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Existence and decay of solutions

to a semilinear Schrödinger equation with magnetic field

Shin-ichi Shirai
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Abstract. In this paper we study the decay properties of solutions to a semilinear

Schrödinger equation, −(∇ − iA)2u + (V − E)u = Q|u|p−2u, on Rn, where n ≥ 2 and

2 < p < 2∗. We give a lower bound estimate of nontrivial solutions at infinity. In

two-dimensional case, we give super-exponential decay estimates of solutions at infinity.

Moreover, we show the existence of a nontrivial solution under additional assumptions

on potentials.

Key words: Gaussian decay of stationary solutions, nonlinear Schrödinger equation, mag-

netic field.

1. Introduction and results

We study the decay properties and the existence of solutions to the
semilinear Schrödinger equation

−(∇− iA)2u + (V − E)u = Q|u|p−2u (1.1)

on Rn, where p > 2 and n ≥ 2. Here, A is a magnetic vector potential, V

is an electric scalar potential, E is a real constant, and Q is a real-valued
function.

We fix some notation. We denote the standard inner product and norm
on Rn by 〈 · , · 〉 and | · |, respectively. We denote by N the set of non-negative
integers. By A + B =: C + D, we mean that C and D are defined by A

and B, respectively. We denote by L2(N, M) the space of all M -valued
L2-functions on N , and denote L2(Rn, C) by L2(Rn), etc. We denote by
C∞

0 (Rn) the space of all (complex-valued) smooth functions on Rn with
compact support. We denote by ρ(T ) and Spec(ess,disc)(T ) the resolvent set
and the (essential, discrete) spectrum of any operator T , respectively. The
symbol 2∗ stands for 2n/(n − 2) if n ≥ 3 and for ∞ if n = 1, 2.

We define the magnetic field B(x) = dA(x) by the n × n matrix
(∂jAk(x)−∂kAj(x))n

j,k=1 for any magnetic vector potential A=(A1, . . . , An).

2000 Mathematics Subject Classification : 35J60; 35B40, 35J10.
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Throughout this paper, we use the notations ∇A = ∇−iA and ∆A = (∇A)2,
where ∇ is the standard gradient. We introduce the function space

H1
A,V (Rn) = {u | u ∈ L2(Rn), ∇Au ∈ L2(Rn), V |u|2 ∈ L1(Rn)}

equipped with inner product

(u, v)H1
A,V

= (∇Au, ∇Av)L2 + (u, V v)L2 + (u, v)L2 .

The equation (1.1) (possibly with more general nonlinear terms or
with semi-classical parameters) has been studied extensively by many au-
thors (see, e.g., Esteban and Lions [Es-Li], Arioli and Szulkin [Ar-Sz],
Chabrowski and Szulkin [Ch-Sz], Cingolani [Cin], Cingolani and Secchi
[Ci-Se1], [Ci-Se2], Schindler and Tintarev [Sc-Ti], Pankov [Pan], Kurata
[Kur], Bartsch, Dancer and Norman [B-D-N], and references therein).

As well as the existence of nontrivial solutions, the exponential decay
property of the solutions is an interesting problem in the theory of nonlin-
ear Schrödinger equations (see, e.g., Pankov [Pan2], [Pan3], Fukuizumi and
Ozawa [Fu-Oz], Rabier and Stuart [Ra-St], Section 8 in Cazenave [Caz],
and references therein). To the author’s knowledge, the resulting weight
functions ρ in the decay estimate |u(x)| ≤ Ce−ρ(x) are given essentially by
the so-called Agmon metric (see Agmon [Agm]), which reflects no magnetic
effect.

The main purpose of the paper is to show that the magnetic field in
fact affects the decay properties at infinity of solutions to (1.1); we obtain
an L2(Rn)-averaged lower bound estimate (Theorem 1.1 below) and super-
exponential decay estimates in two-dimensional case (Theorems 1.3 and
1.4 below). Moreover, in Theorem 1.6 below, we show the existence of a
nontrivial solution for a special class of potentials.

To formulate the result concerning the lower bound estimate, we make
the following conditions on A and V :
(A.1) The magnetic vector potential A belongs to C1(Rn, Rn). Moreover,

the asymptotic strength of the magnetic field

‖B‖∞ = lim sup
|y|→∞

sup
x̂∈Sn−1

|B(y)x̂|

is finite.
(A.2) The scalar potential V is a measurable function on Rn. Moreover, V

is bounded outside a compact set in Rn.
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We have the following L2(Rn)-averaged lower bound for the solutions:

Theorem 1.1 Let n ≥ 2 and p > 2. Assume (A.1) and (A.2). Assume
that the function Q is measurable on Rn. Let u be a solution to (1.1) in
H2

loc(Rn) satisfying the condition:
(N.1) The function Q|u|p−2 is bounded outside a compact set in Rn.
Assume further that the support of u is non-compact. Then the function
exp (κ|x|2)u(x) does not belong to L2(Rn) if κ > ‖B‖∞/4.

Remark 1.2 The lower bound given in Theorem 1.1 is optimal in the
following sense. On the one hand, under the assumption as in the theorem,
no nontrivial solution satisfies the pointwise Gaussian estimate |u(x)| ≤
C exp (−κ|x|2) if κ > ‖B‖∞/4. On the other hand, we can find a nontrivial
solution to (1.1) which satisfies the pointwise Gaussian estimate with κ =
‖B‖∞/4; in fact, such a solution is given by a ground state of the two-
dimensional Schrödinger operator with constant magnetic field in the case
of Q = V = 0.

The next two results concern the upper bound estimate of solutions.
We restrict ourselves to the two-dimensional case. The magnetic field B =
(Bjk)j,k=1,2 is identified with the function B12 because B is anti-symmetric.
In what follows we shall adopt this identification.

We say that a (vector-valued) function f on Rn decays at infinity if for
any ε > 0 there exists a compact set K of Rn such that ‖f‖L∞(Rn\K) ≤ ε

holds.
To formulate the results we make the following conditions on A, V , and

Q:
(A.3) The magnetic vector potential A belongs to C1(R2, R2). Moreover,

the magnetic field has a decomposition B = B0 + B1, where B0 is a
non-zero constant, B1 ∈ C(R2, R), and B1 decays at infinity.

(A.4) The scalar potential has a decomposition V = V1 + V2, where V1 ∈
L2(R2, R), V2 ∈ L∞(R2, R), and V2 decays at infinity.

(A.5) The scalar potential V is bounded from below.
(A.6) There exist positive constants δ, β, and C such that 0 < β < 2 and

|V (x)| ≤ C exp (−δ|x|β)

holds outside a compact set.
(N.2) The function Q belongs to L∞(Rn, R).

The following theorems both show that asymptotically non-zero con-
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stant magnetic fields can create super-exponentially decaying solutions.

Theorem 1.3 Let p > 2. Assume (A.3)–(A.5) and (N.2). Let u be a
solution to (1.1) in H1

A,V (R2). Assume that the real number E does not
belong to the set {(2k + 1)|B0| | k ∈ N}. Then for any α > 0 there exists a
positive constant Cα such that |u(x)| ≤ Cαe−α|x| holds for all x ∈ R2.

Theorem 1.4 Let p > 2. Assume (A.3)–(A.6) and (N.2), and assume
that the function B1 in (A.3) is compactly supported. Let u be a solution to
(1.1) in H1

A,V (R2). Assume that the real number E does not belong to the
set {(2k+1)|B0| | k ∈ N}. Then there exist positive constants µ and C such
that |u(x)| ≤ C exp (−µ|x|1+β/2) holds for all x ∈ R2.

If, in addition, both V and Q have the pointwise Gaussian decay, then
u has the same property.

Remark 1.5
1. The conditions (A.3) and (A.4) ensure the essential self-adjointness of

−∆A+V on C∞
0 (R2) and the relative compactness of the perturbation

V with respect to −∆A. The set {(2k + 1)|B0| | k ∈ N} is often called
the Landau levels, which is the essential spectrum of (the self-adjoint
extension of) −∆A + V .

2. The question whether or not the solutions have the Gaussian decay
property has a subtle nature even when Q = 0. Erdös [Erd] gives an
example of an eigenfunction which decays strictly slower than a Gaus-
sian at infinity under some mild assumptions. For the Gaussian decay
of eigenfunctions, we refer to Erdös [Erd], Nakamura [Nak], Sordoni
[Sor], and Cornean and Nenciu [Co-Ne].

3. As is well known, the additional growth condition on the electro-
magnetic fields improves the decay rate of the solutions. In Theo-
rems 1.3 and 1.4, however, we are interested in the phenomena that
bounded electro-magnetic fields can create super-exponential decaying
solutions.

The existence of a nontrivial solution is assumed in the theorems above.
We now discuss the existence of a nontrivial solution to (1.1). To formulate
the result we make the following conditions on A, V , and Q:
(E.1) The vector potential A is expressed as A = A0 + A1 for some smooth

vector potentials A0 and A1. Moreover, dA0 is Zn-periodic and A1

decays at infinity.
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(E.2) The scalar potential V is expressed as V = V0 + V1 for some smooth
scalar potentials V0 and V1. Moreover, V0 is Zn-periodic and V1 decays
at infinity.

(E.3) The function Q is positive, bounded, and measurable. Moreover, Q

decays at infinity.
Here, we say that a (vector-valued) function f on Rn is Zn-periodic if

f(x + γ) = f(x) holds for any x ∈ Rn and any γ ∈ Zn.
The conditions (E.1) and (E.2) ensure the essential self-adjointness of

H0 = −∆A0 + V0 on C∞
0 (Rn) (see Leinfelder and Simader [Le-Si]). In the

sequel, we shall identify any closable operator with its operator closure.
Our existence result is the following theorem.

Theorem 1.6 Let n ≥ 2 and 2 < p < 2∗. Assume (E.1)–(E.3). Assume
that the real number E belongs to the resolvent set of H0. Then the equation
(1.1) has a solution in H1

A,V (Rn) \ {0}. Moreover, the solution is bounded
and decays at infinity.

Remark 1.7 All the conditions (A.1)–(A.6), (N.1), (N.2), and (E.1)–
(E.3) are satisfied if, e.g., n = 2, the magnetic field B is non-zero constant,
the scalar potential V is smooth and is compactly supported, the function
Q is positive and has the Gaussian decay, and E /∈ Specess(−∆A + V ).

The proof of Theorem 1.6 is more or less standard; the method is based
on a linking theorem and a concentration-compactness type argument. We
give, however, a proof for the sake of completeness. A similar argument
can be found, e.g., in Bartsch and Ding [Ba-Di], [Ba-Di3], Chabrowski and
Szulkin [Ch-Sz], Pankov [Pan2], and Willem and Zou [Wi-Zo].

The organization of this paper is as follows. We give a proof of Theo-
rem 1.1 in Section 2 and give proofs of Theorems 1.3 and 1.4 in Section 3.
In Sections 4–7 we devote ourselves to proving Theorem 1.6. In Section 4
we recall an abstract linking theorem due to Bartsch and Ding [Ba-Di].
In Sections 5 and 6 we formulate a variational setting associated with the
equation (1.1) and apply the linking theorem. In Section 7 we give a proof
of Theorem 1.6.

2. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. The argument is similar
to that used in the proof of Theorem 1.2 in Uchiyama [Uch].
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Throughout this paper we denote by “C” (possibly with some super-
or subscripts) various constants in estimates, which may vary from line to
line. In this section, for simplicity, we write ‖ · ‖ and ( · , · ) for ‖ · ‖L2(Rn)

and ( · , · )L2(Rn), respectively.
For any s, t > 0, we set S(t) = {x ∈ Rn | |x| = t} and B(s, t) = {x ∈

Rn | s < |x| < t}. We denote by dS the standard Haar measure on S(t)
(normalized by dx = dtdS). For x ∈ Rn, we set r = |x| and x̂ = x/r.

Let κ > 0 and m ≥ 1. Let u be a solution satisfying the assumption
of Theorem 1.1. We set ρ(r) = ρ(r; κ, m) = κr2 + mr, w = eρu, and W =
V − E − Q|u|p−2. Following Uchiyama [Uch], we introduce the quantities

k1(r) =−(ρ′(r))2 = −(4κ2r2 + 4κmr + m2),
k2(r) = ρ′′(r) + (n − 1)r−1ρ′(r) = 2nκ + m(n − 1)r−1,

g(r) = (n − 1)r−1 = div(x̂),

F (t) =
∫

S(t)

(
2|〈x̂, ∇Aw〉|2 − (|∇Aw|2 + k1|w|2)

+ g Re[〈x̂, ∇Aw〉w]
)
dS,

G(t; κ, m) =
∫

S(t)

(
|∇Au|2 + ((ρ′(t))2 + 1)|u|2

)
dS,

where Re[ · ] stands for the real part, and then ρ′(r) = 2κr +m, ρ′′(r) = 2κ,

∇k1(r) =−r−1(8κ2r2 + 4κmr)x̂,

∇g(r) = g′(r)x̂ = −(n − 1)r−2x̂.

Lemma 2.1 There exists R > 0 such that if t > s > R then we have

F (t) − F (s)

=
∫

B(s,t)

(
2(2ρ′ − r−1)|〈x̂, ∇Aw〉|2 + 2r−1|∇Aw|2

+ 2Re
[(

W + k2 + gρ′ +
1
2
g′

)
〈x̂, ∇Aw〉w

]
− 2 Im[〈Bx̂, ∇Aw〉w]

+{−〈x̂, ∇k1〉 + g(Re[W ] + k2)}|w|2
)
dx, (2.1)

where Im[ · ] stands for the imaginary part.

Proof. This is a special case of Lemma 2.1 of [Uch] with f = 1, A = Id,
q1 = 0, q2 = W = V − E − Q|u|p−2 and λ = 0 in his notation. Note that
the assumption u ∈ H2

loc is used in the proof in [Uch]. ¤



Semilinear Schrödinger equation with magnetic field 247

Lemma 2.2 For any κ > ‖B‖∞/4 there exists R1 = R1(κ, Q, V, u) > 0
such that F (t) ≥ F (s) holds for any t > s > R1 and any m ≥ 1.

Proof. Let W be as above. Put T = sup|x|≥s |W (x)|, which is uniformly
bounded with respect to (large) s by (A.2) and (N.1). We divide and esti-
mate the integrand on the right-hand side of (2.1) as follows:

I = 2(2ρ′− r−1)|〈x̂, ∇Aw〉|2 = r−1(8κr2 +4mr− 2)|〈x̂, ∇Aw〉|2,
II = 2r−1|∇Aw|2,

III = 2Re
[(

k2 +W + gρ′ +
1
2
g′

)
〈x̂, ∇Aw〉w

]
= 2r−1 Re

[((
(4n− 2)κ +W

)
r +2m(n− 1)− n− 1

2r

)
〈x̂, ∇Aw〉w

]
≥−2r−1

((
(4n− 2)κ +T

)
r +2m(n− 1)+

n− 1
2r

)
|〈x̂, ∇Aw〉||w|

≥−r−1
(
(4n− 2)κ +T

)
(ε1r

2|〈x̂, ∇Aw〉|2 + ε−1
1 |w|2)

− 2r−1m(n− 1)(ε2|〈x̂, ∇Aw〉|2 + ε−1
2 |w|2)

− r−1 n− 1
2r

(|〈x̂, ∇Aw〉|2 + |w|2)

≥−r−1
(
8κr2|〈x̂, ∇Aw〉|2 +

((4n− 2)κ +T )2

8κ
|w|2

)
− r−1

(
3mr|〈x̂, ∇Aw〉|2 +

4m(n− 1)2

3r
|w|2

)
− r−1 n− 1

2r
(|〈x̂, ∇Aw〉|2 + |w|2)

=−r−1
(
8κr2 +3mr +

n− 1
2r

)
|〈x̂, ∇Aw〉|2

− r−1
(((4n− 2)κ +T )2

8κ
+

4(n− 1)2m
3r

+
n− 1
2r

)
|w|2,

where we set ((4n − 2)κ + T )ε1 = 8κ, 2(n − 1)ε2 = 3r, and

IV =−2 Im[〈Bx̂, ∇Aw〉w]≥−r−1
(
2|∇Aw|2 +

1
2
|Bx̂|2r2|w|2

)
,

V =
(
−〈x̂, ∇k1〉+ g(Re[W ] + k2)

)
|w|2

≥ r−1
(
8κ2r2+4κmr + 2n(n− 1)κ +

m(n− 1)2

r
− (n− 1)T

)
|w|2,

Then there exists R1 = R1(n, κ, T ) > 0 such that
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r(I+ II+ III+ IV +V)

≥ 1
2
(2mr− 4− (n− 1)r−1)|〈x̂, ∇Aw〉|2

+
(

8
(
κ2 −

∣∣∣Bx̂

4

∣∣∣2)r2 +4κ
(
r− (n− 1)2

12κr

)
m

+2n(n− 1)κ− ((4n− 2)κ + T )2

8κ
− n− 1

2r
− (n− 1)T

)
|w|2

≥ 1
2
(
2r− 4− (n− 1)r−1

)
|〈x̂, ∇Aw〉|2

+
(

4κ
(
r− (n− 1)2

12κr

)
− ((4n− 2)κ +T )2

8κ
− 1− (n− 1)T

)
|w|2

≥
(
4κ

(
r− (n− 1)2

12κr

)
− ((4n− 2)κ +T )2

8κ
− 1− (n− 1)T

)
|w|2 (2.2)

holds for any m ≥ 1 if r > R1, where we used the condition κ > ‖B‖∞/4.
This shows the lemma. ¤

Lemma 2.3 Let ρ(r) = ρ(r; κ, m) and G(t; κ, m) be as before. For any
κ > ‖B‖∞/4 there exists m ≥ 1 such that

lim inf
t→∞

e2ρ(t;κ, m)G(t; κ, m) > 0.

Proof. We show this by contradiction. Assume that there exists κ >

‖B‖∞/4 such that

lim inf
t→∞

e2ρ(t)G(t; κ, m) = 0

holds for any m ≥ 1.
Using the definition of F (t) and the relation w = eρu, we have

F (t) = e2ρ(t)

∫
S(t)

(
2|〈x̂, ∇Au〉|2 − |∇Au|2 +

n − 1
r

ρ′|u|2

+2(ρ′)2|u|2 +
(
2ρ′ +

n − 1
r

)
Re[〈x̂, ∇Au〉u]

)
dS. (2.3)

Then it follows that

F (t)≤Ce2ρ(t)

∫
S(t)

(
|∇Au|2 + ((ρ′(t))2 + 1)|u|2

)
dS

= Ce2ρ(t)G(t; κ, m)

holds for some C > 0, independent of t and m. By the assumption, we have
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lim inft→∞ F (t) ≤ 0 for each m ≥ 1. Thus it follows that F (t) ≤ 0 holds
for any t > R1 and any m ≥ 1 because F (t) is monotone increasing with
respect to t ≥ R1 by Lemma 2.2.

On the other hand, it follows from (2.3) and the definition of ρ that
e−2ρ(t)F (t) is a quadratic in m and the coefficient of m2 is

2
∫

S(t)
|u|2dS. (2.4)

By the non-compactness of the support of u, there exists R (> R1) such that
the coefficient (2.4) is positive at t = R. Note that R is independent of m.
Hence F (R) > 0 holds for some m ≥ 1. This contradicts the non-positivity
of F . ¤

In what follows we fix the constant m = m(κ) found in the preceding
lemma and we denote G(t; κ, m(κ)) simply by G(t; κ).

Lemma 2.4 Assume that κ0 > κ1 > ‖B‖∞/4. Then we have

lim
t→∞

e2κ0t2G(t; κ1) = ∞.

Proof. Let κ0 > κ1 > ‖B‖∞/4. Setting ε = (κ0 − κ1)/2, we have

ρ(t; κ1) = κ1t
2 + m(κ1)t ≤ (κ1 + ε)t2 + Cε

= κ0t
2 + Cε −

(κ0 − κ1)t2

2
for some constant Cε. Then it follows from Lemma 2.3 that

lim
t→∞

e2κ0t2G(t, κ1) ≥ e−2Cε lim inf
t→∞

e(κ0−κ1)t2e2ρ(t;κ1)G(t, κ1) = ∞.

This shows the lemma. ¤

Let ζ be a smooth function on R satisfying the conditions: 0 ≤ ζ ≤ 1
on R, ζ(t) = 1 if 1/3 ≤ t ≤ 2/3, and supp(ζ) ⊂ (0, 1). For any R > 0, we
set ζR(r) = ζ(r − R) with r = |x|.

Lemma 2.5 Let u be the solution. There exist positive constants R2 and
C such that

‖ζR∇Au‖2 ≤ C

∫
B(R,R+1)

|u(x)|2dx

holds for any R > R2.
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Proof. Let W = V −E −Q|u|p−2. By (A.2) and (N.1), there exist R2 > 0
and T > 0 such that |((ζR)2Wu, u)| ≤ T‖ζRu‖2 holds for any R > R2.
Then, using the equation (1.1), we have

0 =
(
(ζR)2(−∆A + W )u, u

)
= ‖ζR∇Au‖2 +

(
[(ζR)2, ∇A]∇Au, u

)
+

(
(ζR)2Wu, u

)
≥ 1

2
‖ζR∇Au‖2 − (C + T )

∫
B(R,R+1)

|u(x)|2dx,

where we used the identity [(ζR)2, ∇A] = −2x̂(ζR)′ζR. Here, the constant
C is independent of R. This proves the lemma. ¤

Proof of Theorem 1.1. Fix κ > ‖B‖∞/4. Let κ > κ0 > κ1 > ‖B‖∞/4. By
Lemma 2.4, for any M > 0 there exists R3 > 0 such that

G(t; κ1) ≥ Me−2κ0t2 (2.5)

holds for any t > R3. Then for R > R3 we have

M
(∫ 1

0
ζ(t)2dt

)
e−2κ0(R+1)2

≤M

∫ R+1

R
ζR(t)2e−2κ0t2dt ≤

∫ R+1

R
ζR(t)2G(t; κ1)dt

≤
∫

B(R,R+1)
|ζR(|x|)(∇Au)(x)|2dx +

∫
B(R,R+1)

(1 + (ρ′(r; κ1))2)|u(x)|2dx

≤C

∫
B(R,R+1)

(1 + |x|2)|u(x)|2dx (2.6)

for some C > 0, independent of R, where we used ((2.5)) in the second
inequality and used Lemma 2.5 in the last inequality. Then it follows from
((2.6)) that there exists C > 0 such that

CM ≤ e2κ0(R+1)2
∫

B(R,R+1)
(1 + |x|2)|u(x)|2dx. (2.7)

Hence, for any ε > 0 we have

‖eκ|x|2u‖2 ≥
∫

B(R,R+1)
e2κ|x|2 |u(x)|2dx

≥Cε

∫
B(R,R+1)

e2(κ−ε)|x|2(1 + |x|2)|u(x)|2dx
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≥Cεe
2(κ−ε)R2

e−2κ0(R+1)2e2κ0(R+1)2
∫

B(R,R+1)
(1 + |x|)2|u(x)|2dx

≥CεM exp (2(κ − ε)R2 − 2κ0(R + 1)2), (2.8)

where we used (2.7) in the last inequality. If we set ε = (κ − κ0)/2 (> 0),
the right-hand side of (2.8) is bounded from below by CεM for any large R.
This completes the proof of Theorem 1.1 because M > 0 is arbitrary. ¤

3. Proof of Theorem 1.3 and Theorem 1.4

In this section we show Theorem 1.3 and Theorem 1.4. Our proof is
based on the simple (and obvious) fact that if u is a solution to (1.1) then
u solves also the linear equation (3.9) below. Therefore we can reduce the
problem to the decay estimate of solutions to a linear elliptic equations. The
same argument can be found in Chabrowski and Szulkin [Ch-Sz], Pankov
[Pan3], etc.

The crucial step is to establish a priori L∞-estimate for the solutions
(Corollary 3.4 below). This is done by a bootstrap argument. Although
this kind of argument is standard in the theory of elliptic equation, we give
proofs for the sake of completeness.

Lemma 3.1 Let n ≥ 2. Assume that the vector potential A belongs to
L2

loc(Rn, Rn). Then we have the following assertions:
( i ) The map H1

A,0(Rn) 3 u 7→ |u| ∈ H1(Rn) is continuous.
( ii ) The embedding H1

A,0(Rn) into Lq(Rn) is continuous if 2 ≤ q < 2∗.
(iii) The restriction H1

A,0(Rn) to Lq(Ω) is compact if 2 ≤ q < 2∗ and Ω is
a bounded open set.

Proof. The dia-magnetic inequality
∣∣∇|v|

∣∣ ≤ |∇Av| holds if v ∈ L2(Rn),
∇Av ∈ L2(Rn, Rn), and A ∈ L2

loc(Rn, Rn) (see, e.g., Lieb and Loss [Li-Lo],
Theorem 7.21). This implies the assertion (i). The assertions (ii) and (iii)
follow from the Sobolev inequality and the Rellich-Kondrashov theorem.

¤

Before proceeding to the proof of Theorems 1.3 and 1.4, we consider
the linear Schrödinger equation

−∆Aψ + V+ψ = gψ (3.1)

in the sense of distribution on Rn. We make the following conditions on V+

and g:
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(C.1) The function V+ is non-negative and belongs to L1
loc(Rn).

(C.2) The function g belongs to L∞(Rn).
(C.3) There exists γ > n/2 such that g belongs to L∞(Rn) + Lγ(Rn).

Lemma 3.2 ([Ch-Sz]) Let n ≥ 2. Assume that A belongs to L2
loc(Rn, Rn).

Assume (C.1) and (C.2). Assume that ψ is a solution to (3.1) in H1
A,V+

(Rn).
Then ψ is bounded and decays at infinity.

Proof. This result can be found in Chabrowski and Szulkin [Ch-Sz], Propo-
sition 2.2 and Remark 2.4. A similar argument can be found in the proof
of Theorem 5.1 in Agmon [Agm]. However, we give a proof for the sake of
completeness.

Let ψ be as above and let β > 1 and L > 0. Let η ∈ C1(Rn, R) ∩
L∞(Rn) and ∇η ∈ L∞(Rn). Set φ(x) = η(x)2ψ(x)min{|ψ(x)|β−1, L}. We
note that ψ ∈ Lq(Rn) for some q > 2 by Lemma 3.1.

As in the same way to deduce the formula (2.2) in [Ch-Sz] (or by a
direct calculation using Re(ψ̄∇Aψ) = |ψ|∇|ψ|), we find that

Re(∇Aψ∇Aφ)

= |∇Aψ|2η2 min{|ψ|β−1, L} + 2η∇η(∇|ψ|)|ψ|min{|ψ|β−1, L}
+(β − 1)η2|ψ|β−1

∣∣∇|ψ|
∣∣2χ{|ψ|β−1<L}

≥ |∇Aψ|2η2 min{|ψ|β−1, L} + 2η∇η(∇|ψ|)|ψ|min{|ψ|β−1, L}, (3.2)

where χΩ is the characteristic function on Ω.
By (C.2), there exists a > 0 such that |g(x)| ≤ a for all x ∈ Rn. Testing

the equation (3.1) with φ and using (3.2), we obtain the estimate∫
Rn

|∇Aψ|2η2 min{|ψ|β−1, L}dx

+ 2
∫

Rn

η∇η(∇|ψ|)|ψ|min{|ψ|β−1, L}dx

≤
∫

Rn

a|ψ|2η2 min{|ψ|β−1, L}dx. (3.3)

By the dia-magnetic inequality we have

1
2
η2

∣∣∇|ψ|
∣∣2 − 2|ψ|2|∇η|2 ≤ η2

∣∣∇|ψ|
∣∣2 + (2|ψ|∇η)(η∇|ψ|)

≤ η2|∇Aψ|2 + 2η∇η(∇|ψ|)|ψ|.
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Then by (3.3) we have

1
2

∫
Rn

∣∣∇|ψ|
∣∣2η2 min{|ψ|β−1, L}dx

≤ 2
∫

Rn

|∇η|2|ψ|2 min{|ψ|β−1, L}dx +
∫

Rn

a|ψ|2η2 min{|ψ|β−1, L}dx.

Letting L → ∞ we obtain

1
2

∫
Rn

∣∣∇|ψ|
∣∣2η2|ψ|β−1dx ≤ 2

∫
Rn

|∇η|2|ψ|β+1dx +
∫

Rn

aη2|ψ|β+1dx.

Substituting w = |ψ|(β+1)/2 in this inequality, we obtain

2
(β + 1)2

∫
Rn

|∇w|2η2dx ≤ 2
∫

Rn

|∇η|2w2dx +
∫

Rn

aw2η2dx.

Then, since∫
Rn

|∇(wη)|2dx ≤ 2
∫

Rn

|∇w|2η2dx + 2
∫

Rn

|∇η|2w2dx,

we obtain ∫
Rn

|∇(wη)|2dx +
∫

Rn

w2η2dx

≤ 2
(
(β + 1)2 + 1

)∫
Rn

|∇η|2w2dx +
∫

Rn

(
a(β + 1)2 + 1

)
w2η2dx. (3.4)

The Sobolev embedding theorem yields

‖wη‖2
H1(Rn) ≥ S2

r‖wη‖2
Lr(Rn), (3.5)

where S2
r = inf{‖ψ‖2

H1(Rn) | ‖ψ‖Lr(Rn) = 1} for any r with 2 ≤ r < 2∗.
From (3.4) and (3.5), we obtain

S2
r‖wη‖2

Lr(Rn) ≤ 2
(
(β + 1)2 + 1

) ∫
Rn

|∇η|2w2dx

+
∫

Rn

(
a(β + 1)2 + 1

)
w2η2dx. (3.6)

Let x0 ∈ Rn. We now make the following additional assumption on
η: 0 ≤ η ≤ 1 on Rn, η(x) = 1 in B(x0, ρ1), η(x) = 0 outside B(x0, ρ2),
|∇η(x)| ≤ 2/(ρ2 − ρ1) on Rn and 1 ≤ ρ1 < ρ2 ≤ 2. Fix r with 2 < r < 2∗
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and set t = r/2. Then it follows from (3.6) with w = |ψ|(β+1)/2, q = β + 1
and r = 2t that(∫

B(x0,ρ1)
|ψ|qtdx

)1/(qt)
≤

[ Aq

(ρ2 − ρ1)

]2/q(∫
B(x0,ρ2)

|ψ|qdx
)1/q

for some constant A, independent of q, ρ1, ρ2. Iterating this inequality with
sm = 1 + 2−m, ρ1 replaced by sm, ρ2 replaced by sm−1 for m ≥ 1 and q

replaced by qtm−1 (> 2), we obtain(∫
B(x0,sm)

|ψ|qtmdx
)1/(qtm)

≤
[ Aqtm−1

(ρ2 − ρ1)

]1/(qtm−1)(∫
B(x0,sm−1)

|ψ|qtm−1
dx

)1/(qtm−1)

= (Aq)1/qtm−1
2m/qtm−1

t(m−1)/qtm−1
(∫

B(x0,sm−1)
|ψ|qtm−1

dx
)1/(qtm−1)

≤ . . .

≤ (Aq)
Pm−1

j=0 1/qtj2
Pm−1

j=0 (j+1)/qtj t
Pm−1

j=0 j/qtj
(∫

B(x0,s0)
|ψ|qdx

)1/q
.

Since all the sums above converge, we have

‖ψ‖Lqtm (B(x0,1)) ≤ C‖ψ‖Lq(B(x0,2))

for some C = Ct,q > 0, independent of x0. By letting m → ∞, we conclude
that

sup
B(x0,1)

|ψ(x)| ≤ C‖ψ‖Lq(B(x0,2)).

This implies the boundedness and the decay of ψ at infinity because ψ ∈
Lq(Rn) as we mentioned at the beginning of this proof. ¤

Lemma 3.3 Let n ≥ 3. Assume that A belongs to L2
loc(Rn, Rn). Assume

(C.1) and (C.3). Assume that ψ is a solution to (3.1) in H1
A,V+

(Rn). Then
ψ belongs to Lq(Rn) for any q ≥ 2.

Proof. We mimic the proof of Lemma 2.1 in Chabrowski and Szulkin
[Ch-Sz]. Let β > 1 and let γ be as in (C.3). Set w = |ψ|(β+1)/2. We
may assume that |g(x)| ≤ a + b(x) for some a ∈ R and b ∈ Lγ . Repeating
the argument used to derive (3.6) in the proof of Lemma 3.2 replaced a by
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a + b, η by 1, we have

S2
r‖w‖2

Lr ≤ (β + 1)2
∫

bw2dx +
(
a(β + 1)2 + 1

) ∫
w2dx (3.7)

for any r with 2 ≤ r < 2∗. Here, the constant S2
r is as before. The Hölder

inequality yields∫
bw2dx ≤ N

∫
w2dx +

(∫
b>N

bγdx
)1/γ(∫

w2γ/(γ−1)dx
)(γ−1)/γ

(3.8)

for any N > 0.
Setting r = 2γ/(γ − 1) we deduce from (3.7) and (3.8) that(

S2
r − (β + 1)2

(∫
b>N

bγdx
)1/γ

)
‖ψ‖β+1

Lγ(β+1)/(γ−1)

≤
(
(a + N)(β + 1)2 + 1

)
‖ψ‖β+1

Lβ+1

for any N > 0. Note that the condition 2 ≤ r < 2∗ is equivalent to γ > n/2.
This shows that if ψ ∈ Lq(Rn) for some q (= β + 1) > 2 then ψ ∈

Lqγ/(γ−1)(Rn). Iterating this procedure we deduce that ψ ∈ Lq(Rn) for all
q > 2 by interpolation. This completes the proof because ψ ∈ H1

A,V+
is

assumed. ¤

Corollary 3.4 Let n ≥ 2. Let p > 2 if n = 2, and 2 < p < 2∗ if n ≥ 3.
Assume that A belongs to L2

loc(Rn, Rn). Assume (A.4), (A.5) and (N.2).
Then every solution to (1.1) in H1

A,V (Rn) is bounded and decays at infinity.

Proof. Let u be such a solution to (1.1) and let p be as above. First, we
show the boundedness of u. Obviously ψ = u solves (3.1) with V+ = V+ and
g = (E + V−) + Q|u|p−2. The condition (A.4) implies that the non-negative
part V+ of V belongs to L1

loc(R2) because V+ ≤ |V | ≤ |V1| + |V2| holds.
Thus the condition (C.1) holds.

We claim that |u| + |u|p−1 ∈ Lq(Rn) for all q ≥ 2. If n = 2, this claim
follows from Lemma 3.1 because ψ = u ∈ H1

A,V (Rn) and p > 2. If n ≥ 3,
the condition (C.3) holds because g = (E + V−) + Q|u|p−2 ∈ L∞(Rn) +
Lp/(p−2)(Rn) and p/(p − 2) > n/2, which is equivalent to 2 < p < 2∗. Thus
it follows from Lemma 3.3 that ψ = u ∈ Lq(Rn) for all q ≥ 2 and therefore
|u| + |u|p−1 ∈ Lq(Rn) for all q ≥ 2 because p > 2. This shows the claim.

Under the assumptions on A and V above, the space C∞
0 (Rn) is a form

core for the self-adjoint operator −∆A+V++1 with form domain H1
A,V (Rn),
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and moreover the following version of the dia-magnetic inequality

|(−∆A + V+ + 1)−1f | ≤ (−∆ + 1)−1|f |

holds for all f ∈ C∞
0 (Rn) (see Lemmata 1 and 6, Theorem 1 in Leinfelder

and Simader [Le-Si]). This inequality is still valid for any f ∈ Lq(Rn) for
any q > 1 because C∞

0 (Rn) is dense in Lq(Rn) and the operator (−∆+1)−1

is bounded on Lq(Rn).
By the equation (1.1), we have

(−∆A + V+ + 1)u = (E + 1 + V−)u + Q|u|p−2u

and then, by the dia-magnetic inequality above,

|u| ≤ (−∆ + 1)−1(|E + 1 + V−||u| + ‖Q‖L∞ |u|p−1).

By the claim above, the right-hand side belongs to (−∆ + 1)−1Lq(Rn) =
W 2,q(Rn) for any q ≥ 2. Then the boundedness of u follows from the
Sobolev embedding theorem.

Finally, we show the decay of u. The function ψ = u solves the linear
equation (3.1) with V+ = V+ and g = E + V− − Q|u|p−2. The condition
(C.1) is satisfied as we mentioned above. The condition (C.2) is satisfied
by (N.2), (A.5) and the boundedness of u proven above. Then the assertion
follows from Lemma 3.2. ¤

Proof of Theorem 1.3. Let u be a solution to (1.1) in H1
A,V (R2) and let

V = V1 + V2 be the decomposition as in (A.4). The function ψ = u solves
the linear equation

−∆Aψ + (W − E)ψ = 0, (3.9)

where W = V − Q|u|p−2 = V1 + (V2 − Q|u|p−2). By Corollary 3.4, the L∞-
part V2 − Q|u|p−2 of the potential W decays at infinity, and therefore the
theorem follows from Theorem 4.1 in Cornean and Nenciu [Co-Ne]. ¤

Proof of Theorem 1.4. Let u be the solution as in Theorem 1.4 and let
W = V −Q|u|p−2. By (A.6) and Theorem 1.3, there exists δ > 0 and C > 0
such that |W (x)| ≤ C(e−δ|x|β + e−α|x|) ≤ C exp (−δ|x|β∧1) holds outside a
compact set. Here, we denote by a ∧ b the minimum of a and b.

We now apply Theorem 4.2 in Cornean and Nenciu [Co-Ne] to the
equation (3.9). Note that u is bounded by Corollary 3.4. Then there exist
µ1 > 0 and C1 > 0 such that |u(x)| ≤ C1 exp (−µ1|x|β1) holds with β1 =
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1 + (β ∧ 1)/2. This estimate of u yields the estimate

|W (x)| ≤C(e−δ|x|β + e−(p−2)µ1|x|β1 )

≤C exp (−(δ ∧ (p − 2)µ1)|x|β∧β1),

and again by Theorem 4.2 in [Co-Ne] there exist µ2 > 0 and C2 > 0 such
that |u(x)| ≤ C2 exp (−µ2|x|β2) holds with β2 = 1 + (β ∧ β1)/2. Repeating
this procedure we can deduce that there exist µj > 0 and Cj > 0 such that
|u(x)| ≤ Cj exp (−µj |x|βj ) holds with βj+1 = 1 + (β ∧ βj)/2 for any j ∈ N,
where we set β0 = 1.

We claim that there exists j such that βj > β. Otherwise, we have
β ≥ βj for all j, and hence βj+1 = 1 + (β ∧ βj)/2 = 1 + βj/2. Then we
have βj = 2 − 2−j , and therefore βj > β for large j since 0 < β < 2. This
is a contradiction and we have the claim. Therefore the first assertion in
Theorem 1.4 obeys.

When both V and Q have the Gaussian decay, we find that |W (x)| ≤
C exp (−δ|x|2) and then the second assertion in the theorem follows from
Theorem 4.3 in [Co-Ne], which is valid also for β = 2. ¤

4. A linking theorem

In this section we recall a linking theorem due to Bartsch and Ding
[Ba-Di] (see also [Ba-Di2], [Kr-Sz]). This result is needed in Section 6 below.

For any (real) Banach space X, we denote by w and w∗ the weak
topology on X and the weak-∗ topology on the dual space X ′, respectively.
For any ρ ≥ 0, we write Bρ(X) = {u ∈ X|‖u‖X ≤ ρ} and Sρ(X) = {u ∈
X|‖u‖X = ρ}. We write uk ⇀ u for the weak convergence of a sequence
{uk} to u.

Let X be a Banach space with direct sum decomposition X = X1 ⊕X2

and PXj the corresponding projection onto Xj for j = 1, 2. Assume that
X1 is separable and reflexible. For a functional Φ, we write Φa = {u ∈ X |
Φ(u) ≥ a}. Recall that a sequence {uk} in X is said to be a (C)c-sequence
for Φ if Φ(uk) → c and (1 + ‖uk‖X)‖Φ′(uk)‖X′ → 0 as k → ∞.

Let S be a dense subset of X ′
1. For each s ∈ S we define a seminorm

on X by ps(u) = |s(u1)| + ‖u2‖X for any u = u1 + u2 ∈ X. We denote by
TS the induced topology by the family {ps}s∈S .

To formulate the result we make the following conditions.
(Φ0) For any c ∈ R, the set Φc is TS-closed and the map Φ′ : (Φc, TS) →
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(X∗, w∗) is continuous.
(Φ1) For any c > 0, there exists ζ > 0 such that ‖u‖X < ζ‖PX2u‖X for any

u ∈ Φc.
(Φ2) There exists ρ > 0 such that κ = inf Φ(Sρ(X2)) > 0 holds.

Theorem 4.1 ([Ba-Di], Theorem 5.1) Assume (Φ0)–(Φ2). Assume fur-
ther that there exist a positive number R and a unit vector e ∈ X2 such
that 0 < ρ < R and supΦ(∂U) ≤ κ, where U = {u = x + te | x ∈ X1, t ≥
0, ‖u‖X < R}. Then Φ has a (C)c-sequence with κ ≤ c ≤ supΦ(U).

A sufficient condition to (Φ0) is given by the following lemma.

Lemma 4.2 ([Ba-Di], Proposition 5.4) Let X = X1 ⊕ X2 be as above.
Assume that Φ ∈ C1(X, R) and Φ is of the form Φ(u) = (1/2)(‖u2‖2

X −
‖u1‖2

X) − Ψ(u) for any u = u1 + u2 ∈ X = X1 ⊕ X2. Assume
( i ) The functional Ψ is bounded from below and Ψ ∈ C1(X, R).
( ii ) The map Ψ: (X, w) → R is sequentially lower semi-continuous, i.e.,

Ψ(u) ≤ lim inf Ψ(uk) holds whenever uk ⇀ u in X.
(iii) The map Ψ′ : (X, w) → (X ′, w∗) is sequentially continuous.
(iv) The map ν : X 3 u 7→ ‖u‖2

X ∈ R is C1 and ν ′ : (X, w) → (X ′, w∗) is
sequentially continuous.

Then Φ satisfies the condition (Φ0).

5. Spectral property of the linear part

In this section we recall some spectral property of the linear part of the
equation (1.1). For the theory of the magnetic Schrödinger operators, we
refer to Mohamed and Raikov [Mo-Ra].

In the following we always assume (E.1)–(E.3) and that that n ≥ 2 and
2 < p < 2∗. For simplicity, we write H1

A for the space H1
A,0(Rn). Without

loss of generality, we may assume that any inner-product on a complex
Hilbert space is linear with respect to the first component, i.e., (αu, βv) =
αβ̄(u, v) holds for any α, β ∈ C.

Corresponding to the decompositions of A and V as in (E.1) and (E.2),
we set

H = −(∇− iA)2 + V, H0 = −(∇− iA0)2 + V0.

Both of the operators are essentially self-adjoint on C∞
0 (Rn) under (E.1)

and (E.2), and the operator H − H0 is relatively compact with respect to
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H0 because of the decay of A1 and V1 (see, e.g., Hempel [Hem], [Mo-Ra]).
In particular, the essential spectrum of the operator H coincides with that
of H0. In other words, the operator H may have discrete spectra in the
spectral gaps of H0.

The spectral theory of the magnetic Schrödinger operator H0 has a rich
structure. The Bloch-Floquet analysis tells us that the spectrum of H0 is
the locally finite union of closed intervals if the magnetic flux of B0 = dA0

over a unit cell [0, 1] × [0, 1] is integer.

Lemma 5.1 Let E ∈ R. Assume (E.1) and (E.2). Then the space H1
A

coincides with the domain D(|H − E|1/2) equipped with the graph norm
|||u|||E = (‖|H − E|1/2u‖2

L2 + ‖u‖2
L2)1/2. Moreover, we have

C(E, V )−1‖u‖2
H1

A
≤ |||u|||2E ≤ C(E, V )‖u‖2

H1
A

for any u ∈ H1
A, where C(E, V ) = ‖V ‖L∞ + 2max{E − inf Spec(H), 0}.

Proof. Let PH(I) be the spectral projection of H on I. The self-adjoint op-
erator |H−E|1/2 is defined by the spectral representation

∫
|λ−E|1/2dPH(λ).

Note that C∞
0 (Rn) is a core for both H and |H − E|1/2 under (E.1) and

(E.2). We denote inf Spec(H) by E0 for simplicity. For any u ∈ C∞
0 (Rn)

we have

|||u|||2E

=
∫

R
|λ − E|d(PH(λ)u, u)L2 + ‖u‖2

L2

=
∫

R
(λ − E)d(PH(λ)u, u)L2 − 2

∫ E

−∞
(λ − E)d(PH(λ)u, u)L2 + ‖u‖2

L2

= (u, (H − E)u)L2 − 2(u, (H − E)PH((−∞, E])u)L2 + ‖u‖2
L2

= ‖u‖2
H1

A
+ (u, (V − E)u)L2 − 2(u, (H − E)PH((−∞, E])u)L2 ,

and

|(u, (V − E)u)L2 − 2(u, (H − E)PH((−∞, E])u)L2 |
≤ (‖V ‖L∞ + |E| + 2(E − E0) ∨ 0)‖u‖2

L2 .

Here, we used the fact that support of PH is contained in [E0, ∞). This
completes the proof. ¤

We introduce the magnetic translation with respect to A0. For each
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γ ∈ Zn there exists a real-valued smooth function ϕγ on Rn such that

A0(x + γ) − A0(x) = dϕγ(x) (5.1)

holds for any x ∈ Rn because d(A0(x+γ)−A0(x)) = dA0(x+γ)−dA0(x) =
0 by (E.1) and Rn is simply connected. We find that for each γ ∈ Zn

there exists a real constant C(γ) such that the cocycle condition ϕ−γ(x) =
−ϕγ(x−γ)+C(γ) holds for all x ∈ Rn. It is not hard to verify that C(γ) =
C(−γ) and 2ϕ0(x) = C(0). We may assume that ϕ0 = 0 and C(0) = 0
without loss of generality.

For any γ ∈ Zn we define the magnetic translation Sγ by

(Sγu)(x) = e−iϕγ(x)u(x + γ) (5.2)

for any u ∈ H1
A. We find that S−1

γ = eiC(γ)S−γ and therefore Sγ is a unitary
operator on L2(Rn).

Lemma 5.2 Let Sγ be as above. For any γ ∈ Zn we have the following
assertions:
( i ) ∇A0Sγ = Sγ∇A0 and H0Sγ = SγH0 hold on C∞

0 (Rn).
( ii ) HSγ = SγH0 + SγR1(γ) holds on C∞

0 (Rn), where we set

R1(γ) = i∇A0 ◦ A1( · − γ) + iA1( · − γ) ◦ ∇A0 + (A2
1 + V1)( · − γ)

= i∇A ◦ A1( · − γ) + iA1( · − γ) ◦ ∇A + (A2
1 + V1)( · − γ)

−2A1 ◦ (A1( · − γ)),

where the notation “ ◦ ” stands for the composition of operators. (For
example, (A1 ◦ (A1( · − γ))u)(x) = A1(x)A1(x − γ)u(x).)

(iii) The operator Sγ defines an isometric isomorphism on Lq(Rn) for any
q.

Proof. It is easy to see that the operator identity S−1
γ FSγ = F ( · −γ) holds

for any multiplication operator F and any γ ∈ Zn. In particular, every Sγ

commutes with any multiplication operators by Zn-periodic functions. Then
the assertion (i) follows from (5.1) and this fact. The assertion (ii) follows
from a direct computation and the identity H−H0 = i∇A0 ◦A1 + iA1∇A0 +
A2

1 + V1. The assertion (iii) follows from the identity |Sγu(x)| = |u(x + γ)|.
¤

Lemma 5.3 Every Sγ defines a homeomorphism on H1
A. Moreover, the

operator Sγ is uniformly bounded on H1
A with respect to γ.
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Proof. By Lemma 5.2 (i) we have

∇ASγ = (∇A0 − iA1)Sγ = Sγ

(
∇A + i(A1 − A1( · − γ))

)
.

Then for any u ∈ C∞
0 (Rn) we have

‖Sγu‖2
H1

A
= ‖∇ASγu‖2

L2 + ‖Sγu‖2
L2

≤ (‖∇Au‖L2 + 2‖A1‖L∞‖u‖L2)2 + ‖u‖2
L2

≤ (8‖A1‖2
L∞ + 2)‖u‖2

H1
A
,

where we used the unitarity of Sγ on L2. This shows that Sγ maps H1
A to

itself and supγ ‖Sγ‖ ≤ 8‖A1‖2
L∞ + 2. The rest of the assertion follows from

S−1
γ = eiC(γ)S−γ . ¤

6. The energy functional and its properties

In this section we define an energy functional associated with the equa-
tion (1.1) and show that the functional possesses the linking geometry as in
Section 4. The functional has consequently a (C)c-sequence (Proposition 6.7
below).

We first recall that any complex Hilbert space H with inner product
( · , · )H has a natural real Hilbert space structure, i.e., Hr (= H as a set)
with real inner product Re( · , · )H. In the sequel we often write H also for
Hr if there is no fear of confusion.

In the rest of this paper we assume that the real constant E does not
belong to the essential spectrum of H. We introduce the new norm (‖|H −
E|1/2u‖2

L2 +‖PH({E})u‖L2)1/2 on D(|H−E|1/2), which is equivalent to the
graph norm ||| · ||| as in Lemma 5.1. In what follows we adopt this new
norm on D(|H − E|1/2).

Let X be the real Hilbert space Hr for Hc = D(|H − E|1/2) with the
norm (and the induced inner product) as above. More precisely, X coincides
with H1

A = D(|H − E|1/2) as a set and the inner product ( · , · )X is given
by

(u, v)X = Re(|H − E|1/2u, |H − E|1/2v)L2 + Re(PH({E})u, v)L2

for any u, v ∈ X.
Corresponding to the spectral decomposition

H1
A = PH

(
(−∞, E)

)
H1

A ⊕ PH({E})H1
A ⊕ PH

(
(E, ∞)

)
H1

A,
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we have the orthogonal decomposition X = X− ⊕ X0 ⊕ X+. The spectral
theorem yields ‖u‖2

X = ‖u−‖2
X + ‖u+‖2

X + ‖u0‖2
L2 for any u = u− + u0 +

u+ ∈ X.
Let 2 < p < 2∗. We define two functionals Φ and Ψ on X by

Φ(u) =
1
2
(
‖u+‖2

X − ‖u−‖2
X

)
− 1

p

∫
Rn

Q|u|pdx, (6.1)

Ψ(u) =
1
p

∫
Rn

Q|u|pdx,

where u = u− + u0 + u+ ∈ X = X− ⊕ X0 ⊕ X+. The functionals are
well-defined on X by Lemmata 5.1 and 3.1 because Q is bounded.

Lemma 6.1 We have the following assertions:
( i ) The functional Φ belongs to C1(X, R) and has the Fréchet derivative

Φ′ given by

X′〈Φ′(u), h〉X = Re(u+, h+)X

− Re(u−, h−)X − Re
∫

Q|u|p−2uhdx, (6.2)

where h = h− + h0 + h+ ∈ X. Here, the notation X′〈 · , · 〉X stands for
the pairing of X ′ and X.

(ii) The functional Ψ belongs to C1(X, R) and satisfies

‖Ψ′(u)‖X′ ≤ C‖Q‖1/p
L∞

(∫
Q|u|pdx

)(p−1)/p
(6.3)

for any u ∈ X and some C > 0.

Proof. The proof of the assertion (i) and the first part of the assertion (ii)
is standard; in fact, one can show the continuity of the Gâteaux derivative
of Φ. We omit the detail and refer to Willem [Wil].

The inequality (6.3) follows from the estimate

|X′〈Ψ′(u), h〉X | ≤
∫

|Q1/pu|p−1|Q1/ph|dx

≤‖Q‖1/p
L∞

(∫
(|Q1/pu|p−1)p/(p−1)dx

)(p−1)/p
‖h‖Lp

≤Cp‖Q‖1/p
L∞

(∫
Q|u|pdx

)(p−1)/p
‖h‖H1

A
,

where we used the Hölder inequality in the second inequality and Lemma 3.1
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in the last inequality. ¤

Lemma 6.2 For any p ≥ 2, there exists a positive constant Cp such that∣∣|u + v|p−2(u + v) − |u|p−2u
∣∣ ≤ Cp|v|(|u|p−2 + |v|p−2)

holds for any u, v ∈ C.

Proof. The assertion for p = 2 is obvious. Let p > 2 and set f(x, y) = (x2+
y2)(p−2)/2x for (x, y) ∈ R2. We have fx(x, y) = (p−2)(x2+y2)(p−2)/2−1x2+
(x2 + y2)(p−2)/2 and fy(x, y) = (p − 2)(x2 + y2)(p−2)/2−1xy. By the Taylor
expansion

f(x + h, y + k) − f(x, y)

= hfx(x + θh, y + θk) + kfy(x + θh, y + θk),

where θ ∈ [0, 1], there exists Cp > 0 such that

|f(x + h, y + k) − f(x, y)|
≤ Cp|h + ik|(|x + iy|p−2 + |h + ik|p−2) (6.4)

holds for all x, y, h, k ∈ R.
The lemma follows from (6.4) and (6.5) because

|u + v|p−2(u + v) − |u|p−2u

= (f(x + h, y + k) − f(x, y)) + i(f(y + k, x + h) − f(y, x)) (6.5)

for any u = x + iy, v = h + ik. ¤

Lemma 6.3 The functional Φ satisfies the condition (Φ0) in Section 4.

Proof. We verify (i)–(iv) in Lemma 4.2 with X = X, X1 = X− ⊕ X0,
X2 = X+, Φ = Φ, and Ψ = Ψ. The property (i) follows from the positivity
of Q and the proof of Lemma 6.1. Let uk ⇀ u in X. Lemma 3.1 (iii) implies
that uk(x) → u(x) a.e. Then the property (ii) follows from Fatou’s lemma.

We show the property (iii) in Lemma 4.2. Let uk ⇀ u in X and let
r > 0. For any h ∈ C∞

0 ({x ∈ Rn | |x| < r}), we have

|X′〈Ψ′(uk), h〉X − X′〈Ψ′(u), h〉X |

≤ ‖Q‖L∞

∫
|x|≤r

∣∣|uk|p−2uk − |u|p−2u
∣∣|h|dx
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≤ Cp‖Q‖L∞

∫
|x|≤r

|uk − u|(|u|p−2 + |uk − u|p−2)|h|dx

≤ C‖uk − u‖Lp(|x|≤r)(‖uk − u‖p−2
Lp(|x|≤r) + ‖u‖p−2

Lp(|x|≤r))‖h‖H1
A

(6.6)

for some C > 0, where we used Lemma 6.2 in the second inequality, the
Hölder inequality, and Lemma 3.1 in the third inequality. The rightmost of
(6.6) tends to zero as k → ∞ because uk → u in Lp(|x| ≤ r) by Lemma 3.1.

For any h ∈ X there exists a sequence {hj} in C∞
0 (Rn) such that hj →

h in X. Then we have

|X′〈Ψ′(uk), h〉X − X′〈Ψ′(u), h〉X |
≤ |X′〈Ψ′(uk), h − hj〉X | + |X′〈Ψ′(uk) − Ψ′(u), hj〉X |

+|X′〈Ψ′(u), h − hj〉X |
≤ sup

k
‖Ψ′(uk)‖X′‖h − hj‖X + |X′〈Ψ′(uk) − Ψ′(u), hj〉X |

+‖Ψ′(u)‖X′‖h − hj‖X . (6.7)

The first and third terms in the rightmost of (6.7) tend to zero as j → ∞
because supk ‖Ψ′(uk)‖X′ is finite by (6.3) and the boundedness of {uk} in
X. The second term in the rightmost of (6.7) tends to zero as k → ∞ for
each hj ∈ C∞

0 by (6.6). This implies (iii).
We show the property (iv). Let ν(u) = ‖u‖2

X . We have X′〈ν ′(u), h〉X =
2Re(u, h)X for any u, h ∈ X, and therefore

|X′〈ν ′(u + v), h〉X − X′〈ν ′(u), h〉X | ≤ 2|(v, h)X | ≤ 2‖v‖X‖h‖X .

These two inequalities show the continuity of ν ′ and the continuity of the
map ν ′ : (X, w) → (X ′, w∗). This completes the proof. ¤

Lemma 6.4 Let F be a finite-dimensional subspace of X and let PF be
the projection from X onto F . There exists a positive constant CF such
that

C−1
F ‖PF u‖p

X ≤
∫

Q|PF u|pdx ≤ CF

∫
Q|u|pdx

holds for any u ∈ X.

Proof. Note that any finite-dimensional subspace of a Banach space is
topologically complemented. We introduce a Banach space XQ = {u |
‖u‖XQ

< ∞} with norm ‖u‖XQ
= (

∫
Q|u|pdx)1/p. By Lemma 3.1 and
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the boundedness of Q, the inclusion X ⊂ XQ is continuous and then F is
also regarded as a finite-dimensional subspace of the Banach space X

XQ ,
the closure of X in XQ. It is not hard to see that PF coincides with the
projection P̃F from X

XQ onto F restricted to X. Then the second inequality
in the lemma follows from the continuity of P̃F . The first inequality follows
because any norms are equivalent on a finite-dimensional subspace. ¤

Lemma 6.5 The functional Φ satisfies the condition (Φ1) in Section 4.

Proof. The condition 0 < c ≤ Φ(u) implies that

2c + ‖u−‖2
X +

2
p

∫
Q|u|pdx ≤ ‖u+‖2

X . (6.8)

By Lemma 6.4 with F = X0 there exists C > 0 such that

C−1‖u0‖p
X ≤

∫
Q|u0|pdx ≤ C

∫
Q|u|pdx. (6.9)

Thus it follows from (6.8) and (6.9) that

‖u‖2
X = ‖u−‖2

X + ‖u0‖2
X + ‖u+‖2

X ≤ 2‖u+‖2
X + C‖u+‖4/p

X

≤Cc‖u+‖2
X (6.10)

because 4/p < 2 and c > 0. This completes the proof. ¤

Lemma 6.6 The functional Φ satisfies the condition (Φ2) in Section 4.

Proof. For any u+ ∈ X+ with ‖u+‖X = ρ, we have

Φ(u+) ≥ 1
2
ρ2 − 1

p
Cp‖Q‖L∞ρp, (6.11)

where we used
∫

Q|u|pdx ≤ ‖Q‖L∞‖u‖p
Lp ≤ Cp‖Q‖L∞‖u‖p

X . An elementary
calculation shows that the right-hand side of (6.11) takes the maximum κ =
(1/2 − 1/p)(Cp‖Q‖L∞)−2/(p−2) at ρ = (Cp‖Q‖L∞)−1/(p−2) (with common
Cp). This completes the proof. ¤

Proposition 6.7 There exist positive constants Cp and M such that Φ
has a (C)c-sequence with(1

2
− 1

p

)
(Cp‖Q‖L∞)−2/(p−2) ≤ c ≤ M.
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Proof. We now apply Theorem 4.1. Take and fix e ∈ X+ with ‖e‖X = 1.
Let R > 0 and UR = {u = te + z | z = u− + u0 ∈ X− ⊕ X0, t ≥ 0, ‖u‖X <

R}.
By Lemma 6.4 with F = “the one-dimensional subspace spanned by e”,

there exists C > 0 such that∫
Q|te|pdx ≤ C

∫
Q|u|pdx (6.12)

holds for any u = te+u−+u0 ∈ UR. Similarly, by Lemma 6.4 with F = X0,
there exists C > 0 such that

‖u0‖p
X ≤ C

∫
Q|u|pdx (6.13)

holds for any u = te + u− + u0 ∈ UR.
We show that Φ(∂UR) ≤ 0 for some R (> ρ > 0), where ρ is as in the

proof of Lemma 6.6. Note that ∂UR = {u = te + z|t > 0, ‖u‖ = R} ∪
{u ∈ X− ⊕ X0|‖u‖ ≤ R} and obviously Φ is non-positive on the second
component. On the first component of ∂UR above, by (6.13), we have

Φ(u) ≤ 1
2
(t2 − ‖u−‖2

X) − C‖u0‖p
X . (6.14)

If ‖u0‖X ≥ 1, then ‖u0‖2
X ≤ ‖u0‖p

X holds and the right-hand side of (6.14)
is less than or equal to

1
2
(t2 − ‖u−‖2

X) − C‖u0‖2
X ≤ t2

2
− min

{1
2
, C

}
(R2 − t2)

≤C(t2 − C ′R2),

where we used the relation t2 +‖u−‖2
X +‖u0‖2

X = R2 in the first inequality.
If ‖u0‖X ≤ 1, then t2 + ‖u−‖2

X + 1 ≥ R2 holds and the right-hand side of
(6.14) is less than or equal to

1
2
(t2 − ‖u−‖2

X) ≤ t2

2
− R2 − t2 − 1

2
≤ C(t2 − C ′R2).

Hence, if 0 ≤ t2 ≤ C ′R2, we have Φ(u) ≤ 0 for any u = te + z ∈ ∂UR.
By (6.12), we have

Φ(u) ≤ 1
2
(t2 − ‖u−‖2

X) − C ′′

p
tp

∫
Q|e|pdx (6.15)

for any u ∈ UR. Let t = t0 > 0 be the larger zero of t2/2−C ′′tp
∫

Q|e|pdx/p.
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We take and fix R so that C ′R2 ≥ t20 for the constant C ′ above and R > ρ.
Hence, if t2 ≥ C ′R2, we have Φ(u) ≤ 0 for any u = te + z ∈ UR. Thus it
follows that Φ(u) ≤ 0 holds for any u ∈ UR.

Finally, the bound M = supΦ(UR) is given by the estimate

Φ(u) ≤ 1
2
R2 +

1
p
Cp‖Q‖L∞Rp

for any u ∈ UR. We have now verified all the assumptions as in Theorem 4.1
and then have the conclusion. ¤

In the concentration-compactness argument, the invariance of the func-
tional under a certain group action plays an important role. Unfortunately,
the functional Φ is not invariant and therefore the derivative Φ′ is not equiv-
ariant under the magnetic translations. This is caused by the fact that the
magnetic translation Sγ (for A0) does not commute with H. The invari-
ance and the equivariance, however, remain alive with small perturbation
because H − H0 is relatively compact with respect to H0.

Lemma 6.8 For any u, h ∈ X and any γ ∈ Zn, we have

X′〈Φ′(Sγu), h〉X = X′〈Φ′(u), S−1
γ h〉X + Re(u, S−1

γ R2(γ)h)L2

+ Re
∫

Rn

(Q(x + γ) − Q(x))|Sγu(x)|p−2Sγu(x)h(x)dx,

where we set

R2(γ) = i(A1 − A1( · + γ)) ◦ ∇A0 + i∇A0 ◦ (A1 − A1( · + γ))

+ (A2
1 + V1) − (A2

1 + V1)( · + γ).

Here, the notation “◦” stands for the composition of operators.

Proof. By Lemma 5.2 (ii) we have

Φ(Sγu) = Φ(u) +
1
2
(u, (R1(γ) + H0 − H)u)L2

+
1
p

∫
(Q(x) − Q(x − γ))|u(x)|pdx (6.16)

for any u ∈ C∞
0 . A simple calculation shows that

(R1(γ) + H0 − H)S−1
γ = S−1

γ R2(γ). (6.17)

By differentiating (6.16) at u in the direction S−1
γ h, we have
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X′〈Φ′(Sγu), h〉X
= X′〈Φ′(u), S−1

γ h〉X + Re(u, S−1
γ R2(γ)h)L2

+ Re
∫

(Q(x + γ) − Q(x))|Sγu(x)|p−2Sγu(x)h(x)dx,

where we used (6.17) and the unitarity of Sγ on L2(Rn). ¤

7. Proof of Theorem 1.6

In this section we give a proof of Theorem 1.6. To the purpose, we show
the boundedness of the (C)c-sequence obtained in Proposition 6.7 and then
use a concentration-compactness type argument.

Lemma 7.1 Let c > 0. Any (C)c-sequence for Φ is bounded in X.

Proof. Let {uk} be a (C)c-sequence for Φ for c > 0. By Lemma 6.5, it is
enough to show the boundedness of {u+

k }. From

X′〈Φ′(uk), u+
k 〉X = ‖u+

k ‖
2
X − Re

∫
Q|uk|p−2uku

+
k dx,

it follows that

‖u+
k ‖

2
X ≤‖Φ′(uk)‖X′‖u+

k ‖X

+ C‖Q‖1/p
L∞

(∫
Q|uk|pdx

)(p−1)/p
‖u+

k ‖X , (7.1)

where we used the Hölder inequality and Lemma 3.1. From

Φ(uk) −
1
2X′〈Φ′(uk), uk〉X =

(1
2
− 1

p

) ∫
Q|uk|pdx, (7.2)

it follows that there exists C > 0 such that∫
Q|uk|pdx ≤ C(1 + ‖Φ′(uk)‖X′‖uk‖X) (7.3)

holds for large k.
By (7.1) and (7.3), we have

‖u+
k ‖X ≤‖Φ′(uk)‖X′ + C‖Q‖1/p

L∞(1 + ‖Φ′(uk)‖X′‖uk‖X)(p−1)/p

≤‖Φ′(uk)‖X′ + C ′‖Q‖1/p
L∞(1 + ‖Φ′(uk)‖X′‖uk‖X)

≤‖Φ′(uk)‖X′ + C ′′
c ‖Q‖1/p

L∞(1 + ‖Φ′(uk)‖X′‖u+
k ‖X),
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where we used the fact that (p−1)/p < 1 in the second inequality, and used
(6.10) in the last inequality. This shows the boundedness of {u+

k } because
‖Φ′(uk)‖X′ tends to zero as k → ∞. ¤

The following magnetic version of the Lions lemma is needed in the
concentration-compactness type argument below.

Lemma 7.2 Fix r > 0. Let 2 ≤ q < 2∗. Assume that {uk} is bounded
in H1

A and satisfies limk→∞ supy∈Rn

∫
|x−y|≤r |uk(x)|qdx = 0. Then {uk}

converges to 0 in Lt(Rn) if 2 < t < 2∗.

Proof. If {uk} is bounded in H1
A then {|uk|} is bounded in H1(Rn) by

Lemma 3.1. Then the result follows from the standard Lions lemma (see,
e.g., Willem [Wil]). ¤

Lemma 7.3 Let {uk} be a (C)c-sequence for Φ with c > 0. For each r > 0
there exist a positive number η and a sequence {yk} in Zn such that

lim inf
k→∞

∫
|x−yk|≤r+

√
n
|uk(x)|2dx ≥ η.

Proof. By Lemma 7.1, the sequence {uk} is bounded in X. By (7.2) we
have

Φ(uk)−
1
2X′〈Φ′(uk), uk〉X =

(1
2
− 1

p

)∫
Q|uk|pdx≤‖Q‖L∞‖uk‖p

Lp .

By taking a limit k → ∞ we have

lim inf
k→∞

‖uk‖Lp ≥ C > 0 (7.4)

because Φ(uk) → c (> 0) and Φ′(uk) → 0 as k → ∞. In particular,
the sequence {uk} cannot converge to 0 in Lp(Rn). Then it follows from
Lemma 7.2 that, for any r > 0 and q with 2 ≤ q < 2∗, there exists η > 0
such that limk→∞ supz

∫
|x−z|<r |uk(x)|qdx ≥ 2η holds. This implies that for

any r > 0 and q with 2 ≤ q < 2∗ there exists a sequence {zk} in Rn such
that

∫
|x−zk|<r |uk(x)|qdx ≥ η for large k.

For any zk ∈ Rn, there exists yk ∈ Zn such that |yk − zk| <
√

n. Since∫
|x−yk|≤r+

√
n
|uk|qdx ≥

∫
|x−zk|≤r

|uk|qdx,

putting q = 2, we have the lemma. ¤
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Let {uk} be the (C)c-sequence as in Proposition 6.7 and let {yk} be the
sequence as in Lemma 7.3 for this (C)c-sequence.

First, we consider the case where {yk} is bounded in Rn. Because
{uk} is bounded in X by Lemma 7.1 and X is reflexible, there exists a
subsequence, which is denoted also by {uk}, such that uk ⇀ u in X, and
uk → u in Lt

loc if 2 ≤ t < 2∗, and uk(x) → u(x) a.e. for some u ∈ X.
We may assume that {yk} converge to a point in Rn because of the

boundedness of {yk}. It follows from Lemma 7.3 that the limit u of {uk}
does not vanish near the point. Thus u 6= 0 in X because ‖u‖L2 ≤ C‖u‖X .

For any h ∈ C∞
0 (Rn), we have

X′〈Φ′(uk), h〉X =Re(uk, (H −E)h)L2 −Re
∫

Q|uk|p−2ukhdx. (7.5)

Letting k → ∞ on the both sides, we obtain

0 = Re(u, (H − E)h)L2 − Re
∫

Q|u|p−2uhdx (7.6)

because the derivatives Φ′ and Ψ′ are both weakly sequentially continuous
as is shown in the proof of Lemma 6.3. (See (6.6).) We can eliminate “Re”
by considering ih instead of h. Therefore u is a nontrivial solution to the
equation (1.1). (In fact, u belongs to C∞(Rn) by elliptic regularity.)

Second, we consider the case where {yk} is unbounded (and we show
that it is impossible). By passing to a subsequence, we may assume that
limk→∞ |yk| = ∞. Let Sγ be the magnetic translation as in (5.2) and set
vk = Syk

uk. The sequence {vk} is also bounded in X by Lemmata 5.1 and
5.3. By the same reason as in the first case, we may assume that vk ⇀ v

in X, vk → v in Lp
loc, and vk(x) → v(x) a.e. for some v ∈ X, and we

conclude that v 6= 0 in X because ‖vk‖L2 = ‖uk‖L2 ≥ η/2 holds for large k

by Lemma 7.3.
By the same argument used to derive (7.6) from (7.5) (replaced uk by

vk), we have

lim
k→∞

X′〈Φ′(vk), h〉X =Re(v, (H −E)h)L2 −Re
∫

Q|v|p−2vhdx (7.7)

for any h ∈ C∞
0 (Rn).

On the other hand, by Lemma 6.8 with γ = yk and u = uk, we have
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X′〈Φ′(vk), h〉X
= X′〈Φ′(uk), S−1

yk
h〉X + Re(vk, R2(yk)h)L2

+ Re
∫

(Q(x + yk) − Q(x))|vk(x)|p−2vk(x)h(x)dx (7.8)

for any h ∈ C∞
0 (Rn). The first term on the right-hand side of (7.8) tends

to zero as k → ∞ because {uk} is a (C)c-sequence and supγ ‖Sγ‖ is finite
by Lemma 5.3. For the second term, using estimates similar to (6.6) in the
proof of Lemma 6.3, we have

lim
k→∞

(vk, R2(yk)h)L2

= lim
k→∞

(vk, i(A1 − A1( · + yk)) ◦ ∇A0h)L2

+ lim
k→∞

(∇A0vk, i(A1 − A1( · + yk))h)L2

+ lim
k→∞

(vk, [(A2
1 + V1) − (A2

1 + V1)( · + yk)]h)L2

= (v, iA1∇A0h)L2 + (∇A0v, iA1h)L2 + (v, (A2
1 + V1)h)L2

= (v, (H − H0)h)L2

for any h ∈ C∞
0 (Rn), because both V1 and A1 are bounded and decay at

infinity. Similarly, the third term on the right-hand side of (7.8) tends to
−Re

∫
Q|v|p−2vhdx as k → ∞. Hence, by taking a limit on both sides of

(7.8), we have

lim
k→∞

X′〈Φ′(vk), h〉X =Re(v, (H −H0)h)L2 −Re
∫

Q|v|p−2vhdx. (7.9)

Then it follows from (7.7) and (7.9) that (v, (H0 − E)h)L2 = 0 for
any h ∈ C∞

0 (Rn). This implies that E is an eigenvalue of H0, which is
impossible. Therefore, we have shown the existence of a nontrivial solution.

Finally, we have the boundedness and the decay of the solution by
Corollary 3.4. This completes the proof of Theorem 1.6.
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