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The zero modes and zero resonances

of massless Dirac operators
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Abstract. The zero modes and zero resonances of the Dirac operator H = α ·D+Q(x)

are discussed, where α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices, D = (1/i)∇x,

and Q(x) =
`

qjk(x)
´

is a 4×4 Hermitian matrix-valued function with |qjk(x)| ≤ C〈x〉−ρ,

ρ > 1. We shall show that every zero mode f(x) is continuous on R3 and decays at infinity

with the decay rate |x|−2. Also, we shall show that H has no zero resonance if ρ > 3/2.

Key words: Dirac operators, Weyl-Dirac operators, zero modes, zero resonances, the

limiting absorption principle.

1. Introduction

This paper is concerned with the massless Dirac operator

H = α · D + Q(x), D =
1
i
∇x, x ∈ R3, (1.1)

where α = (α1, α2, α3) is the triple of 4 × 4 Dirac matrices

αj =
(

0 σj

σj 0

)
(j = 1, 2, 3)

with the 2 × 2 zero matrix 0 and the triple of 2 × 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
,

and Q(x) is a 4 × 4 Hermitian matrix-valued function decaying at infinity.
We would like to emphasize that one can regard the operator (1.1) as

a generalization of the operator

α ·
(
D − A(x)

)
+ q(x)I4, (1.2)

where (q, A) is an electromagnetic potential and I4 is a 4×4 identity matrix,
by taking Q(x) to be −α · A(x) + q(x)I4. In the case where q(x) ≡ 0, the
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operator (1.2) becomes of the form

α·
(
D−A(x)

)
=

(
0 σ · (D − A(x))

σ · (D − A(x)) 0

)
.

The component σ · (D−A(x)) is called the Weyl-Dirac operator. See Balin-
sky and Evans [6].

In the paper by Fröhlich, Lieb and Loss [16], it was found that the
existence of zero modes (i.e., eigenfunctions with the zero eigenvalue) of
the Weyl-Dirac operator plays a crucial role in the study of stability of
Coulomb systems with magnetic fields. (For the precise definition of zero
modes, see Definition 1.1 in the latter part of this section.) Loss and Yau
[23] were the first to construct zero modes of the Weyl-Dirac operator and
their results were usefully applied in [16]. Since then, the zero modes of the
Dirac operator α · (D −A(x)), the Weyl-Dirac operator σ · (D −A(x)) and
the Pauli operator {σ · (D−A(x))}2 + q(x)I2 have attracted a considerable
attention. It is now widely understood that the zero modes have deep and
fruitful implications from the view point of mathematics as well as physics.
See Adam, Muratori and Nash [1], [2], [3], Balinsky and Evans [5], [6], [7],
Elton [11] and, Erdös and Solovej [12]. Also, see Bugliaro, Fefferman and
Graf [9] and, Erdös and Solovej [13], [14], where their main concern is Lieb-
Thirring inequality for the Pauli operator with a strong magnetic fields and,
as a by-product, an estimate of the density of zero modes of the Weyl-Dirac
operators was obtained.

As for the two-dimensional case, Aharonov and Casher [4] are believed
to be the first to construct examples of zero modes. See Erdös and Vougalter
[15], Rozenblum and Shirokov [29] and Persson [24] for recent works.

We should like to note that the operator (1.1) also generalizes the Dirac
operator of the form

α · D + m(x)β + q(x)I4, (1.3)

where m(x) is considered to be a variable mass, and β is the 4 × 4 matrix
defined by

β =
(

I2 0
0 −I2

)
.

Spectral properties of the operator (1.3) have been extensively studied in
recent years. See Kalf and Yamada [19], Kalf, Okaji and Yamada [20],
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Schmidt and Yamada [30], Pladdy [25] and Yamada [35].
Finally, we would like to emphasize the significant role of the zero modes

and zero resonances in the analysis of the asymptotic behavior, around the
origin of the complex plane, of the resolvent of the operator H given by
(1.1). One can easily recognize the significance as is suggested by Jensen
and Kato [18] on the Schrödinger operator.

Notation The upper and lower half planes C± are defined by

C+ := {z ∈ C | Im z > 0}, C− := {z ∈ C | Im z < 0}

respectively. By S(R3), we mean the Schwartz class of rapidly decreasing
functions on R3, and we set S = [S(R3)]4.

By L2 = L2(R3), we mean the Hilbert space of square-integrable func-
tions on R3, and we introduce a Hilbert space L2 by L2 = [L2(R3)]4, where
the inner product is given by

(f, g)L2 =
4∑

j=1

(fj , gj)L2

for f = t(f1, f2, f3, f4) and g = t(g1, g2, g3, g4).
By L2,s(R3), we mean the weighted L2 space defined by

L2,s(R3) := {u | 〈x〉su ∈ L2(R3)}

with the inner product

(u, v)L2,s :=
∫

R3

〈x〉2su(x)v(x)dx,

where

〈x〉 =
√

1 + |x|2.

We introduce the Hilbert space L2,s = [L2,s(R3)]4 with the inner product

(f, g)L2,s =
4∑

j=1

(fj , gj)L2,s .

By Hµ,s(R3), we mean the weighted Sobolev space defined by

Hµ,s(R3) := {u ∈ S′(R3) | 〈x〉s〈D〉µu ∈ L2(R3)}
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with the inner product

(u, v)Hµ,s :=
(
〈x〉s〈D〉µu, 〈x〉s〈D〉µv

)
L2 ,

where

〈D〉 =
√

1 − ∆. (1.4)

In a similar fashion, we introduce the Hilbert space Hµ,s = [Hµ,s(R3)]4.
Note that Hµ,0(R3) coincides with the Sobolev space of order µ : Hµ(R3),
and by Hµ we mean the Hilbert space [Hµ(R3)]4. Also note that H0,0 = L2

and H0,s = L2,s.
By B(µ, s; ν, t), we mean the set of all bounded linear operators from

Hµ,s(R3) into Hν,t(R3), and by B(µ, s; ν, t), the set of all bounded linear
operators from Hµ,s into Hν,t. For an operator W ∈ B(µ, s; ν, t), we define
a copy of W ∈ B(µ, s; ν, t) by

Hµ,s 3 f =t(f1, f2, f3, f4)

7→ Wf = t(Wf1, Wf2, Wf3, Wf4) ∈ Hν,t.
(1.5)

Assumption (A) Each element qjk(x) (j, k = 1, . . . , 4) of Q(x) is a
measurable function satisfying

|qjk(x)| ≤ C〈x〉−ρ (ρ > 1), (1.6)

where C is a positive constant. Moreover, Q(x) is a Hermitian matrix for
each x ∈ R3.

Note that, under Assumption (A), the Dirac operator (1.1) is a self-
adjoint operator in L2 with Dom(H) = H1. The self-adjoint realization will
be denoted by H again. With an abuse of notation, we shall write Hf in
the distributional sense for f ∈ S ′ whenever it makes sense.

Definition 1.1 By a zero mode, we mean a function f ∈ Dom(H) which
satisfies

Hf = 0.

By a zero resonance, we mean a function f ∈ L2,−s \ L2, for some s > 0,
which satisfies Hf = 0 in the distributional sense.

It is evident that a zero mode of H is an eigenfunction of H correspond-
ing to the eigenvalue 0, i.e., a zero mode is an element of Ker(H), the kernel
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of the self-adjoint operator H.
It would seem that there is no decisive definition of zero resonances. A

common understanding of zero resonances in the literature is that a zero
resonance is a non-L2 solution of Hf = 0 in a space slightly larger than L2.
(See, for example, Jensen and Kato [18].) In dealing with zero resonances
in Section 2 and later sections, we shall restrict ourselves to the case where
ρ > 3/2 and 0 < s ≤ min{3/2, ρ − 1}.

Balinsky and Evans [6] is particularly interesting from our view point
in the sense that they dealt with the Weyl-Dirac operator σ · (D − A(x))
and showed that the set of magnetic fields which give rise to zero modes is
rather “sparse.”

In this paper, we investigate the zero modes and zero resonances of
the operator H in (1.1) under Assumption(A). Our goal is to establish a
pointwise estimate of the zero modes as well as the continuity of the zero
modes, and also to show that the zero resonances do not exist.

2. Main results

Theorem 2.1 Suppose Assumption (A) is satisfied. Let f be a zero mode
of the operator (1.1). Then
( i ) the inequality

|f(x)| ≤ C〈x〉−2 (2.1)

holds for all x ∈ R3, where the constant C (= Cf ) depends only on the
zero mode f ;

(ii) the zero mode f is a continuous function on R3.

Remark 2.1 It is natural that zero modes exhibit only polynomial decays
at infinity. In Loss and Yau [23], they considered the Weyl-Dirac operator
σ · (D −A(x)), and constructed two examples of pairs of a vector potential
A and a zero mode ψ. One of their examples shows that A(x) = O(|x|−2)
and ψ(x) = O(|x|−2) at infinity. (Also, see examples in Adam, Muratori
and Nash [1].) Thus, it is true that the decay rate in Theorem 2.1 is optimal
at least for ρ with 1 < ρ ≤ 2.

Remark 2.2 In Bugliaro, Fefferman and Graf [9] and, Erdös and Solovej
[13], [14], they established estimates of the density of zero modes of the
Weyl-Dirac operator σ · (D − A(x)). It is apparent that their estimates
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immediately imply estimates of each zero mode. These estimates of each
zero mode are, however, quite unclear in terms of the decay rate at infinity
because their estimates contain local lengthscales of the magnetic fields.

Theorem 2.2 below means that zero resonances do not exist under the
restriction on s mentioned after Definition 1.1. Accordingly, we need a
larger ρ than Theorem 2.1.

Theorem 2.2 Suppose Assumption (A) is satisfied with ρ > 3/2. If f

belongs to L2,−s for some s with 0 < s ≤ min{3/2, ρ − 1} and satisfies
Hf = 0 in the distributional sense, then f ∈ H1.

3. A singular integral operator

One of the ingredients of the proofs of the main theorems is a singular
integral operator acting on four component vector functions. The singular
integral operator we deal with in this section is defined by

Af(x) =
∫

R3

i
α · (x − y)
4π|x − y|3

f(y)dy (3.1)

for

f = t(f1, f2, f3, f4) ∈ L2,

where α·(x−y) means the sum of the matrix operation αj for the four-vector
(xj − yj)f :

α ·(x−y)f =
3∑

j=1

αj(xj −yj)f.

We shall need a few estimates of A on L2 and on its subspaces.

Lemma 3.1 For each f ∈ L2, Af(x) is defined for a.e. x ∈ R3. Moreover,
A is a bounded operator from L2 to L6, i.e., there exists a constant C such
that

‖Af‖L6 ≤ C‖f‖L2

for all f ∈ L2.



Massless Dirac operators 369

Proof. Since αj ’s are unitary matrices and satisfy the anti-commutation
relation αjαk + αkαj = 2δjkI4, we have

|α ·(x−y)f(y)| = |x−y||f(y)|.

(Note that |x− y| and |f(y)| are the Euclidean norms of R3 and R4 respec-
tively.) Therefore we get

|Af(x)| ≤ 1
4π

∫
R3

1
|x − y|2

|f(y)|dy

=
π

2
I1(|f |)(x),

(3.2)

where I1 is the Riesz potential; see Stein [31, p. 117]. We shall appeal two
well-known facts (Stein [31, p. 119]) that I1(u)(x) is finite for a.e. x ∈ R3

if u ∈ L2(R3), and that I1 is a bounded operator from L2(R3) to L6(R3)
(a special case of the Hardy-Littlewood-Sobolev inequality). These facts,
together with (3.2), yield the conclusions of the lemma. ¤

Lemma 3.2 Let s ≥ 1. Then

‖Af‖L2 ≤ C‖f‖L2,s

for all f ∈ L2,s.

Proof. In view of (3.2), it is sufficient to show that the Riesz potential I1

is a bounded operator from L2,s(R3) to L2(R3).
Let u ∈ S(R3). Then we have

I1(u) = F
[ 1
2π|ξ|

]
Fu, (3.3)

where F and F denote the Fourier transform and the inverse Fourier trans-
form respectively (see [31, p. 117]), and

Fu(ξ) = û(ξ) =
1

(2π)3/2

∫
R3

e−ix·ξu(x)dx.

It follows from (3.3) and the Plancherel theorem that

‖I1(u)‖2
L2 =

1
4π2

∫
R3

1
|ξ|2

|û(ξ)|2dξ. (3.4)

If we apply the Hardy inequality (which is referred to as the uncertainty
principle lemma in [28, p. 169]; also see [21, p. 4.50]) to the right hand side
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of (3.4), we get

1
4π2

∫
R3

1
|ξ|2

|û(ξ)|2dξ ≤ 1
π2

∫
R3

|∇ξû(ξ)|2dξ

=
1
π2

∫
R3

|xu(x)|2dx.

(3.5)

Combining (3.4) and (3.5), we obtain

‖I1(u)‖L2 ≤ 1
π
‖xu‖L2 ≤ 1

π
‖u‖L2,s (3.6)

for u ∈ S(R3), where we have used the hypothesis s ≥ 1. Since S(R3) is
dense in L2,s(R3), it follows from (3.6) that I1 is bounded from L2,s(R3) to
L2(R3). ¤

We introduce a class of functions which is necessary to establish an L∞

estimate of the operator A. For q ≥ 1, we define

Lq
ul(R

3) =
{
u ∈ Lq

loc(R
3)

∣∣ ‖u‖Lq
ul

:= sup
x∈R3

‖u‖Lq(B(x;1)) < ∞
}
,

where B(x; 1) = {y ∈ R3 | |x − y| ≤ 1}, and define

Lq
ul = [Lq

ul(R
3)]4, ‖f‖Lq

ul
=

4∑
k=1

‖fk‖Lq
ul

.

Lemma 3.3 Let 1 < p < 3 < q < +∞. Then there exists a constant Cpq

such that

‖Af‖L∞ ≤ Cpq(‖f‖Lp +‖f‖Lq
ul

)

for all f ∈ Lp ∩ Lq
ul. In particular,

‖Af‖L∞ ≤ Cpq(‖f‖Lp +‖f‖Lq)

for all f ∈ Lp ∩ Lq.

Proof. By virtue of (3.2), we only have to prove that there exists a constant
C ′

pq such that

‖I1(u)‖L∞ ≤ C ′
pq(‖u‖Lp + ‖u‖Lq

ul
) for u ∈ Lp(R3) ∩ Lq

ul(R
3).(3.7)

Since each u ∈ Lp(R3) ∩ Lq
ul(R

3) can be decomposed as

u = v+ − v− + i(w+ − w−),
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v± ≥ 0, w± ≥ 0, v±, w± ∈ Lp(R3) ∩ Lq
ul(R

3)

we shall prove (3.7) for u ≥ 0.
Let u ∈ Lp(R3)∩Lq

ul(R
3) be given, and let satisfy u ≥ 0. Then one can

find a sequence {ϕn} ⊂ C∞
0 (R3) such that

0 ≤ ϕn ≤ u, ϕn → u in Lp(R3). (3.8)

(First cut u as χB(0;n)(x)u by multiplying a characteristic function χB(0;n)

of the ball B(0;n) with center at the origin and radius n, then use the
mollifier.) For each n, we decompose as

I1(ϕn)(x) =
∫

R3

1
2π2|x − y|2

ϕn(y)dy

= h0 ∗ ϕn(x) + h1 ∗ ϕn(x),
(3.9)

where

h0(x) = χB(0;1)(x)
1

2π2|x|2
,

h1(x) = (1 − χB(0;1)(x))
1

2π2|x|2
.

(One should note that the integral on the right hand side of (3.9) converges
because of the fact that ϕn ∈ C∞

0 (R3).) If we apply the Hölder inequality
to h0 ∗ ϕn, then we get

|h0 ∗ ϕn(x)| ≤ 1
2π2

{ ∫
|x−y|≤1

1
|x − y|2q′

dy
}1/q′

‖ϕn‖Lq(B(x;1))

≤ C ′
q‖u‖Lq(B(x;1))

( 1
q′

= 1 − 1
q

)
,

(3.10)

where we have used the fact that 2q′ < 3 (∵ q > 3 by assumption) and
(3.8). Similarly, if we apply the Hölder inequality to h1 ∗ ϕn, we obtain

|h1 ∗ ϕn(x)| ≤ 1
2π2

{∫
|x−y|≥1

1
|x − y|2p′

dy
}1/p′

‖ϕn‖Lp(R)

≤ C ′
p‖u‖Lp(R3)

( 1
p′

= 1 − 1
p

)
,

(3.11)

where we have used the fact that 2p′ > 3 (∵ 1 < p < 3 by assumption) and
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(3.8). If follows from (3.9), (3.10) and (3.11) that

|I1(ϕn)(x)| ≤ C ′
pq

(
‖u‖Lq(B(x;1)) + ‖u‖Lp(R3)

)
≤ C ′

pq

(
‖u‖Lq

ul
+ ‖u‖Lp

)
.

(3.12)

Recall that the Riesz potential I1 is a bounded operator from Lp(R3) to
Lr(R3), (r−1 = p−1 − 3−1), because of the Hardy-Littlewood-Sobolev in-
equality. This fact, together with (3.8), implies that there exists a subse-
quence {ϕn′} such that I1(ϕn′)(x) → I1(u)(x) for a.e. x ∈ R3. Thus taking
the limit of (3.12), along with the subsequence, gives (3.7). ¤

4. Estimates of the resolvents

Another ingredient of the proofs of the main theorems is the limiting
absorption principle (LAP) for the free Dirac operator

H0 = α · D. (4.1)

We note that H0 with Dom(H0) = H1 is a self-adjoint operator in L2. The
self-adjoint realization will be denoted by H0 again. It is well-known that
the spectrum σ(H0) coincides with the whole real line R. With an abuse of
notation again, we shall write H0f for f ∈ S ′.

We first prepare a lemma, which will be needed in the proof of Theo-
rem 2.2 in Section 5.

Lemma 4.1 If f ∈ L2 and (α · D)f ∈ L2, then f ∈ H1.

Proof. We take the Fourier transform of (α · D)f , and we have

F [(α · D)f ] = (α · ξ)f̂ . (4.2)

Then by using assumption of the lemma and (4.2), we see that

+∞ > ‖(α · D)f‖2
L2 =

∫
R3

|(α · ξ)f̂(ξ)|2dξ

=
∫

R3

〈(α · ξ)f̂(ξ), (α · ξ)f̂(ξ)〉Cdξ

=
∫

R3

|ξ|2|f̂(ξ)|2dξ,

(4.3)

where 〈 · , · 〉C denotes the inner product of C4. In the third equality of (4.3),
we have used the anti-commutation relation. Since, by assumption of the
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lemma, f ∈ L2, the conclusion of the lemma follows from (4.3). ¤

The task in the rest of this section is to prove the following theorem,
which is essential in the proofs of the main theorems in Section 5.

Theorem 4.1 If f ∈ L2,−3/2 and H0f ∈ L2,s for some s > 1/2, then
AH0f = f .

As was indicated at the beginning of this section, the ingredient of the
proof of Theorem 4.1 is the LAP for the free Dirac operator H0. Our idea
of proving it is based on a decomposition of the resolvent

R0(z) = (H0 + z)Γ0(z2) on L2, Im z 6= 0, (4.4)

where

R0(z) = (H0 − z)−1, (4.5)

and Γ0(z) in (4.4) denotes the copy of the resolvent Γ0(z) = (−∆− z)−1 of
the negative Laplacian

−∆ = −
( ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
.

See (1.5) for the definition of the copy of an operator. In other words, we
shall not distinguish between Γ0(z) in L2(R3) and Γ0(z) in L2. We believe
this will not cause any confusion.

A formal computation, based on the anti-commutation relation, shows
that

H2
0 = −∆I4, (4.6)

from which one can deduce (4.4). The decomposition (4.4) was first ex-
ploited in Balslev and Hellfer [8]. Similar decomposition was also adopted
in Pladdy, Saitō and Umeda [26], [27].

We shall divide the rest of this section into two subsections, because
the proof of Theorem 4.1 is lengthy.

4.1. The resolvent of the negative Laplacian
In this subsection, we shall state several lemmas, which are actually

well-known and reproductions of results in Jensen and Kato [18] and Kuroda
[21], [22]. We shall do this for our later purpose as well as for the reader’s
convenience.
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We first recall that the resolvent of −∆ can be represented as an integral
operator:

Γ0(z)u(x) =
∫

R3

ei
√

z|x−y|

4π|x − y|
u(y)dy, u ∈ L2(R3) (4.7)

for z ∈ C \ [0, +∞), where Im
√

z > 0.
We next recall well-known inequalities (e.g., [10, Appendix A], [22, p.

162], [34, Lemma 11.1]), which will be repeatedly used in the present paper:

∫
R3

1
|x − y|2〈y〉γ

dy ≤ Cγ


〈x〉−γ+1 if 1 < γ < 3,

〈x〉−2 log(1 + 〈x〉) if γ = 3,

〈x〉−2 if γ > 3.

(4.8)

Lemma 4.2 Let s, s′ > 1/2 and s + s′ > 2. Then∫∫
R3×R3

〈x〉−2s′ 1
|x − y|2

〈y〉−2sdxdy < +∞. (4.9)

Proof. We may assume, with no loss of generality, that s < 3. Then, by
an inequality in (4.8), we have∫

R3

1
|x − y|2

〈y〉−2sdy ≤ Cs〈x〉−2s+1. (4.10)

Since −2s′ − 2s + 1 < −3 by assumption of the lemma, we see that (4.10)
implies (4.9). ¤

It follows from (4.7) and Lemma 4.2 that the operator

K(z) := 〈x〉−s′Γ0(z)〈x〉−s, (4.11)

which is represented as

K(z)u(x) =
∫

R3

〈x〉−s′ ei
√

z|x−y|

4π|x − y|
〈y〉−su(y)dy,

belongs to the Hilbert-Schmidt class on L2(R3) for z ∈ C \ [0, +∞):

‖K(z)‖2
HS =

∫∫
R3×R3

〈x〉−2s′
∣∣∣ ei

√
z|x−y|

4π|x − y|

∣∣∣2〈y〉−2sdxdy < +∞,
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where ‖ · ‖HS denotes the Hilbert-Schmidt norm. Note that

‖K(z1) − K(z2)‖2
HS

=
∫∫

R3×R3

〈x〉−2s′
∣∣∣ei

√
z1|x−y|

4π|x − y|
− ei

√
z2|x−y|

4π|x − y|

∣∣∣2〈y〉−2sdxdy
(4.12)

for all z1, z2 ∈ C \ [0, +∞). It follows from (4.12) that K(z) is continuous,
with respect to the Hilbert-Schmidt norm topology, on C \ [0, +∞). Fur-
thermore, we can deduce from (4.9), (4.12) and Lebesgue’s convergence the-
orem that K(z) can be continuously extended, with respect to the Hilbert-
Schmidt norm topology, as follows:

K̃(z) =


K(z) if z ∈ C \ [0, +∞),

K+(λ) if z = λ + i0, λ ≥ 0,

K−(λ) if z = λ − i0, λ ≥ 0,

(4.13)

where K+(λ) and K−(λ) for λ > 0 are defined by

K±(λ)u(x) =
∫

R3

〈x〉−s′ e
±i

√
λ|x−y|

4π|x − y|
〈y〉−su(y)dy, (4.14)

and

K+(0)u(x) = K−(0)u(x) =
∫

R3

〈x〉−s′ 1
4π|x − y|

〈y〉−su(y)dy. (4.15)

For a later purpose, it is convenient to introduce a subset of the Riemann
surface of

√
z as follows:

Π(0, +∞)

:=
(
C \ (0, +∞)

)
∪ {z = λ + i0 | λ > 0}
∪ {z = λ − i0 | λ > 0}.

(4.16)

Thus, we can say that K̃(z) defined by (4.13)–(4.15) is continuous on
Π(0, +∞) with respect to the Hilbert-Schmidt norm topology.

In view of (4.11), we see that Γ0(z), z ∈ C \ [0, +∞), is a Hilbert-
Schmidt operator from L2,s(R3) to L2,−s′(R3). Hence, in particular, Γ0(z) ∈
B(0, s; 0, −s′), and

‖Γ0(z)‖B(0,s;0,−s′) ≤ ‖K(z)‖HS.
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Since we have the inequality

‖Γ0(z1) − Γ0(z2)‖B(0,s;0,−s′) ≤ ‖K(z1) − K(z2)‖HS

(z1, z2 ∈ C \ [0, + ∞)),
(4.17)

we conclude from (4.13) and (4.17) that Γ0(z) ∈ B(0, s; 0, −s′) can be
continuously extended as follows:

Γ̃0(z) =


Γ0(z) if z ∈ C \ [0, +∞),

Γ+
0 (λ) if z = λ + i0, λ ≥ 0,

Γ−
0 (λ) if z = λ − i0, λ ≥ 0,

(4.18)

where

Γ±
0 (λ) := 〈x〉s′K±(λ)〈x〉s = lim

ε↓0
Γ0(λ±iε) in B(0, s; 0, −s′).

We must remark that

Γ+
0 (0)u(x) = Γ−

0 (0)u(x) =
∫

R3

1
4π|x − y|

u(y)dy, (4.19)

and that

Γ±
0 (λ)u(x) =

∫
R3

e±i
√

λ|x−y|

4π|x − y|
u(y)dy.

Thus

Γ̃0(λ+i0) 6= Γ̃0(λ−i0), λ > 0.

Note that the equality (4.19) allows us to use the notation

Γ̃0(0)
(
= Γ+

0 (0) = Γ−
0 (0)

)
. (4.20)

With the notation introduced in (4.16), we can say that Γ̃0(z) is a
B(0, s; 0, −s′)-valued continuous function on Π(0, +∞).

The following Lemmas 4.3 and 4.4 are variants of Lemma 2.1 of Jensen
and Kato [18], although we shall give their proofs.

Lemma 4.3 Let s, s′ satisfy the same assumption as in Lemma 4.2, and
let µ ∈ R. Then Γ̃0(z) is a B(µ, s; µ, −s′)-valued continuous function on
Π(0, +∞).
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Proof. As was mentioned before, Γ̃0(z) defined by (4.18) is a B(0, s; 0,−s′)-
valued continuous function on Π(0, +∞). Then the lemma directly follows
from the inequalities

‖Γ0(z)‖B(µ,s;µ,−s′) ≤ ‖Γ0(z)‖B(0,s;0,−s′), z ∈ C \ [0, +∞) (4.21)

and

‖Γ0(z1) − Γ0(z2)‖B(µ,s;µ,−s′) ≤ ‖Γ0(z1) − Γ0(z2)‖B(0,s;0,−s′)

(z1, z2 ∈ C \ [0, +∞)).
(4.22)

In order to show (4.21), we shall use the fact that

〈D〉µΓ0(z)u = Γ0(z)〈D〉µu (4.23)

for u ∈ S(R3) and z ∈ C \ [0, +∞). We then have

‖Γ0(z)u‖Hµ,−s′ = ‖〈D〉µΓ0(z)u‖L2,−s′ = ‖Γ0(z)〈D〉µu‖L2,−s′

≤ ‖Γ0(z)‖B(0,s;0,−s′)‖〈D〉µu‖L2,s

= ‖Γ0(z)‖B(0,s;0,−s′)‖u‖Hµ,s ,

(4.24)

which implies (4.21). In a similar fashion, we can prove (4.22). ¤

Remark 4.1 We should remark that Hµ, s(R3) in Lemma 4.3 is a subset
of L2(R3) for µ ≥ 0, but not necessarily for µ < 0. Thus, the domain of
Γ̃0(z) depends on µ and s. Nonetheless, we have the unique representation
of Γ̃0(z) on S(R3), a dense subset of Hµ, s(R3):

Γ̃0(z)u(x) =
∫

R3

ei
√

z|x−y|

4π|x − y|
u(y)dy, u ∈ S(R3), (4.25)

for every z ∈ Π(0, +∞), where Im
√

z ≥ 0. This representation, together with
the fact that S(R3) is dense in Hµ, s(R3) for any pair of µ and s, ensures
that the extension of Γ̃0(z)

∣∣
S(R3)

to Hµ, s(R3) is independent of µ and s in
a certain sense. However, we shall not discuss about the uniqueness of the
extension any longer. In the discussions below, we shall mostly deal with
the extension of Γ̃0(z)

∣∣
S(R3)

to H−1, s(R3).

Lemma 4.4 Let s, s′ satisfy the same assumption as in Lemma 4.2, and
let µ ∈ R. Then Γ̃0(z) is a B(µ − 2, s; µ, −s′)-valued continuous function
on Π(0, +∞).
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Proof. We first note that

〈D〉2Γ0(z)u = u + (z + 1)Γ0(z)u (4.26)

for u ∈ S(R3) and z ∈ C \ [0, +∞); cf. Jensen and Kato [18, Lemma 2.1].
(See (1.4) for the definition of 〈D〉.) We then combine (4.26) with Lemma
4.3, and obtain the conclusion if we appeal to the fact that S(R3) is dense
in Hµ−2,s(R3). ¤

What we shall need in the rest of the paper is a variant of Lemma 4.4,
namely a version for four-component vector-valued functions, with µ = 1 in
the form described in Proposition 4.1 below. Thus Γ̃0(z) in Proposition 4.1
denotes a copy of Γ̃0(z); see (1.5).

Proposition 4.1 Let s, s′ satisfy the same assumption as in Lemma 4.2.
Then Γ̃0(z) is a B(−1, s; 1, −s′)-valued continuous function on Π(0, +∞).

4.2. The resolvent of the free Dirac operator H0

In view of (4.4), it is convenient for us to introduce the following oper-
ator valued-functions Ω+

0 (z) defined on C+ and Ω−
0 (z) on C− as follows:

Ω±
0 (z) = Γ̃0(z2), z ∈ C±, (4.27)

in other words,

Ω±
0 (z) =


Γ0(z2) if z ∈ C±,

Γ±
0 (λ2) if z = λ ≥ 0,

Γ∓
0 (λ2) if z = λ ≤ 0.

(4.28)

It follows from Proposition 4.1 that Ω+
0 (z) (resp. Ω−

0 (z)) is a B(−1, s; 1,−s′)-
valued continuous function on C+ (resp. C−). Also, it follows from (4.20)
that

Ω+
0 (0) = Ω−

0 (0) = Γ̃0(0). (4.29)

In order to get expressions of the extended resolvents of the free Dirac
operator H0 in terms of Ω±

0 (z) introduced in (4.28), we shall exploit the
decomposition (4.4) and a boundedness estimate of H0 in some weighted
Sobolev spaces which is given as follow.

Lemma 4.5 Let µ and s′ be in R. Then

H0 ∈ B(µ, −s′; µ−1, −s′).
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Proof. To prove the lemma, it is sufficient to show that

〈x〉−s′〈D〉µ−1Dj〈D〉−µ〈x〉s′ = 〈x〉−s′Dj〈D〉−1〈x〉s′

(j = 1, 2, 3) is a bounded operator from L2(R3) to L2(R3). This fact is a
direct consequence of Umeda [33, Lemma 2.1]. ¤

Lemma 4.6 Let s, s′ > 1/2, and s+s′ > 2. Then R0(z) ∈ B(−1, s; 0,−s′)
is continuous in z ∈ C±. Moreover, as B(−1, s; 0, −s′)-valued functions,
they can possess continuous extensions R±

0 (z) to C± respectively, and

R±
0 (z) = (H0 + z)Ω±

0 (z), z ∈ C±. (4.30)

Proof. We shall give the proof only for z ∈ C+. The proof for z ∈ C− is
similar.

As was mentioned before Lemma 4.5, Ω+
0 (z) is a B(−1, s; 1, −s′)-valued

continuous function on C+. Combining this fact with (4.4), (4.5), the def-
inition (4.27) (or (4.28)) of Ω+

0 (z), Proposition 4.1 and Lemma 4.5 with
µ = 1, we see that R0(z) = (H0 + z)Ω+

0 (z) ∈ B(−1, s; 0, −s′) for any z ∈
C+. Now it is evident that the second assertion of the lemma follows from
Proposition 4.1 and Lemma 4.5 with µ = 1. ¤

Combining (4.30) with (4.29), we obtain a corollary to Lemma 4.6.

Corollary 4.1 Under the same assumption and the same notation as in
Lemma 4.6,

R+
0 (0) = R−

0 (0) = H0Γ̃ (0) in B(−1, s; 0 −s′).

Remark 4.2 In [17], Iftimovici and Măntoiu showed that the limiting
absorption principle for the the free Dirac operator H0 = α · D + mβ, m >

0, in B(0, 1; 0, −1) holds on the whole real line. With the result exhibited in
Lemma 4.6, together with the result in [17], the limiting absorption principle
for the the free Dirac operator H0 = α · D + mβ has been established for
all m ≥ 0.

Lemma 4.7 For f ∈ S and z ∈ C±

R0(z)f(x) (4.31)

=
∫

R3

(
i
α · (x − y)
|x − y|2

± z
α · (x − y)
|x − y|

+ zI4

) e±iz|x−y|

4π|x − y|
f(y)dy.



380 Y. Saitō and T. Umeda

Proof. We first recall (4.25), which we can write as

Γ0(z2)f(x) =
∫

R3

e±iz|y|

4π|y|
f(x − y)dy, f ∈ S, z ∈ C±. (4.32)

We then combine (4.27) and (4.30), and make differentiation under the
integral sign in (4.32), which gives

R0(z)f(x) =
∫

R3

e±iz|y|

4π|y|
(α · Dx + zI4)f(x − y)dy, z ∈ C±. (4.33)

Noting the fact that

Dxf(x−y) = −Dy

(
f(x−y)

)
,

and making integration by parts on the right hand of (4.33) implies that

R0(z)f(x) =
∫

R3

(
i
α · y
|y|2

± z
α · y
|y|

+ zI4

)e±iz|y|

4π|y|
f(x − y)dy

(z ∈ C±).
(4.34)

A change of variables in (4.34) yields (4.31). (See also Thaller [32, p. 39].)
¤

Proposition 4.2 For f ∈ S

R+
0 (0)f = R−

0 (0)f = Af,

where A is the singular integral operator defined by (3.1).

Proof. In view of Corollary 4.1, we only need to give the proof for R+
0 (0).

Let f ∈ S, and let {zn} ⊂ C+ be a sequence such that zn → 0 as
n → ∞. It follows from Lemma 4.6 that R0(zn)f → R+

0 (0)f in L2,−s′ as
n → ∞. This fact implies that there exists a subsequence {zn′} ⊂ {zn}
such that

R0(zn′)f(x) → R+
0 (0)f(x) a.e. x ∈ R3 as n′ → ∞. (4.35)

On the other hand, Lemma 4.7, together with Lebesgue’s convergence
theorem, implies that

R0(zn)f(x) →
∫

R3

i
α · (x − y)
4π|x − y|3

f(y)dy = Af(x) as n → ∞ (4.36)
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for each x ∈ R3. The conclusion of the proposition now follows from (4.35)
and (4.36). ¤

Lemma 4.8 Let s, s′ > 1/2, and s + s′ > 2. Then A can be continuously
extended to an operator in B(−1, s; 0, −s′).

Proof. Since S is dense in H−1,s, Lemma 4.6 and Proposition 4.2 directly
imply the lemma. ¤

In the rest of the paper, we shall denote the extension in Lemma 4.8
by A again. Thus we have

R+
0 (0) = R−

0 (0) = A in B(−1, s; 0, −s′).

Proposition 4.3 Let s > 1/2. Then

H0Ag = g (4.37)

for all g ∈ L2,s.

Proof. Let g ∈ L2,s be given. We then start with the fact that

(H0 − z)R0(z)g = g (∀z ∈ C+). (4.38)

Choose s′ > 1/2 so that s + s′ > 2. We see from Lemmas 4.6, 4.8 and
Proposition 4.2 that

R0

( i

n

)
g → R+

0 (0)g = Ag in L2,−s′ as n → ∞. (4.39)

Lemma 4.5, with µ = 0, and (4.39) imply that(
H0 −

i

n

)
R0

( i

n

)
g → H0Ag in H−1,−s′ as n → ∞. (4.40)

Since, by (4.38),(
H0−

i

n

)
R0

( i

n

)
g = g for ∀n,

we find that (4.40) yields (4.37). ¤

We shall need Lemma 2.4 of Jensen and Kato [18], which we shall
rewrite in a suitable form to our setting (cf. Lemma 4.9 below), where
the operators −∆ and Γ̃0(0) act on four-component vector functions. The
reader should note that Γ̃0(0) is the same as G0 in Jensen-Kato’s paper.
See (4.19) and (4.20).
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Lemma 4.9 (Jensen-Kato) Let s > 1/2. Then
( i ) (−∆)Γ̃0(0)g = g for all g ∈ H−1,s.
(ii) Γ̃0(0)(−∆)f = f if f ∈ L2,−3/2 and (−∆)f ∈ H−1,s.

Proposition 4.4 Let s > 1/2. Then Γ̃0(0)H0g = Ag for all g ∈ L2,s.

Proof. Let g ∈ L2,s be given. Noting that H2
0 = −∆ (cf. (4.6)), we have

(−∆)Ag = H0(H0Ag) = H0g (4.41)

where we have used Proposition 4.3 in the second equality. Since H0g ∈
H−1,s by Lemma 4.5, it follows from (4.41) that (−∆)Ag ∈ H−1,s.

On the other hand, we find, by Lemma 4.8, that Ag ∈ L2,−3/2, because
we can choose s′ so that 1/2 < s′ ≤ 3/2 and s + s′ > 2. (Choose s′ so that
max(s, 2 − s) < s′ ≤ 3/2.)

Now we can apply Lemma 4.9(ii) with f replaced by Ag, and obtain

Γ̃0(0)(−∆)Ag = Ag. (4.42)

It follows from (4.41) that the left hand side of (4.42) equals Γ̃0(0)H0g. This
proves the conclusion of the proposition. ¤

Proof of Theorem 4.1. Put

g = H0f.

By assumption of the theorem, we see that g ∈ L2,s for some s > 1/2. It
follows from Proposition 4.4 that Ag = Γ̃0(0)H0g, i.e.,

AH0f = Γ̃0(0)H0H0f = Γ̃0(0)(−∆)f.

Since (−∆)f = H0g ∈ H−1,s by Lemma 4.5, it follows from assertion (ii) of
Lemma 4.9 that Γ̃0(0)(−∆)f = f . Thus AH0f = f . ¤

5. Proof of the main theorems

Proof of Theorem 2.1. We first prove assertion (i). Let f be a zero mode
of the operator H in (1.1). Then we have

Hf =
(
α · D + Q(x)

)
f = 0, f ∈ Dom(H) = H1. (5.1)

It follows from (5.1) and Assumption (A) that

H0f = (α · D)f = −Q(x)f ∈ L2,ρ. (5.2)
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(Recall (4.1) for the definition of H0.) Since ρ > 1 > 1/2 by assumption of
the theorem, we can apply Theorem 4.1 to (5.2) and get

f = AH0f = −AQf. (5.3)

It follows from (5.3) and Lemma 3.1 that f ∈ L2 ∩ L6. It follows from
(5.3) again and Lemma 3.3 that f ∈ L∞. This fact, together with (5.3) and
Assumption (A), implies that

|f(x)| ≤ 3
4π

∫
R3

1
|x − y|2

|Q(y)f(y)|dy (5.4)

≤C‖f‖L∞

∫
R3

1
|x − y|2〈y〉ρ

dy. (5.5)

Noting that ρ > 1 by assumption, and applying the inequalities in (4.8) to
the integral in (5.5), we get

|f(x)| ≤ C‖f‖L∞


〈x〉−ρ+1 if 1 < ρ < 3,

〈x〉−2 log(1 + 〈x〉) if ρ = 3,

〈x〉−2 if ρ > 3.

(5.6)

If ρ > 3, we have already obtained the desired estimate. If 1 < ρ ≤ 3, we
plug the inequalities in (5.6) into (5.4). We thus get

|f(x)| ≤ C‖f‖L∞

∫
R3

1
|x − y|2〈y〉2ρ−1

dy (5.7)

if 1 < ρ < 3, and

|f(x)| ≤ C‖f‖L∞

∫
R3

log(1 + 〈y〉)
|x − y|2〈y〉ρ+2

dy (5.8)

if ρ = 3. We find that the inequalities in (4.8) applied to the integrals in
(5.7) and (5.8) yields

|f(x)| ≤ C‖f‖L∞


〈x〉−2(ρ−1) if 1 < ρ < 2,

〈x〉−2 log(1 + 〈x〉) if ρ = 2,

〈x〉−2 if 2 < ρ ≤ 3.

(5.9)

Hence, if 2 < ρ ≤ 3, we have shown the desired estimate. If 1 < ρ ≤ 2,
we repeat the same argument again, actually as many times as we wish.
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Summing up, we can obtain the estimate

|f(x)| ≤ CN‖f‖L∞


〈x〉−N(ρ−1) if 1 < ρ < 1 + 2/N,

〈x〉−2 log(1 + 〈x〉) if ρ = 1 + 2/N,

〈x〉−2 if 1 + 2/N < ρ

(5.10)

for any positive integer N , where CN is a constant depending on N . It is
straightforward that for a given ρ > 1 in Assumption (A), we can choose N

so that 1+(2/N) < ρ. This fact, together with (5.10), implies assertion (i).
We next prove assertion (ii) by utilizing (5.3):

f(x) = −
∫

R3

i
α · (x − y)
4π|x − y|3

Q(y)f(y)dy.

Let x0 be any point in R3, and let ε > 0 be given. We choose r > 0 so that∫
|y|≤2r

1
|y|2

dy < ε. (5.11)

We then decompose f(x) into two parts:

f(x) = −
(∫

B(x, 2r)
+

∫
E(x, 2r)

)
i
α · (x − y)
4π|x − y|3

Q(y)f(y)dy

=: fb(x) + fe(x),
(5.12)

where

B(x, 2r) = {y | |x−y| ≤ 2r}, E(x, 2r) = {y | |x−y| > 2r}.

Since each αj is a unitary matrix, it follows from (5.11) and (5.12) that

|fb(x)| <
3
4π

CqCfε for ∀x ∈ R3, (5.13)

where Cq is a constant determined by (1.6) in Assumption (A) and Cf is a
constant described in the inequality (2.1), which we have just proved in the
first half of the proof. It follows from the definition of fe(x) that

fe(x) − fe(x0)

=
∫

R3

{
1E(x0, 2r)(y)

α · (x0 − y)
4π|x0 − y|3

− 1E(x, 2r)(y)
α · (x − y)
4π|x − y|3

}
× Q(y)f(y)dy.

(5.14)
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To apply Lebesgue’s convergence theorem to the integral in (5.14), we need
the following two facts that

|x0 − y| ≥ r if |x0 − x| < r, |x − y| > 2r (5.15)

and that

|x − y| ≥ 2
3
|x0 − y| if |x0 − x| < r, |x − y| > 2r (5.16)

(use the inequality |x− y| ≥ |x0 − y|− |x0 −x|). We can deduce from (5.15)
and (5.16) that∣∣∣1E(x, 2r)(y)

α · (x − y)
4π|x − y|3

Q(y)f(y)
∣∣∣

≤ 1E(x0, r)(y)
3
4π

(2
3
|x0 − y|

)−2∣∣Q(y)f(y)
∣∣ (5.17)

whenever |x0−x| < r. It is straightforward that the estimate (5.17) implies∣∣the integrand in (5.14)
∣∣

≤ 1E(x0, r)(y)
3
4π

(
1 +

(3
2

)2
)
|x0 − y|−2

∣∣Q(y)f(y)
∣∣ (5.18)

whenever |x0−x| < r. In view of (1.6) in Assumption (A) and the inequality
(2.1), the function on the right hand side of (5.18) is integrable on R3. Thus,
we can apply Lebesgue’s convergence theorem to the integral in (5.14), and
conclude that

lim
x→x0

(
fe(x) − fe(x0)

)
= 0. (5.19)

Combining (5.19) with both (5.12) and (5.13) yields

lim sup
x→x0

∣∣f(x)−f(x0)
∣∣ ≤ 2× 3

4π
CqCfε.

Since ε was arbitrary, this completes the proof of assertion (ii). ¤

Proof of Theorem 2.2. Let f satisfy the assumption of the theorem: f ∈
L2,−s for some s with 0 < s ≤ min{3/2, ρ − 1}. In the same manner as in
(5.2) and (5.3), we can show that

H0f = (α · D)f = −Qf ∈ L2,ρ−s, (5.20)
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and that

f = −AQf. (5.21)

Note that s ≤ 3/2 and ρ − s ≥ 1 > 1/2, which we have used to apply
Theorem 4.1 in showing (5.21). Since Qf ∈ L2,ρ−s, ρ − s ≥ 1, we see from
(5.21) and Lemma 3.2 that f ∈ L2. This fact, together with (5.20) and
Lemma 4.1, gives the conclusion of the theorem. ¤

Acknowledgment T.U. would like to express his gratitude to Michael
Loss for the hospitality during his visit to Georgia Institute of Technology,
USA, in April, 2002. Discussions with Michael were one of the motivations
of the present paper. Also, he would like to express his thanks to the
Department of Mathematics, the University of Alabama at Birmingham,
USA, for their hospitality. Part of the present paper was done during his
stay there in March and September, 2006. Finally the authors appreciate
invaluable comments by Michael Loss, Kenji Yajima and the referee. Kenji’s
comments helped us improve the main theorems of the previous version of
the present paper.

References

[ 1 ] Adam C., Muratori B. and Nash C., Zero modes of the Dirac operator in three

dimensions. Phys. Rev. D 60 (1999), 125001-1–125001-8.

[ 2 ] Adam C., Muratori B. and Nash C., Degeneracy of zero modes of the Dirac operator

in three dimensions. Phys. Lett. B 485 (2000), 314–318

[ 3 ] Adam C., Muratori B. and Nash C., Multiple zero modes of the Dirac operator in

three dimensions. Phys. Rev. D 62 (2000), 085026-1–085026-9.

[ 4 ] Aharonov Y. and Casher A., Ground state of a spin-1/2 charged particle in a two-

dimensional magnetic field. Phys. Rev. A 19 (1979), 2461–2462.

[ 5 ] Balinsky A.A. and Evans W.D., On the zero modes of Pauli operators. J. Funct.

Analysis 179 (2001), 120–135.

[ 6 ] Balinsky A.A. and Evans W.D., On the zero modes of Weyl-Dirac operators and

their multiplicity. Bull. London Math. Soc. 34 (2002), 236–242.

[ 7 ] Balinsky A.A. and Evans W.D., Zero modes of Pauli and Weyl-Dirac operators.

Advances in differential equations and mathematical physics (Birmingham, AL,

2002), 1–9, Contemp. Math. 327, Amer. Math. Soc., Providence, RI. 2003.

[ 8 ] Balslev E. and Helffer B., Limiting absorption principle and resonances for the

Dirac operator. Adv. Appl. Math. 13 (1992), 186–215.

[ 9 ] Bugliaro L., Fefferman C. and Graf G.M., A Lieb-Thirring bound for a magnetic

Pauli Hamiltonian, II. Rev. Mat. Iberoamericana 15 (1999), 593–619.

[10] Eckardt K.-J., Scattering theory for Dirac operators. Math. Z. 139 (1974), 105–131.



Massless Dirac operators 387

[11] Elton D.M., The local structure of zero mode producing magnetic potentials. Com-

mun. Math. Phys. 229 (2002), 121–139.

[12] Erdös L. and Solovej J.P., The kernel of Dirac operators on S3 and R3. Rev. Math.

Phys. 13 (2001), 1247–1280.

[13] Erdös L. and Solovej J.P., Uniform Lieb-Thirring inequality for the three-

dimensional Pauli operator with a strong non-homogeneous magnetic field. Ann.
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