Hokkaido Mathematical Journal Vol. 38 (2009) p. 497-510

On a result of Saeki-Takahashi and a theorem of Bochner
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(Received June 2, 2008)

Abstract. Saeki extended the F. and M. Riesz theorem to RY (N > 2), and Taka-
hashi extended Saeki’s result to a LCA group. We give a result, which is relevant to
theirs. We also give a strong version of Bochner’s generalization of the F. and M. Riesz
theorem.
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1. Introduction

Let G be a LCA group with the dual group G. Let L'(G) and M(G)
be the group algebra and the measure algebra, respectively. We denote by
mg the Haar measure of G. For p in M(G), [1 denotes the Fourier-Stieltjes
transform of p, i.e., fi(y fG —z,7)dp(x) fory € G. For a closed subset E
of G, Mg(G) denotes the space of measures in M (G) whose Fourier-Stieltjes
transform vanish off E, and E is called a Riesz set if Mg(G) C L'(G). For
a closed subgroup H of G, H* stands for the annihilator of H.

Saeki [10] obtained the following theorem as an extension of the F. and
M. Riesz theorem on R.

Theorem A ([10, Theorem 2]) Suppose N = 2, and let RN be the N-
dimensional Euclidean space. Suppose p € M(RYN) satisfies the following
two conditions:

(i) a(t) =0 for allt = (t,...,ty) € RN with t; <0, and

(ii) for each t1 > 0, fi(t1,-) is the Fourier trnsform of some f;, € L!
BN 1),

Then w is absolutely continuous with respect to myn .

As an application of this theorem, he gave an alternative proof of a
theorem of Bochner. Moreover, Takahashi [12] extended Theorem A to a
LCA group as follows.
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Theorem B ([12, Theorem 2]) Let G be a LCA group, and let H be a
closed subgroup of G. Let E be a Riesz set in C;’/Hl, and put E = 7~ Y(E),
where 7 : G — G/H* is the natural homomorphism. Suppose p € M(G)
satisfies the following two conditions:

( i ) IS ME(G)J and
(ii) for each v € E, a(yu) € LY(G/H), where o : G — G/H is the natural
homomorphism and 7 denotes the complex conjugate of .

Then w is absolutely continuous with respect to meg.
On the other hand, Glicksberg obtained the following.

Glicksberg’s result (cf. [3]) Suppose u € M(R?) satisfies the following
two conditions:

(i) a(t) =0 for all t = (t1,ty) € R? with ¢; £ 0, and
(i) fg lAa(ts,s)|dmr(s) < oo for a dense set of ¢;.

Then p is absolutely continuous with respect to mpg=.

We have a slight extension of Theorem B, which includes Glicksberg’s
result.

Theorem C  Under the assumption in Theorem B, let E be a Riesz set
in G/HL and D a dense subset of E. Put E = 7= 1(E) and D = 7= 1(D).
Suppose p € M (G) satisfies the following two conditions:

(i) p € Mg(G), and
(ii) a(yu) € LY(G/H) for all v € D.

Then p is absolutely continuous with respect to meg.

We prove Theorem C in the next section.
The F. and M. Riesz theorem on R states that if 4 € M (R) and fi(t) = 0
for t < 0, then p is absolutely continuous. However, the following holds.

(1.1) If p is a nonzero measure in M(R) and ji(t) = 0 for ¢t < 0, then p and
mpg are mutually absolutely continuous.

From the point of view of (1.1), we give a result, which is relevant to
Theorem C. We also give a strong version of Bochner’s generalization of the
F. and M. Riesz theorem.
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2. Notation and results

Let G be a LCA group with the dual group G. Forz € G, J,, denotes the
point mass at . We denote by Trig(G) the set of trigonometric polynomials
on G. Let C,(G) be the Banach space of continuous functions on G which
vanish at infinity. Then M (G) is identified with the dual space of C,(G).
Let M*(G) be the set of nonnegative measures in M(G). For p € M(G)
and f € L'(|p|), we often use the notation u(f) as [, f(x)du(z).

Definition 2.1 Let G be a LCA group, and let p € M(G). p is said to
be quasi-invariant if || * 6, < |u| for all x € G.

Remark 2.1 (cf. [14, Remark 4.1]) If there exists a nonzero measure
pu € M(G) that is quasi-invariant, then G is o-compact.

Remark 2.2 (cf. [14, Proposition 4.1]) Let G be a LCA group, and let p
be a nonzero measure in M (G). Then the following are equivalent.
(i) p is quasi-invariant.
(ii) |p| and me are mutually absolutely continuous.
Definition 2.2 Let G be a LCA group, and let E be a closed subset of
G. We say that E satisfies condition (x) if the following holds.
(%) For u € Mg(G), u is quasi-invariant.
We state our results.

Theorem 2.1 Let G be a o-compact, LCA group, and let H be a closed
subgroup of G. Let E be a closed set in G’/HL that satisfies condition (x),
and let D be a dense subset of E. Put E = n~'(E) and D = 7~ Y(D), where
TG — CA}/HL s the natural homomorphism. Suppose a nonzero measure
w € M(QG) satisfies the following two conditions:

(1) g€ Mp(G), and
(ii) for v € D with a(yu) # 0, a(Fu) and mg g are mutually absolutely
continuous, where o : G — G/H 1is the natural homomorphism.

Then p and mg are mutually absolutely continuous.
From this theorem, the following corollary follows immediately.

Corollary 2.1  Suppose N 2 2 and a nonzeo measure i € M(RY) satisfies
the following two conditions:
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(i) a(t) =0 for allt = (t1,...,ty) € RY with t; £0, and

(ii) for t1 > 0 with fi(t1,-) # 0, there exists fy, € L*(RN™Y), with the
property that fi, and mg~y-1 are mutually absolutely continuous, such
that fi(ty, s) = fi, (s) for all s € RN=1,

Then pu and my~ are mutually absolutely continuous.

Remark 2.3 An analogue of Corollary 2.1 holds for the N-dimensional
torus TY.

For z, y € RY, (z,y) stands for the inner product. We denote by S the
set of unit vectors in RY. For a € 9, let Q, be a set of closed sets E in RN
which satisfy the following two conditions:

Ec{x cRY :(z,a) =0}, (2.1)
for each t > 0, EN{x € RN : (a,z — ta) < 0} is a compact set.  (2.2)

Set Q = U  (Q+0b), where Q,+b={E+b: E € Q,}. Evidently,
a€S, beRN

proper cones in RV belong to €.

Remark 2.4 Let a be a unit vector in RY, and let # be a rotation of R™.
If £ € Q,, then Q(E) S Qg(a).

Corollary 2.2 Let E € Q, and let u be a nonzero measure in Mg(RY).
Then p and myp~ are mutually absolutely continuous.

An analogue of Corollary 2.2 holds for T'V.

Corollary 2.3 (cf. [1, Theorem 5]) Let E € Q, and let v be a nonzero
measure in Mgz~ (TN). Then v and my~ are mutually absolutely contin-
UOUS.

Example 2.1 (1) Let f and g be functions on [0, 00) such that g(s) < f(s)
for all s € [0,00). Put E = {(s,t) € R?: 520, g(s) £t < f(s)}. It follows
from Corollary 2.1 that F satisfies condition (x).

(2) Let Z* be the set of nonnegative integers, and let f and g be functions
on ZT such that g(n) £ f(n) for all n € ZT. Put F = {(n,m) € Z> : n €
Z*, g(n) £m < f(n)}. Then F satisfies condition (*), by Remark 2.3.

Before we close this section, we prove Theorem C. The following lemma
is well-known.
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Lemma 2.1 Let G be a LCA group, and let p € M(G). Let~y € G, and let
{Va} be a net, with v, € G, such thatlim~, =~. Thenlim ||[yop — yp|| = 0.
(0% «

Now we prove Theorem C. It is easy to verify that D is dense in E. Let
Yo € E. Since D is dense in F, there exists g € D such that lign Y8 = Yo-

It follwos from Lemma 2.1 that
i 751 Fosdl =0,
which yields
lim e (72) — (o)l = 0- (2.3)

Since 3 € D, the hypothesis (ii) implies that a(y4u) € L'(G/H). Thus
we have, by (2.3),

a(Fon) € L'(G/H).

Since 7 is any element in £, it follows from Theorem B that u < mg. This
completes the proof of Theorem C.

3. Proofs of Theorem 2.1 and corollaries

In this section, we give the proof of Theorem 2.1. We also prove Corollar-
ies 2.2 and 2.3. Following Takahashi [12], we use the theory of disintegration
of measures.

Proposition 3.1  Theorem 2.1 holds for a o-compact, metrizable LCA
group G.

Proof. By Theorem C, we have
(1) p<me.

Since p is a nonzero measure in Mg(G) and D is dense in E, there
exists 79 € D such that (vyy) # 0. We note that a(you) # 0. Hence the
hypothesis (ii) in the theorem implies that me,y < |a(yop)|, which yields

(2) me/m < olp).
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It follows from (1) that
(3) a(lu)) <me/m-
Thus,
(4) oa(|p]) and meg, g are mutually absolutely continuous.

Put n = a(|u|). By the theory of disintegration of measures, there exists
a family {\;}seq/m of measures in M (G) with the following properties:

(5) & — A,;(f) is a Borel measurable function on G/H for each bounded
Borel function f on G,

(6) [Aall =1,

(7) supp(As) C o' ({#}),

(8) |ul(f) = fG/H i (f)dn(z) for each bounded Borel function f on G.

Let h be a bounded Borel function on G such that |h| =1 and p = h|pl.
We define meaures pu; € M(G) by u; = hA;. Then |u:| = Az, and we have
the following:

9) Mpall =1,
(10) & — pz(f) is a Borel measurable function on G/H for each bounded
Borel function f on G,

(11) supp(us) C a=t({3}),
(12) u(f) = fG/H i (f)dn(z) for each bounded Borel function f on G.

It follows from (11) that there exists z € a~!({#}) and &; € M(H) such
that

We note that Az = |pz| = |€z| * 65. Since supp(f1) C E(= 7 (E)), we
have, by the proof of Lemma 4.2 in [11],

& € Mp(H) n—aa.ie€G/H.
Hence the hypothesis that E satisfies the condition (*) implies that

(14) (&) < mp, mp < |&| n—aadeG/H.
Let F be a Borel set in G such that |u|(F) = 0. We have, by (8),
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0 = |ul(F) = /G | alPinta)

Thus there exists a Borel set B in G/H such that

(15) n(B) =0, and
(16) {# € G/H : \;(F) > 0} C B.

It follows from (4) and (15) that m¢,(B) = 0. Hence we have
(17) mg(F) = /GXF(g:)dmg(x)
N / / XF (@ + y)dmz (y)dme (%)
G/H JH
= / / xr(z +y)dmy(y)dmeg, (L)
BJH
+/C/HXF(:L‘—I-y)de(y)de/H(i)

=0+ / /HXF(x + y)dmp (y)dmeg, u (&),

where xr denotes the characteristic function of F. If & ¢ B, we have,
by (16),

0= Aal(F) = |ea] # 6. (F)
= [&:|(F — ).
This, together with (14), yields
/ xr(z 4+ y)dmp(y) =my(F —x) =0 n—aa.ic B
H

which implies

/CLXF(“y)de(y)de/H@) =0.

Thus we have that mg(F) = 0, by (17). This shows that
(18) ma < Jul.
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It follows from (1) and (18) that |u| and m¢g are mutually absolutely
continuous. This completes the proof. O

Before we prove Theorem 2.1, we state several lemmas. The following
two lemmas are obtained in [14].

Lemma 3.1 (cf. [14, Lemma 4.1]) Let G be a LCA group, and let E be
a closed subset of G that satisfies the condition (x). Then, for any open
subroup T' of G, the following (x)r holds:

(*)r For any nonzero measure ¢ € Mpnp(G/T+), [¢| and mg pr are mu-
tually absolutely continuous.

Lemma 3.2 (cf. [14, Proposition 4.2]) Let G be a LCA group, and let
I' be an open subgroup of G. Let E be a closed subset of G contained in
I'. Suppose that E satisfies the condition (x) in I'. Then E satisfies the
condition (x) in G.

Lemma 3.3 Let G be a o-compact, LCA group, and let T be an open
subgroup of G. Let u be a nonzero measure in M(G) with supp(i) C T.
Then the following are equuvalent.

(i) p is quasi-invariant.
ii) ape is quasi-invariant, where apr :G— G /Tt is the natural homo-
r+ (¢ r
morphism.

Proof. (i) = (ii): Suppose that p is quasi-invariant. Then pu € L'(G),
and so

(1) aps(p) € LY(G/T).

I't is a compact subgroup of G, and we have, by [5, (28.54) Theorem
and (28.55) Theorem)],

(2) goap. € LYG) and Jo i 9(@)dmera (&) = [ glars(z))dme(z)
for all g € L'(G/T'+). We define a map J : L}(G/Tt) — LY(G) by
Tg) = goars.

For g € LY(G/T1), we have
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§(7) fory el
0 for v € G\T,

which, together with the hypothesis that supp() C T, yields
3) J(ars () = p.

Since p is quasi-invariant, |u| and m¢g are mutually absolutely continu-
ous. Hence

(4) apc(Ju|) and mg,po are mutually absolutely continuous.

By the definition of J,
J(lars (W)]) = |J(ar (w)];
which, combined with (3), yields
|l = J(lap (w)])-

Since |apr(p)| = aps (J(laps(p)])) = aps(|p]), it follows from (4) that
laps ()] and me e are mutually absolutely continuous. Hence api (u) is
quasi-invariant.

(ii) = (i): This can be proved by an argument similar to that in the proof
of Proposition 4.2 in [14]. O

Now prove Theorem 2.1. Let p be a nonzero measure in M(G) that
satisfies the conditions (i) and (ii) in the theorem. By Theorem C, we have
(1) p<mg.

It is sufficient to prove that
@) me < |l

Since 4 is a nonzero measure in Mg(G) and D is dense in E, there exists
Yo € D such that fi(y9) # 0. Then a(jou) # 0. Suppose (2) does not hold.
By (1), it belongs to Cy(G). Hence there exists a o-compact, open subgroup
I of G, with Yo € I', which satisfies the following:

(3) supp(ft) C T, and
(4) api(mg) (= mg ry) is not absolutely continuous with respect to
ap (|u]), where ap1 : G — G/T' is the natural homomorphism.
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Put E, = ENT. Let w|pipye : '+ H- — ([ + HY)/H* and 3 :
I' - T'/T N H* be the natural homomorphisms, respectively. Let 7 : (I' +
H1)/H+ — T /TN H* be a map defined by

T(y+ HY) =y+TNnH- (yel).

Then 7 is a topological isomorphism (cf. [5, (5.33) Theorem]). We claim
that

(5) B(E,) is a closed subst of I'/T'N H+ which satisfies the condition (x).

In fact, since ,6_ (B(E,)) = E,+T'NH* = E,, 3(E,) is closed. Hence
mlryne (By) = 7718 (Eo)) is also a closed subset of (I' + HL)/H*. Since
Tlregr (E,) C ( ) = E, Lemma 3.1 implies that 7|, ;71 (F,) satisfies the
condition (x) in (I' + Hl)/HJ-. Thus B(E,) = 7(7|ry g+ (E,)) satisfies the
condition () in T'/T' N H+. This establishes the claim in (5).

Put G = ar. (G) and H = ar. (H). Then G is a o-compact, metrizable

LCA group, and the annihilator of I' N H+ in G coincides with H. Since
70 € I' and ar. (1) (70) = i(10) # 0,

(6) api(p) is a nonzero measure in Mg, (G).

Put D, = DNT. Let 7 : é(§ ) — G/I:[J-(% /TN H") be the natural
homomorphism, and put D, = 7(D,) and E, = 7(E,). Then we have

(1) #~Y(D,)=D,, # \E,) =E,.

Since D is dense in F/, D,, is dense in F,. Hence Do is dense in EO. Moreover,
the following holds.
(8) For~ € D, with a(Jar.(n)) # 0, &
absolutely continuous, where & : G — G/H is the natural homomor-
phism.

(Fars (i) and me g are mutually

In fact, let v be an element in D, such that &(Fari(u)) # 0. For
welNHY(~G/H), we have

a(Fars ()" (w) = Faps (1) (W) = w +7)
= OZ(WM)/\(U)),
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which yields
9) a(iu) #0.
Hence, by the condition (ii) of the theorem, we have

(10) a(yu) and me,m are mutually absolutely continuous.

We note that G;H =~ H+ and T'NH*' is an open subgroup of H+. Moreover,
we have, by (3) and the fact that v € T,

supp(a(yp)") C TN H™.
Thus (10) and Lemma 3.3 imply that

(11) o(a(yu)) and me g are mutually absolutely continuous,

where ¢ : G/H — G/H is a continuous homomorphism defined by

olx+H)=ari(x)+H (z€q).
For w € I'N H*, we have, by an argument used above (9),
o(a(m)" (w) = a(Fn)" ()
= a(Far: (1) (W),
which yields

(12) o(a(yp)) = a(yap: (1))-

By (11) and (12), a(yar. (p)) and mg, gz are mutually absolutely continu-
ous. This shows that (8) holds.

We note that E, satisfies the condition (x), by (5). Since G is o-compact
and metrizable, it follows from (6), (7), (8) and Proposition 3.1 that ap. (1)
and mg(= mg o) are mutually absolutely continuous. Hence, in particu-
lar,

me 1 < |aps(p)] < ap(|pl),

which contradicts (4). This completes the proof of Theorem 2.1.
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Let k(t) = 1 - 1=t Then k(s) = [~°_k(t)e **'dt = max(1 — |s,0).

¢
We define functions w(t) and A(z) on RY as follows:

N
1 1— t

[[- % = tn) eRY),
Vs

=1

Bl

H max(1 — |zx],0) (z = (21,...,25) € RV).

We note that w(z) = A(x) (z € RY).
For u € M(TY), let fi be the periodic extension of p to RY, i.e., for a
Borel set E C [0,27) X - -+ x [0,27) + 27n (n € ZV),
A(E) = u(E — 27n).
Then wji belongs to M(RY). We define a map J : M(TV) — M(RY) by

J (1) = wit. (3.1)

We need the following lemma to prove our corollaries.

Lemma 3.4 (cf. [8, Lemma 1))  For u € M(TV), we have

T @) = 3 n) Al —n). (3.2)

neZN

Furthermore J is an isometry, and the following hold.

(i) J(u) 20 if and only if u = 0.
(ii) J(p) € LYRYN) if and only if p € L (TV).
(iii) J(p) is quasi-invariant if and only if u is quasi-invariant.

Proof.  (3.2), (i)—(ii) and the fact that J is an isometry follow from Lemma
1 in [8]. Considering zero points of w(t), we obtain (iii) by the definition of
J. This completes the proof. O

Lemma 3.5 Lete; = (1,0,---,0) be the unit vector in RN, and let E €
Qe,. Let p1 be a nonzero measure in Mg(RY). Then p and mg~ are mutually
absolutely continuous.
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Proof. For t; > 0, suppose fi(t1,) # 0. Then there exists a nonzero
measure v;, € M(RN~1) such that

Vi, (s) = fi(t1,s) for all s € RN,

Since yu € Mg(RY) and E belongs to €2,, supp(#;,) is a compact set in
RN-1 Compact sets in RV~1 satisfy the condition (x); hence the lemma
follows from Corollary 2.1. (]

Now we prove Corollary 2.2. Considering translation of E, we may
assume that F € Q, for some unit vector a in RY. Let 6§ be a rotation of
R such that f(e;) = a. Let g = 6~*(p), the continuous image of 1 under
6~1. Then fiy = ji 0 6, which yields

fto € Mg—1(y(R™). (3.3)

It follwos from from Remark 2.4 that 071 (E) € Qy-1(4) = Qe,. Hence we
have, by Lemma 3.5,

po < mgn, Mgy < |ugl.
Thus ¢ and mr~ are mutually absolutely continuous, and the proof is com-

plete.

Next we prove Corollary 2.3. By translaion of £ N Z" by an element
in ZV, we may assume that E € ), for some unit vector a in RY. Since
v € Mgz~ (TY), we have

supp(J(v)") C Q + E, (3.4)

where @ = [~1, 1]V, Since Q + E is a set in  and J(v) is a nonzero
measure in Mgy g(RY), it follows from Corollary 2.2 that J(v) and mpw
are mutually absolutely continuous; hence v and my~ are so, by Lemma 3.4.
This completes the proof.
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