On a result of Saeki-Takahashi and a theorem of Bochner

Hiroshi YAMAGUCHI

(Received June 2, 2008)

Abstract. Saeki extended the F. and M. Riesz theorem to \mathbb{R}^N $(N \ge 2)$, and Takahashi extended Saeki's result to a LCA group. We give a result, which is relevant to theirs. We also give a strong version of Bochner's generalization of the F. and M. Riesz theorem.

Key words: LCA group, measure, Fourier transform, quasi-invariant.

1. Introduction

Let G be a LCA group with the dual group \hat{G} . Let $L^1(G)$ and M(G) be the group algebra and the measure algebra, respectively. We denote by m_G the Haar measure of G. For μ in M(G), $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ , i.e., $\hat{\mu}(\gamma) = \int_G (-x, \gamma) d \mu(x)$ for $\gamma \in \hat{G}$. For a closed subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transform vanish off E, and E is called a Riesz set if $M_E(G) \subset L^1(G)$. For a closed subgroup H of G, H^{\perp} stands for the annihilator of H.

Saeki [10] obtained the following theorem as an extension of the F. and M. Riesz theorem on \mathbb{R} .

Theorem A ([10, Theorem 2]) Suppose $N \ge 2$, and let \mathbb{R}^N be the Ndimensional Euclidean space. Suppose $\mu \in M(\mathbb{R}^N)$ satisfies the following two conditions:

(i) $\hat{\mu}(t) = 0$ for all $t = (t_1, \ldots, t_N) \in \mathbb{R}^N$ with $t_1 \leq 0$, and

(ii) for each $t_1 > 0$, $\hat{\mu}(t_1, \cdot)$ is the Fourier transform of some $f_{t_1} \in L^1$ $(\mathbb{R}^{N-1}).$

Then μ is absolutely continuous with respect to $m_{\mathbb{R}^N}$.

As an application of this theorem, he gave an alternative proof of a theorem of Bochner. Moreover, Takahashi [12] extended Theorem A to a LCA group as follows.

²⁰⁰⁰ Mathematics Subject Classification: 43A05, 43A10, 43A25.

Theorem B ([12, Theorem 2]) Let G be a LCA group, and let H be a closed subgroup of G. Let \tilde{E} be a Riesz set in \hat{G}/H^{\perp} , and put $E = \pi^{-1}(\tilde{E})$, where $\pi : \hat{G} \to \hat{G}/H^{\perp}$ is the natural homomorphism. Suppose $\mu \in M(G)$ satisfies the following two conditions:

- (i) $\mu \in M_E(G)$, and
- (ii) for each γ ∈ E, α(γµ) ∈ L¹(G/H), where α : G → G/H is the natural homomorphism and γ denotes the complex conjugate of γ.

Then μ is absolutely continuous with respect to m_G .

On the other hand, Glicksberg obtained the following.

Glicksberg's result (cf. [3]) Suppose $\mu \in M(\mathbb{R}^2)$ satisfies the following two conditions:

(i) $\hat{\mu}(t) = 0$ for all $t = (t_1, t_2) \in \mathbb{R}^2$ with $t_1 \leq 0$, and (ii) $\int_{\mathbb{R}} |\hat{\mu}(t_1, s)| dm_{\mathbb{R}}(s) < \infty$ for a dense set of t_1 .

Then μ is absolutely continuous with respect to $m_{\mathbb{R}^2}$.

We have a slight extension of Theorem B, which includes Glicksberg's result.

Theorem C Under the assumption in Theorem B, let \tilde{E} be a Riesz set in \hat{G}/H^{\perp} and \tilde{D} a dense subset of \tilde{E} . Put $E = \pi^{-1}(\tilde{E})$ and $D = \pi^{-1}(\tilde{D})$. Suppose $\mu \in M(G)$ satisfies the following two conditions:

(i) $\mu \in M_E(G)$, and (ii) $\alpha(\overline{\gamma}\mu) \in L^1(G/H)$ for all $\gamma \in D$.

Then μ is absolutely continuous with respect to m_G .

We prove Theorem C in the next section.

The F. and M. Riesz theorem on \mathbb{R} states that if $\mu \in M(\mathbb{R})$ and $\hat{\mu}(t) = 0$ for t < 0, then μ is absolutely continuous. However, the following holds.

(1.1) If μ is a nonzero measure in $M(\mathbb{R})$ and $\hat{\mu}(t) = 0$ for t < 0, then μ and $m_{\mathbb{R}}$ are mutually absolutely continuous.

From the point of view of (1.1), we give a result, which is relevant to Theorem C. We also give a strong version of Bochner's generalization of the F. and M. Riesz theorem.

2. Notation and results

Let G be a LCA group with the dual group \hat{G} . For $x \in G$, δ_x denotes the point mass at x. We denote by Trig(G) the set of trigonometric polynomials on G. Let $C_o(G)$ be the Banach space of continuous functions on G which vanish at infinity. Then M(G) is identified with the dual space of $C_o(G)$. Let $M^+(G)$ be the set of nonnegative measures in M(G). For $\mu \in M(G)$ and $f \in L^1(|\mu|)$, we often use the notation $\mu(f)$ as $\int_G f(x)d\mu(x)$.

Definition 2.1 Let G be a LCA group, and let $\mu \in M(G)$. μ is said to be quasi-invariant if $|\mu| * \delta_x \ll |\mu|$ for all $x \in G$.

Remark 2.1 (cf. [14, Remark 4.1]) If there exists a nonzero measure $\mu \in M(G)$ that is quasi-invariant, then G is σ -compact.

Remark 2.2 (cf. [14, Proposition 4.1]) Let G be a LCA group, and let μ be a nonzero measure in M(G). Then the following are equivalent.

- (i) μ is quasi-invariant.
- (ii) $|\mu|$ and m_G are mutually absolutely continuous.

Definition 2.2 Let G be a LCA group, and let E be a closed subset of \hat{G} . We say that E satisfies condition (*) if the following holds.

(*) For $\mu \in M_E(G)$, μ is quasi-invariant.

We state our results.

Theorem 2.1 Let G be a σ -compact, LCA group, and let H be a closed subgroup of G. Let \tilde{E} be a closed set in \hat{G}/H^{\perp} that satisfies condition (*), and let \tilde{D} be a dense subset of \tilde{E} . Put $E = \pi^{-1}(\tilde{E})$ and $D = \pi^{-1}(\tilde{D})$, where $\pi : \hat{G} \to \hat{G}/H^{\perp}$ is the natural homomorphism. Suppose a nonzero measure $\mu \in M(G)$ satisfies the following two conditions:

- (i) $\mu \in M_E(G)$, and
- (ii) for $\gamma \in D$ with $\alpha(\overline{\gamma}\mu) \neq 0$, $\alpha(\overline{\gamma}\mu)$ and $m_{G/H}$ are mutually absolutely continuous, where $\alpha : G \to G/H$ is the natural homomorphism.

Then μ and m_G are mutually absolutely continuous.

From this theorem, the following corollary follows immediately.

Corollary 2.1 Suppose $N \ge 2$ and a nonzeo measure $\mu \in M(\mathbb{R}^N)$ satisfies the following two conditions:

```
H. Yamaguchi
```

- (i) $\hat{\mu}(t) = 0$ for all $t = (t_1, \dots, t_N) \in \mathbb{R}^N$ with $t_1 \leq 0$, and
- (ii) for $t_1 > 0$ with $\hat{\mu}(t_1, \cdot) \neq 0$, there exists $f_{t_1} \in L^1(\mathbb{R}^{N-1})$, with the property that f_{t_1} and $m_{\mathbb{R}^{N-1}}$ are mutually absolutely continuous, such that $\hat{\mu}(t_1, s) = \hat{f}_{t_1}(s)$ for all $s \in \mathbb{R}^{N-1}$.

Then μ and $m_{\mathbb{R}^N}$ are mutually absolutely continuous.

Remark 2.3 An analogue of Corollary 2.1 holds for the *N*-dimensional torus \mathbb{T}^N .

For $x, y \in \mathbb{R}^N$, $\langle x, y \rangle$ stands for the inner product. We denote by S the set of unit vectors in \mathbb{R}^N . For $a \in S$, let Ω_a be a set of closed sets E in \mathbb{R}^N which satisfy the following two conditions:

$$E \subset \{x \in \mathbb{R}^N : \langle x, a \rangle \ge 0\},\tag{2.1}$$

for each t > 0, $E \cap \{x \in \mathbb{R}^N : \langle a, x - ta \rangle \leq 0\}$ is a compact set. (2.2)

Set $\Omega = \bigcup_{a \in S, b \in \mathbb{R}^N} (\Omega_a + b)$, where $\Omega_a + b = \{E + b : E \in \Omega_a\}$. Evidently, proper cones in \mathbb{R}^N belong to Ω .

Remark 2.4 Let *a* be a unit vector in \mathbb{R}^N , and let θ be a rotation of \mathbb{R}^N . If $E \in \Omega_a$, then $\theta(E) \in \Omega_{\theta(a)}$.

Corollary 2.2 Let $E \in \Omega$, and let μ be a nonzero measure in $M_E(\mathbb{R}^N)$. Then μ and $m_{\mathbb{R}^N}$ are mutually absolutely continuous.

An analogue of Corollary 2.2 holds for \mathbb{T}^N .

Corollary 2.3 (cf. [1, Theorem 5]) Let $E \in \Omega$, and let ν be a nonzero measure in $M_{E \cap \mathbb{Z}^N}(\mathbb{T}^N)$. Then ν and $m_{\mathbb{T}^N}$ are mutually absolutely continuous.

Example 2.1 (1) Let f and g be functions on $[0, \infty)$ such that $g(s) \leq f(s)$ for all $s \in [0, \infty)$. Put $E = \{(s, t) \in \mathbb{R}^2 : s \geq 0, g(s) \leq t \leq f(s)\}$. It follows from Corollary 2.1 that E satisfies condition (*).

(2) Let \mathbb{Z}^+ be the set of nonnegative integers, and let f and g be functions on \mathbb{Z}^+ such that $g(n) \leq f(n)$ for all $n \in \mathbb{Z}^+$. Put $F = \{(n,m) \in \mathbb{Z}^2 : n \in \mathbb{Z}^+, g(n) \leq m \leq f(n)\}$. Then F satisfies condition (*), by Remark 2.3.

Before we close this section, we prove Theorem C. The following lemma is well-known.

Lemma 2.1 Let G be a LCA group, and let $\mu \in M(G)$. Let $\gamma \in \hat{G}$, and let $\{\gamma_{\alpha}\}$ be a net, with $\gamma_{\alpha} \in \hat{G}$, such that $\lim_{\alpha} \gamma_{\alpha} = \gamma$. Then $\lim_{\alpha} \|\gamma_{\alpha}\mu - \gamma\mu\| = 0$.

Now we prove Theorem C. It is easy to verify that D is dense in E. Let $\gamma_0 \in E$. Since D is dense in E, there exists $\gamma_\beta \in D$ such that $\lim_{\beta} \gamma_\beta = \gamma_0$. It follows from Lemma 2.1 that

$$\lim_{\beta} \|\overline{\gamma}_{\beta}\mu - \overline{\gamma}_{0}\mu\| = 0,$$

which yields

$$\lim_{\beta} \|\alpha(\overline{\gamma}_{\beta}\mu) - \alpha(\overline{\gamma}_{0}\mu)\| = 0.$$
(2.3)

Since $\gamma_{\beta} \in D$, the hypothesis (ii) implies that $\alpha(\overline{\gamma}_{\beta}\mu) \in L^{1}(G/H)$. Thus we have, by (2.3),

$$\alpha(\overline{\gamma}_0\mu) \in L^1(G/H).$$

Since γ_0 is any element in E, it follows from Theorem B that $\mu \ll m_G$. This completes the proof of Theorem C.

3. Proofs of Theorem 2.1 and corollaries

In this section, we give the proof of Theorem 2.1. We also prove Corollaries 2.2 and 2.3. Following Takahashi [12], we use the theory of disintegration of measures.

Proposition 3.1 Theorem 2.1 holds for a σ -compact, metrizable LCA group G.

Proof. By Theorem C, we have

(1) $\mu \ll m_G$.

Since μ is a nonzero measure in $M_E(G)$ and D is dense in E, there exists $\gamma_0 \in D$ such that $\hat{\mu}(\gamma_0) \neq 0$. We note that $\alpha(\overline{\gamma_0}\mu) \neq 0$. Hence the hypothesis (ii) in the theorem implies that $m_{G/H} \ll |\alpha(\overline{\gamma_0}\mu)|$, which yields

(2)
$$m_{G/H} \ll \alpha(|\mu|).$$

It follows from (1) that

(3)
$$\alpha(|\mu|) \ll m_{G/H}$$
.

Thus,

(4) $\alpha(|\mu|)$ and $m_{G/H}$ are mutually absolutely continuous.

Put $\eta = \alpha(|\mu|)$. By the theory of disintegration of measures, there exists a family $\{\lambda_{\dot{x}}\}_{\dot{x}\in G/H}$ of measures in $M^+(G)$ with the following properties:

- (5) $\dot{x} \to \lambda_{\dot{x}}(f)$ is a Borel measurable function on G/H for each bounded Borel function f on G,
- $(6) \quad \|\lambda_{\dot{x}}\| = 1,$
- (7) $\operatorname{supp}(\lambda_{\dot{x}}) \subset \alpha^{-1}(\{\dot{x}\}),$
- (8) $|\mu|(f) = \int_{G/H} \lambda_{\dot{x}}(f) d\eta(\dot{x})$ for each bounded Borel function f on G.

Let h be a bounded Borel function on G such that |h| = 1 and $\mu = h|\mu|$. We define measures $\mu_{\dot{x}} \in M(G)$ by $\mu_{\dot{x}} = h\lambda_{\dot{x}}$. Then $|\mu_{\dot{x}}| = \lambda_{\dot{x}}$, and we have the following:

- (9) $\|\mu_{\dot{x}}\| = 1,$
- (10) $\dot{x} \to \mu_{\dot{x}}(f)$ is a Borel measurable function on G/H for each bounded Borel function f on G,
- (11) $\operatorname{supp}(\mu_{\dot{x}}) \subset \alpha^{-1}(\{\dot{x}\}),$
- (12) $\mu(f) = \int_{G/H} \mu_{\dot{x}}(f) d\eta(\dot{x})$ for each bounded Borel function f on G.

It follows from (11) that there exists $x \in \alpha^{-1}(\{\dot{x}\})$ and $\xi_{\dot{x}} \in M(H)$ such that

(13)
$$\mu_{\dot{x}} = \xi_{\dot{x}} * \delta_x.$$

We note that $\lambda_{\dot{x}} = |\mu_{\dot{x}}| = |\xi_{\dot{x}}| * \delta_x$. Since $\operatorname{supp}(\hat{\mu}) \subset E(=\pi^{-1}(\tilde{E}))$, we have, by the proof of Lemma 4.2 in [11],

$$\xi_{\dot{x}} \in M_{\tilde{E}}(H) \quad \eta - \text{a.a.} \, \dot{x} \in G/H.$$

Hence the hypothesis that \tilde{E} satisfies the condition (*) implies that

(14) $|\xi_{\dot{x}}| \ll m_H, m_H \ll |\xi_{\dot{x}}| \qquad \eta - \text{a.a.} \ \dot{x} \in G/H.$

Let F be a Borel set in G such that $|\mu|(F) = 0$. We have, by (8),

$$0 = |\mu|(F) = \int_{G/H} \lambda_{\dot{x}}(F) d\eta(\dot{x}).$$

Thus there exists a Borel set \tilde{B} in G/H such that

(15) $\eta(\tilde{B}) = 0$, and (16) $\{\dot{x} \in G/H : \lambda_{\dot{x}}(F) > 0\} \subset \tilde{B}.$

It follows from (4) and (15) that $m_{G/H}(\tilde{B}) = 0$. Hence we have

(17)

$$m_{G}(F) = \int_{G} \chi_{F}(x) dm_{G}(x)$$

$$= \int_{G/H} \int_{H} \chi_{F}(x+y) dm_{H}(y) dm_{G/H}(\dot{x})$$

$$= \int_{\tilde{B}} \int_{H} \chi_{F}(x+y) dm_{H}(y) dm_{G/H}(\dot{x})$$

$$+ \int_{\tilde{B}^{c}} \int_{H} \chi_{F}(x+y) dm_{H}(y) dm_{G/H}(\dot{x})$$

$$= 0 + \int_{\tilde{B}^{c}} \int_{H} \chi_{F}(x+y) dm_{H}(y) dm_{G/H}(\dot{x}),$$

where χ_F denotes the characteristic function of F. If $\dot{x} \notin \tilde{B}$, we have, by (16),

$$0 = \lambda_{\dot{x}}(F) = |\xi_{\dot{x}}| * \delta_x(F)$$
$$= |\xi_{\dot{x}}|(F - x).$$

This, together with (14), yields

$$\int_{H} \chi_F(x+y) dm_H(y) = m_H(F-x) = 0 \quad \eta - \text{a.a.} \, \dot{x} \in \tilde{B}^c,$$

which implies

$$\int_{\tilde{B}^c} \int_H \chi_F(x+y) dm_H(y) dm_{G/H}(\dot{x}) = 0.$$

Thus we have that $m_G(F) = 0$, by (17). This shows that (18) $m_G \ll |\mu|$. It follows from (1) and (18) that $|\mu|$ and m_G are mutually absolutely continuous. This completes the proof.

Before we prove Theorem 2.1, we state several lemmas. The following two lemmas are obtained in [14].

Lemma 3.1 (cf. [14, Lemma 4.1]) Let G be a LCA group, and let E be a closed subset of \hat{G} that satisfies the condition (*). Then, for any open subroup Γ of \hat{G} , the following (*)_{Γ} holds:

 $(*)_{\Gamma}$ For any nonzero measure $\zeta \in M_{E \cap \Gamma}(G/\Gamma^{\perp})$, $|\zeta|$ and $m_{G/\Gamma^{\perp}}$ are mutually absolutely continuous.

Lemma 3.2 (cf. [14, Proposition 4.2]) Let G be a LCA group, and let Γ be an open subgroup of \hat{G} . Let E be a closed subset of \hat{G} contained in Γ . Suppose that E satisfies the condition (*) in Γ . Then E satisfies the condition (*) in \hat{G} .

Lemma 3.3 Let G be a σ -compact, LCA group, and let Γ be an open subgroup of \hat{G} . Let μ be a nonzero measure in M(G) with $\operatorname{supp}(\hat{\mu}) \subset \Gamma$. Then the following are equvalent.

- (i) μ is quasi-invariant.
- (ii) $\alpha_{\Gamma^{\perp}}(\mu)$ is quasi-invariant, where $\alpha_{\Gamma^{\perp}}: G \to G/\Gamma^{\perp}$ is the natural homomorphism.

Proof. (i) \Rightarrow (ii): Suppose that μ is quasi-invariant. Then $\mu \in L^1(G)$, and so

(1) $\alpha_{\Gamma^{\perp}}(\mu) \in L^1(G/\Gamma^{\perp}).$

 Γ^{\perp} is a compact subgroup of G, and we have, by [5, (28.54) Theorem and (28.55) Theorem],

(2)
$$g \circ \alpha_{\Gamma^{\perp}} \in L^1(G)$$
 and $\int_{G/\Gamma^{\perp}} g(\dot{x}) dm_{G/\Gamma^{\perp}}(\dot{x}) = \int_G g(\alpha_{\Gamma^{\perp}}(x)) dm_G(x)$

for all $g \in L^1(G/\Gamma^{\perp})$. We define a map $J: L^1(G/\Gamma^{\perp}) \to L^1(G)$ by

$$J(g) = g \circ \alpha_{\Gamma^{\perp}}.$$

For $g \in L^1(G/\Gamma^{\perp})$, we have

$$J(g)^{\wedge}(\gamma) = \begin{cases} \hat{g}(\gamma) & \text{for } \gamma \in \Gamma \\ 0 & \text{for } \gamma \in \hat{G} \backslash \Gamma, \end{cases}$$

which, together with the hypothesis that $\operatorname{supp}(\hat{\mu}) \subset \Gamma$, yields

(3) $J(\alpha_{\Gamma^{\perp}}(\mu)) = \mu.$

Since μ is quasi-invariant, $|\mu|$ and m_G are mutually absolutely continuous. Hence

(4) $\alpha_{\Gamma^{\perp}}(|\mu|)$ and $m_{G/\Gamma^{\perp}}$ are mutually absolutely continuous.

By the definition of J,

$$J(|\alpha_{\Gamma^{\perp}}(\mu)|) = |J(\alpha_{\Gamma^{\perp}}(\mu))|,$$

which, combined with (3), yields

$$|\mu| = J(|\alpha_{\Gamma^{\perp}}(\mu)|).$$

Since $|\alpha_{\Gamma^{\perp}}(\mu)| = \alpha_{\Gamma^{\perp}}(J(|\alpha_{\Gamma^{\perp}}(\mu)|)) = \alpha_{\Gamma^{\perp}}(|\mu|)$, it follows from (4) that $|\alpha_{\Gamma^{\perp}}(\mu)|$ and $m_{G/\Gamma^{\perp}}$ are mutually absolutely continuous. Hence $\alpha_{\Gamma^{\perp}}(\mu)$ is quasi-invariant.

(ii) \Rightarrow (i): This can be proved by an argument similar to that in the proof of Proposition 4.2 in [14].

Now prove Theorem 2.1. Let μ be a nonzero measure in M(G) that satisfies the conditions (i) and (ii) in the theorem. By Theorem C, we have

(1) $\mu \ll m_G$.

It is sufficient to prove that

(2) $m_G \ll |\mu|.$

Since μ is a nonzero measure in $M_E(G)$ and D is dense in E, there exists $\gamma_0 \in D$ such that $\hat{\mu}(\gamma_0) \neq 0$. Then $\alpha(\overline{\gamma_0}\mu) \neq 0$. Suppose (2) does not hold. By (1), $\hat{\mu}$ belongs to $C_o(\hat{G})$. Hence there exists a σ -compact, open subgroup Γ of \hat{G} , with $\gamma_0 \in \Gamma$, which satisfies the following:

- (3) $\operatorname{supp}(\hat{\mu}) \subset \Gamma$, and
- (4) $\alpha_{\Gamma^{\perp}}(m_G) \ (= m_{G/\Gamma^{\perp}})$ is not absolutely continuous with respect to $\alpha_{\Gamma^{\perp}}(|\mu|)$, where $\alpha_{\Gamma^{\perp}}: G \to G/\Gamma^{\perp}$ is the natural homomorphism.

Put $E_o = E \cap \Gamma$. Let $\pi|_{\Gamma+H^{\perp}} : \Gamma + H^{\perp} \to (\Gamma + H^{\perp})/H^{\perp}$ and $\beta : \Gamma \to \Gamma/\Gamma \cap H^{\perp}$ be the natural homomorphisms, respectively. Let $\tau : (\Gamma + H^{\perp})/H^{\perp} \to \Gamma/\Gamma \cap H^{\perp}$ be a map defined by

$$\tau(\gamma + H^{\perp}) = \gamma + \Gamma \cap H^{\perp} \quad (\gamma \in \Gamma).$$

Then τ is a topological isomorphism (cf. [5, (5.33) Theorem]). We claim that

(5) $\beta(E_o)$ is a closed subst of $\Gamma/\Gamma \cap H^{\perp}$ which satisfies the condition (*).

In fact, since $\beta^{-1}(\beta(E_o)) = E_o + \Gamma \cap H^{\perp} = E_o$, $\beta(E_o)$ is closed. Hence $\pi|_{\Gamma+H^{\perp}}(E_o) = \tau^{-1}(\beta(E_o))$ is also a closed subset of $(\Gamma + H^{\perp})/H^{\perp}$. Since $\pi|_{\Gamma+H^{\perp}}(E_o) \subset \pi(E) = \tilde{E}$, Lemma 3.1 implies that $\pi|_{\Gamma+H^{\perp}}(E_o)$ satisfies the condition (*) in $(\Gamma + H^{\perp})/H^{\perp}$. Thus $\beta(E_o) = \tau(\pi|_{\Gamma+H^{\perp}}(E_o))$ satisfies the condition (*) in $\Gamma/\Gamma \cap H^{\perp}$. This establishes the claim in (5).

Put $\tilde{G} = \alpha_{\Gamma^{\perp}}(G)$ and $\tilde{H} = \alpha_{\Gamma^{\perp}}(H)$. Then \tilde{G} is a σ -compact, metrizable LCA group, and the annihilator of $\Gamma \cap H^{\perp}$ in \tilde{G} coincides with \tilde{H} . Since $\gamma_0 \in \Gamma$ and $\alpha_{\Gamma^{\perp}}(\mu)^{\wedge}(\gamma_0) = \hat{\mu}(\gamma_0) \neq 0$,

(6) $\alpha_{\Gamma^{\perp}}(\mu)$ is a nonzero measure in $M_{E_o}(\tilde{G})$.

Put $D_o = D \cap \Gamma$. Let $\tilde{\pi} : \hat{\tilde{G}} \cong \Gamma \to \hat{\tilde{G}} / \tilde{H}^{\perp} \cong \Gamma / \Gamma \cap H^{\perp}$ be the natural homomorphism, and put $\tilde{D}_o = \tilde{\pi}(D_o)$ and $\tilde{E}_o = \tilde{\pi}(E_o)$. Then we have

(7)
$$\tilde{\pi}^{-1}(\tilde{D}_o) = D_o, \quad \tilde{\pi}^{-1}(\tilde{E}_o) = E_o.$$

Since D is dense in E, D_o is dense in E_o . Hence \tilde{D}_o is dense in \tilde{E}_o . Moreover, the following holds.

(8) For $\gamma \in D_o$ with $\tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu)) \neq 0$, $\tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu))$ and $m_{\tilde{G}/\tilde{H}}$ are mutually absolutely continuous, where $\tilde{\alpha} : \tilde{G} \to \tilde{G}/\tilde{H}$ is the natural homomorphism.

In fact, let γ be an element in D_o such that $\tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu)) \neq 0$. For $\omega \in \Gamma \cap H^{\perp}(\cong \tilde{G}/\tilde{H})$, we have

$$\tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu))^{\wedge}(\omega) = (\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu))^{\wedge}(\omega) = \hat{\mu}(\omega+\gamma)$$
$$= \alpha(\overline{\gamma}\mu)^{\wedge}(\omega),$$

which yields

(9)
$$\alpha(\overline{\gamma}\mu) \neq 0.$$

Hence, by the condition (ii) of the theorem, we have

(10) $\alpha(\overline{\gamma}\mu)$ and $m_{G/H}$ are mutually absolutely continuous.

We note that $G/H \cong H^{\perp}$ and $\Gamma \cap H^{\perp}$ is an open subgroup of H^{\perp} . Moreover, we have, by (3) and the fact that $\gamma \in \Gamma$,

$$\operatorname{supp}(\alpha(\overline{\gamma}\mu)^{\wedge}) \subset \Gamma \cap H^{\perp}.$$

Thus (10) and Lemma 3.3 imply that

(11) $\sigma(\alpha(\overline{\gamma}\mu))$ and $m_{\tilde{G}/\tilde{H}}$ are mutually absolutely continuous,

where $\sigma: G/H \to \tilde{G}/\tilde{H}$ is a continuous homomorphism defined by

$$\sigma(x+H) = \alpha_{\Gamma^{\perp}}(x) + H \quad (x \in G).$$

For $\omega \in \Gamma \cap H^{\perp}$, we have, by an argument used above (9),

$$\sigma(\alpha(\overline{\gamma}\mu))^{\wedge}(\omega) = \alpha(\overline{\gamma}\mu)^{\wedge}(\omega)$$
$$= \tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu))^{\wedge}(\omega),$$

which yields

(12) $\sigma(\alpha(\overline{\gamma}\mu)) = \tilde{\alpha}(\overline{\gamma}\alpha_{\Gamma^{\perp}}(\mu)).$

By (11) and (12), $\tilde{\alpha}(\bar{\gamma}\alpha_{\Gamma^{\perp}}(\mu))$ and $m_{\tilde{G}/\tilde{H}}$ are mutually absolutely continuous. This shows that (8) holds.

We note that \tilde{E}_o satisfies the condition (*), by (5). Since \tilde{G} is σ -compact and metrizable, it follows from (6), (7), (8) and Proposition 3.1 that $\alpha_{\Gamma^{\perp}}(\mu)$ and $m_{\tilde{G}}(=m_{G/\Gamma^{\perp}})$ are mutually absolutely continuous. Hence, in particular,

$$m_{G/\Gamma^{\perp}} \ll |\alpha_{\Gamma^{\perp}}(\mu)| \ll \alpha_{\Gamma^{\perp}}(|\mu|),$$

which contradicts (4). This completes the proof of Theorem 2.1.

Let $k(t) = \frac{1}{\pi} \cdot \frac{1-\cos t}{t^2}$. Then $\hat{k}(s) = \int_{-\infty}^{\infty} k(t)e^{-ist}dt = \max(1-|s|,0)$. We define functions w(t) and $\Delta(x)$ on \mathbb{R}^N as follows:

$$w(t) = \prod_{k=1}^{N} \frac{1}{\pi} \cdot \frac{1 - \cos t_k}{t_k^2} \quad (t = (t_1, \dots, t_N) \in \mathbb{R}^N);$$
$$\Delta(x) = \prod_{k=1}^{N} \max(1 - |x_k|, 0) \quad (x = (x_1, \dots, x_N) \in \mathbb{R}^N).$$

We note that $\hat{w}(x) = \Delta(x) \ (x \in \mathbb{R}^N).$

For $\mu \in M(\mathbb{T}^N)$, let $\tilde{\mu}$ be the periodic extension of μ to \mathbb{R}^N , i.e., for a Borel set $E \subset [0, 2\pi) \times \cdots \times [0, 2\pi) + 2\pi n$ $(n \in \mathbb{Z}^N)$,

$$\tilde{\mu}(E) = \mu(E - 2\pi n).$$

Then $w\tilde{\mu}$ belongs to $M(\mathbb{R}^N)$. We define a map $J: M(\mathbb{T}^N) \to M(\mathbb{R}^N)$ by

$$J(\mu) = w\tilde{\mu}.\tag{3.1}$$

We need the following lemma to prove our corollaries.

Lemma 3.4 (cf. [8, Lemma 1]) For $\mu \in M(\mathbb{T}^N)$, we have

$$J(\mu)^{\wedge}(x) = \sum_{n \in \mathbb{Z}^N} \hat{\mu}(n) \Delta(x-n).$$
(3.2)

Furthermore J is an isometry, and the following hold.

- (i) $J(\mu) \ge 0$ if and only if $\mu \ge 0$.
- (ii) $J(\mu) \in L^1(\mathbb{R}^N)$ if and only if $\mu \in L^1(\mathbb{T}^N)$.
- (iii) $J(\mu)$ is quasi-invariant if and only if μ is quasi-invariant.

Proof. (3.2), (i)–(ii) and the fact that J is an isometry follow from Lemma 1 in [8]. Considering zero points of w(t), we obtain (iii) by the definition of J. This completes the proof.

Lemma 3.5 Let $e_1 = (1, 0, \dots, 0)$ be the unit vector in \mathbb{R}^N , and let $E \in \Omega_{e_1}$. Let μ be a nonzero measure in $M_E(\mathbb{R}^N)$. Then μ and $m_{\mathbb{R}^N}$ are mutually absolutely continuous.

Proof. For $t_1 > 0$, suppose $\hat{\mu}(t_1, \cdot) \neq 0$. Then there exists a nonzero measure $\nu_{t_1} \in M(\mathbb{R}^{N-1})$ such that

$$\hat{\nu_{t_1}}(s) = \hat{\mu}(t_1, s) \quad \text{for all } s \in \mathbb{R}^{N-1}.$$

Since $\mu \in M_E(\mathbb{R}^N)$ and E belongs to Ω_{e_1} , $\operatorname{supp}(\hat{\nu_{t_1}})$ is a compact set in \mathbb{R}^{N-1} . Compact sets in \mathbb{R}^{N-1} satisfy the condition (*); hence the lemma follows from Corollary 2.1.

Now we prove Corollary 2.2. Considering translation of E, we may assume that $E \in \Omega_a$ for some unit vector a in \mathbb{R}^N . Let θ be a rotation of \mathbb{R}^N such that $\theta(e_1) = a$. Let $\mu_{\theta} = \theta^{-1}(\mu)$, the continuous image of μ under θ^{-1} . Then $\hat{\mu}_{\theta} = \hat{\mu} \circ \theta$, which yields

$$\mu_{\theta} \in M_{\theta^{-1}(E)}(\mathbb{R}^N). \tag{3.3}$$

It follows from from Remark 2.4 that $\theta^{-1}(E) \in \Omega_{\theta^{-1}(a)} = \Omega_{e_1}$. Hence we have, by Lemma 3.5,

$$\mu_{\theta} \ll m_{\mathbb{R}^N}, \quad m_{\mathbb{R}^N} \ll |\mu_{\theta}|.$$

Thus μ and $m_{\mathbb{R}^N}$ are mutually absolutely continuous, and the proof is complete.

Next we prove Corollary 2.3. By translation of $E \cap \mathbb{Z}^N$ by an element in \mathbb{Z}^N , we may assume that $E \in \Omega_a$ for some unit vector a in \mathbb{R}^N . Since $\nu \in M_{E \cap \mathbb{Z}^N}(\mathbb{T}^N)$, we have

$$\operatorname{supp}(J(\nu)^{\wedge}) \subset Q + E, \tag{3.4}$$

where $Q = [-1, 1]^N$. Since Q + E is a set in Ω and $J(\nu)$ is a nonzero measure in $M_{Q+E}(\mathbb{R}^N)$, it follows from Corollary 2.2 that $J(\nu)$ and $m_{\mathbb{R}^N}$ are mutually absolutely continuous; hence ν and $m_{\mathbb{T}^N}$ are so, by Lemma 3.4. This completes the proof.

References

[1] Bochner S., Boundary values of analytic functions in several variables and of almost periodic functions. Ann. of Math. **45** (1944), 708–722.

- [2] DeLeeuw K. and Glicksberg I., Quasi-invariance and analyticity of measures on compact groups. Acta Math. 109 (1963), 179–205.
- [3] Glicksberg I., Fourier-Stieltjes transforms with small supports. Illinois J. Math. 9 (1965), 418–427.
- [4] Graham C.C., Fourier-Stieltjes transforms with small supports. Illinois J. Math. 18 (1974), 532–534.
- [5] Hewitt E. and Ross K.A., Abstract Harmonic Analysis, Volumes I and II, New York-Heidelberg-Berlin, Springer, 1963 and 1970.
- [6] MacLean H.A., Riesz sets and a theorem of Bochner. Pacific J. Math. 113 (1984), 115–135.
- [7] Pigno L. and Saeki S., Fourier-Stieltjes transforms which vanish at infinity. Math. Z. 141 (1975), 83–91.
- [8] Pigno L. and Saeki S., Constructions of singular measures with remarkable convolution properties. Studia Math. LXIX (1980), 133–141.
- [9] Rudin W., Fourier Analysis on Groups, New York, Interscience, 1962.
- [10] Saeki S., The F. and M. Riesz theorem and singular measures. Proc. Amer. Math. Soc. 90 (1984), 391–396.
- [11] Takahashi Y. and Yamaguchi H., On measures which are continuous by certain translation. Hokkaido Math. J. 13 (1984), 109–117.
- [12] Takahashi Y., On a theorem of S. Saeki. Hokkaido Math. J. 15 (1986), 157–161.
- [13] Yamaguchi H., On the product of a Riesz set and a small p set. Proc. Amer. Math. Soc. 81 (1981), 273–278.
- [14] Yamaguchi H., The F. and M. Riesz theorem on certain transformation groups, Hokkaido Math. J. 17 (1988), 289–332.

Department of mathematics Josai University Sakado, Saitama Japan E-mail: hyama@math.josai.ac.jp