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On a result of Saeki-Takahashi and a theorem of Bochner
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Abstract. Saeki extended the F. and M. Riesz theorem to RN (N = 2), and Taka-

hashi extended Saeki’s result to a LCA group. We give a result, which is relevant to

theirs. We also give a strong version of Bochner’s generalization of the F. and M. Riesz

theorem.

Key words: LCA group, measure, Fourier transform, quasi-invariant.

1. Introduction

Let G be a LCA group with the dual group Ĝ. Let L1(G) and M(G)
be the group algebra and the measure algebra, respectively. We denote by
mG the Haar measure of G. For µ in M(G), µ̂ denotes the Fourier-Stieltjes
transform of µ, i.e., µ̂(γ) =

∫
G

(−x, γ) dµ(x) for γ ∈ Ĝ. For a closed subset E

of Ĝ, ME(G) denotes the space of measures in M(G) whose Fourier-Stieltjes
transform vanish off E, and E is called a Riesz set if ME(G) ⊂ L1(G). For
a closed subgroup H of G, H⊥ stands for the annihilator of H.

Saeki [10] obtained the following theorem as an extension of the F. and
M. Riesz theorem on R.

Theorem A ([10, Theorem 2]) Suppose N = 2, and let RN be the N -
dimensional Euclidean space. Suppose µ ∈ M(RN ) satisfies the following
two conditions:

( i ) µ̂(t) = 0 for all t = (t1, . . . , tN ) ∈ RN with t1 5 0, and
( ii ) for each t1 > 0, µ̂(t1, ·) is the Fourier trnsform of some ft1 ∈ L1

(RN−1).

Then µ is absolutely continuous with respect to mRN .

As an application of this theorem, he gave an alternative proof of a
theorem of Bochner. Moreover, Takahashi [12] extended Theorem A to a
LCA group as follows.
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Theorem B ([12, Theorem 2]) Let G be a LCA group, and let H be a
closed subgroup of G. Let Ẽ be a Riesz set in Ĝ/H⊥, and put E = π−1(Ẽ),
where π : Ĝ → Ĝ/H⊥ is the natural homomorphism. Suppose µ ∈ M(G)
satisfies the following two conditions:

( i ) µ ∈ ME(G), and
( ii ) for each γ ∈ E, α(γµ) ∈ L1(G/H), where α : G → G/H is the natural

homomorphism and γ denotes the complex conjugate of γ.

Then µ is absolutely continuous with respect to mG.

On the other hand, Glicksberg obtained the following.

Glicksberg’s result (cf. [3]) Suppose µ ∈ M(R2) satisfies the following
two conditions:

( i ) µ̂(t) = 0 for all t = (t1, t2) ∈ R2 with t1 5 0, and
( ii )

∫
R |µ̂(t1, s)| dmR(s) < ∞ for a dense set of t1.

Then µ is absolutely continuous with respect to mR2 .

We have a slight extension of Theorem B, which includes Glicksberg’s
result.

Theorem C Under the assumption in Theorem B, let Ẽ be a Riesz set
in Ĝ/H⊥ and D̃ a dense subset of Ẽ. Put E = π−1(Ẽ) and D = π−1(D̃).
Suppose µ ∈ M(G) satisfies the following two conditions:

( i ) µ ∈ ME(G), and
( ii ) α(γµ) ∈ L1(G/H) for all γ ∈ D.

Then µ is absolutely continuous with respect to mG.

We prove Theorem C in the next section.
The F. and M. Riesz theorem on R states that if µ ∈ M(R) and µ̂(t) = 0

for t < 0, then µ is absolutely continuous. However, the following holds.

(1.1) If µ is a nonzero measure in M(R) and µ̂(t) = 0 for t < 0, then µ and
mR are mutually absolutely continuous.

From the point of view of (1.1), we give a result, which is relevant to
Theorem C. We also give a strong version of Bochner’s generalization of the
F. and M. Riesz theorem.
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2. Notation and results

Let G be a LCA group with the dual group Ĝ. For x ∈ G, δx denotes the
point mass at x. We denote by Trig(G) the set of trigonometric polynomials
on G. Let Co(G) be the Banach space of continuous functions on G which
vanish at infinity. Then M(G) is identified with the dual space of Co(G).
Let M+(G) be the set of nonnegative measures in M(G). For µ ∈ M(G)
and f ∈ L1(|µ|), we often use the notation µ(f) as

∫
G

f(x)dµ(x).

Definition 2.1 Let G be a LCA group, and let µ ∈ M(G). µ is said to
be quasi-invariant if |µ| ∗ δx ¿ |µ| for all x ∈ G.

Remark 2.1 (cf. [14, Remark 4.1]) If there exists a nonzero measure
µ ∈ M(G) that is quasi-invariant, then G is σ-compact.

Remark 2.2 (cf. [14, Proposition 4.1]) Let G be a LCA group, and let µ

be a nonzero measure in M(G). Then the following are equivalent.

( i ) µ is quasi-invariant.
( ii ) |µ| and mG are mutually absolutely continuous.

Definition 2.2 Let G be a LCA group, and let E be a closed subset of
Ĝ. We say that E satisfies condition (∗) if the following holds.

(∗) For µ ∈ ME(G), µ is quasi-invariant.

We state our results.

Theorem 2.1 Let G be a σ-compact, LCA group, and let H be a closed
subgroup of G. Let Ẽ be a closed set in Ĝ/H⊥ that satisfies condition (∗),
and let D̃ be a dense subset of Ẽ. Put E = π−1(Ẽ) and D = π−1(D̃), where
π : Ĝ → Ĝ/H⊥ is the natural homomorphism. Suppose a nonzero measure
µ ∈ M(G) satisfies the following two conditions:

( i ) µ ∈ ME(G), and
( ii ) for γ ∈ D with α(γµ) 6= 0, α(γµ) and mG/H are mutually absolutely

continuous, where α : G → G/H is the natural homomorphism.

Then µ and mG are mutually absolutely continuous.

From this theorem, the following corollary follows immediately.

Corollary 2.1 Suppose N = 2 and a nonzeo measure µ ∈ M(RN ) satisfies
the following two conditions:
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( i ) µ̂(t) = 0 for all t = (t1, . . . , tN ) ∈ RN with t1 5 0, and
( ii ) for t1 > 0 with µ̂(t1, ·) 6= 0, there exists ft1 ∈ L1(RN−1), with the

property that ft1 and mRN−1 are mutually absolutely continuous, such
that µ̂(t1, s) = f̂t1(s) for all s ∈ RN−1.

Then µ and mRN are mutually absolutely continuous.

Remark 2.3 An analogue of Corollary 2.1 holds for the N -dimensional
torus TN .

For x, y ∈ RN , 〈x, y〉 stands for the inner product. We denote by S the
set of unit vectors in RN . For a ∈ S, let Ωa be a set of closed sets E in RN

which satisfy the following two conditions:

E ⊂ {x ∈ RN : 〈x, a〉 = 0}, (2.1)

for each t > 0, E ∩ {x ∈ RN : 〈a, x− ta〉 5 0} is a compact set. (2.2)

Set Ω = ∪
a∈S, b∈RN

(Ωa + b), where Ωa + b = {E + b : E ∈ Ωa}. Evidently,

proper cones in RN belong to Ω.

Remark 2.4 Let a be a unit vector in RN , and let θ be a rotation of RN .
If E ∈ Ωa, then θ(E) ∈ Ωθ(a).

Corollary 2.2 Let E ∈ Ω, and let µ be a nonzero measure in ME(RN ).
Then µ and mRN are mutually absolutely continuous.

An analogue of Corollary 2.2 holds for TN .

Corollary 2.3 (cf. [1, Theorem 5]) Let E ∈ Ω, and let ν be a nonzero
measure in ME∩ZN (TN ). Then ν and mTN are mutually absolutely contin-
uous.

Example 2.1 (1) Let f and g be functions on [0,∞) such that g(s) 5 f(s)
for all s ∈ [0,∞). Put E = {(s, t) ∈ R2 : s = 0, g(s) 5 t 5 f(s)}. It follows
from Corollary 2.1 that E satisfies condition (∗).
(2) Let Z+ be the set of nonnegative integers, and let f and g be functions
on Z+ such that g(n) 5 f(n) for all n ∈ Z+. Put F = {(n,m) ∈ Z2 : n ∈
Z+, g(n) 5 m 5 f(n)}. Then F satisfies condition (∗), by Remark 2.3.

Before we close this section, we prove Theorem C. The following lemma
is well-known.
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Lemma 2.1 Let G be a LCA group, and let µ ∈ M(G). Let γ ∈ Ĝ, and let
{γα} be a net, with γα ∈ Ĝ, such that lim

α
γα = γ. Then lim

α
‖γαµ− γµ‖ = 0.

Now we prove Theorem C. It is easy to verify that D is dense in E. Let
γ0 ∈ E. Since D is dense in E, there exists γβ ∈ D such that lim

β
γβ = γ0.

It follwos from Lemma 2.1 that

lim
β
‖γβµ− γ0µ‖ = 0,

which yields

lim
β
‖α(γβµ)− α(γ0µ)‖ = 0. (2.3)

Since γβ ∈ D, the hypothesis (ii) implies that α(γβµ) ∈ L1(G/H). Thus
we have, by (2.3),

α(γ0µ) ∈ L1(G/H).

Since γ0 is any element in E, it follows from Theorem B that µ ¿ mG. This
completes the proof of Theorem C.

3. Proofs of Theorem 2.1 and corollaries

In this section, we give the proof of Theorem 2.1. We also prove Corollar-
ies 2.2 and 2.3. Following Takahashi [12], we use the theory of disintegration
of measures.

Proposition 3.1 Theorem 2.1 holds for a σ-compact, metrizable LCA
group G.

Proof. By Theorem C, we have

(1) µ ¿ mG.

Since µ is a nonzero measure in ME(G) and D is dense in E, there
exists γ0 ∈ D such that µ̂(γ0) 6= 0. We note that α(

−
γ0µ) 6= 0. Hence the

hypothesis (ii) in the theorem implies that mG/H ¿ |α(
−
γ0µ)|, which yields

(2) mG/H ¿ α(|µ|).
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It follows from (1) that

(3) α(|µ|) ¿ mG/H .

Thus,

(4) α(|µ|) and mG/H are mutually absolutely continuous.

Put η = α(|µ|). By the theory of disintegration of measures, there exists
a family {λẋ}ẋ∈G/H of measures in M+(G) with the following properties:

(5) ẋ → λ .
x(f) is a Borel measurable function on G/H for each bounded

Borel function f on G,
(6) ‖λẋ‖ = 1,
(7) supp(λẋ) ⊂ α−1({ẋ}),
(8) |µ|(f) =

∫
G/H

λẋ(f)dη(ẋ) for each bounded Borel function f on G.

Let h be a bounded Borel function on G such that |h| = 1 and µ = h|µ|.
We define meaures µẋ ∈ M(G) by µẋ = hλẋ. Then |µẋ| = λẋ, and we have
the following:

(9) ‖µẋ‖ = 1,
(10) ẋ → µẋ(f) is a Borel measurable function on G/H for each bounded

Borel function f on G,
(11) supp(µẋ) ⊂ α−1({ẋ}),
(12) µ(f) =

∫
G/H

µẋ(f)dη(ẋ) for each bounded Borel function f on G.

It follows from (11) that there exists x ∈ α−1({ẋ}) and ξẋ ∈ M(H) such
that

(13) µẋ = ξẋ ∗ δx.

We note that λẋ = |µẋ| = |ξẋ| ∗ δx. Since supp(µ̂) ⊂ E(= π−1(Ẽ)), we
have, by the proof of Lemma 4.2 in [11],

ξẋ ∈ MẼ(H) η − a.a. ẋ ∈ G/H.

Hence the hypothesis that Ẽ satisfies the condition (∗) implies that

(14) |ξẋ| ¿ mH , mH ¿ |ξẋ| η − a.a. ẋ ∈ G/H.

Let F be a Borel set in G such that |µ|(F ) = 0. We have, by (8),
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0 = |µ|(F ) =
∫

G/H

λẋ(F )dη(ẋ).

Thus there exists a Borel set B̃ in G/H such that

(15) η(B̃) = 0, and
(16) {ẋ ∈ G/H : λẋ(F ) > 0} ⊂ B̃.

It follows from (4) and (15) that mG/H(B̃) = 0. Hence we have

(17)
mG(F ) =

∫

G

χF (x)dmG(x)

=
∫

G/H

∫

H

χF (x + y)dmH(y)dmG/H(ẋ)

=
∫

B̃

∫

H

χF (x + y)dmH(y)dmG/H(ẋ)

+
∫

B̃c

∫

H

χF (x + y)dmH(y)dmG/H(ẋ)

= 0 +
∫

B̃c

∫

H

χF (x + y)dmH(y)dmG/H(ẋ),

where χF denotes the characteristic function of F . If ẋ /∈ B̃, we have,
by (16),

0 = λẋ(F ) = |ξẋ| ∗ δx(F )

= |ξẋ|(F − x).

This, together with (14), yields

∫

H

χF (x + y)dmH(y) = mH(F − x) = 0 η − a.a. ẋ ∈ B̃c,

which implies
∫

B̃c

∫

H

χF (x + y)dmH(y)dmG/H(ẋ) = 0.

Thus we have that mG(F ) = 0, by (17). This shows that

(18) mG ¿ |µ|.
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It follows from (1) and (18) that |µ| and mG are mutually absolutely
continuous. This completes the proof. ¤

Before we prove Theorem 2.1, we state several lemmas. The following
two lemmas are obtained in [14].

Lemma 3.1 (cf. [14, Lemma 4.1]) Let G be a LCA group, and let E be
a closed subset of Ĝ that satisfies the condition (∗). Then, for any open
subroup Γ of Ĝ, the following (∗)Γ holds:

(∗)Γ For any nonzero measure ζ ∈ ME∩Γ(G/Γ⊥), |ζ| and mG/Γ⊥ are mu-
tually absolutely continuous.

Lemma 3.2 (cf. [14, Proposition 4.2]) Let G be a LCA group, and let
Γ be an open subgroup of Ĝ. Let E be a closed subset of Ĝ contained in
Γ. Suppose that E satisfies the condition (∗) in Γ. Then E satisfies the
condition (∗) in Ĝ.

Lemma 3.3 Let G be a σ-compact, LCA group, and let Γ be an open
subgroup of Ĝ. Let µ be a nonzero measure in M(G) with supp(µ̂) ⊂ Γ.
Then the following are equvalent.

( i ) µ is quasi-invariant.
( ii ) αΓ⊥(µ) is quasi-invariant, where αΓ⊥ :G→ G/Γ⊥ is the natural homo-

morphism.

Proof. (i) ⇒ (ii): Suppose that µ is quasi-invariant. Then µ ∈ L1(G),
and so

(1) αΓ⊥(µ) ∈ L1(G/Γ⊥).

Γ⊥ is a compact subgroup of G, and we have, by [5, (28.54) Theorem
and (28.55) Theorem],

(2) g ◦ αΓ⊥ ∈ L1(G) and
∫

G/Γ⊥ g(ẋ)dmG/Γ⊥(ẋ) =
∫

G
g(αΓ⊥(x))dmG(x)

for all g ∈ L1(G/Γ⊥). We define a map J : L1(G/Γ⊥) → L1(G) by

J(g) = g ◦ αΓ⊥ .

For g ∈ L1(G/Γ⊥), we have
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J(g)∧(γ) =

{
ĝ(γ) for γ ∈ Γ

0 for γ ∈ Ĝ\Γ,

which, together with the hypothesis that supp(µ̂) ⊂ Γ, yields

(3) J(αΓ⊥(µ)) = µ.

Since µ is quasi-invariant, |µ| and mG are mutually absolutely continu-
ous. Hence

(4) αΓ⊥(|µ|) and mG/Γ⊥ are mutually absolutely continuous.

By the definition of J ,

J(|αΓ⊥(µ)|) = |J(αΓ⊥(µ))|,

which, combined with (3), yields

|µ| = J(|αΓ⊥(µ)|).

Since |αΓ⊥(µ)| = αΓ⊥(J(|αΓ⊥(µ)|)) = αΓ⊥(|µ|), it follows from (4) that
|αΓ⊥(µ)| and mG/Γ⊥ are mutually absolutely continuous. Hence αΓ⊥(µ) is
quasi-invariant.
(ii) ⇒ (i): This can be proved by an argument similar to that in the proof
of Proposition 4.2 in [14]. ¤

Now prove Theorem 2.1. Let µ be a nonzero measure in M(G) that
satisfies the conditions (i) and (ii) in the theorem. By Theorem C, we have

(1) µ ¿ mG.

It is sufficient to prove that

(2) mG ¿ |µ|.
Since µ is a nonzero measure in ME(G) and D is dense in E, there exists

γ0 ∈ D such that µ̂(γ0) 6= 0. Then α(γ0µ) 6= 0. Suppose (2) does not hold.
By (1), µ̂ belongs to Co(Ĝ). Hence there exists a σ-compact, open subgroup
Γ of Ĝ, with γ0 ∈ Γ, which satisfies the following:

(3) supp(µ̂) ⊂ Γ, and
(4) αΓ⊥(mG) (= mG/Γ⊥) is not absolutely continuous with respect to

αΓ⊥(|µ|), where αΓ⊥ : G → G/Γ⊥ is the natural homomorphism.
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Put Eo = E ∩ Γ. Let π|Γ+H⊥ : Γ + H⊥ → (Γ + H⊥)/H⊥ and β :
Γ → Γ/Γ ∩H⊥ be the natural homomorphisms, respectively. Let τ : (Γ +
H⊥)/H⊥ → Γ/Γ ∩H⊥ be a map defined by

τ(γ + H⊥) = γ + Γ ∩H⊥ (γ ∈ Γ).

Then τ is a topological isomorphism (cf. [5, (5.33) Theorem]). We claim
that

(5) β(Eo) is a closed subst of Γ/Γ ∩H⊥ which satisfies the condition (∗).
In fact, since β−1(β(Eo)) = Eo + Γ ∩H⊥ = Eo, β(Eo) is closed. Hence

π|Γ+H⊥(Eo) = τ−1(β(Eo)) is also a closed subset of (Γ + H⊥)/H⊥. Since
π|Γ+H⊥(Eo) ⊂ π(E) = Ẽ, Lemma 3.1 implies that π|Γ+H⊥(Eo) satisfies the
condition (∗) in (Γ + H⊥)/H⊥. Thus β(Eo) = τ(π|Γ+H⊥(Eo)) satisfies the
condition (∗) in Γ/Γ ∩H⊥. This establishes the claim in (5).

Put G̃ = αΓ⊥(G) and H̃ = αΓ⊥(H). Then G̃ is a σ-compact, metrizable
LCA group, and the annihilator of Γ ∩ H⊥ in G̃ coincides with H̃. Since
γ0 ∈ Γ and αΓ⊥(µ)∧(γ0) = µ̂(γ0) 6= 0,

(6) αΓ⊥(µ) is a nonzero measure in MEo
(G̃).

Put Do = D∩Γ. Let π̃ : ˆ̃G(∼= Γ) → ˆ̃G/H̃⊥(∼= Γ/Γ∩H⊥) be the natural
homomorphism, and put D̃o = π̃(Do) and Ẽo = π̃(Eo). Then we have

(7) π̃−1(D̃o) = Do, π̃−1(Ẽo) = Eo.

Since D is dense in E, Do is dense in Eo. Hence D̃o is dense in Ẽo. Moreover,
the following holds.

(8) For γ ∈ Do with α̃(γαΓ⊥(µ)) 6= 0, α̃(γαΓ⊥(µ)) and mG̃/H̃ are mutually
absolutely continuous, where α̃ : G̃ → G̃/H̃ is the natural homomor-
phism.

In fact, let γ be an element in Do such that α̃(γαΓ⊥(µ)) 6= 0. For
ω ∈ Γ ∩H⊥(∼= G̃/̂H̃), we have

α̃(γαΓ⊥(µ))∧(ω) = (γαΓ⊥(µ))∧(ω) = µ̂(ω + γ)

= α(γµ)∧(ω),
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which yields

(9) α(γµ) 6= 0.

Hence, by the condition (ii) of the theorem, we have

(10) α(γµ) and mG/H are mutually absolutely continuous.

We note that ˆG/H ∼= H⊥ and Γ∩H⊥ is an open subgroup of H⊥. Moreover,
we have, by (3) and the fact that γ ∈ Γ,

supp(α(γµ)∧) ⊂ Γ ∩H⊥.

Thus (10) and Lemma 3.3 imply that

(11) σ(α(γµ)) and mG̃/H̃ are mutually absolutely continuous,

where σ : G/H → G̃/H̃ is a continuous homomorphism defined by

σ(x + H) = αΓ⊥(x) + H̃ (x ∈ G).

For ω ∈ Γ ∩H⊥, we have, by an argument used above (9),

σ(α(γµ))∧(ω) = α(γµ)∧(ω)

= α̃(γαΓ⊥(µ))∧(ω),

which yields

(12) σ(α(γµ)) = α̃(γαΓ⊥(µ)).

By (11) and (12), α̃(γαΓ⊥(µ)) and mG̃/H̃ are mutually absolutely continu-
ous. This shows that (8) holds.

We note that Ẽo satisfies the condition (∗), by (5). Since G̃ is σ-compact
and metrizable, it follows from (6), (7), (8) and Proposition 3.1 that αΓ⊥(µ)
and mG̃(= mG/Γ⊥) are mutually absolutely continuous. Hence, in particu-
lar,

mG/Γ⊥ ¿ |αΓ⊥(µ)| ¿ αΓ⊥(|µ|),

which contradicts (4). This completes the proof of Theorem 2.1.
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Let k(t) = 1
π · 1−cos t

t2 . Then k̂(s) =
∫∞
−∞ k(t)e−istdt = max(1 − |s|, 0).

We define functions w(t) and ∆(x) on RN as follows:

w(t) =
N∏

k=1

1
π
· 1− cos tk

t2k
(t = (t1, . . . , tN ) ∈ RN );

∆(x) =
N∏

k=1

max(1− |xk|, 0) (x = (x1, . . . , xN ) ∈ RN ).

We note that ŵ(x) = ∆(x) (x ∈ RN ).

For µ ∈ M(TN ), let µ̃ be the periodic extension of µ to RN , i.e., for a
Borel set E ⊂ [0, 2π)× · · · × [0, 2π) + 2πn (n ∈ ZN ),

µ̃(E) = µ(E − 2πn).

Then wµ̃ belongs to M(RN ). We define a map J : M(TN ) → M(RN ) by

J(µ) = wµ̃. (3.1)

We need the following lemma to prove our corollaries.

Lemma 3.4 (cf. [8, Lemma 1]) For µ ∈ M(TN ), we have

J(µ)∧(x) =
∑

n∈ZN

µ̂(n)∆(x− n). (3.2)

Furthermore J is an isometry, and the following hold.

( i ) J(µ) = 0 if and only if µ = 0.
( ii ) J(µ) ∈ L1(RN ) if and only if µ ∈ L1(TN ).
(iii) J(µ) is quasi-invariant if and only if µ is quasi-invariant.

Proof. (3.2), (i)–(ii) and the fact that J is an isometry follow from Lemma
1 in [8]. Considering zero points of w(t), we obtain (iii) by the definition of
J . This completes the proof. ¤

Lemma 3.5 Let e1 = (1, 0, · · · , 0) be the unit vector in RN , and let E ∈
Ωe1 . Let µ be a nonzero measure in ME(RN ). Then µ and mRN are mutually
absolutely continuous.
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Proof. For t1 > 0, suppose µ̂(t1, ·) 6= 0. Then there exists a nonzero
measure νt1 ∈ M(RN−1) such that

ν̂t1(s) = µ̂(t1, s) for all s ∈ RN−1.

Since µ ∈ ME(RN ) and E belongs to Ωe1 , supp(ν̂t1) is a compact set in
RN−1. Compact sets in RN−1 satisfy the condition (∗); hence the lemma
follows from Corollary 2.1. ¤

Now we prove Corollary 2.2. Considering translation of E, we may
assume that E ∈ Ωa for some unit vector a in RN . Let θ be a rotation of
RN such that θ(e1) = a. Let µθ = θ−1(µ), the continuous image of µ under
θ−1. Then µ̂θ = µ̂ ◦ θ, which yields

µθ ∈ Mθ−1(E)(RN ). (3.3)

It follwos from from Remark 2.4 that θ−1(E) ∈ Ωθ−1(a) = Ωe1 . Hence we
have, by Lemma 3.5,

µθ ¿ mRN , mRN ¿ |µθ|.

Thus µ and mRN are mutually absolutely continuous, and the proof is com-
plete.

Next we prove Corollary 2.3. By translaion of E ∩ ZN by an element
in ZN , we may assume that E ∈ Ωa for some unit vector a in RN . Since
ν ∈ ME∩ZN (TN ), we have

supp(J(ν)∧) ⊂ Q + E, (3.4)

where Q = [−1, 1]N . Since Q + E is a set in Ω and J(ν) is a nonzero
measure in MQ+E(RN ), it follows from Corollary 2.2 that J(ν) and mRN

are mutually absolutely continuous; hence ν and mTN are so, by Lemma 3.4.
This completes the proof.
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