(ξ, η) = Gij

1 ξiηj + Gab
2 ξaηb, where ξ1 = ξidx

i
1, ξ2 = ξadx

a
2, and the

same is for η.
4. G(ϕ, ψ) = 1/2!Gijkl

1 ϕikψjl +Gij
1 G

ab
2 ϕiaψjb + 1/2!Gabcd

2 ϕacψbd, where

ϕ =
1
2!
ϕikdx

i
1 ∧ dxk

1 + ϕiadx
i
1 ∧ dxa

2 +
1
2!
ϕabdx

a
2 ∧ dxb

2.

Proof. 1. It follows directly for f1 = 1 and f2 = 1.
2. Recall that the geometrical objects on M are defined using the normal-
ized volume form. Clearly,

∫

SxM
f(y)ζ(y) =

(∫

Sx1M1

f1(y1)ζ1(y1)
)
·
(∫

Sx2M2

f2(y2)ζ2(y2)
)

Now, take f1 =
√
g1 and f2 =

√
g2 to get that

√
G =

√
G1 ·

√
G2.

3. It follows for f1 = gij
1
√
g1, f2 =

√
g2 and f1 =

√
g1, f2 = gab

2
√
g2.

4. It can be found for f1 = gij
1 g

kl
1
√
g1, f2 =

√
g2; f1 = gij

1
√
g1, f2 =

√
g2

and f1 =
√
g1, f2 = gαb

2 gcd
2
√
g2. ¤

This Theorem not only shows that for product manifolds we have similar
results to those in Riemannian geometry, but also allows us to find the
eigenvalues of the 1-formed Laplacian.

In the remainder of this subsection, m1 = m2 = 2, and we restrict to
Bao-Lackey Laplacian on 1-forms. Let σ, σ1 and σ2 denote the symbols of
∆BL on M , M1 and M2, respectively. We continue to denote by i, j, k, l

the indices on M1, by a, b, c, d the indices on M2, and by α, β, γ, δ the
indices on M , α, β, γ, δ, . . . ∈ {i, j, k, l, . . . , a, b, c, d, . . .}. It is a direct
consequence of Theorem 2 that

(σαβξαξβ)i
j = (σkh

1 ξkξh)i
j + (Gab

2 ξaξb)δ
i
j

(σαβξαξβ)i
a = (σαβξαξβ)a

j = 0

(σαβξαξβ)a
b = (σcd

1 ξcξd)
a
b + (Gij

1 ξiξj)δ
a
b

Clearly, finding the eigenvalues of (σαβξαξβ)γ
δ reduces to finding the

eigenvalues of (σαβξαξβ)i
j and (σαβξαξβ)a

b . This can be done easily and the
eigenvalues are found to be
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λ1=G(ξ, ξ), λ2 = µ1G1(ξ1, ξ1) +G2(ξ2, ξ2)

λ3=G(ξ, ξ), λ4 = G1(ξ1, ξ1) + µ2G2(ξ2, ξ2)

The calculus of a0

(
(∆BL)1

)
on M , denoted here simply by a0(M), re-

duces to an integral of the form
∫ ∑

i=1, 4 exp
(−λi(ξ)

)
dξ. Changing the

variables first with respect to ξ1 and then with respect to ξ2, this integral
yields 1 + 1 + 1/µ1 + 1/µ2 = (1 + 1/µ1)(1 + 1/µ2) + 1 − 1/µ. Forasmuch∫
Mi

(1 + 1/µi)dvi = a0(Mi), the first heat invariant on M has the formula:

a0(M) = a0(M1) · a0(M2) + vol(M)−
∫

M

1
µ
dv

We end this section with an emphasis on the fact that generally eigen-
values might have cumbersome formulas and only in such particular cases
we were able to find them. Even so, only a0((∆BL)1) can be computed
directly, while a2

(
(∆BL)1

)
would probably need tremendous calculations.

2.3. Spectrum of Randers spaces
In this section we study on Randers spaces some of the invariants which

appeared in the previous sections. On the flat torus we give a partial spec-
tral resolution of the scalar Laplacian. Since the Randers spaces involve an-
other Riemannian metric aij on M , it is natural to ask when spec(M, F ) =
spec(M, a). It happens if and only if the Finsler structure is Riemannian.

Consider (M, a) a Riemannian manifold and b = bidx
i ∈ A1(M) sat-

isfying |b|2 := aijbibj < 1. Then a and b define a Finsler structure on M

in the simply way: F (x, y) := α(x, y) + β(x, y), where α =
√
aijyiyj and

β = biy
i. We recall the following classical formulas ([13], p. 206; [6], p. 289)

gij(x, y) =
α

F
aij +

(
β

F
+
α

F
|b|2

)
yi

F

yj

F
− α

F

(
aik y

j

F
bk + ajk y

i

F
bk

)
;

√
g(x, y) =

(
F

α

)(n+1)/2√
a.

Even on Randers spaces, finding the eigenvalues of the BL-Laplacian is
an intricate problem. This can be tried on the flat torus.

2.4. Eigenvalues of the flat torus
Although for K = const. a large class of manifolds have known spec-

trum, finding the eigenvalues of (∆BL)0 for dK 6= 0 is more difficult. The
Laplace equation (∆BL)0f = λf is a Sturm-Liouville equation that gener-
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ally cannot be integrated. The fact that the function K is not computable
on Randers spaces is an impediment in studying this Sturm-Liouville equa-
tion.

Consider the flat torus T 2 with periodic coordinates (t, s). The metric
a is the flat metric and we choose the 1-form b to depend only on t, that is
b = b1(t)dt. The Finsler function is simply F =

√
(y1)2 + (y2)2 + b1y

1. Yet,
the volume function vol is given by an elliptic integral, therefore K cannot
be computed either. We find easier to study the eigenvalues of a conformal
Finsler function F̄ . Then, the eigenvalues of (M, F ) and those of (M, F̄ )
can be compared using a known result of J. Dodziuk ([10]).

First, notice that the metric Gij depends only on t and so does K. It
is easy to check that G12 = 0.

Now consider the conformal Finsler structure F̄ :=(
√
G11/K)F . Clearly,

the structure (M, F̄ ) is not Riemannian. The conformal factor
√
G11/K

yields a Sturm-Liouville equation which partially can be integrated.
We wish to study the spectrum of (M, F̄ ). First let us mark out that the

function K is a conformal invariant, therefore K̄ = K. Now use that Ḡij =
(K2/G11)Gij and ∆̄0 = (K2/G11)∆0 (here ∆0 is the standard Laplacian
of Gij and ∆̄0 is the standard Laplacian of the conformal metric Ḡij) to
obtain that (∆̄BL)0 = (K2/G11)(∆BL)0.

The eigenvalues of (∆̄BL)0 are given by (∆BL)0f = (G11/K2)λf , that
is

−∂
2f

∂t2
− G22

G11

∂2f

∂s2
− ∂f

∂t

∂ logK
∂t

=
λ

K2
f.

Now K depends only on t, thus we may infer that the eigenfunction f

is of the form f(t, s) = A(t)eils, where l ∈ Z. Our Sturm-Liouville equation
is

−A′′(t) + l2
G22

G11
A(t)−A

′
(t)

1
K
K
′
=

λ

K2
A.

For l = 0 this equation is simply −(KA′)′ = (λ/K)A. We use a method
like in [1] and obtain that A = exp{i

√
λ

∫ t
0 (1/K(u))du}. Now, the function

A must satisfy A(2π) = A(0), for we have used periodic coordinates. Thus,
for l = 0 the eigenvalues are

{
4π2n2/

(∫ 2π
0 (1/K(t))dt

)2 | n ∈ Z
}
.

Of course, we found the eigenfunctions (and their eigenvalues) depend-
ing only on t. We do not know for sure how the other eigenvalues look
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like.
However, one can determine an upper bound for the first positive eigen-

value of (∆BL)0, in terms of max b1(t). Recall that Ḡij = (K2/G11)Gij , so
that using the Rayleigh quotient in our context, we get the estimates

λ1 min
T 2

K2

G11
≤ λ1 ≤ λ1 max

T 2

K2

G11
,

where λ1 and λ̄1 denote the first positive eigenvalue of (∆BL)0 and (∆̄BL)0,
respectively. Certainly, λ̄1 ≤ 4π2/

(∫ 2π
0 (1/K(t))dt

)2, therefore

λ1 ≤ 4π2

(∫ 2π
0

(
1/K(t)

)
dt

)2 max
T 2

G11

K2
.

This upper bound can be expressed in terms of max b1(t), using the formulas
for K and Gij , and the sharp inequalities K ≥ 1, vol ≥ 2π.

2.5. Randers surfaces
Let (M, F ) be a compact Randers surface. Recall that the volume form

of SxM is θx =
√
g(y1dy2−y2dy1) or, in polar coordinates y1 = r cos t, y2 =

r sin t, it is θx =
√
gr2dt.

In a point x ∈M we choose geodesic polar coordinates with respect to
the metric aij . It follows that aij(x) = δij and (∂aij/∂x

k)(x) = 0. Then in
the point x the Finsler function is F (x, y) = r(1 + b1(x) cos t+ b2(x) sin t),
where b21 + b22 < 1 and

√
g(x) = 1/α3/2 = 1/r3/2. Thus, the volume in x is

precisely vol(x) =
∫ 2π
0 1/

√
1 + b1(x) cos t+ b2(x) sin t dt.

Proposition 3 For any x ∈M we have the following sharp inequalities

vol(x) ≥ 2π, K(x) ≥ 1

and either equality takes place if and only if b1(x) = b2(x) = 0.

Proof. By Jensen’s inequality we get

1
2π

vol(x) =
1
2π

∫ 2π

0

(
1
r

)−1/2

dt ≥
(

1
2π

∫ 2π

0

1
r
dt

)−1/2

= 1.

The proof of K(x) ≥ 1 uses the integral Minkowski inequality (see [8] or
Proposition 5 in this paper). ¤

An interesting problem is to find necessary and sufficient conditions
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for K and vol respectively to be constant. Certainly, if K is constant on
M , then (∆BL)0 = ∆0. If K is not constant on M , then (M, F ) is not
isospectral to a Riemannian surface of positive scalar curvature.

Proposition 4 below gives such conditions for the volume function. It
is possible that they work for K too.

It is known that vol is constant on Landsberg surfaces ([6], p. 102).
Recall that a Randers surface is Landsberg iff it is locally Minkowski ([16]).
The Randers space (T 2, F ), with F =

√
(y1)2 + (y2)2+b1(t, s)y1+b2(t, s)y2

and b1 = A cos(t+ s), b2 = −A sin(t+ s), 0 < A < 1, has constant volume
function, but it is not locally Minkowski. Therefore, the condition M be
Landsberg is only sufficient.

Proposition 4 The function vol is constant on M if and only if |b| is
constant on M .

Proof. First, consider the elliptic integral

I(b1, b2) =
∫ 2π

0

dt√
1 + b1 cos t+ b2 sin t

.

Suppose that b21 + b22 = b2, where b < 1. In polar coordinates, b1 = b cos θ
and b2 = b sin θ, the function I depends on b and θ

I : [0, 1)× [0, 2π) → R, I(b, θ) =
∫ 2π

0

1√
1 + b cos(θ + t)

dt.

In fact, I depends only on b, because

∂I

∂θ
=−1

2

∫ 2π

0

b sin(θ + t)
(
1 + b cos(θ + t)

)3/2
dt

=
(
1 + b cos(θ + t)

)−1/2 ∣∣2π

0
= 0.

Therefore, I(b, θ) = I(b, 0) =
∫ 2π
0 1/

√
1 + b cos t dt and I is a strictly in-

creasing function in the argument b > 0.
Now, vol(x) = c if and only if b(x) = b, where I(b, 0) = c. This

completes the proof of the Proposition. ¤

We are able to give the answer to the problem formulated at the begin-
ning of this section: when spec(M, F ) = spec(M, a)?

Theorem 3 Spec(M, F ) = Spec(M, a) if and only if b = 0.
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Proof. Let vol(M, F ), vol(M, G) and vol(M, a) denote the volumes of M
with respect to the volume forms

√
Gdx,

√
detGdx and

√
adx, respectively.

Then

vol(M, a) = max
{
vol(M, F ), vol(M, G), vol(M, a)

}
.

Indeed, from Proposition 3 we get vol(M, F ) ≥ vol(M, G). In geodesic
coordinates in x we obtain

√
G(x) = 2π/ vol(x), thus

√
G/
√
a ≤ 1. This

proves that vol(M, a) ≥ vol(M, F ) ≥ vol(M, G). In each of these inequali-
ties, the equality holds if and only if the Finsler structure is Riemannian.

¤

2.6. Randers spaces of dimension three
In this section we generalize the previous results on Randers surfaces.

Consider (M, F ) a Randers space, dimM = 3. In a point x ∈ M use
geodesic coordinates and spherical coordinates on SxM : y1 = r cosu sin v,
y2 = r sinu sin v, y3 = r cos v, 0 ≤ v ≤ π and 0 ≤ u ≤ 2π. Then θx =
r sin vdv ∧ du. The following result generalizes Proposition 3.

Proposition 5 For any x we have the following sharp inequalities:

vol(x) ≥ 4π, K(x) vol(x) ≥ 4π

and each equality holds if and only if b = 0.

Proof. Let D = [0, 2π]× [0, π]. Then vol(x) =
∫
D r sin vdudv = 4π

∫
D rdσ,

where dσ := sin v/(4π)dudv. That vol(x) ≥ 4π follows from Jensen’s in-
equality:

∫
D rdσ =

∫
D(1/r)−1dσ ≥ (

∫
D(1/r)dσ)−1 = 1. Equality holds

iff r is constant, i.e., b = 0. For the second inequality, notice that K2 =
1/
√
G det

∫
g] = (vol(x)/(4π)) det

∫
g] and by the inequality of Minkowski

(
det

∫
gij√gζx

)1/3

≥
∫ (

det(gij√g))1/3
ζx

=
1

vol(x)

∫

D
r1/3 sin vdudv.

The same as above, we have
∫
D r

1/3 sin vdudv ≥ 4π. ¤

Albeit we did not prove that K ≥ 1, Proposition 5 is sufficient to prove
that

vol(M, a) = max
{
vol(M, F ), vol(M, G), vol(M, a)

}
.
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Proposition 6 Spec(M, F ) = Spec(M, a) if and only if F = α.
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