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Tree-Lattice Zeta Functions and Class Numbers

Anton Deitmar & Ming-Hsuan Kang

Abstract. We extend the theory of Ihara zeta functions to noncom-
pact arithmetic quotients of Bruhat–Tits trees. This new zeta function
turns out to be a rational function despite the infinite-dimensional set-
ting. In general, it has zeros and poles in contrast to the compact case.
The determinant formulas of Bass and Ihara hold if we define the de-
terminant as the limit of all finite principal minors. From this analysis
we derive a prime geodesic theorem, which, applied to special arith-
metic groups, yields new asymptotic assertions on class numbers of
orders in global fields.

Introduction

The Ihara zeta function, introduced by Yasutaka Ihara in [19; 20] is a zeta function
counting prime elements in discrete subgroups of rank one p-adic groups. It can
be interpreted as a geometric zeta function for the corresponding finite graph,
which is a quotient of the Bruhat–Tits building attached to the p-adic group [26].
Over time it has been generalized in stages by Sunada, Hashimoto, and Bass [29;
30; 18; 14; 15; 16; 17; 1; 21]. Comparisons with number-theoretical zeta functions
can be found in the papers of Stark and Terras [27; 28; 31]. This zeta function is
defined as the product

Z(u) =
∏
p

(1 − ul(p))−1,

where p runs through the set of prime cycles in a finite graph X. The product,
being infinite in general, converges to a rational function, in fact, the inverse of a
polynomial, and satisfies the famous Ihara determinant formula

Z(u)−1 = det(1 − uA + u2Q)(1 − u2)−χ ,

where A is the adjacency operator of the graph, Q+1 is the valency operator, and
χ is the Euler number of the graph. One of the most remarkable features of the
Ihara formula is that in the case of X = �\Y , where Y is the Bruhat–Tits building
of a p-adic group G, and � is a cocompact arithmetic subgroup of G, then the
right-hand side of the Ihara formula equals the nontrivial part of the Hasse–Weil
zeta function of the Shimura curve attached to �, thus establishing the only known
link between geometric and arithmetic zeta- or L-functions.

In recent years, several authors have asked for a generalization of these zeta
functions to infinite graphs. The paper [25] considers the arithmetic situation,

Received December 9, 2016. Revision received October 29, 2017.
This research was funded by the grant DE 436/10-1 of the Deutsche Forschungsgemeinschaft.

617

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


618 Anton Deitmar & Ming-Hsuan Kang

where the graph is the union of a compact part and finitely many cusps. The zeta
function is defined by plainly ignoring the cusps, so that, indeed, it is a zeta func-
tion of a finite graph. In [5] and [4], the zeta function of a finite graph is general-
ized to an L2-zeta function where a finite trace on a group von Neumann algebra
is used to define a determinant. In [11], an infinite graph is approximated by finite
ones, and the zeta function is defined as a suitable limit. In [12; 13], a relative ver-
sion of the zeta function is considered on an infinite graph that is acted upon by a
group with finite quotient. In [3], the idea of the Ihara zeta function is extended to
infinite graphs by counting not all cycles, but only those passing through a given
point. In [22], the zeta function is extended to an infinite graph acted upon by a
groupoid and equipped with an invariant measure.

In the present paper, we take a different approach by considering cycles that
come from geodesics in the universal covering. This idea goes back to Bass [1],
who incorporated torsion in this way. Surprisingly, this yields a convergent Euler
product, which extends to a rational function. This works for graphs of “Lie type”,
that is, quotients of Bruhat–Tits buildings by lattices in rank one p-adic groups.
These graphs are “cuspidal” in the sense that they consist of a compact part and a
finite number of cusps. To derive determinant expressions of the zeta function, we
introduce the notion of operators of “determinant class”, which means that the net
of all finite principal minors converges, the limit being called the determinant of
the operator. It turns out that with this notion, the classical determinant formulas
of Bass and Ihara actually hold without change. Also, the analysis of the resulting
rational function is precise enough to deduce a version of the prime geodesic
theorem in this context. In the case of the Bruhat–Tits tree of GL2, the prime
geodesic theorem can be applied to obtain the following asymptotic result on
class numbers: ∑

�:R(�)=m

h(�) = �1�Z(m)qm + O((q − ε)m).

Here the sum ranges over all quadratic orders over the coordinate ring of an affine
curve over a finite field of q elements, h(�) is the class number of the order �,
and R(�) is the regulator. This result is the function-field analogue of [24]; see
also [8].

Let us now introduce the geometric idea behind this approach. The classical
predecessor of Ihara’s zeta function is the zeta function of Selberg, which counts
closed geodesics in compact Riemann surfaces. The latter generalizes to noncom-
pact surfaces as long as they have finite hyperbolic volume. In this case, such a
surface is a union of a compact set and finitely many cusp sectors, and the typi-
cal behavior of a closed geodesic is that it winds around a cusp, going out for a
while and then winds back to the compact core. We further have drawn this in the
case of the quotient of the upper half-plane by SL2(Z). The first picture shows
how a geodesic in the universal covering runs through translates of the standard
fundamental domain.
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Instead, one can also leave the fundamental domain fixed and replace the geo-
desic by the union of its translates, as in the second picture.

Finally, to understand the behavior of the geodesic in the quotient, we only
look at what happens in the fundamental domain, where we now nicely see how,
after identifying the left and right boundaries of the domain, the geodesic winds
up and down again.
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The analogue of the upper half-plane in the p-adic setting is the Bruhat–Tits
tree Y of a rank one group, together with a lattice � acting on the tree. In this
setting, a cusp sector in the quotient X = �\Y is an infinite ray emanating from
a compact core. The following picture shows an example of a graph with four
cusps; the compact core is not drawn.

•

•

•

•

• • • · · ·

• • • · · ·

•••· · ·

•••· · ·
Now winding up and down along a cusp means that we consider cycles that

move out on the ray, then return once, and go back to the compact core. This
corresponds nicely to what happens to a “geodesic” in the tree when projected
down to the quotient graph. Note that noncompact quotients with cusps can only
occur when the group � has torsion, so � is not the fundamental group of the
quotient X, and that is why we cannot consider the quotient alone but have to
take the action of � on Y into the picture. This is the idea behind Hyman Bass’s
approach to the zeta function [1].

In the case of the Selberg zeta function, in certain arithmetic cases, it is possible
to derive class number growth assertions [24; 6; 8; 9]. This can, in principle, also
be done for Ihara zeta functions [7]. In this paper, we apply this technique also
in the case of an infinite graph, thus obtaining the above-mentioned growth asser-
tions for class numbers of orders in global fields as follows: Let C be a smooth
projective curve with field of constants k of q elements, let ∞ be a closed point of
C, and let A be the coordinate ring of the affine curve C � {∞}. Then there exist
� ∈N and ε > 0 such that, as m → ∞, we have∑

�:R(�)=m

h(�) = �1�Z(m)qm + O((q − ε)m),

where the sum runs over all quadratic A-orders �, and h(�) is the class number
of �.

1. Cuspidal Tree Lattices

A tree lattice is a group � together with an action on a locally finite tree Y such
that all stabilizer groups �e of edges e are finite and such that∑

e mod �

1

|�e| < ∞.

As an additional condition, we always assume that the tree Y is uniform, that is,
the quotient graph G\Y is finite, where G = Aut(Y ) is the automorphism group
of the tree Y . The compact-open topology makes G a totally disconnected locally
compact group. The action of � on Y defines a group homomorphism α : � → G,
and � is a tree lattice if and only if α has finite kernel and the image α(�) is a
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lattice in the group G, that is, α(�) is a discrete subgroup such that on G/� there
exists a G-invariant Radon measure of finite positive volume.

By replacing � with a subgroup of index two if necessary, we can assume that
� acts orientation preservingly on Y . We will always assume this, as it simplifies
the presentation. In this way, oriented edges of the quotient graph X = �\Y will
be �-orbits of oriented edges on Y .

A tree lattice of Lie type is a lattice in a semisimple p-adic group H of rank
one, acting on the Bruhat–Tits building Y of H [2].

Let Y be a uniform tree. A path in Y is a sequence p = (e1, e2, . . . , en) of
oriented edges such that the end point t (ej ) of ej is the starting point o(ej+1) of
ej+1 for each j ∈ {1, . . . , n−1}. We say that the path is reduced if ej+1 �= e−1

j for

every 1 ≤ j ≤ n − 1, where e−1 denotes the reverse of the oriented edge e. A ray
in Y is an infinite reduced path r = (r1, r2, . . . ). Two rays r, s are equivalent if
they join at some point, that is, if there exist N ∈ N and k ∈ Z such that rj+k = sj
for all j ≥ N . An equivalence class of rays is called an end of Y . The set ∂Y of
all ends is called the boundary or visibility boundary of Y . For a given vertex x0
and any point c ∈ ∂Y , there exists a unique ray in c that starts at the point x0. So
the visibility boundary is what you see when you look around from any point in
the tree.

Let c ∈ ∂Y be a boundary point. Two vertices x, y of Y lie in the same horocy-
cle with respect to c if there are rays r, s ∈ c such that r0 = x, s0 = y and n ∈ N0
such that rn = sn. So a horocycle is the set of all vertices that have the “same
distance” to the boundary point c. Let Pc be the stabilizer of the boundary point
c in the automorphism group G = Aut(Y ). Let Nc be the subgroup of Pc of all
elements that stabilize a horocycle (and hence all horocycles) with respect to c.

The point c is called a cusp of the tree lattice � if � ∩ Pc = � ∩ Nc and there
exists a horocycle H on which � ∩Nc acts transitively. It then acts transitively on
every horocycle which is nearer to c than H . In this case, any ray in c, or rather its
image in X = �\Y , is called a cusp section of �. Let c be a ray in Y giving a cusp
section in �. Recall that the valency of a vertex x is the number of edges ending
at x. The valency of the vertices in the ray c can generally behave irregularly. We
say that c, and so the cusp, is periodic if the sequence of valencies is eventually
periodic, that is, if the vertices of c are (x1, x2, . . . ), then c is periodic if there
exist N ∈ N and k ∈ N such that val(xn) = val(xn+k) for all n ≥ N , where val(x)

is the valency of the vertex x. The smallest possible such k is called the period
of the cusp. If Y is the Bruhat–Tits tree of a semisimple p-adic group, then every
cusp is periodic of period one or two [23].

We say that the tree lattice � is cuspidal if X = �\Y is the union of a finite
graph and finitely many periodic cusp sections. Any tree lattice of Lie type is
cuspidal.

2. The Bass–Ihara Zeta Function

Let � be a cuspidal tree lattice of the uniform tree Y , and let X = �\Y be the
quotient graph. A path p = (e1, . . . , en) in X is called closed if t (en) = o(e1).
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Then the shifted path τp = (e2, . . . , en, e1) is closed again, and the shift induces
an equivalence relation on the set of closed paths, whereby two closed paths are
equivalent if one is obtained from the other by finitely many shifts. A cycle is
an equivalence class of closed paths. If c is a cycle, then any power cn, n ∈ N,
obtained by running the same path for n times is again a cycle, and a given cycle
c0 is called a prime cycle if it is not a power of a shorter one. For every given
cycle, there exists a unique prime cycle c0 such that c = cm

0 for some m ∈ N. The
number m = m(c) is called the multiplicity of c. A path p = (e1, . . . , en) is called
reduced if ej+1 �= e−1

j for every 1 ≤ j ≤ n − 1. A cycle is called reduced if it
consists of reduced paths only.

For an edge e of Y , we set

w(e) = |�o(e)e|,
which is the cardinality of the �o(e)-orbit of e. For an edge e of X = �\Y , we
write w(e) = w(ẽ), where ẽ is any preimage of e in Y . For two consecutive edges
e and e′, that is, if t (e) = o(e′), we write

w(e, e′) =
{

w(e′), e′ �= e−1,

w(e′) − 1, e′ = e−1.

For a closed path p = (e1, . . . , en), let

w(p) =
∏

j mod n

w(ej , ej+1).

Definition 2.1. The Bass–Ihara zeta function for the tree lattice � is defined to
be

Z(u) =
∏
c

(1 − w(c)ul(c))−1,

where the product runs over all prime cycles, and l(c) is the length of the cycle c.
In [1], it is shown that this in general infinite product converges for |u| small to
a rational function if X is compact. We will now show the same in the cuspidal
case.

Note the special case of all trivial stabilizer groups. In this case, we get

Z(u) =
∏
c

(1 − ul(c))−1,

where now the product runs over reduced prime cycles only.

Theorem 2.2. Suppose that the tree lattice � is cuspidal. Then, for small |u|, the
product Z(u) converges to a rational function.

The proof requires a new form of determinant for operators on infinite-dimen-
sional spaces, which is given in the next section.
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3. Determinant Class Operators

For a set I , consider the formal complex vector spaces

P = P(I) =
∏
i∈I

Ci, S = S(I) =
⊕
i∈I

Ci.

We denote elements of these spaces as formal sums
∑

i∈I ai i, where in the second
case, the sums are finite in the sense that ai = 0 outside a finite set. For a linear
operator A : S → P and any finite subset F ⊂ I , we define the operator AF as the
composition

S(F ) ↪→ S(I)
A−→ P(I) � P(F),

where the first arrow is the natural inclusion, and the last is the natural projection.
The system of finite subsets F of I is a directed set when equipped with the

partial order by inclusion. Therefore the map F �→ det(AF ) is a net with values
in C.

Definition 3.1. We say that A is of determinant class if the limit of the net of
all principal minors,

det(A)
def= lim

F
det(AF ),

exists and is not zero.

Define a pairing 〈·, ·〉 : P × S → C by〈∑
i∈I

ai i,
∑
i∈I

bi i

〉
=

∑
i∈I

aibi .

A permutation σ : I → I is called finite if σ(i) = i outside a finite set F . In this
case, we write sgn(σ ) for the sign of the permutation σ |F . It does not depend on
the choice of F .

Lemma 3.2 (Computation of the determinant). Let A : S → P be a linear opera-
tor such that

• there is a finite set F0 ⊂ I with 〈Ai, i〉 �= 0 outside F0 and∑
i∈I�F0

| log〈Ai, i〉| < ∞, and
• ∑

σ finite |∏i∈I 〈Ai,σ i〉| < ∞.

Then A is of determinant class, and we have

det(A) =
∑

σ finite

sgn(σ )
∏
i∈I

〈Ai,σ i〉.

An operator satisfying the condition of this lemma is said to be of strong determi-
nant class.
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Proof. Suppose that A satisfies the conditions of the lemma. Then∑
σ

sgn(σ )
∏
i∈I

〈Ai,σ i〉 = lim
F

( ∑
σ∈Per(F )

sgn(σ )
∏
i∈F

〈Ai,σ i〉
)

︸ ︷︷ ︸
=det(AF )

( ∏
i∈I�F

〈Ai, i〉
)

︸ ︷︷ ︸
→1

.

The second factor tends to one, so we get the claim. �

Examples 3.3. • If I is finite, then every operator is of determinant class, and
this formula gives the usual determinant.

• If the set I is an orthonormal basis of a Hilbert space H on which T : H → H

is a linear operator, then T gives rise to an operator in the algebraic sense, again
written T and if T is of trace class, then 1 − T is of determinant class, and the
determinant coincides with the Fredholm determinant

det(1 − T ) =
∞∑

k=0

(−1)k tr
k∧

T .

• The operators we consider here cannot generally be composed. There are, how-
ever, two classes of operators that allow composition. Firstly, an operator A

as before is called a finite column operator if it maps S(I) to S(I) ⊂ P(I).
The name comes from the fact that the corresponding matrix indeed has finite
columns, that is, for every i ∈ I , the set {j ∈ I : 〈Ai, j〉 �= 0} is finite.

If, on the other hand, for each j ∈ I , the set {i ∈ I : 〈Ai, j〉 �= 0} is finite,
then we call A a finite row operator. A finite row operator possesses a canonical
extension to a linear operator P → P .

• Let I = N. Then any operator is given by an infinite matrix. If this matrix is
upper triangular with ones on the diagonal, then the operator is of determinant
class. The same holds for lower triangular matrices. The product of a lower
triangular matrix and an upper triangular matrix, however, not always is of
determinant class. This means that the determinant class is not closed under
multiplication.

We say that an operator T : S → P is traceable if
∑

i∈I |〈T i, i〉| < ∞. If T is
traceable, then we define its trace by

Tr(T ) =
∑
i∈I

〈T i, i〉.

Lemma 3.4. Suppose that operators A and B such that A has finite rows or B

has finite columns, so that the product AB exists. Assume further that A,B , and
AB are of determinant class. Then

det(AB) = det(A)det(B).

Proof. Viewed as infinite matrices, we have

〈ABj, i〉 = (AB)i,j =
∑

k

Ai,kBk,j .
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Under either condition, this sum is finite. In the rest of the proof, we assume that
A is a finite row operator, the other case being similar. For a finite set E ⊂ I ,
we write AE for the operator given by AE

i,k = δi,k unless i, k are both in E, in

which latter case we have AE
i,j = Ai,j . Then AE has finite rows and columns,

and det(AE) tends to det(A) as E → I . Now if F ⊃ E, then we get (AEB)F =
AE

F BF , and so

det(AEB) = lim
F

det(AE
F BF ) = det(AE)det(B).

The right-hand side tends to det(A)det(B) as E → I . The fact that A is of finite
rows implies that, for every finite set F ⊂ I , there exists a finite set E with F ⊂
E ⊂ I such that (AEB)F = (AB)F . This implies that det(AEB) → det(AB) as
E → I , and the lemma is proven. �

3.1. Connectedness

Let A : S(I) → P(I) be an operator. For j ∈ I , write Aj = ∑
i∈I ai i and let

Ã({j}) denote the subset of all i ∈ I with ai �= 0. For any subset M ⊂ I ,
set

Ã(M) =
⋃
j∈M

Ã({j}).

A subset M ⊂ I is called A-stable if Ã(M) ⊂ M . The same applies in the rela-
tive situation: If F ⊂ I is any subset, not necessarily finite, then we say that F

is A-irreducible if F and ∅ are the only ÃF -stable subsets of F . Further, F is
called A-connected if whenever F = M ∪ N with A-stable disjoint sets M,N ,
then M = ∅ or N = ∅.

Further, we say that A is connected if I is A-connected.

Lemma 3.5. If I is A-irreducible, then the A-connected finite subsets F ⊂ I are
cofinal in the directed set of all finite subsets of I . So in particular, any net F �→
n(F ) has a subnet obtained by restricting to A-connected sets F , called the A-
connected subnet.

Proof. We have to show that any given finite subset F ⊂ I is contained in an
A-connected finite subset C ⊂ I . So let j0 ∈ F . The set

⋃
n∈N0

Ã({j0}) is A-
stable in I and therefore coincides with I . So for each j ∈ C, there is a chain
j0, j1, . . . , jk = j such that jν+1 ∈ Ã({jν}) for every ν = 0, . . . , k − 1. The set
K(j) = {j0, j1, . . . , jk = j} is finite and A-connected. Let C be the union of all
F(j), where j ranges over F . Then C is A-connected and finite and contains F .

�

Definition 3.6. The operator A is of connected determinant class if I is A-
irreducible and limF det(AF ) exists, where the limit is taken over all A-connected
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finite subsets F ⊂ I . If this is the case, we still write

det(A) = lim
F

det(AF ),

where the limit is taken over connected sets F only.

Example 3.7. Let I be the vertex set of a graph X, and let A be the adjacency
operator, that is,

Ax =
∑
x′

x′,

where the sum runs over all neighbors x′ of x. We have that I is A-irreducible
if and only if I is A-connected if and only if X is connected. For every subset
F ⊂ I , we write XF for the full subgraph of X with vertex set F . We then get

XF is connected ⇔ F is A-connected.

Proposition 3.8. If I is A-irreducible and A is of determinant class, then A is
of connected determinant class. There are operators that are of connected deter-
minant class but not of determinant class.

Proof. To prove the first statement, we need to show that A-connected finite sets
are cofinal in the set of all finite subsets of I . So we need to show that, for each
finite subset F ⊂ I , there exists an A-connected finite subset C ⊂ I with F ⊂ C.
For this, let X be the graph with vertex set I , where i, j ∈ I are connected if
|〈Ai, j〉|+|〈Aj, i〉| is nonzero. For F ⊂ I , let XF be the full subgraph with vertex
set F . Then F is A-connected if and only if the graph XF is connected. So the
assertion boils down to the fact that in a connected graph each finite set of vertices
is contained in a connected finite subgraph.

An example of an operator that is of connected determinant class but not of
determinant class is given in Section 5. �

4. The Zeta Function as a Determinant

We now apply the theory of determinant class operators to give a proof of Theo-
rem 2.2. So we assume that � is a cuspidal tree lattice acting on the tree Y . We
write X = �\Y for the quotient graph. Let I = OE(X) be the set of all oriented
edges of X and define the operator T : S(I) → S(I) by

T e =
∑
e′

w(e, e′)e′,

where the sum runs over all edges e′ with o(e′) = t (e). Note that T is exactly the
pushdown of the operator T̃ on S(J ), where J = OE(Y ), given by

T̃ e =
∑
e′

e′,

where here the sum runs over all edges e′ �= e−1 with o(e′) = t (e). We make this
a bit more precise. As T is an operator of finite rows and columns, we can as well
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consider it as T : P(I) → P(I). Now P(I) = P(OE(X)) can be identified with

P(OE(Y ))�,

that is, the �-invariants in P(J ), where J = OE(Y ). Hence any operator on P(J )

that commutes with the �-action defines an operator on P(I). In this way the
operator T corresponds to the operator T̃ : P(J ) → P(J ) given before.

Lemma 4.1. For any given n ∈ N, the operator T n is traceable, and the trace is

Tr(T n) =
∑

c:l(c)=n

l(c0)w(c),

where the sum runs over all cycles c of length n, and c0 is the underlying prime
cycle of a given cycle c.

Proof. Recall that X is a union of a finite graph Xfin and a finite number of cusp
sections. The best way of thinking of T is that it sends potentials from an edge to
the following edges and therefore an edge e ∈ I only gives a nonzero contribution
to the trace, that is, 〈T ne, e〉 �= 0, if e lies on some cycle of length n. Now if e

lies on a cusp section and its distance to Xfin is greater than n, then it cannot lie
on such a cycle, as potentials on a cusp section that move inward, that is, toward
Xfin, cannot reverse on the cusp section but have to move all the way to Xfin before
returning. Therefore the sum

∑
e〈T ne, e〉 is actually finite, and so T n is traceable.

The claimed formula is clear. �

With this lemma, we compute, formally at first,

Z(u)−1 =
∏
c0

(1 − w(c0)u
l(c0)) = exp

(∑
c0

log(1 − w(c0)u
l(c0))

)

= exp

(
−

∑
c0

∞∑
n=1

w(c0)
nunl(c0)

n

)
= exp

(
−

∑
c

w(c)ul(c)

l(c)
l(c0)

)

= exp

(
−

∞∑
n=1

un

n

∑
c:l(c)=n

w(c)l(c0)

)
= exp

(
−

∞∑
n=1

un

n
Tr(T n)

)
.

We say that a sequence An of operators converges weakly to an operator A :
S → P if for all i, j ∈ I , the sequence of complex numbers 〈Ani, j 〉 converges to
〈Ai, j 〉.
Lemma 4.2. There is α > 0 such that, for u ∈ C with |u| < α, the series
−∑∞

n=1(u
n/n)T n converges weakly to an operator we call log(1 − uT ). This

operator is traceable, and we have

Z(u)−1 = exp(Tr(log(1 − uT )))

for every u ∈C with |u| < α.
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Proof. As Y is uniform, there is an upper bound M to the valency of vertices. It
follows that

∑
e′ w(e, e′) ≤ M for every edge e, where the sum runs over all edges

e′ with o(e′) = t (e). It follows that, for any two i, j ∈ I , we have

|〈T ni, j 〉| ≤ MnCn(i, j),

where Cn(i, j) is the number of paths of length n connecting i and j . Let r denote
the number of cusp sections in X, and let s be the number of oriented edges in
Xfin. For counting the number of paths connecting any two given edges, it suffices
to replace each cusp section with a vertex and one oriented edge going out and
one in. Going out a long stretch on a cusp section then is replaced by iterating the
loop. In that way, we see that

|〈T ni, j 〉| ≤ Mn(s + 2r)n,

from which the convergence assertion follows. The trace assertion is in fact an
assertion of changing the order of summation because the trace is itself a sum
over I . For u > 0, all summands are positive, so there is no problem with this
interchange of order; for general u, we use absolute convergence, that is, a Fubini
argument, to reach the same conclusion. �

Theorem 4.3. For |u| small enough, the operator 1−uT is of strong determinant
class, and we have

Z(u)−1 = det(1 − uT ).

This is a rational function of u.

Proof. We consider one cusp at a time and for simplicity assume that the period
is one. Then all vertices along the cups can be assumed to have the same valency,
say q + 1. The modifications for the general case are easy. Let (e0, e1, e2, . . . ) be
a ray representing the cusp. Writing fj = e−1, we get

T ej = ej+1 + (q − 1)fj , j ≥ 0,

Tfj = qfj−1, j ≥ 1.

We find that the operator 1 − uT is represented by the matrix

e0 f0 e1 f1 e2 f2

A α

e0 β 1
f0 a 1 0 a + b

e1 b 1
f1 a 1 a + b

e2 b 1
f2 a 1

where a = −u(q − 1) and b = −u. Further, the operator A represents what is
going on outside the current cusp, α is a finite column vector, and β is a finite row
vector. Note that if we choose to go up by one unit in the cusp, meaning that ej

will be replaced by ej+1 and fj by fj+1, then the vectors α and β are disjoint in
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the sense that there cannot be a permutation σ that gives a nonzero contribution
to the determinant such that σ(e0) = f0. It follows that a finite permutation σ

that gives a nonzero contribution to the determinant must satisfy σ(e0) = e0 or
σ(e0) = e1. In the first case, it follows that σ is the identity on the whole cusp
section. So, if σ is not the identity on the cusp section, then the factor 〈T e0, σe0〉
gives a factor b = u(q − 1). We find that there are not very many choices for such
a σ and that they come with growing powers of u, which for |u| small, force in
convergence of the determinant series. Therefore 1 − uT is of strong determinant
class. We compute

det(1 − uT ) = lim
F

det(1 − uTF )

= lim
F

exp

(
−

∑
n

un

n
trT n

F

)
= exp

(
− lim

F

∑
n

un

n
trT n

F

)
,

where we have used the continuity of the exponential function. Next, the limit can
be interchanged with the sum for small |u| by using dominated convergence by
means of a crude estimate of trT n

F similar to the proof of Lemma 4.2. Finally, we
have limF trT n

F = TrT n by the same estimate, so that we end up with the claim.
The other cusps are dealt with in the same fashion.

It remains to show that det(1 − uT ) is a rational function in u. For this, we
again look at one cusp only, and again we assume it to be of period one. As in the
proof of Theorem 4.3, we see that det(1 − uT ) is the determinant of the matrix

e0 f0 e1 f1 e2 f2

A α

e0 β 1
f0 a 1 0 a + b

e1 b 1
f1 a 1 a + b

e2 b 1
f2 a 1

By starting the cusp section one step later, that is, moving out on the cusp, we
can assume that the vectors α and β each have at most one nonzero entry. Note
that by Lemma 3.2 we are able to compute the determinant of 1 − uT using row
and column reduction as finite matrices. By first using column reduction on the
column f0 and then applying row reduction on the row e0, there exist a submatrix
A′ of A and a number c ∈ C such that the determinant above is equal to det(A)

plus cu2 det(A′) times the determinant of the infinite matrix
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a 0 a + b

b 1
a 1 a + b

b 1
a 1 a + b

b 1
. . .

Let us denote by D this determinant. Using Laplace expansion along the first row,
we see that D equals a plus (a + b) times the determinant of

b 1
a a + b

b 1
a 1 a + b

b 1
a 1

b
. . .

But this is b times D, so we get D = a + (a + b)bD, or

D = a

1 − (a + b)b
= (1 − q)u

1 − qu2
.

The proof of Theorem 4.3 and therefore of Theorem 2.2 is finished. In the case of
higher period than one, the reduction pattern used before to compute D will repeat
itself only later, but will still lead to a recursion formula giving rationality. Other
cusps are treated in the same way, so the claim follows in full generality. �

5. The Ihara Formula

In [1], it is shown that in the case of a uniform tree lattice � acting on a tree Y ,
the zeta function satisfies

Z(u)−1 = det(1 − uA + u2Q)

(1 − u2)χ
,

where A : S(V Y ) → S(V Y ) is the adjacency operator of Y , that is,

Ay =
∑
y′

y′,

where the sum runs over all vertices y′ adjacent to y ∈ V Y . Further, Q is the
valency operator minus one, that is,

Q(y) = (val(y) − 1)y,
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where val(y) is the valency of the vertex y. Finally, χ is the Euler number of
the finite graph X. Here we use the identification of S(V X) with the set of �-
invariants in S(V Y ).

Proof of Bass’s theorem. For the convenience of the reader, we give a short ac-
count of Bass’s proof. Let C0 be the complex vector space of all maps from V Y

to C and C1 the complex vector space of all maps from OE(Y ) to C. We write
the elements of C0 as formal sums

∑
p∈V Y cpp with cp ∈ C and likewise for C1.

Let ∂0, ∂1 : C1 → C0 be the two boundary operators mapping an edge e to its ori-
gin and terminus, respectively. Let J : OE(Y ) → OE(Y ) be the flip or orientation
change operator. Let σ : C0 → C1 be defined as

σ(p) =
∑

e:∂0e=p

e.

All these operators commute with the �-action, so they preserve the finite-
dimensional subspace C�

0 ⊕ C�
1 of �-invariants. For a given u ∈ C, we consider

the following operators on this finite-dimensional space:

L =
(

1 − u2 u∂0 − ∂1
0 1

)
, M =

(
1 −u∂0 + ∂1

uσ 1 − u2

)
.

A simple computation shows that

LM =
(

1 − uA + u2Q 0
uσ 1 − u2

)
and

ML =
(

1 − u2 0
(1 − u2)σ (1 − uT )(1 − uJ )

)
.

Note that dimC�
0 = |V X| and dimC�

1 = |OE(X)| = 2|EX|. As det(ML) =
det(LM), we get

det(1 − uA + u2Q)(1 − u2)2|EX| = (1 − u2)|V X| det(1 − uT )det(1 − uJ ).

Now det(1 − uJ ) = (1 − u2)|EX|, so we get the claim. �

Theorem 5.1. Let � be a cuspidal tree lattice. For |u| small enough, the operator
1 − uA + u2Q is of connected determinant class, and we have

Z(u)−1 = det(1 − uA + u2Q)

(1 − u2)χ(Xfin)
,

where Xfin is the finite part of X, that is, it is X minus the cusp sections. If X has
at least one cusp, then 1 − uA + u2Q is not of determinant class, providing the
example promised in Proposition 3.8.

Proof. For any finite subset F of V X, let XF be the full finite subgraph with
vertex set F . Assume that XF is connected and contains Xfin. Let YF be the
preimage of XF in Y . Then YF equals Y minus a disjoint union of horoballs,
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so YF is a tree, acted upon by � with compact quotient XF . So Bass’s theorem
applies to YF , giving

ZF (u)−1 = det(1 − uTF )

= det(1 − uAF + u2QF )

(1 − u2)χ(XF )
.

If XF is connected and contains Xfin, then χ(XF ) = χ(Xfin) as cusps do not
contribute to the Euler number. Therefore we conclude that, as limF det(1 −uTF )

exists, the connected limit over det(1 − uAF + u2QF ) also exists, proving all but
the last assertion of the theorem. It remains to show that 1 − uAF + u2QF is not
of determinant class. For this, let F be large enough that XF contains Xfin. Then
each connected component of XF that does not contain Xfin contributes a factor
1 − u2 to the rational function (1 − u2)χ(XF ). So we see that

det(1 − uAF + u2QF )

(1 − u2)|π0(XF )|

converges as F → I , where π0(XF ) is the set of connected components of XF .
As the denominator alone does not converge, the enumerator does not either. �

6. L-Functions

The Bass–Ihara zeta function can be twisted with a finite-dimensional unitary
representation ω : � → GL(V ) of the tree lattice �. For better distinction, in this
section, we denote the oriented edges of Y by e, e′, e1, e2, . . . and the oriented
edges of X by f,f ′, f1, f2, . . . . For each e ∈ OE(Y ), we denote by Ve a copy
of the space V , so between any Ve and any Ve′ , there is a natural identification
Ve

∼= Ve′ . For each f ∈ OE(X), we let

Vf =
(∏

e∈f

Ve

)�

denote the space of �-invariants in the product of which � acts by (γ v)e =
ω(γ )vγ −1e . Recall that f is an edge of �\Y , so f is a �-orbit of edges in Y .

The space Vf is finite-dimensional and isomorphic with V
�e
e for any e ∈ f . If

f,f ′ are consecutive edges in X, so that t (f ) = o(f ′), then we define a map
W(f,f ′) : Vf → Vf ′ by

W(f,f ′)vf =
∑
e∈f

∑
e′:e→e′
e′ �=e−1

ve′ .

For a closed path p = (f1, . . . , fn) in X, we define W(p) : Vf1 → Vf1 by

W(p) = W(fn,f1) ◦ · · · ◦ W(f2, f3) ◦ W(f1, f2).
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Then W(p) does depend on the path p, whereas det(1−ul(p)W(p)) only depends
on the cycle of p. Therefore the product

L(ω,u) =
∏
c

det(1 − ul(c)W(c))−1

is well defined as a product over all prime cycles in X. On the space
⊕

f ∈OE(X) Vf ,
we consider the operator

Tω(vf ) =
∑
f ′

W(f,f ′)vf ,

where the sum runs over all f ′ ∈ OE(X) with o(f ′) = t (f ).
Similarly, for a vertex y if Y , we let Vy denote a copy of V , and for x of X, we

set

Vx =
(∏

y∈x

Vy

)�

.

On the space
⊕

x∈V X Vx , we consider the adjacency operator

Aω(vx) =
∑
y∈x

∑
y′

vy′ ,

where the first sum runs over all y in the �-orbit x, and the second is extended
over all neighbors y′ of y in Y . Finally, vy′ is the image of vx under the canonical
identification Vx

∼= V ∼= Vy′ . Further, let

Q(vx) = (val(y) − 1)vx,

where y is any element of x, and val(y) is the valency of the vertex y in the tree Y .

Theorem 6.1. Let � be a cuspidal lattice. For |u| small enough, the operator
1 − uTω is of determinant class, and we have

L(ω,u)−1 = det(1 − uTω).

This is a rational function of u. For |u| small enough, the operator 1 −uA+u2Q

is of connected determinant class, and we have the Ihara formula

L(ω,u)−1 = det(1 − uAω + u2Q)

(1 − u2)dχ(Xfin)
,

where Xfin is the finite part of X, that is, it is X minus the cusp sections, and
d = dim(Vω).

Proof. Analogously to Lemma 4.1, we see that

Tr(T n) =
∑

c:l(c)=n

l(c0) tr(W(c)),

where the sum runs over all cycles c of length n, and l(c0) is the prime cycle
underlying c. The first identity follows as in Theorem 4.3. The argument for ra-
tionality is analogous to the proof of Theorem 4.3, and the Ihara formula follows
as in Theorem 5.1. �
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7. An Arithmetic Example

For background material on this section, see [26]. Let q = pk be a prime power,
and let F = Fq be the finite field of q elements. On the function field Fq(t), we
put the discrete valuation corresponding to the “point at infinity”:

v

(
a

b

)
= deg(b) − deg(a). (polynomial degree)

Let K = F̂(t) denote the local field obtained by completing F(t), and let O ⊂ K

be the corresponding complete discrete valuation ring,

O = {x ∈ K : v(x) ≥ 0}.

Then π = 1/t is a uniformizer in O. We consider the locally compact group
G = GL2(K). Its Bruhat–Tits tree Y can be described as follows. The vertices
are homothety classes of O-lattices in K2. Two such lattice classes [L] and [L′]
are connected by an edge if and only if the representatives may be chosen so
that

πL ⊂ L′ ⊂ L.

The graph described in this way is a tree Y that has constant valency q + 1. The
natural action of G on O-lattices induces an action of G on the tree Y . The group
� = GL2(F[t]) is a discrete subgroup of G. In [26], the quotient �\Y is described
as follows. For each n ∈N0, let

Ln = Oe1 ⊕ πnOe2,

where e1, e2 is the standard basis of K2. Write xn for the vertex given by
the class [Ln]. Then L0,L1, . . . is a complete set of representatives for �\Y ,
the only edges being (Ln,Ln+1) for n ≥ 0. Put �0 = GL2(F) and, for n ≥
1,

�n =
{(

a b

0 d

)
: a, d ∈ F

×, b ∈ F[t],deg(b) ≤ n

}
.

Then for each n ≥ 0, the group �n is the stabilizer group of xn. The group �0

acts transitively on the set of edges with origin x0, and for n ≥ 1, the edge
(Ln,Ln+1) is fixed by �n. Finally, the group �n acts transitively on the set
of edges with origin xn distinct from (xn, xn+1). For this, see [26], Proposi-
tion I.1.3.

So the quotient X = �\Y is a single ray. As in the proof of Theorem 4.3, we let
a = −(q − 1)u and b = −u, and we see that det(1 − uT ) equals the determinant
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of

1 a + b

a 1 0 a + b

b 1
a 1 a + b

b 1
a 1 a + b

b 1
. . .

Again as in the theorem, we see that

Z(u)−1 = det(1 − uT ) = 1 − q2u2

1 − qu2
.

8. The Prime Geodesic Theorem

Now suppose X = �\Y , where � is a cuspidal tree lattice. If we write

u
Z′

Z
(u) =

∞∑
m=1

Nmum,

then from the Euler product we get

Nm =
∑

c:l(c)=m

w(c)l(c0),

where the sum runs over all cycles c, and c0 denotes the primitive cycle underlying
c. Note that this implies that Nm is a nonnegative integer for every m ∈N. On the
other hand, using Theorem 2.2, we get that Z(u) is a rational function such that

Z(u) =
∏r

j=1(1 − aju)∏t
k=1(1 − bku)

.

Then

Nm =
r∑

j=1

am
j −

t∑
k=1

bm
k .

When Y is (q + 1)-regular tree and X has s cusps, as shown in the proof of
Theorem 4.3, we have bj = ±√

q and

Nm =
r∑

j=1

am
j − 2sqm/212Z(m),

where 12Z denotes the indicator function of 2Z, so the negative summand at the
end only occurs for even m.

If � is cuspidal and N ∈ N, fix a numeration ej,1, ej,2, . . . of the outward edges
of each cusp, where we have s cusps and j = 1, . . . , s. For a given N ∈N, denote
by XN the finite subgraph obtained from X by cutting off all edges after eN .
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For the graph X = �\Y , we define the formal space

C1(X) =
⊕

e∈OE(X)

Ce,

where the direct sum runs over the set OE(X) of all oriented edges of X. We
define the operator T : C1(X) → C1(X) by

T e =
∑

e′:o(e′)=t (e)

w(e, e′)e′.

Theorem 8.1. Suppose that Y is (q +1)-regular and � is cuspidal. We also write
T for the matrix of T with respect to the basis (e)e of C1(X) consisting of all
oriented edges.

(a) If X is a finite graph, then the matrix T has positive entries only and is con-
nected in the sense of Section 3.1.

(b) We have maxr
j=1 |aj | = q .

(c) (Prime geodesic theorem) There exists � ∈ N such that, as m → ∞, we have

Nm = �1�Z(m)qm + O((q − ε)m)

for some ε > 0.

Proof. Claim (a) is clear as the graph X is connected. For the other assertions, let
us first assume that � is uniform, so X is finite. The matrix T has positive entries
only. On C1(X), we define the 1-norm by

‖v‖1 =
∑

e

|v(e)|,

and we denote by ‖ ·‖op the corresponding operator norm. We claim that ‖T ‖op ≤
q . For this, note that ‖T (e)‖ = q for every edge e, so that for an arbitrary element
v = ∑

e vee of C1(X), we have

‖T v‖ ≤
∑

e

|ve|‖T e‖ = q
∑

e

|ve| = q‖v‖.

Next, we show that T has q as an eigenvalue. Since ‖T e‖ = q for each edge, it
follows that every column of the matrix T has sum q , or, in other words, we have
T tv = qv, where v = ∑

e e. Since the transpose T t has the same eigenvalues as
T , the number q is an eigenvalue. This proves assertion (a), and (b) then follows
from the Perron–Frobenius theorem [10, 13.2.2] (note that a connected matrix is
called a nondecomposable matrix in [10]).

Now we prove (b) and (c) in the case of an infinite graph X. For simplicity,
we still assume that X has only one cusp (e0, e1, . . .) and fi = e−1

i . On the other
hand, the argument can be easily applied to multicusps. Analogously, we define
the formal space C1(XN) and on it the operator AN given by

AN(eN) = qfN, AN(fN) = (q − 1)fN−1 + eN,

and AN(e) = T (e) otherwise.
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Lemma 8.2. (a) For all N and m ∈ N, we have

trAm
N = trT m + 12Z(m)qm/2.

(b) AN has q for an eigenvalue, and every eigenvalue λ of A satisfies |λ| ≤ q .

Proof. We have trT m = ∑
c w(c)l(c0), where the sum runs over all closed cycles

of length m in X. Likewise, we have trAm
N = ∑

c w′(c)l(c0), where the sum runs
over all closed cycles of length m in XN . There is an injective map from the set
of all cycles in X to the set of all cycles in XN . Whenever a cycle in X contains
eN+1, the stretch outside XN is replaced by the a number of loops (fN , eN) to
match up the length. Every cycle in XN of length m lies in the image of this
map, with the exception of any cycle of the form (fN , eN)m/2 when m is even.
Counting the contributions of these cycles gives claim (a).

(b) We claim that ‖AN‖op ≤ q , where ‖ · ‖op is the operator norm with respect
to ‖ · ‖1. For this, note that ‖ANe‖1 = q for ever edge e. Therefore, for given
v = ∑

e vee ∈ C1(XN), we obtain

‖ANv‖1 ≤
∑

e

ve‖ANe‖1 = q‖v‖1,

which implies ‖AN‖op ≤ q , and so |λ| ≤ q for every eigenvalue of AN . Let AN

also denote the matrix of AN with respect to the basis of edges. Then we note that
all entries of this matrix are ≥ 0 and the sum over each column is exactly q . The
eigenvalues of AN coincide with the eigenvalues of the transpose matrix At

N , and
now the sum over each row equals q , or, equivalently,

At
N

⎛⎜⎝1
...

1

⎞⎟⎠ = q

⎛⎜⎝1
...

1

⎞⎟⎠ .

So At
N has q for an eigenvalue, and so does AN . The lemma is proven. �

As the graph XN is connected, the matrix AN is connected, so the Perron–
Frobenius theorem implies that

tr(Am
N) = 1�Z(m)qm + O((q − ε)m)

for some ε > 0, and so the theorem follows. �

Definition 8.3. Let Y be a tree. We call an element γ ∈ Aut(Y ) a hyperbolic
element if its length

l(γ ) = min{d(γy, y) : y ∈ |Y |}
is greater than 0, where y runs through the points of a geometric realization of Y .

If γ is hyperbolic, then there exists an infinite line . . . , v−1, v0, v1, . . . in Y , called
the axis of γ and written ax(γ ), such that γ is a translation along this line, that is,
γ vj = vj+l with l = l(γ ); see [26].

Recall that an element σ ∈ � is called primitive if the equation σ = τn with
n ∈N and τ ∈ � implies n = 1. Any hyperbolic element γ ∈ � is a positive power
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γ = γ m
0 , m ∈ N, of a primitive element γ0, which is uniquely determined up to

torsion.

Proposition 8.4. Let � be a cuspidal tree lattice on the uniform tree Y , and let
Nm be defined as before. Then, for m ∈N, we have

Nm =
∑

[γ ]⊂�hyp

l(γ )=m

l(γ0)

|Cent(γ,�ax(γ ))| ,

where the sum runs over all conjugacy classes [γ ] in � of hyperbolic elements
of length m, �ax(γ ) denotes the pointwise stabilizer in � of the axis of γ , and
Cent(γ,�ax(γ )) is the centralizer of γ in �ax(γ ).

Proof. We have Nm = ∑
c:l(c)=m w(c)l(c0). Pick a cycle c = (e0, . . . , en = e0)

of length m. We say that the hyperbolic element γ ∈ � closes c if the axis of γ

can be written as . . . , e−1, e0, e1, . . . such that e0 maps to e0, en maps to en, and
γ e0 = en.

We now show that, for a given c, there are w(c) many conjugacy classes of
γ ∈ � closing c.

We first construct one. For this, pick an oriented edge e0 in c pointing in the
direction of the cycle. Choose a preimage e0 of e0 in Y . Next, let e1 be the next
edge on c following e0 and choose a lift e1 of e1 that follows e0 and is different
from the inverse of e0. Note that the number of possible choices for e1 is w(e0, e1).
Repeat this step until you finished the full cycle c. Above, in Y , you then have a
path (e0, . . . , en), where en is another preimage of e0. Note that, given e0, there
are w(c) many different choices for en. Then there exists γ0 ∈ � with γ0e0 = en.
As e0 and γ0e0 = en are in a line and have the same orientation, γ0 is hyperbolic,
and e0 and γ0e0 lie on its axis. So we have found γ0 that closes c.

For any given γ ∈ � closing c, fix a preimage f0 ∈ ax(γ ) of e0. There ex-
ists τ ∈ � with τf0 = e0. Conjugating by τ , we see that the set of all �-conjugacy
classes of elements γ closing c is in bijection with the set of �e0 -conjugacy classes
of �hyp,c,e0 , where the latter is the set of all γ ∈ � closing c and having e0 in
their axis. We now show that, for γ ∈ �hyp,c,e0 , the stabilizer of γ in �e0 equals
Cent(γ,�ax(γ )), since if τ ∈ �e0 and τγ τ−1 = γ with γ ∈ �hyp,c,e0 , then it fol-
lows that τ(ax(γ )) = ax(γ ), and as τ fixes e0, it fixes ax(γ ) pointwise, and hence
τ ∈ �ax(γ ). As τ centralizes γ , we conclude that τ ∈ Cent(γ,�ax(γ )).

The proposition will finally follow if we show that

|�hyp,c,e0 | = w(c)|�e0 |.

As mentioned before, the number of possible choices for en is w(c), and if two
elements γ, γ ′ ∈ �hyp,c,e0 have the same en, that is, γ e0 = γ ′e0, then it follows
that γ −1γ ′ ∈ �e0 , which indeed implies |�hyp,c,e0 | = w(c)|�e0 |. �
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9. Class Numbers

Let C be a smooth projective curve over the finite field k, and let K = k(C) denote
the function field. We assume that k in fact is the constant field of K , which
means that k is algebraically closed in K . The closed points of C correspond to
the valuations on K . Fix a closed point ∞ of C and let Caff = C� {∞}. We denote
the coordinate ring of this affine curve by A. Then A is a Dedekind domain whose
prime ideals correspond to the points of Caff. Let K∞ be the completion of K at
∞. Then � = GL2(A) is a lattice in the locally compact group G = GL2(K∞).
We consider the action of � on the Bruhat–Tits tree Y of G. Then � acts as
a cuspidal tree lattice of period one. The number of cusps equals the number
GL2(A)\P2(K), and so this number is the class number h(A) of the Dedekind
ring A.

Lemma 9.1. For every hyperbolic γ ∈ �, we have

|Cent(γ,�ax(γ ))| = (q − 1)2,

where q is the cardinality of k.

Proof. Let γ ∈ � be hyperbolic. Then � is a split semisimple element of G, so
its centralizer in G is a maximal torus T , and this maximal torus happens to be
split, so T ∼= K×∞ × K×∞. Also, the axis ax(γ ) equals the apartment attached to
the torus T , whence the group of t ∈ T fixing ax(γ ) pointwise is isomorphic to
k× × k×. �

We write M2(K) for the algebra of K-valued 2 × 2 matrices. Let γ ∈ � be a
hyperbolic element. Then its centralizer in GL2(K) is a nonsplit torus, so its cen-
tralizer Lγ = M2(K)γ in M2(K) is a field, a quadratic extension of K . The set
�γ = Lγ ∩ M2(A) is an A-order in Lγ . Its unit group is

�×
γ = 〈γ0〉 × Fγ ,

where Fγ is a finite group. The number R(�γ ) = l(γ0) is called the regulator
of order �γ . We get a map ψ : γ0 �→ �γ0 from the set of primitive hyperbolic
conjugacy classes in � to the set of isomorphy classes of A-orders in quadratic
extensions of K .

Proposition 9.2. The map ψ is surjective, and each given A-order � in a qua-
dratic extension L/K has h(�)(q − 1)2 preimages.

Proof. Let � be an A-order in a quadratic extension L of K . Let v1, v2 be an
A-basis of the free A-module �. Then v1, v2 also is a K-basis of L, and we
get an embedding σ : L ↪→ M2(K) by sending y ∈ L to the matrix of the map
x �→ xy in this basis. Then � = σ−1(M2(A)). Let λ0 ∈ � be a generator of the
�×/�×

tors, and let γ0 = σ(λ0). Then σ(L) = Lγ0 and σ(�) = �γ0 , so surjectivity
is established.

For a given embedding σ : L ↪→ M2(K), we write �σ for the A-order
σ−1(M2(A)). For a given A-order � ⊂ L, we write �(�) for the set of all
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σ : L ↪→ M2(K) with λσ = �. The group � = GL2(A) acts on �(�) by con-
jugation.

Lemma 9.3. The quotient �(�)/� is finite and has cardinality h(�).

Proof. The proof is similar to the proof of Lemma 2.4 in [7] or Lemma 2.3 in [6].
�

As γ0 in a given � is only unique up to multiplication by an element of
Cent(γ0,�ax(γ0)), we get the proposition from Lemma 9.1 and Lemma 9.3. �

We write
Nm = NP

m + NR
m,

where NP
m is the sum over all primitive conjugacy classes [γ ] with l(γ ) = m.

Lemma 9.4. As m → ∞, we have

NP
m = Nm + O(qm/2).

Proof. The expression Nm = ∑r
j=1 am

j − 2sqm/212Z(m), together with |aj | ≤ q ,
yields Nm ≤ rqm. Using this, we estimate

NR
m =

∑
d|m
d<m

∑
[γ0]

l(γ0)=d

l(γ0)

(q − 1)2
≤

∑
d|m
d<m

Nd ≤
∑
d|m
d<m

rqd ≤ mr

2
qm/2.

The claim follows. �

We finally can put things together now to get the following class number estimate.

Theorem 9.5 (Class number asymptotics). Let C be a smooth projective curve
with field of constants k of q elements, fix a closed point ∞ of C, and let A be the
coordinate ring of the affine curve C � {∞}. Then there exist � ∈ N and ε > 0
such that ∑

�:R(�)=m

h(�) = �1�Z(m)qm + O((q − ε)m),

where the sum runs over all quadratic A-orders �, and h(�) is the class number
of �.

Proof. The theorem follows from the prime geodesic theorem, Proposition 8.4,
and the considerations of this section. �

Corollary 9.6. In the special case of the polynomial ring A = k[x], we get∑
�:R(�)=m

h(�) = 2qm12Z(m) + O(qm/2),

where the sum runs over all quadratic A-orders.

Proof. This follows as the theorem, together with the explicit computation of the
zeta function in this case. �
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10. Nagao Rays

Definition 10.1. Assume that the quotient graph X = �\Y is a ray (x0, x1,

x2, . . .), where xi are vertices of X. Let ei = (xi, xi+1) be a directed edge, and
denote its inverse by fi . The ray X is called a Nagao ray if for n ∈ N, we have

w(e0) = q0 + 1,

w(en) = 1,

w(f0) = q1,

w(fn) = qn+1.

Here we assume that all qi ∈ N. Note that the valency of the preimage of xi in X

is equal to qi + 1.

Definition 10.2. Let Pn be the collection of all closed paths p of length 2n and
w(p) �= 0. Note that the closed paths in Pn do not have backtracking of the form
(fi, ei) for i ≥ 1, but they may contain backtracking of the form (f0, e0), called
left backtracking, and the backtracking of the form (ei, fi) for some i ≥ 0, called
right backtracking.

The picture below shows a typical closed path in Pn with two instances of right
backtracking and two of left backtracking.

x0 x1 x2

· · ·

Now, given a closed path p = (p0, . . . , pn = p0) in Pn, where the pj are ori-
ented edges, let i be the smallest index satisfying pi = f0, and let j be the second
smallest index (or the smallest index if there is only one such index) satisfying
(pj ,pj+1) = (ek, fk) for some k. We call the number k the right backtrack index.
Then we have two injective maps ρ1, ρ2 : Pn �→ Pn+1 given by

ρ1(p) = (p0, . . . , pi, e0, f0,pi+1, . . . , pn)

and
ρ2(p) = (p0, . . . , pj , ek+1, fk+1,pj+1, . . . , pn).

Note that there are unique closed paths pn and p′
n in Pn starting from en and fn,

respectively.

Lemma 10.3. For n ≥ 0, Pn+1 is the disjoint union of ρ1(Pn), ρ2(Pn), and
{pn+1,p

′
n+1}. Especially,

|P1| = 2 and |Pn+1| = 2|Pn| + 2 for all n > 0.

Proof. This is easy to see. �

Theorem 10.4. Let X be a Nagao ray of Lie type. Then it is periodic of period
one or two.
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(a) If X is of period one, then qi = q for some q and all i. In this case, the
Bass–Ihara zeta function is

Z(u) = (1 − qu2)

(1 − q2u2)
.

Moreover, the prime geodesic theorem becomes

Nm = 2qm12Z(m) + O(qm/2).

(b) If X is of period two, then q2i = q0 and q2i+1 = q1 for all i ≥ 0. In this case,
the Bass–Ihara zeta function is

Z(u) = (1 + q0u
2)(1 − q0q1u

2)

(1 − q0q1u4)
.

Moreover, the prime geodesic theorem is

Nm = 2(q0q1)
m/212Z(m) + O((q0q1)

m/4 + q
m/2
0 ).

Proof. (a) See Section 7.
(b) Now assume that X is of period two, so that qi = q0 when i is even and

qi = q1 when i is odd. In this case, we split Pn into two parts: An and Bn, where
An and Bn contain closed paths with odd and even right backtrack indexes. Note
that when n = 2k is even, we have pn,p

′
n ∈ Bn and

w(pn) = w(p′
n) = qk

0qk
1 (q0 − 1).

When n = 2k + 1 is odd, we have pn,p
′
n ∈ An and

w(pn) = w(p′
n) = qk+1

0 qk
1 (q1 − 1).

On the other hand, for any p ∈ Pn, we have ρ1(p) ∈ An+1, ρ2(p) ∈ Bn+1 if p ∈
An, and ρ2(p) ∈ An+1 if p ∈ Bn. Denote

∑
p∈An

w(p) by N1,2n and
∑

p∈Bn
w(p)

by N2,2n for short. Then we have N2n = N1,2n + N2,2n for all n.
Moreover, when n = 2k,

N1,2n+2 =
∑

p′∈Pn

w(ρ1(p
′)) +

∑
p′∈Bn

w(ρ2(p
′)) + 2w(pn)

= q0(q1 − 1)N2n + (q1 − 1)q0

(q0 − 1)
N2,2n + 2qk+1

0 qk
1 (q1 − 1)

and

N2,2n+2 =
∑

p′∈An

w(ρ2(p
′)) = (q0 − 1)q1

(q1 − 1)
N1,2n;

when n = 2k − 1,

N1,2n+2 =
∑

p′∈Pn

w(ρ1(p
′)) +

∑
p′∈Bn

w(ρ2(p
′))

= q0(q1 − 1)N2n + (q1 − 1)q0

(q0 − 1)
N2,2n
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and

N2,2n+2 =
∑

p′∈An

w(ρ2(p
′)) + 2w(pn)

= (q0 − 1)q1

(q1 − 1)
N1,2n + 2qk

0qk
1 (q0 − 1).

Combining these formulas, we can find a recursive formula for Nn as follows.
For n = 2k, we have

N2n+2 = N1,2n+2 + N2,2n+2

= q0(q1 − 1)N2n + (q1 − 1)q0

(q0 − 1)
N2,2n + 2qk+1

0 qk
1 (q1 − 1)

+ (q0 − 1)q1

(q1 − 1)
N1,2n

= q0(q1 − 1)N2n + q0q1N1,2n−2 + 4qk+1
0 qk

1 (q1 − 1)

+ q0q1N1,2n−2 + q0q1(q0 − 1)N2n−2

= q0(q1 − 1)N2n + q2
0q1N2n−2 + 4qk+1

0 qk
1 (q1 − 1).

Similarly, for n = 2k − 1, we have

N2n+2 = q0(q1 − 1)N2n + q2
0q1N2n−2 + 4qk

0qk
1 (q0 − 1).

Together with the initial conditions N0 = 0 and N2 = 2q0(q1 − 1), we can show
by induction that

N4k−2 = 2q2k−1
0 q2k−1

1 − 2q2k−1
0 and N4k = 2q2k

0 q2k
1 + 2q2k

0 − 4qk
0qk

1 .

We conclude that the Bass–Ihara zeta function in this case equals

Z(u) = exp

( ∞∑
n=1

Nn

n
un

)
= (1 + q0u

2)(1 − q0q1u
2)

(1 − q0q1u4)
. �
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