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Smoothing and dispersive properties of evolution equations

with potential perturbations
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Abstract. We survey a group of joint results with different authors concerning the

decay properties of evolution equations with variable coefficients. The problems studied

include the wave, Schrödinger and Dirac equation, perturbed with electromagnetic po-

tentials, and the main focus of the paper is on global dispersive and Strichartz estimates

when the coefficients are of low regularity and of critical decay.
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In recent years an intense activity has been devoted to the study of dis-
persive properties of evolution equations. After pioneereing works of Segal,
von Wahl, Pecher, Kato, Yajima, Strichartz, Ginibre and Velo, it became
rapidly clear that decay properties of classical linear equations such as the
Schrödiger, wave, Klein-Gordon, Dirac, Korteweg – de Vries equations were
of central importance in the theory of nonlinear PDEs. This justifies the
large number of papers that have appeared on the subject.

In this paper we would like to review a group of recent joint works
with different collaborators ([8], [9], [10], [11], [12]) concerning dispersive,
smoothing and Strichartz estimates for the main evolution equations of
mathematical physics, in the case when potential (electromagnetic) pertur-
bations are present. The focus of these results is on global estimates in time,
on one hand, and on the lowest possible assumptions of decay at infinity
and smoothness on the coefficients, on the other side. As we mentioned
above, such estimates have become a standard tool in the study of linear
and nonlinear evolution equations. In particular Strichartz estimates enjoy
a wide popularity, thanks to their usefulness in many different situations.
They can be proved for a large class of constant coefficients equations, us-
ing the methods of [16] and [23]. In a sense, they represent the modern
energy estimates, and are especially effective in questions of low regularity
solutions and global existence for nonlinear equations.
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The term “dispersive estimate” is now in common use to denote a decay
estimate in time of a suitable spatial norm of the solution to an evolution
equation, tipically the L∞ norm. For the Schrödinger equation the disper-
sive estimate is

‖eit∆f‖L∞ . t−n/2‖f‖L1 ,

while for the wave equation it can be written in the form

‖eit|D|f‖L∞ . t−(n−1)/2‖f‖
Ḃ

(n+1)/2
1,1

and for the Klein-Gordon equation

‖eit〈D〉f‖L∞ . t−n/2‖f‖
B

(n+1)/2
1,1

Here Bs
p,q denotes a Besov space (a dot meaning the homogeneous version

of the space), A . B means A ≤ CB for a suitable constant C, and we
use the operators |D| = (−∆)1/2 and 〈D〉 = (1 − ∆)1/2. We shall also be
interested in the decay properties of the Dirac equation, which is a 4 × 4
constant coefficient system of the form

iut + Du = 0

in the massless case, and

iut + Du + βu = 0

in the massive case. Here u(t, x) is a so-called spinor, i.e., u : Rt×R3
x → C4,

the operator D is defined as

D =
1
i

3∑
k=1

αk∂k

and the 4 × 4 Dirac matrices can be written

αk =
(

0 σk

σk 0

)
, β =

(
I2 0
0 −I2

)
, k = 1, 2, 3

in terms of the Pauli matrices

I2 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

The dispersive estimate for the Dirac equation can be written, in the mass-
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less case u = eitDf , as follows:

‖eitDf‖L∞ . t−1‖f‖Ḃ2
1,1

.

We pass now to describe the Strichartz estimates, which can be deduced
from the dispersive estimates and hence represent a weaker form of decay.
Using the notations LpLq = Lp(Rt; Lq(Rn

x)), ‖f‖ . ‖g‖ to mean ‖f‖ ≤
C‖g‖, and Hs

q and Ḣs
q to denote the spaces with norms

‖f‖Ḣs
q

= ‖〈D〉sf‖Lq , ‖f‖Ḣs
q

= ‖|D|sf‖Lq ,

the Strichartz estimates for the Schrödinger equation take the following
form: for n ≥ 2,

‖eit∆f‖LpLq . ‖f‖L2 ,

provided the couple (p, q) is Schrödinger admissible:

2
p

+
n

q
=

n

2
, 2 ≤ p ≤ ∞,

2n

n − 2
≥ q ≥ 2, q 6= ∞. (0.1)

The couple (p, q) = (2, 2n/n−2) is called the endpoint and is allowed when
n > 2.

For the wave equation the estimates can be written as follows: for n ≥
3,

‖eit|D|f‖
LpḢ

1/q−1/p−1/2
q

. ‖f‖L2 ,

provided the couple (p, q) is wave admissible:

2
p

+
n − 1

q
=

n − 1
2

, 2 ≤ p ≤ ∞,
2(n − 1)
n − 3

≥ q ≥ 2, q 6= ∞. (0.2)

The wave equation endpoint is (p, q) = (2, 2(n− 1)/(n− 3)) and is allowed
in dimension n > 3. Note that the wave endpoint in dimension n coincides
with the Schrödinger endpoint in dimension n − 1.

Finally for the Klein-Gordon equation we have: for n ≥ 2,

‖eit〈D〉f‖
LpH

1/q− 1
p− 1

2
q

. ‖f‖L2 ,

provided (p, q) is Schrödinger admissible.
As to the solution u(t, x) = eitDf of the massless Dirac system with
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initial value u(0, x) = f(x), it satisfies the Strichartz estimate:

‖eitDf‖
LpḢ

1/q−1/p−1/2
q

. ‖f‖L2 , n = 3,

for all wave admissible (p, q), while in the massive case we have

‖eit(D+β)f‖
LpH

1/q−1/p−1/2
q

. ‖f‖L2 , n = 3,

for all Schrödinger admissible (p, q).
In view of the applications, it is an important problem to extend

Strichartz estimates to more general equations with variable coefficients,
possibly of low regularity in order to retain the advantages over classical
energy methods. Indeed, in recent years a large number of works have
investigated this kind of problem. In the case of potential perturbations
like

iut − ∆u + V (x)u = 0, ¤u + V (x)u = 0,

Strichartz estimates are now fairly well understood. We mention among the
many works [4], [18], [17], [25], [27] and the survey [26] for the Schrödinger
equation, and [6], [14], [11] for the wave equation. We also mention the
wave operator approach of Yajima ([32], [33], [34], [2]), which was recently
optimized in dimension 1 in [8]. The question of the minimal assumptions
on the potential for dispersion to hold is still largely open, although some
major advances in this direction have been made recently in [19] and [20].

Results are much less complete in the case of first order perturbations
i.e. magnetic potentials

iut + ∆u + a · ∇u + bu = 0, ¤u + a · ∇u + bu = 0.

Concerning Strichartz estimates for the Schrödinger equation with small
potentials a, b we recall at least the papers [29], [15]; in 3D the recent
work [13] handles for the first time the case of large magnetic potentials.
For the wave equation with small magnetic potentials, partial Strichartz
estimates were obtained in 3D in [7] in the case of smooth, rapidly decaying
coefficients. The dispersive estimate in 3D was proved in [9] for the magnetic
wave equation with small singular potentials and for the massless Dirac
system with a small singular matrix potential. We must also mention the
papers [28], [24], [30] containig some local estimates in the fully variable
coefficient case. Only in the one dimensional case the optimal dispersive
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estimates for the case of fully variable singular coefficients have been proved
in [8].

The plan of the paper is as follows. In Section 1 we recall our results
concerning smoothing and Strichartz estimates for evolution equations with
electromagnetic perturbations. In Section 2 we review the dispersive esti-
mate for the 3D wave equation, in which case results are close to optimal.
Section 3 is devoted to the dispersive estimates for the 3D wave and Dirac
equations, in presence of magnetic potentials. In Section 4 we describe our
results in the 1D case, which give a complete picture of the case of coeffi-
cients independent of time. Finally the last Section 5 covers the Schrödinger
equation with point interactions in 3D, i.e. with a very singular potential
given by a sum of delta functions; in this case we get an optimal weighted
dispersive estimate comparable with the classical one.

1. Strichartz estimates

A method of proof which is very efficient in the case of electric potentials
was introduced in [25] and further developed in [4]. The main idea is to
combine Strichartz estimates for the free equation with Kato smoothing
estimates for the perturbed equation. The same method is used in [13] for
the 3D Schrödinger equation with a large magnetic potential.

Our first group of results ([10]) is based on a suitable modification of this
method, applied in a systematic way to all of the above equations perturbed
with magnetic potentials.

Thus consider a magnetic Schrödinger operator

H = −(∇ + iA(x))2 + B(x), (1.1)

which is selfadjoint under the following assumptions: Aj and B are real
valued, and

‖B‖Ln/2,∞ < ∞, ‖B−‖Ln/2,∞ < δ, ‖A‖Ln,∞ < δ (1.2)

for some δ sufficiently small. Here and in the following, B−(x)=max{−B(x),
0} denotes the negative part of the function B, and Lp,∞ = Lp

w denotes the
Lorentz or weak Lebesgue space. However, in order to state our results, it
is more convenient to represent the operator in the form

H ≡ −∆ + W (x, D) ≡ −∆ + a(x) · ∇ + b(x) (1.3)
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and to make the abstract assumption that H is selfadjoint. In view of (1.2),
the following explicit conditions on a, b are sufficient (but not necessary)
for the selfadjointness of H:

a(x) is pure imaginary, Im b = −i∇ · a (1.4)

and

‖∇a‖Ln/2,∞ + ‖b‖Ln/2,∞ < ∞,

‖(Re b)−‖Ln/2,∞ < δ, ‖a‖Ln,∞ < δ (1.5)

for a small enough δ.
Our first result concerns smoothing estimates of Kato-Yajima type for

the scalar Schrödinger, wave and Klein-Gordon equations. Besides being
a necessary tool to prove the Strichartz estimates, they have also an inde-
pendent interest (see e.g. [3], [21], [22]). Notice in particular that we allow
a singularity at 0 in the coefficient, and that the electric potential can be
large, while the magnetic term must satisfy a smallness condition. We shall
use the following weight functions:

τε(x) =

{
|x|1/2−ε + |x| if n ≥ 3,

|x|1/2−ε + |x|1+ε if n = 2

and

wσ(x) = |x|(1 + | log |x||)σ, σ > 1.

Then we have:

Proposition 1.1 Smoothing estimates for scalar equations Let n ≥ 2.
Assume the operator

−∆ + W (x, D) = −∆ + a(x) · ∇ + b1(x) + b2(x)

is selfadjoint with

|a(x)| ≤ δ

τεw
1/2
σ

, |b1(x)| ≤ δ

τ2
ε

, 0 ≤ b2(x) ≤ C

τ2
ε

(1.6)

for some δ, ε > 0 sufficiently small and some σ > 1, C > 0. Moreover
assume that 0 is not a resonance for −∆ + b2.

Then the following smoothing estimates hold: for the Schrödinger equa-
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tion

‖τ−1
ε eit(−∆+W )f‖L2L2 + ‖τ−1

ε |D|1/2eit(−∆+W )f‖L2L2 . ‖f‖L2

while for the wave and Klein-Gordon equations

‖τ−1
ε eit

√
−∆+W f‖L2L2 + ‖τ−1

ε eit
√

1−∆+W f‖L2L2 . ‖f‖L2 .

The assumption that 0 is not a resonance for −∆ + b2(x) here means:
if (−∆ + b2)f = 0 and 〈x〉−1f ∈ L2 then f ≡ 0.

We can then prove Strichartz estimates for the perturbed scalar equa-
tions as a consequence of the above smoothing properties. The idea is
essentially to rewrite the equation in the form

iut − ∆u = −W (x, D)u, u(0, x) = f(x)

and hence write the solution as

u = eit∆f − i

∫ t

0
ei(t−s)∆W (x, D)u(s)ds.

To the first term clearly we can apply the classical Strichartz estimates. In
order to handle the second one, we can use the Christ-Kiselev lemma [5]
which states that: given two Banach spaces X, Y and a bounded integral
operator

Tf =
∫

R
K(t, s)f(s)ds

from Lp(R, X) to Lp̃(R, Y ), then its truncated version

Sf =
∫ t

0
K(t, s)f(s)ds

is also bounded on the same spaces, provided p < p̃. Thus we see that
in order to estimate u in an LpLq space it is sufficient to estimate the
untruncated integral as follows:∥∥∥∫

R
ei(t−s)∆W (x, D)u(s)ds

∥∥∥
Lp

t Lq
x

. ‖f‖L2 .

Notice however that the use of the Christ-Kiselev lemma prevents us from
reaching the endpoint. The advantage of this method is that the untrun-
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cated integral can be split as

eit∆

∫
R

e−is∆W (x, D)u(s)ds;

then we can combine the classical Strichartz estimates for eit∆ with (the
dual of) the classical smoothing estimate for eit∆∥∥∥∫

e−is∆F (s)ds
∥∥∥

L2
. ‖〈x〉1/2+ε|D|−1/2F‖L2L2

(or more refined versions if necessary). In this way we obtain an inequality
of the form

‖u‖LpLq . ‖f‖L2 + ‖〈x〉1/2+ε|D|−1/2W (x, D)u‖L2L2 .

Since the operator acting on u at the right hand side has order at most
1/2, after some delicate commutator estimates, which require additional
regularity on the coefficients, we are reduced to the smoothing estimate of
Proposition 1.1. By suitable refinements of these methods we can prove:

Theorem 1.2 Strichartz for Schrödinger Let n ≥ 2, −∆ + W be as in
Proposition 1.1 and assume in addition that

〈x〉1+3εχ(x)aj(x) ∈ C1/2+2ε for some function χ & w1/2
σ . (1.7)

Then, for any non-endpoint Schrödinger admissible couple (p, q), the fol-
lowing Strichartz estimate holds:

‖eit(−∆+W )f‖LpLq . ‖f‖L2 . (1.8)

Theorem 1.3 Strichartz for wave Let n ≥ 3, −∆ + W be as in Proposi-
tion 1.1 and assume in addition that

|a(x)| ≤ C

τ2
ε

, |b1 + b2 −∇ · a| ≤ C

|x|τε
. (1.9)

Then, for any non-endpoint wave admissible couple (p, q) the following
Strichartz estimate holds:

‖eit
√
−∆+W f‖

LpḢ
1/q−1/p−1/2
q

. ‖f‖L2 . (1.10)
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Theorem 1.4 Strichartz for Klein-Gordon Let n ≥ 2, −∆ + W be as in
Proposition 1.1 and assume in addition that

|a(x)| ≤ C

τ2
ε

, |b1 + b2 −∇ · a| ≤ C

〈x〉τε
. (1.11)

Then, for any non-endpoint Schrödinger admissible couple (p, q), the fol-
lowing Strichartz estimate holds:

‖eit
√
−∆+1+W ‖

LpH
1/q−1/p−1/2
q

≤ C‖f‖L2 . (1.12)

Our final results concern the Dirac system:

Theorem 1.5 Massless Dirac Let n = 3, and let V (x) = V (x)∗ be a 4×4
complex valued matrix such that

|V (x)| ≤ δ

wσ(x)
(1.13)

for some δ sufficiently small and some σ > 1. Then the following smoothing
estimate holds:

‖w−1/2
σ eit(D+V )f‖L2L2 . ‖f‖L2 (1.14)

and, for any non-endpoint wave admissible couple (p, q), the following
Strichartz estimate holds:

‖eit(D+V )f‖LpḢ1/q−1/p−1/2 . ‖f‖L2 . (1.15)

2. Dispersive estimates for the wave equation

Dispersive estimates are a much stronger result compared with
Strichartz estimates, and indeed it is possible to deduce the latter from
the former but not viceversa. Thus one expects in general stronger assump-
tions on the coefficients. However, for the 3D wave equation in [11] we
proved an optimal dispersive estimate for a potential perturbation with a
minimal smoothness assumption on the potential. We recall the relevant
definitions.

A measurable function V (x) on Rn, n ≥ 3, is said to belong to the Kato
class if

lim
r↓0

sup
x∈Rn

∫
|x−y|<r

|V (y)|
|x − y|n−2

dy = 0. (2.1)
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Moreover, the Kato norm of V (x) is defined as

‖V ‖K = sup
x∈Rn

∫
Rn

|V (y)|
|x − y|n−2

dy. (2.2)

For n = 2 the kernel |x − y|2−n is replaced by log(|x − y|−1).
As it is well known, the presence of eigenvalues or resonances can in-

fluence the decay properties of the solutions. The standard way out of this
difficulty is to assume that no resonances are present on the positive real
axis, and in many cases this reduces to assuming that 0 is not a resonance.
In our first result this assumption takes the following form. We denote as
usual by R0(z) = (−z −∆)−1 the resolvent operator of −∆, and by R0(λ±
i0) the limits limε↓0 R(λ ± iε) at a point λ ≥ 0. Then we assume that

The integral equation f +R0(λ+ i0)V f = 0 has no nontrivial bounded
solution for any λ ≥ 0,

or, equivalently,

f +
1
4π

∫
R3

ei
√

λ|x−y|

|x − y|
V (y)f(y)dy = 0, f ∈ L∞, λ ≥ 0

=⇒ f ≡ 0. (2.3)

In several cases this assumption can be drastically weakened (see below).
Then we can state our result:

Theorem 2.1 Let V = V1 +V2 be a real valued potential of Kato class on
R3. Assume that:
( i ) V1 is compactly supported and has a bounded Kato norm;
( ii ) V2 has a small Kato norm and precisely

‖V2‖K ·
(
1 +

1
4π

‖V1‖K

)
< 4π; (2.4)

(iii) the negative part V− = max{−V, 0} satisfies

‖V−‖K < 2π; (2.5)

(iv) the non resonant condition (2.3) holds for all λ ≥ 0.
Then any solution u(t, x) to the Cauchy problem problem

¤u + V (x)u = 0, u(0, x) = 0, ut(0, x) = f(x) (2.6)
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satisfies the dispersive estimate

‖u(t, · )‖L∞ ≤ Ct−1‖f‖Ḃ1
1,1(R3). (2.7)

In order to see a real word application of this result, we recall the
following corollary:

Corollary 2.2 Assume the real valued potential V belongs to L3/2,1 with
‖V−‖K < 2π and satisfies the non resonant condition (2.3). Then the same
conclusion of Theorem 2.1 holds.

Here L3/2,1 denotes a Lorentz space. In particular, this applies to po-
tentials belonging to L3/2−δ(R3)∩L3/2+δ(R3) for some δ > 0, in view of the
embedding

L3/2−δ(R3) ∩ L3/2+δ(R3) ⊆ L3/2,1(R3).

Concerning the spectral assumption on the nonexistence of resonances
or embedded eigenvalues, this can be replaced by a stronger decay assump-
tion on the potential as follows:

Theorem 2.3 Let V1 be a nonnegative L2 function such that V1(x) ≤
C|x|−3−δ (δ > 0) for large x. Then there exists a constant ε(V1) > 0 such
that: for all real valued functions V2 of Kato class with

‖V2‖K < ε(V1) (2.8)

and for V = V1 + V2, the solution u(t, x) of problem (2.6) satisfies the
dispersive estimate (2.7).

3. Dispersive estimates for magnetic potentials

For equations perturbed with magnetic potentials, to our knowledge
our results in [9] are the only available. These include the case of the 3D
wave equation, and the closely connected problem of the 3D Dirac equation.

Our first result in this group concerns the Cauchy problem for the wave
equation perturbed with a small rough electromagnetic potential

utt(t, x) − (∇ + iA(x))2u + B(x)u = 0, (t, x) ∈ R × R3 (3.1)

u(0, x) = 0, ut(0, x) = g(x). (3.2)

We shall assume that the operator −(∇ + iA)2 + B is selfadjoint, and we



726 P. D’Ancona

shall denote by φj a standard (nonhomogeneous) Paley-Littlewood partition
of unity, j ≥ 0. Then we can prove:

Theorem 3.1 Assume the potentials A : R3 → R3, B : R3 → R satisfy

|Aj | ≤
C0

|x|〈x〉(| log |x|| + 1)β
,

3∑
j=1

|∂jAj | + |B| ≤ C0

|x|2(| log |x|| + 1)β
, (3.3)

for some constant C0 > 0 sufficiently small and some β > 1. Then any
solution of the Cauchy problem (3.1), (3.2) satisfies the decay estimate

|u(t, x)| ≤ C

t

∑
j≥0

22j‖〈x〉w1/2
β ϕj(

√
H)g‖L2 , (3.4)

where wβ(x) := |x|(| log |x|| + 1)β. If in addition we assume that, for some
ε > 0,

〈D〉1+εAj ∈ L∞, 〈D〉εB ∈ L∞ (3.5)

then u satisfies for any δ > 0 the estimate

|u(t, x)| ≤ C

t
‖〈x〉3/2+δg‖H2+ε . (3.6)

Our second result concerns the perturbed Dirac system

iut −Du + V (x)u = 0, (t, x) ∈ R × R3, (3.7)

u(0, x) = f(x). (3.8)

By exploiting the above mentioned relation between the magnetic wave
equation and the Dirac system, we can prove the following Theorem as a
direct consequence of Theorem 3.1:

Theorem 3.2 Assume the 4 × 4 complex valued matrix V (x) = V ∗(x)
satisfies

|V (x)| ≤ C0

|x|〈x〉(| log |x|| + 1)β
,

|DV (x)| ≤ C0

|x|2(| log |x|| + 1)β
, (3.9)
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for some C0 > 0 small enough and some β > 1. Then the solution of the
Cauchy problem (3.7), (3.8) satisfies the decay estimate

|u(t, x)| ≤ C

t

∑
j≥0

23j‖〈x〉w1/2
β ϕj(D + V )f‖L2 , (3.10)

where wβ(x) = |x|(| log |x|| + 1)β. If in addition we assume that, for some
ε > 0,

〈D〉2+εV ∈ L∞, (3.11)

then u satisfies for any δ > 0 the estimate

|u(t, x)| ≤ C

t
‖〈x〉3/2+δf‖H3+ε . (3.12)

We remark that for the unperturbed Dirac system, with vanishing mass,
the loss of derivatives is exactly 2.

Since Theorem 3.2 is proved essentially by “squaring” the perturbed
Dirac operator, a condition on the derivative DV is essential in order to
apply Theorem 3.1 to the resulting wave equation. On the other hand,
we can study the Cauchy problem (3.7), (3.8) by a direct application of
the spectral calculus for the selfadjoint operator D + V (x); this alternative
approach allows us to consider much rougher potentials V (x). The price
to pay is an additional loss of one derivative, so that the total loss is 4
derivatives in our last result:

Theorem 3.3 Assume the 4 × 4 complex valued matrix V (x) = V ∗(x)
satisfies

|V (x)| ≤ C0

|x|1/2〈x〉3/2(| log |x|| + 1)β/2
, (3.13)

for some C0 > 0 small enough and some β > 1. Then the solution of the
Cauchy problem (3.7), (3.8) satisfies for any ε > 0 the decay estimate

|u(t, x)| ≤ C

t

∑
j≥0

24j‖〈x〉3/2+εϕj(D + V )f‖L2 . (3.14)

4. The one dimensional case

A general and powerful method to prove dispersive estimates (and much
more) was introduced by K. Yajima. To illustrate it we recall a few basic
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notions of scattering theory; we specialize to the case of dimension 1 for the
sake of simplicity, but analogous arguments hold also in higher dimensions.
More details can be found in our paper [8].

Let H0 = −d2/dx2 be the one-dimensional Laplace operator on the line,
and consider the perturbed operator H = H0+V (x). For a potential V (x) ∈
L1(R), the operator H can be realized uniquely as a selfadjoint operator on
L2(R) with form domain H1(R). The absolutely continuous spectrum of
H is [0, +∞[, the singular continuous spectrum is absent, and the possible
eigenvalues are all strictly negative. Moreover, the wave operators

W±f = L2 − lim
s→±∞

eisHe−isH0f (4.1)

exist and are unitary from L2(R) to the absolutely continuous space L2
ac(R)

of H. A very useful feature of W± is the intertwining property. If we denote
by Pac the projection of L2 onto L2

ac(R), the property can be stated as
follows: for any Borel function f ,

W±f(H0)W ∗
± = f(H)Pac. (4.2)

Thanks to (4.2), one can reduce the study of an operator f(H), or
more generally f(t, H), to the study of f(t,H0) which has a much simpler
structure. When applied to the operators

eitH , sin(t
√

H)/
√

H, sin(t
√

H + 1)/
√

H + 1,

this method can be used to prove decay estimates for the Schrödinger, wave
and Klein-Gordon equations

iut − ∆u + V u = 0, utt − ∆u + V u = 0,

utt − uxx − ∆u + u + V u = 0,

provided one has some control on the Lp behaviour of W±, W ∗
±. Indeed, if

the wave operators are bounded on Lp, the Lq −Lq′ estimates valid for the
free operators extend immediately to the perturbed ones via the elementary
argument

‖eitHPacf‖Lq ≡‖W+eitH0W ∗
+f‖Lq

≤C‖eitH0W ∗
+f‖Lq ≤ Ct−α‖W ∗

+f‖Lq′ ≤ Ct−α‖f‖Lq′

Such a program was developed systematically by K. Yajima in a series
of papers [33], [32], [34] where he obtained the Lp boundedness for all p
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of W±, under suitable assumptions on the potential V , for space dimension
n ≥ 2. The analysis was completed in the one dimensional case in Artbazar-
Yajma [2] and by Ricardo Weder [31]. We remark that in high dimension
n ≥ 4 the decay estimates obtained by this method are the best available
from the point of view of the assumptions on the potential; only in low
dimension n ≤ 3 more precise results have been proved, as mentioned in
the preceding sections.

In order to explain our results in more detail we recall a few notions.
The relevant potential classes are the spaces

L1
γ(R) ≡ {f : (1 + |x|)γf ∈ L1(R)}. (4.3)

Moreover, given a potential V (x), the Jost functions are the solutions
f±(λ, x) of the equation −f ′′ + V f = λ2f satisfying the asymptotic condi-
tions |f±(λ, x) − e±iλx| → 0 as x → ±∞. When V (x) ∈ L1

1, the solutions
f± are uniquely defined. Now consider the Wronskian

W (λ) = f+(λ, 0)∂xf−(λ, 0) − ∂xf+(λ, 0)f−(λ, 0). (4.4)

The function W (λ) is always different from zero for λ ∈ R \ 0, and hence
for real λ it can only vanish at λ = 0. Then we say that 0 is a resonance
for H when W (0) = 0, and that it is not a resonance when W (0) 6= 0. The
first one is also called the exceptional case.

In [31] Weder proved that the wave operators are bounded on Lp for all
1 < p < ∞, provided V ∈ L1

γ for γ > 5/2. The assumption can be relaxed
to γ > 3/2 provided 0 is not a resonance.

Our result in 1D is the following:

Theorem 4.1 Assume V ∈ L1
1 and 0 is not a resonance, or V ∈ L1

2 in the
general case. Then the wave operators W±, W ∗

± can be extended to bounded
operators on Lp for all 1 < p < ∞. Moreover, in the endpoint L∞ case we
have the estimate

‖W±g‖L∞ ≤ C‖g‖L∞ + C‖Hg‖L∞ , (4.5)

for all g ∈ L∞ ∩ Lp for some p < ∞ such that Hg ∈ L∞, where H is
the Hilbert transform on R; the conjugate operators W ∗

± satisfy the same
estimate.

As a first application, consider the initial value problem
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iut − a(x)uxx + b(x)ux + V (x)u = 0, u(0, x) = f(x). (4.6)

A great advantage of the one dimensional case is that by a suitable change
of variable equation (4.6) can be reduced to the case of an electric potential,
which is covered by Theorem 4.1. Indeed, if we set u(t, x) = σ(x)w(t, c(x))
with

c(x) =
∫ x

0
a(s)−1/2ds, σ(x) = a(x)1/4 exp

(∫ x

0

b(s)
2a(s)

ds
)

(4.7)

we see easily that w(t, x) is a solution of

iwt − ∆w + Ṽ (x)w = 0,

where the potential Ṽ (y) is given by

Ṽ (c(x)) = V (x) +
1

16a(x)
(2b(x) + a′(x))(2b(x) + 3a′(x))

− 1
4
(2b(x) + a′′(x)). (4.8)

Then applying the Theorem and coming back to u(t, x) we obtain the fol-
lowing decay result, where the notation f ∈ L2

1 means (1 + |x|)f ∈ L2.

Proposition 4.2 Assume V ∈ L1
2, a ∈ W 2,1(R) and b ∈ W 1,1(R) with

a(x) ≥ c0 > 0 a′, b ∈ L2
1, a′′, b′ ∈ L1

2 (4.9)

for some constant c0. Then the solution of the initial value problem (4.6)
satisfies

‖Pacu(t, · )‖Lq ≤ Ct1/q−1/2‖f‖Lq′ , 2 ≤ q < ∞,
1
q

+
1
q′

= 1. (4.10)

The same result holds if a = 1, b = 0 and V ∈ L1
1, provided 0 is not a

resonance for H.

A similar result holds for the wave equation with fully variable coeffi-
cients (depending only on x).

5. The Schrödinger equation with point interactions

We conclude this review by mentioning the results of the paper [12],
where we considered the case of a Schrödinger operator with “delta poten-
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tials”. The operator can be written formally as

H = −∆ +
N∑

j=1

µjδyj (5.1)

where δyj is the Dirac measure placed at yj ∈ R3 and the parameters µj are
coupling constants. The basic question here is whether dispersive properties
are preserved even for potentials of measure type, even rougher than the
ones considered in the preceding sections.

As a matter of fact the Dirac measure in R3 is not a small perturbation
of the Laplacian, even in the sense of quadratic forms. In order to obtain
a rigorous counterpart of (5.1) one considers the following restriction of the
free Laplacian

Ĥ = −∆, D(Ĥ) = C∞
0 (R3 \ Y ) (5.2)

where Y = (y1, . . . , yN ). The operator (5.2) is symmetric but not self-
adjoint in L2(R3) and, obviously, one possible self-adjoint extension is triv-
ial, i.e. it coincides with the free Laplacian H0 = −∆, D(H0) = H2(R3).
Using the theory of self-adjoint extensions of symmetric operators, devel-
oped by von Neumann and Krein, one can show that the operator (5.2)
has N2 (non trivial) self-adjoint extensions which, by definition, are all the
possible Schrödinger operators with point interactions at Y (for a compre-
hensive treatment we refer to the monograph [1]). Any such extension can
be considered as a Laplace operator with a singular boundary condition
satisfied at each point yj ∈ Y .

In the following we shall only consider the case of local boundary con-
ditions which are more relevant from the physical point of view. More
precisely, we shall restrict to the self-adjoint extensions Hα,Y parametrized
by α = (α1, . . . , αN ), αj ∈ R, and corresponding to the singular boundary
condition at Y

lim
rj→0

[∂(rju)
∂rj

− 4παj(rju)
]

= 0, rj = |x − yj |, j = 1, . . . , N (5.3)

Due to the presence of the (unavoidable) singularity at the points where
the interaction is placed, we are forced to introduce the following weight
function
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w(x) =
N∑

j=1

(
1 +

1
|x − yj |

)
. (5.4)

Moreover, for z ∈ C, we define the matrix

[Γα,Y (z)]j,` =
[(

αj −
iz

4π

)
δj,` − G̃z(yj − y`)

]N

j,`=1
, (5.5)

with

G̃z(x) =


eiz|x|

4π|x|
x 6= 0,

0 x = 0.

(5.6)

The role of this matrix is that it allows to represent in an explicit form the
resolvent of the perturbed Schrödinger operator, via Krein’s theory. Indeed,
Rα,Y (z) = (Hα,Y − z)−1 can be written for Im z > 0 as

(Rα,Y (z2)f)(x) = (R0(z2)f)(x)

+
N∑

j,`=1

[Γα,Y (z)]−1
j,`

e−iz|x−yj |

4π|x − yj |

∫
R3

eiz|y−y`|

4π|y − y`|
f(y)dy.

Notice that as a consequence the limit absorption principle (i.e., the exis-
tence of the limit of the resolvent as z approaches the real axis) holds true
for Rα,Y .

Our main result is the following theorem (where as usual Pac denotes
the projection on the absolutely continuous subspace of L2 relative to our
operator):

Theorem 5.1 Assume that the matrix Γα,Y (µ) is invertible for µ∈[0,+∞)
with a locally bounded inverse. Then the following dispersive estimate holds

‖w−1eitHα,Y Pacf‖L∞(R3) ≤
C

t3/2
‖w · f‖L1(R3) (5.7)

for any f ∈ L2(R3) such that w · f ∈ L1(R3).
In the special case N = 1, estimate (5.7) holds for all α 6= 0; moreover,
when α > 0 the projection Pac can be replaced by the identity. Finally, in
the resonant case α = 0 we have the slower decay estimate

‖w−1eitH0,yf‖L∞(R3) ≤
C

t1/2
‖w · f‖L1(R3) (5.8)
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