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Hodge Integrals in FJRW Theory

Jérémy Guéré

Abstract. We study higher-genus Fan–Jarvis–Ruan–Witten theory of
any chain polynomial with any group of symmetries. Precisely, we
give an explicit way to compute the cup product of Polishchuk and
Vaintrob’s virtual class with the top Chern class of the Hodge bun-
dle. Our formula for this product holds in any genus and without any
assumption on the semi-simplicity of the underlying cohomological
field theory.

0. Introduction

In 1999, Candelas, de la Ossa, Green, and Parkes [4] proposed a famous formula
for the genus-zero invariants enumerating rational curves on the quintic threefold.
It has later been proved by Givental [18; 19] and Lian, Liu, and Yau [31; 32; 33],
giving a full understanding of Gromov–Witten invariants in genus zero for the
quintic threefold. The genus-one case was then completely solved by Zinger [39].
However, we still lack a complete understanding in higher genus.

In fact, even the problem of computing genus-zero Gromov–Witten invariants
of projective varieties is not completely solved. One of the techniques is called
quantum Lefschetz principle (see, e.g., [12]) and compares Gromov–Witten in-
variants of a complete intersection with those of the ambient projective space.
Thus, we are still missing Gromov–Witten invariants attached to primitive coho-
mological classes, that is, the classes that do not come from the ambient space.

When considering complete intersections in weighted projective spaces, the
theory for genus-zero and with ambient cohomological classes looks as compli-
cated as in the higher genus case because of the lack of a convenient assumption:
convexity. Convexity hypothesis roughly turns the virtual fundamental cycle from
Gromov–Witten theory into the top Chern class of a vector bundle, making it
easier to compute. However, in general, this assumption is not satisfied, and the
quantum Lefschetz principle can fail [13].

Fan, Jarvis, and Ruan [17; 16], based on ideas of Witten [38], have switched
to another quantum theory, which they define for polynomial singularities. We
call it FJRW theory, and it is attached to a Landau–Ginzburg orbifold (W,G),
where W is a nondegenerate quasi-homogeneous polynomial singularity, and G

is a group of diagonal symmetries of W . The Landau–Ginzburg/Calabi–Yau cor-
respondence conjecture [11] describes, under some Calabi–Yau assumption, the
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relation between this new theory and Gromov–Witten theory of the hypersurface1

defined by W in the corresponding weighted projective space. In genus zero, this
conjecture has been proven in some convex cases in [9].

Therefore, the study of FJRW theory appears as a new point of view toward
the study of Gromov–Witten theory. In [23], we described an explicit way to com-
pute FJRW theory in genus zero for polynomials whose Gromov–Witten counter-
parts are unknown because of the lack of convexity.2 In the recent work [5], the
Landau–Ginzburg/Calabi–Yau correspondence is studied in higher genus for the
quintic hypersurface in P

4.
In nonzero genus, both Gromov–Witten and Fan–Jarvis–Ruan–Witten theo-

ries are extremely difficult to compute. There are nevertheless some powerful
techniques, such as the localization [20] and the degeneration [30] formulas
in Gromov–Witten theory and Teleman’s reconstruction theorem for conformal
generically semisimple cohomological field theories [37]. For instance, the local-
ization formula determines all Gromov–Witten invariants of homogeneous spaces
[26; 20]. Also, Teleman’s reconstruction theorem takes a major place in the proof
of the generalization of Witten conjecture to ADE singularities [15; 17], in the
proof of Pixton’s relations [35], and more recently in the study of higher-genus
mirror symmetry [25] after Costello and Li [14].

The method presented in this paper is quite different from the techniques men-
tioned and is valid for a range of Landau–Ginzburg orbifolds for which no previ-
ous techniques are applicable. More precisely, it works without any semisimplic-
ity assumption and uses instead the K-theoretic vanishing properties of a recursive
complex of vector bundles. It is a direct generalization of the results in [23], where
recursive complexes are introduced for the first time.

In this introduction, we state our theorem in the chain case with the so-called
narrow condition and refer to Theorem 2.2 for a complete statement. Let (W,G)

be a Landau–Ginzburg orbifold, where W is a chain polynomial

W = x
a1
1 x2 + · · · + x

aN−1
N−1 xN + x

aN

N ,

and G is a group of diagonal matrices preserving W and containing the matrix j

defined in (1).
We take n diagonal matrices γ (1), . . . , γ (n) in the group G with no

entries equal to 1 (narrow condition) and consider the moduli space
Sg,n(W,G)(γ (1), . . . , γ (n)) of genus-g (W,G)-spin marked curves with mon-
odromy γ (i) at the ith marked point (see Section 1.2 for definitions).

We denote by L1, . . . ,LN the universal line bundles associated with the vari-
ables x1, . . . , xN , by cPV

vir (γ (1), . . . , γ (n))g,n the associated virtual class defined
by Polishchuk and Vaintrob [36], by π the morphism from the universal curve to
the moduli space, and by E := π∗ω the Hodge vector bundle on the moduli space
corresponding to global differential forms on the curves.

1More precisely, the Landau–Ginzburg orbifold (W,G) corresponds to the quotient stack [X/G̃],
where X is the hypersurface corresponding to the zero locus of W , G̃ is the group G/〈j〉, and j is
the matrix defined in (1).

2The corresponding notion in FJRW theory is called concavity.
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Theorem 0.1. Let (W,G), γ (1), . . . , γ (n), and L1, . . . ,LN be as before. For any
genus g, we have

ctop(E
∨)cPV

vir (γ (1), . . . , γ (n))g,n = lim
t1→1

N∏
j=1

ctj (−R•π∗(Lj )) · ctN+1(E
∨),

where the variables tj satisfy the relations t
aj

j tj+1 = 1 for j ≤ N , and where the
function ct is the characteristic class introduced in [23]; see also equation (16).

The theorem has several consequences:

• computation of Hodge integrals in FJRW theory via a computer [22; 24],
• computation of double ramification hierarchies [2; 3],
• new method to study nonsemisimple cohomological field theories,
• tautological relations in the Chow ring of the moduli spaces of (W,G)-spin

curves, in particular, in the moduli spaces of r-spin and of stable curves.

Remark 0.2. It is important to stress the fact that FJRW theory is not a generically
semisimple cohomological field theory in general, especially when the group G is
generated by the element j defined in (1). In such cases, Teleman’s reconstruction
theorem [37] does not apply, and, to our knowledge, the method presented in
this paper is the first comprehensive approach in higher genus for these theories,
although we only obtain a partial information on the virtual class.

Integrals of the form ∫
Mg,n

ctop(E
∨)α, α ∈ H ∗(Mg,n)

are called Hodge integrals. Thus Theorem 0.1, together with Mumford’s [34]
and Chiodo’s [8] formulas, yields an explicit way to compute Hodge integrals
in FJRW theory in any genus, and it has been implemented into a computer; see
[22; 24]. In particular, it is used in [3] to provide a positive answer to Buryak’s
conjecture [2] on the double ramification hierarchy for r-spin theory with r ≤ 5.

Theorem 0.3 (See [3, Theorem 1.1]). For the 3-spin theory, the double ramifi-
cation hierarchy coincides with the Dubrovin–Zhang hierarchy. For the 4- and 5-
spin theories, the double ramification hierarchy is related to the Dubrovin–Zhang
hierarchy by the following Miura transformation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1 = u1 + ε2

96
u3

xx,

w2 = u2,

w3 = u3,

for r = 4;
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = u1 + ε2

60
u3

xx,

w2 = u2 + ε2

60
u4

xx,

w3 = u3,

w4 = u4,

for r = 5.

Theorem 0.1 has another remarkable consequence: it provides tautological rela-
tions in the Chow ring of the moduli space of (W,G)-spin curves. Indeed, the
result of Theorem 0.1 holds in the Chow ring and not only in the cohomology
ring. Furthermore, it is a statement on the moduli space of (W,G)-spin curves,
obtained before forgetting the spin structure to end in the moduli space of stable
curves. Even in the r-spin case, where the underlying cohomological field theory
is generically semisimple and conformal, these results are new. The main reason
is that Teleman’s reconstruction theorem [37] only holds in the cohomology ring
and after pushing forward to the moduli space of stable curves.

Corollary 0.4. Let (W,G), γ (1), . . . , γ (n), and L1, . . . ,LN be as before. For
any genus g, the expression

N∏
j=1

ctj (−R•π∗(Lj )) · ctN+1(E
∨)

from Theorem 0.1 is a Laurent power series in the variable ε := t−1
1 − 1 of the

form

C−p · 1

εp
+ C−p+1 · 1

εp−1
+ · · · + C−1 · 1

ε
+ C0 + C1 · ε + · · · ,

where
Cm ∈

⊕
k≥degvir+g−m

Ak(SG
g,n)

and p = 2g − 3 + n − degvir, the integer degvir being the Chow degree of
cPV

vir (γ (1), . . . , γ (n))g,n. Thus, we obtain tautological relations3

Cm = 0 for all m < 0

in the Chow ring of the moduli space of (W,G)-spin curves.

In a subsequent work, we will address the question to compare the pushforward
of these relations to the moduli space of stable curves with other tautological
relations, for example, Pixton’s relations [35]. For this matter, it could be useful
to rephrase the formula of Theorem 0.1 as a sum over dual graphs. It is done in
Theorem 3.3.

3It is not expected for the coefficients C0,C1, . . . to be zero in general; for example, direct com-
putations show that C1 can be nonzero. Moreover, the coefficient C0 equals the virtual class
and is generally nonzero. However, in special cases, for example, under the so-called Ramond
vanishing, the coefficient C0 yields another tautological relation.
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Structure of the Paper

In the first part, we briefly recall the main definitions and constructions in FJRW
theory following our previous article [23]. The second part consists of the main
Theorem 2.2 together with its proof. In the third part, we give an alternative for-
mula as a sum over dual graphs.

1. Quantum Singularity Theory

In this section, we give a brief summary of the necessary definitions for the quan-
tum singularity (or FJRW) theory of a Landau–Ginzburg (LG) orbifold. We use
notations of [23], where we dealt with invertible polynomials, but here we are
mainly interested in chain or loop polynomials.

1.1. Conventions and Notations

The quantum singularity theory was first introduced by Fan, Jarvis, and Ruan [17;
16] after ideas of Witten [38]. In particular, Fan, Jarvis, and Ruan constructed a
cohomological class, called the virtual class, via an analytic construction from
Witten’s initial sketched idea [38] formalized for A-singularities by Mochizuki.
Polishchuk and Vaintrob [36] provided an algebraic construction, which general-
ized their previous construction and that of Chiodo [7] in the A-singularity case.

We do not know in general whether the two constructions coincide. In FJRW
terminology, there is a decomposition of the state space into narrow and broad
states. Chang, Li, and Li [6, Theorem 1.2] proved the match when only nar-
row entries occur. For almost all LG orbifolds (W,G) where W is an invertible
polynomial and G is the maximal group of symmetries, we proved in [23, Theo-
rem 3.25] that the two classes are the same up to a reparameterization of the broad
states. Nevertheless, for smaller groups or more general polynomials, we still do
not know whether these two classes coincide. Therefore, in the whole paper, by
the virtual class we mean the Polishchuk–Vaintrob’s version, as soon as we are
working with broad states together with nonmaximal group G.

Furthermore, we work in the algebraic category and over C. All moduli func-
tors considered here are represented by proper Deligne–Mumford stacks; we use
also the term “orbifold” for this type of stacks. We denote orbifolds by curly let-
ters, for example, C is an orbifold curve, and the scheme C is its coarse space. We
recall that vector bundles are coherent locally free sheaves and that the symmetric
power of a two-term complex is the complex

Symk([A → B]) = [Symk A → Symk−1 A ⊗ B → ·· · → A ⊗ �k−1B → �kB]
with morphisms induced by A → B .

All along the text, the index i varies from 1 to n and refers exclusively to the
marked points of a curve, whereas the index j varies from 1 to N and corresponds
to the variables of the polynomial. We represent tuples by overlined notations, for
example, γ = (γ (1), . . . , γ (n)), or by underlined notations, for example, p =
(p1, . . . , pN).
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1.2. Landau–Ginzburg Orbifold

Let w1, . . . ,wN be coprime positive integers, d be a positive integer, and qj :=
wj/d for all j . We consider a quasi-homogeneous polynomial W of degree d with
weights4 w1, . . . ,wN and with an isolated singularity at the origin. We say that
such a polynomial W is nondegenerate. In particular, for any λ,x1, . . . , xN ∈ C,
we have

W(λw1x1, . . . , λ
wN xN) = λdW(x1, . . . , xN),

and the dimension of the Jacobian ring

QW := C[x1, . . . , xN ]/(∂1W, . . . , ∂NW)

is finite over C.
An admissible group of symmetries for the polynomial W is a group G made

of diagonal matrices diag(λ1, . . . , λN) satisfying

W(λ1x1, . . . , λNxN) = W(x1, . . . , xN) for every (x1, . . . , xN) ∈ C
N

and containing the grading element

j := diag(e2iπq1 , . . . , e2iπqN ), qj := wj

d
. (1)

The group G is finite and contains the cyclic group μd of order d generated by j.
We denote the biggest admissible group by Aut(W).

Definition 1.1. A Landau–Ginzburg (LG) orbifold is a pair (W,G) with W

a nondegenerate (quasi-homogeneous) polynomial and G an admissible group.

The quantum singularity theory developed by Fan, Jarvis, and Ruan [17; 16] is
defined for any LG orbifold. In fact, it mostly depends on the weights, the de-
gree, and the group. Precisely, by [17, Theorem 4.1.8.9] the theories for two LG
orbifolds (W1,G) and (W2,G) where the polynomials W1 and W2 have the same
weights and degree are isomorphic.

In the context of mirror symmetry, a well-behaved class of polynomials has
been introduced by Berglund and Hübsch [1]. We say that a polynomial is invert-
ible when it is nondegenerate with as many variables as monomials. According to
Kreuzer and Skarke [29], every invertible polynomial is a Thom–Sebastiani (TS)
sum of invertible polynomials, with disjoint sets of variables, of the following
three types.

Fermat: xa+1;
chain of length c: x

a1
1 x2 + · · · + x

ac−1
c−1 xc + xac+1

c (c ≥ 2);
loop of length l: x

a1
1 x2 + · · · + x

al−1
l−1 xl + x

al

l x1 (l ≥ 2).

(2)

Remark 1.2. In this paper, we consider only polynomials that are of these three
types and not a Thom–Sebastiani sum of them.

4We assume that a choice of coprime positive weights w1, . . . ,wN is unique.
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For any γ ∈ Aut(W), the set of broad variables with respect to γ is

Bγ = {xj |γj = 1}. (3)

Definition 1.3. The state space5 for the LG orbifold (W,G) is the vector space

H(W,G) =
⊕
γ∈G

Hγ

=
⊕
γ∈G

(QWγ ⊗ dxγ )G,

where Wγ is the γ -invariant part of the polynomial W , QWγ is its Jacobian ring,
the differential form dxγ is

∧
xj ∈Bγ

dxj , and the upperscript G stands for the
invariant part under the group G.

At last, the quantum singularity theory for an LG orbifold (W,G) is a cohomo-
logical field theory, that is, the data of multilinear maps

cg,n : H⊗n → H ∗(Mg,n),

which are compatible under gluing and forgetting-one-point morphisms. More
precisely, the maps cg,n factor through the cohomology (and even the Chow ring)
of another moduli space Sg,n(W,G) attached to the LG orbifold (W,G); the map

(cvir)g,n : H⊗n → A∗(Sg,n(W,G))

is called the virtual class,6 where A∗ can stand for the cohomology or the Chow
ring. Then, via the natural forgetful morphism o : Sg,n(W,G) →Mg,n, we get

cg,n := (−1)degvir card(G)g

deg(o)
· o∗(cvir)g,n, (4)

where (−1)degvir acts as (−1)m on Am(Mg,n).

Remark 1.4. In the case of r-spin curves, the degree of the forgetful morphism o
equals r2g−1. In general, for the maximal group G = Aut(W), this degree also
equals r2g−1, where r is the exponent of the group.

The moduli space Sg,n(W,G) is defined in [17, Section 2] as follows. First, let
us fix r to be the exponent of the group G, that is, the smallest integer l such that
γ l = 1 for every element γ ∈ G. We recall that an r-stable curve is a smoothable7

orbifold curve with markings whose nontrivial stabilizers have fixed order r and
are only at the nodes and at the markings. Moreover, its coarse space is a stable
curve.

5We refer to [9, equation (4)] or [36, equation (5.12)] for details about the bidegree and the pairing in
this space.

6For the polynomial xr , we obtain the moduli space of r-spin structures, and the virtual class is called
the Witten r-spin class.

7Concretely, smoothable means that the local picture at the node is [{xy = 0}/μr ] with the balanced

action ζr · (x, y) = (ζr x, ζ−1
r y).
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Then, the moduli space Sg,n(W,G) classifies all r-stable curves of genus g

with n marked points, together with N line bundles and s isomorphisms

(C;σ1, . . . , σn;L1, . . . ,LN ;φ1, . . . , φs),

where the isomorphisms φ1, . . . , φs give some constraints (see further) on the
choice of L1, . . . ,LN . We call such data a (W,G)-spin curve.

There are two steps to get the constraints φ1, . . . , φs . First, we choose a Lau-
rent polynomial Z with weights w1, . . . ,wN and degree d just as W and with
the maximal group verifying Aut(W + Z) = G; see [27, Proposition 3.4]. Then,
denoting by M1, . . . ,Ms all the monomials of W + Z, we have

φk : Mk(L1, . . . ,LN) � ωlog := ωC(σ1 + · · · + σn) for all k. (5)

The moduli space that we obtain does not depend on the choice of the Laurent
polynomial Z; see [10].

A line bundle over an orbifold point comes with an action of the isotropy group
at that point, that is, locally at a marked point σi , we have an action

ζr · (x, ξ) = (ζrx, ζ
mj (i)
r ξ ) with mj(i) ∈ {0, . . . , r − 1} (6)

called the monodromy of the line bundle Lj at the marked point σi . Since the
logarithmic canonical line bundle ωlog is a pullback from the coarse curve, its
multiplicity is trivial on each marked point, so that equations (5) give

γ (i) := (e2iπm1(i)/r , . . . , e2iπmN(i)/r ) ∈ Aut(W + Z) = G.

We define the type of a (W,G)-spin curve as γ := (γ (1), . . . , γ (n)) ∈ Gn. It
yields a decomposition

Sg,n(W,G) =
⊔

γ∈Gn

Sg,n(W,G)(γ (1), . . . , γ (n)),

where Sg,n(W,G)(γ ) is an empty component when the selection rule

γ (1) · · ·γ (n) = j2g−2+n (7)

is not satisfied; see [17, Proposition 2.2.8].

1.3. Aut(W)-Invariant States

From Definition 1.3 of the state space H(W,G) we see that it always contains the
subspace

H(W,G),Aut(W) =
⊕
γ∈G

(QWγ ⊗ dxγ )Aut(W)

⊂ H(W,G).

Definition 1.5. The subspace H(W,G),Aut(W) is called the Aut(W)-invariant part.

For invertible polynomials W and any group G, the Aut(W)-invariant part has
a particularly nice and explicit description; see [28; 23]. Using the language
from [23], we can attach a graph �W to any invertible polynomial, illustrating
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its Kreuzer–Skarke decomposition as a Thom–Sebastiani sum of Fermat, chain,
and loop polynomials. Then, we consider decorations8 Cγ of the graph �W that
are admissible and balanced, and with each such decoration, we associate an ex-
plicit element e(Cγ ) of H(W,G),Aut(W). At last, by [28] and [23, equation (10)],
the set of all these elements forms a basis of H(W,G),Aut(W).

Example 1.6. Let W = x
a1
1 x2 + · · · + x

aN−1
c−1 xN + x

aN+1
N be a chain polynomial.

For any element γ ∈ G, the set of broad variables is of the form

Bγ = {xb+1, . . . , xN },
and there is exactly one admissible decoration Cγ given by

Cγ = {xN−2j | N − 2j > b}.
This decoration is balanced if and only if N − b is even and the corresponding
element is

eγ := e(Cγ ) =
( ∏

b<j≤N
N−j odd

ajx
aj −1
j

)
· dxb+1 ∧ · · · ∧ dxN .

Example 1.7. Let W = x
a1
1 x2 + · · · + x

aN−1
c−1 xN + x

aN

N x1 be a loop polynomial.
For an element 1 �= γ ∈ G, the set of broad variables is empty. For the identity
element, it is B1 = {x1, . . . , xN }. Then, if N is odd, then there is no admissible
and balanced decoration. But if N is even, then we have two distinct admissible
and balanced decorations given by

C
+
1 = {xj | j even} and C

−
1 = {xj | j odd};

the two corresponding elements are

e+ := e(C+
1 ) =

( ∏
xj odd

ajx
aj −1
j −

∏
xj even

−x
aj −1
j

)
· dx1 ∧ · · · ∧ dxN

and e− given by exchanging even and odd.

1.4. Sketch of Definition of PV Virtual Class

The Polishchuk–Vaintrob construction [36] of the virtual class (cvir)g,n for an LG
orbifold (W,G) uses the notion of matrix factorizations. We briefly recall the
main steps.

Consider a component Sg,n(γ ) of type γ = (γ (1), . . . , γ (n)) ∈ Gn. We denote
by π the projection of the universal curve to this component, and we look at the
higher pushforwards R•π∗Lj of the universal line bundles. We take resolutions

8A decoration Cγ is a subset of the set of broad variables Bγ = {xj |γj = 1}. Definitions for admissi-
ble and balanced decorations are in [23, Definition 1.5].
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of R•π∗Lj by complexes [Aj → Bj ] of vector bundles, and we set

X := Spec Sym
N⊕

j=1

A∨
j and p : X → Sg,n(γ ).

The differential [Aj → Bj ] induces a section β of the vector bundle p∗ ⊕
j Bj

on X. Polishchuk and Vaintrob show how to construct a section α of the dual
vector bundle p∗ ⊕

j B∨
j using the algebraic relations (5) between the line bun-

dles L1, . . . ,LN . The choice of the resolutions and the existence of the section α

require several steps; see [36, Section 4.2, Steps 1–4].
Using evaluation of the line bundles L1, . . . ,LN at the marked points, they

also construct a morphism

Z : X →A
γ :=

n∏
i=1

(AN)γ (i), (8)

where (·)γ (i) is the fixed locus under the action of γ (i). In particular, the set of
coordinates of the affine space A

γ is indexed as

{xj (i)}(σi ,xj )∈Bγ
, where Bγ = {(σi, xj ) | γj (i) = 1},

and we further consider the invertible polynomial Wγ on A
γ given by

Wγ := Wγ(1)(x1(1), . . . , xN(1)) + · · · + Wγ(n)(x1(n), . . . , xN(n)),

where Wγ(i) is the restriction of W to (AN)γ (i).
At last, the two sections α and β yield a Koszul matrix factorization PV on X.

Polishchuk and Vaintrob checked that the potential of PV is precisely the function
−Z∗Wγ on X. To sum up, we have

X

PV ∈ MF(X,−Z∗Wγ )

A
γ S

Z p

The matrix factorization PV is used as a kernel in the Fourier–Mukaï transform

� : MF(Aγ ,Wγ ) → MF(S,0)

U �→ p∗(Z∗(U) ⊗ PV),
(9)

where the two-periodic complex Z∗(U)⊗ PV is supported inside the zero section
S ↪→ X (see [36, Section 4.2, Step 4; Proposition 1.4.2]), so that the pushforward
functor is well defined.

Polishchuk and Vaintrob proved that the Hochschild homology of the cat-
egory of matrix factorizations on an affine space with polynomial potential
f (y1, . . . , ym) is isomorphic to Qf ⊗ dy1 ∧ · · · ∧ dym. They also give a very
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explicit description of the Chern character map. We then have the commutative
diagram

MF(Aγ ,Wγ )
�

Ch

MF(S,0)

Ch⊗n
i=1 Hγ (i)

�∗
H ∗(S)

At last, given states uγ (1), . . . , uγ (n) such that uγ (i) ∈ Hγ (i), the virtual class eval-
uated at these states is

(cvir)g,n(uγ (1), . . . , uγ (n)) = �∗(uγ (1), . . . , uγ (n))

N∏
j=1

Td(Bj )

Td(Aj )
(10)

and is an element of A∗(Sg,n(W,G)(γ (1), . . . , γ (n))). By linearity it is extended
to

(cvir)g,n : H⊗n → A∗(Sg,n(W,G)).

1.5. PV Virtual Class on the Aut(W)-Invariant State Space

The evaluation of the virtual class on the states e(Cγ (1)), . . . , e(Cγ (n)) has a beau-
tiful form. In [23, Section 2.4], we find an explicit Koszul matrix factorization

K(e(Cγ )) ∈ MF(Aγ ,Wγ )

such that its Chern character is the element

e(Cγ ) := e(Cγ (1)) ⊗ · · · ⊗ e(Cγ (n)).

Then, we reformulate the construction of Polishchuk and Vaintrob as follows.
We start with the line bundles

LC
j := Lj

(
−

∑
(σi ,xj )∈Cγ

σi

)
(11)

instead of Lj , and we apply the same procedure as Polishchuk and Vaintrob [36,
Sections 4.1–4.2] to get resolutions by the vector bundles

R•π∗LC
j = [Aj → B̃j ]

and morphisms9

α̃j : O → Symaj+1 A∨
j+1 ⊗ B̃∨

j ⊕ (Symaj −1 A∨
j ⊗ A∨

j−1) ⊗ B̃∨
j ,

β̃j : B̃∨
j → A∨

j .
(12)

Here, the convention is (A0,AN+1) = (0,AN) for a chain polynomial and
(A0,AN+1) = (AN,A1) for a loop polynomial.

9The morphism β̃j comes from the resolution of R•π∗LC
j

, and the morphism α̃j arises from the

algebraic relations (5).
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At last, we get a two-periodic complex (T , δ) on the moduli space
Sg,n(W,G)(γ ), given by the infinite-rank vector bundles

T + := Sym(A∨
1 ⊕ · · · ⊕ A∨

N) ⊗
∧
even

(B̃∨
1 ⊕ · · · ⊕ B̃∨

N),

T − := Sym(A∨
1 ⊕ · · · ⊕ A∨

N) ⊗
∧
odd

(B̃∨
1 ⊕ · · · ⊕ B̃∨

N),

with the differential δ induced by (12). By [23, below equation (34)] and [36,
Remark 1.5.1] we have a quasi-isomorphism

(T , δ) � p∗(PV ⊗ K(Cγ )).

As a consequence, the virtual class evaluated at e(Cγ ) equals

(cvir)g,n(e(Cγ )) = Ch(H+(T , δ) − H−(T , δ))

N∏
j=1

Td(B̃j )

Td(Aj )
. (13)

In genus zero and for chain polynomials,10 the main result of [23] provides an
explicit expression of the Chern character of the cohomology of (T , δ) in terms of
the Chern characters of the higher pushforwards R•π∗LC

j . The later are computed
by Chiodo’s formula [8] using the Grothendieck–Riemann–Roch theorem. Thus
the virtual class can be computed as well.

Interestingly, the same method provides an explicit computation of the cup
product between the top Chern class of the Hodge bundle and the virtual class in
arbitrary genus. We explain it in the following section.

2. Polishchuk and Vaintrob’s Virtual Class in Higher Genus

In this section, we prove our main theorem generalizing the computation of the
virtual class in genus zero from [23, Theorem 3.21] to Hodge integrals in arbitrary
genus; see Theorem 2.2.

2.1. Statement

Let us consider an LG orbifold (W,G) where W is a Fermat monomial, a chain
polynomial, or a loop polynomial and G is an admissible group of symme-
tries. We fix some elements γ (1), . . . , γ (n) ∈ G and some admissible decorations
Cγ (1), . . . ,Cγ (n). We consider the evaluation of the virtual class at the Aut(W)-
invariant state

e(Cγ ) := e(Cγ (1)) ⊗ · · · ⊗ e(Cγ (n)).

10It works also with certain invertible polynomials; see [23, Theorem 3.21] for a precise statement.
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In the case where W is a loop polynomial, we further assume the existence of a
variable xj0 such that

γj0(i) ∈ 〈e2π iwj0 /d〉 ∀i,

wj0 | d,

LC
j0

= Lj0(−σ1 − · · · − σn).

(14)

By a cyclic permutation of the indices we can assume that j0 = N .

Remark 2.1. Conditions (14) are always true for a Fermat monomial and for the
last variable xN of a chain polynomial, even when the group G is nonmaximal.
The case of a chain polynomial with nonmaximal group is of great interest as its
theory in general is not generically semisimple.

Theorem 2.2. Let (W,G) and e(Cγ ) be as before. For any genus g, we have the
following equality in the Chow ring of the moduli space of (W,G)-spin curves:

λ∨
g cPV

vir (e(Cγ ))g,n = lim
t→1

N∏
j=1

ctj (−R•π∗(LC
j )) · ctN+1(E

∨)

= lim
t→1

N∏
j=1

N−jeven

(1 − tj )
rj

·
N∏

j=1

ctj (−R•π∗(Lj )) · ctN+1(E
∨), (15)

where λ∨
g := cg(E

∨) is the top Chern class of the dual of the Hodge bundle, the
integer rj := card{i | γj (i) = 1} counts broad states, and

tj+1 =

⎧⎪⎨
⎪⎩

t if j = 0,

t
−aj

j if 1 ≤ j ≤ N − 1,

t
−d/wN

N if j = N .

The characteristic class ct : K0(S) → A∗(S)[[t]] is defined by

ct (B − A) = (1 − t)−Ch0(A−B) exp

(∑
l≥1

sl(t)Chl(A − B)

)
, (16)

where the functions sl(t) are defined in [23, equation (67)] by

sl(t) =
{− ln(1 − t) if l = 0,

Bl(0)/ l + (−1)l
∑l

k=1(k − 1)!( t
1−t

)kγ (l, k) if l ≥ 1,
(17)

with the number γ (l, k) defined by the generating function∑
l≥0

γ (l, k)
zl

l! := (ez − 1)k

k! .
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Remark 2.3. As explained in [23], the characteristic class ct naturally appears in
K-theory. Indeed, it is defined as

ct (x) = Ch(λ−t (x
∨))Td(x) ∈ H ∗(S)[[t]], ∀x ∈ K0(S),

where λt is the lambda-structure in K-theory defined for a vector bundle V on S

by λt (V ) = ∑
k≥0 �k(V )tk and λt (−V ) = ∑

k≥0 Symk(V )(−t)k . Note the clas-
sical formula limt→1 ct (V ) = ctop(V ).

Theorem 2.2 relies on our method developed in [23, Section 3] together with two
important observations:

• conditions (14) imply the algebraic relation

(LC
N)⊗d/wN ⊗O ↪→ ωC, (18)

which is similar to relations (5),
• the sheaf π∗ω is a vector bundle of rank g. It is called the Hodge bundle, and

we denote it by E.

Remark 2.4. In the particular case of r-spin theory, Theorem 2.2 simplifies as

λ∨
g cPV

vir = lim
t→1

ct (−R•π∗(L)) · ct−r (E∨).

Recall from Section 1.5 that the virtual class comes from the cohomology of a
two-periodic complex of infinite-rank vector bundles T := Sym(A∨) ⊗ �(B∨),
where [A → B] is a resolution of the derived pushforward R•π∗(L) by vector
bundles. The idea of the proof of Theorem 2.2 is to enrich the two-periodic com-
plex T with the Hodge bundle E into a two-periodic complex T; see Section 2.2.
Then, we write the differential of T as the sum of three differentials such that we
obtain two double complexes K1 and K2; see Section 2.2. Indeed, the total coho-
mology of each of these double complexes equals the cohomology of T. To con-
clude, we use spectral sequences to express the total cohomology of K1 and K2,
leading naturally to the definition of the virtual class twisted by the Hodge bundle
for K1 and to the formula in terms of the characteristic class ct for K2. The latter
claim follows from [23, Theorem 3.5]: the power series ct (−R•π∗(L)) · ct−r (E∨)

is a polynomial in t , since the coefficient of tk is given by a nondegenerate Koszul
complex, which is thus exact for k � 0.

We now proceed to the proof of Theorem 2.2.

2.2. Modified Two-Periodic Complex and Recursive Complex

The two previous observations suggest us to introduce the line bundle

LN+1 := O

and to choose a resolution R•π∗LN+1 = [O 0−→ E∨] together with a morphism

α̃N+1 :O → Symd/wN A∨
N ⊗E. (19)
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Now, we consider the two-periodic complex (T, δ̃) with

T+ = Sym(A∨
1 ⊕ · · · ⊕ A∨

N) ⊗ �even(B̃
∨
1 ⊕ · · · ⊕ B̃∨

N ⊕E)

= T + ⊗ �evenE⊕ T − ⊗ �oddE

and similarly for T− by exchanging odd and even, and with the differential

δ̃ = δ0 + δ1 + δ2,

where

• δ0 is induced by α̃1 + · · · + α̃N−1 + β̃1 + · · · + β̃N ,
• δ1 is induced by α̃N ,
• δ2 is induced by α̃N+1.

Precisely, we use the natural maps

Sympj (A∨
j ) ⊗ A∨

j → Sympj +1(A∨
j ),

�qj (B̃∨
j ) ⊗ B̃∨

j → �qj +1(B̃∨
j ),

�qj (B̃∨
j ) → �qj −1(B̃∨

j ) ⊗ B̃∨
j ,

composed with the maps

O
α̃j−→ Symaj+1 A∨

j+1 ⊗ B̃∨
j ⊕ (Symaj −1 A∨

j ⊗ A∨
j−1) ⊗ B̃∨

j ,

B̃∨
j

β̃j−→ A∨
j ,

O α̃N+1−−−→ Symd/wN A∨
N ⊗E.

For instance, the differential δ2 is

N⊗
j=1

Sympj (A∨
j )⊗�qj (B̃∨

j )⊗�k(E) →
N⊗

j=1

Symp′
j (A∨

j )⊗�qj (B̃∨
j )⊗�k+1(E)

with p′
j := pj for j < N and p′

N := pN + d/wN . We refer to [7, Section 2.5] for
a detailed description.

Observe that the differential of the two-periodic complex (T , δ) is closely re-
lated to the differential δ0 + δ1. Furthermore, note that we have the anticommuta-
tion relations

δk ◦ δl + δl ◦ δk = 0

for 0 ≤ k, l ≤ 2. It comes from the antisymmetric property of the exterior power
and, by [7, Lemma 3.2.3], from the equalities

β̃k ◦ α̃l = 0

for 1 ≤ k ≤ N and 1 ≤ l ≤ N + 1. For l �= N + 1, it is the same equality as that
used to prove that (T , δ) is a two-periodic complex. For l = N + 1, it is obvious
since β̃k|E = 0.

Therefore, we obtain two double complexes

(K1 = T, δ0 + δ1, δ2) and (K2 = T, δ0 + δ2, δ1).
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The double complex K1 is very explicit, and we can write in particular

(K1)
±,q = T ± ⊗ �q

E,

whereas the double complex K2 is more involved. Nevertheless, the cohomology
groups of their associated two-periodic complexes agree and equal

H±(T, δ0 + δ1 + δ2).

We can abut to the total cohomology by looking at the spectral sequences given by
the filtration by rows of these two double complexes. In fact, the first page of the
spectral sequence is even enough to compute the total cohomology in K-theory,
as we show below.

On one side, we have

(H±(K1, δ0 + δ1), δ2)
• = (H±(T , δ) ⊗ �•

E, δ2),

which is represented by a bounded complex of vector bundles by [23, equa-
tion (61)] and [7, Theorem 3.3.1], or by [36, equation (1.20)]. Observe indeed that
�•

E is a vector bundle (of finite rank) and that H±(T , δ) can be represented by
a bounded complex of vector bundles, since the matrix factorization from which
it arises has proper support; see the comment right after equation (9). Moreover,
note that this property of H±(T , δ) is crucial in order to define the virtual class.
As a consequence, we have the following equalities in K-theory:

H+(T, δ0 + δ1 + δ2) =
⊕
q≥0

(H+(K1, δ0 + δ1), δ2)
2q

⊕ (H−(K1, δ0 + δ1), δ2)
2q+1

= H+(T , δ) ⊗ �evenE⊕ H−(T , δ) ⊗ �oddE,

H−(T, δ0 + δ1 + δ2) = H+(T , δ) ⊗ �oddE⊕ H−(T , δ) ⊗ �evenE.

Therefore, by the definition of the virtual class and by the equality∑
q≥0

(−1)q Ch(�qV ∨)Td(V ) = ctop(V )

for any vector bundle V , we obtain

Ch(H+(T, δ̃) − H−(T, δ̃))

N∏
j=1

Td(B̃j )

Td(Aj )
Td(E∨) = cPV

vir (e(Cγ ))g,nctop(E
∨). (20)

On the other side, we look at the cohomology groups

H±(K2, δ0 + δ2).

The main point is that the two-periodic complex associated with (K2, δ0 + δ2)

is a nondegenerate recursive complex with the vanishing condition;11 see [23,

11The vanishing condition comes from the fact that we can choose the resolution of E by vector
bundles to be [0 → E] since E is already a vector bundle.
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Definitions 3.1 and 3.4 and equation (40)]. Roughly, this means that the complex
(K2, δ0 + δ2) looks like a direct sum of Koszul complexes of the form

0 → Symp(U) → Symp+k(U)⊗V →·· ·→ Symp+k rk(V )(U)⊗�rk(V )(V ) → 0,

where U and V are two vector bundles, and the map is induced by a nondegener-
ate map O → Symk(U)⊗V . A theorem of Green [21, Theorem 2] on Koszul co-
homology claims that the complex is exact providing p � 0, leaving only a finite
number of bounded Koszul complexes. Note also that the above Koszul complex
evaluated in K-theory gives the coefficient of tp in the power series ct (V ∨ −U∨).
As a consequence, [23, Theorem 3.5] implies that the cohomology groups are
finite-rank vector bundles, so that

H+(K2, δ0 + δ2) − H−(K2, δ0 + δ2) = H+(T, δ̃) − H−(T, δ̃).

Furthermore, [23, Theorem 3.19] yields an explicit computation of this difference
in K-theory yielding

Ch(H+(T, δ̃) − H−(T, δ̃))

N∏
j=1

Td(B̃j )

Td(Aj )
Td(E∨)

= lim
t→1

N∏
j=1

ctj (−R•π∗(LC
j )) · ctN+1(E

∨) (21)

with tj and ct as in the statement of Theorem 2.2. Equality between equations
(21) and (20) proves the theorem. �

2.3. Some Remarks

Theorem 2.2, together with Chiodo’s expression [8, Theorem 1.1.1] of the Chern
characters of R•π∗Lj and Mumford’s formula [34, equation (5.2)], leads to ex-
plicit numerical computations of Hodge integrals that we have encoded into a
MAPLE program [24; 22]. Moreover, since the rank of the Hodge bundle is zero
in genus zero, we easily recover [23, Theorem 3.21].

In particular, formula (15) gives some information in every genus on the
Polishchuk–Vaintrob virtual class for every Landau–Ginzburg orbifold (W,G)

with W of chain type and G any admissible group, provided that we evaluate the
virtual class at Aut(W)-invariant states. In general, there are more broad states,
and we still need further work to understand how to deal with them (just as in
genus zero).

In the generically semisimple case, for example, where G = Aut(W), Tele-
man’s result [37] gives a method to compute the pushforward (4) of the virtual
class to the moduli space Mg,n as a cohomology class. Precisely, it determines
higher-genus information from genus-zero information via the so-called R-matrix
action. Nevertheless, the answer is only in cohomology and not in the Chow ring.
Moreover, it is not on the virtual class itself but only on its pushforward (4). Inter-
estingly, the general situation in FJRW theory is not generically semisimple. In-
deed, in general, it is not generically semisimple for the minimal group G = μd ,
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and Theorem 2.2 is the only result at hand to treat the virtual cycle directly on
its moduli space, as well as after pushing-forward on the moduli space of stable
curves.

An important application to the computation of Hodge integrals comes from
[2]. Indeed, Hodge integrals naturally appear in the definition of the double rami-
fication hierarchy introduced by Buryak [2], and Theorem 2.2 is then a useful tool
to compute the equations of this integrable hierarchy. Precisely, we wrote a spe-
cific computer program for r-spin theories [24; 22], and we proved a conjecture
of Buryak when r ≤ 5; see [3, Theorem 1.1].

At last, as already mentioned in the Introduction, Theorem 2.2 yields some
tautological relations in the Chow ring of the moduli space of (W,G)-spin curves
and therefore of the moduli space of stable curves. Indeed, the right-hand side of
formula (15) is the limit of a power series with coefficients in the Chow ring of the
moduli space of the theory. We can develop it and express it as a Laurent series in
ε := t−1 − 1 to find an expression like

C−p · 1

εp
+ C−p+1 · 1

εp−1
+ · · · + C−1 · 1

ε
+ C0 + C1 · ε + · · · .

According to the discussion before [23, Corollary 3.20], this expression has the
property that

Cm ∈
⊕

k≥degvir+g−m

Ak(Sg,n(W,G)(γ ))

and p = 2g − 3 + n − degvir, where the integer degvir := −∑
j Ch0(R

•π∗LC
j )

is the Chow degree of the virtual class. As a consequence of the existence of the
limit in (15) as ε → 0, we obtain the relations

Cm = 0 for m < 0.

3. Sum over Dual Graphs

In this section, we give another expression of formula (15) as a sum of tautological
classes over dual graphs.

We consider an LG orbifold (W,G) where W is a Fermat monomial, a chain
polynomial, or a loop polynomial and G is an admissible group of symmetries,
and we take an Aut(W)-invariant state e(Cγ ). In the case where W is a loop
polynomial, we impose condition (14).

As in Theorem 2.2, we define the variables

tj+1 =

⎧⎪⎨
⎪⎩

t if j = 0,

t
−aj

j if 1 ≤ j ≤ N − 1,

t
−d/wN

N if j = N .

We take the convention

γ = exp(2iπ�), � ∈ [0,1[,
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for any complex number γ with modulus one, and we further define the integer

degj :=
n∑

i=1

(�j (i) − qj ) + (1 − 2qj )(g − 1) + δN−j even · card{i | γj (i) = 1}

= −Ch0(R
•π∗LC

j ).

As a convention, we take LC
N+1 := O and then γN+1 := 1 and qN+1 := 0.

Definition 3.1. A G-decorated dual graph is the dual graph of a stable curve
enhanced with an element γ (h) of the group G on each half-edge h satisfying
two conditions:

• for each edge e = (h,h′), where h and h′ are two half-edges, we have

γ (h) · γ (h′) = 1 ∈ G,

• for each vertex v of genus gv and valence nv , the product of the matrices at-
tached to half-edges incident to v is∏

h→v

γ (h) = j2gv−2+nv .

We say that the G-decorated dual graph is of type (γ (1), . . . , γ (n)) ∈ Gn if the
matrix attached to the ith leg is γ (i).

Remark 3.2. The moduli space of stable curves Mg,n has a natural stratification
by the dual graphs. Similarly, the moduli space Sg,n(W,G) of (W,G)-spin curves
is stratified by the G-decorated dual graphs.

If � is a G-decorated dual graph, then we denote by γ (h) the matrix attached
to the half-edge h, by V (�) and E(�) the sets of vertices and edges of �, and
by Aut(�) the group of automorphisms of �. Furthermore, a G-decorated dual
graph of genus g and type γ induces the natural gluing morphism12

[�]∗ : A∗
( ∏

v∈V (�)

Sg,nv (W,G)(γ v)

)
→ A∗(Sg,n(W,G)(γ )),

where nv is the number of half-edges incident to the vertex v, and γ v ∈ Gnv is
the uplet of matrices attached to half-edges incident to v. On the above product of
moduli spaces, we define as usual the class ψh as the first Chern class of the cotan-
gent line bundle at the marking corresponding to the half-edge h. Therefore, any
polynomial in the psi-classes ψh associated to half-edges h can be pushforward to
a well-defined Chow class of the moduli space Sg,n(W,G)(γ ). The Chow degree
is then increased by the number #E(�) of edges of �. Note also that the degree
of the map [�]∗ is exactly the cardinal |Aut(�)| of its automorphism group.

12This morphism is only defined at the level of Chow rings and not on the moduli spaces; see [17,
Theorem 4.1.8, (6)].
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Theorem 3.3. With the above assumptions and notations, we have the following
equality in the Chow ring of the moduli space of (W,G)-spin curves

λ∨
g cPV

vir (e(Cγ ))g,n

= lim
t→1

(1 − tN+1)
g ·

N∏
j=1

(1 − tj )
degj ·

∑
k≥0
�k

1

k! · r#E(�k)

|Aut(�k)|

· [�k]∗
(

ψn+1 · · ·ψn+k ·
k∏

i=1

N+1∑
j=1

g(tj ,qj ,ψn+i )

·
n+k∏
i=1

exp

(
−

N+1∑
j=1

g(tj ,�j (i),ψi)

)

·
∏

e∈E(�k)
e=(h,h′)

1 − e
−∑N+1

j=1 g(tj ,�j (h),ψh)
e
−∑N+1

j=1 g(tj ,�j (h′),ψh′ )

ψh + ψh′

)
, (22)

where the sum is taken over all G-decorated dual graphs �k of genus g and
of type γ ∪ (j, . . . , j) with the matrix j taken k times, where the integer r is the
exponent of the group G, and where

g(t, x, z) :=
∑
l≥1

sl(t)
Bl+1(x)

(l + 1)! zl.

Proof. Formula (22) is a straightforward computation from formula (15) using
the Givental action by the symplectic transformation R�(z) := exp(−g(t,�, z))

on the state space. �

Remark 3.4. A similar formula in the Chow ring of Mg,n can be obtained by
replacing the morphism [�k]∗ with

A∗
( ∏

v∈V (�)

Mg,nv

)
→ A∗(Mg,n)

and by replacing the exponent #E(�k) with the number of loops h1(�k) of the
graph.

Observe the following interesting property:

g(t, x, z) =
∑
l≥1

∑
k≤l

gl
k(x)

zl

qk
, with t = e−q,

that is, the polynomial degree in z is always greater than the polynomial degree
in q−1. Therefore, the three last lines of formula (22) is a Laurent polynomial in
q of the form ∑

k≤M

1

qk
·
∑
l≥k

Ck,l
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with the coefficient Ck,l of pure Chow degree l. In particular, since we have

gl
l (x) = (−1)l(l − 1)!Bl+1(x)

(l + 1)! ,

the projection ∑
k≤M

Ck,k

qk

is obtained by replacing the function g with the truncated function

ĝ(q, x, z) :=
∑
l≥1

(−1)l

l
· Bl+1(x)

l + 1
·
(

z

q

)l

.

The truncated formula is thus converging as q → 0. Moreover, since the left-hand
side of formula (22) is of pure degree equal to δ := g + ∑N

j=1 degj , it equals the
coefficient Cδ,δ . Therefore, we obtained the following truncated formula.

Corollary 3.5. With the same assumptions and notations as in Theorem 3.3, we
have the following equality in A∗(Sg,n(W,G)(γ )):

λ∨
g cPV

vir (e(Cγ ))g,n

= lim
q→0

q
g

N+1 ·
N∏

j=1

q
degj

j ·
∑
k≥0
�k

1

k! · r#E(�k)

|Aut(�k)|

· [�k]∗
(

ψn+1 · · ·ψn+k ·
k∏

i=1

N+1∑
j=1

ĝ(qj ,qj ,ψn+i )

·
n+k∏
i=1

exp

(
−

N+1∑
j=1

ĝ(qj ,�j (i),ψi)

)

·
∏

e∈E(�k)
e=(h,h′)

1 − e
−∑N+1

j=1 ĝ(qj ,�j (h),ψh)
e
−∑N+1

j=1 ĝ(qj ,�j (h′),ψh′ )

ψh + ψh′

)
, (23)

where we use the truncated function

ĝ(q, x, z) :=
∑
l≥1

(−1)l

l
· Bl+1(x)

l + 1
·
(

z

q

)l

,

and where qj := (−a1) · · · (−aj−1)q .

Remark 3.6. We can use formula (23) to find tautological relations by extracting,
for instance, the coefficient in q−1. The first interesting case is to consider the
polynomial W = x5 in genus 1 with five markings of monodromy 2. Then we
obtain a tautological relation in A2(M1,5), and we can try to express it in terms of
relations from M0,n and from Getlzer’s relation. More generally, we will address
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in a subsequent work the question to compare the relations from Theorem 3.5 to
Pixton’s relations [35].

Remark 3.7. The truncated function ĝ is closely related to the equivariant Euler
class of a vector bundle V :

e�
q(V ) := qrk(V )

(
1 + c1(V )

q
+ c2(V )

q2
+ · · ·

)

= qrk(V ) · exp

(
−

∑
l≥1

(−1)l
(l − 1)!

ql
Chl (V )

)
.

More precisely, we see that formula (23) translates into

λ∨
g cPV

vir (e(Cγ ))g,n = lim
q→0

N∏
j=1

e�
qj

(−R•π∗(LC
j )) · e�

qN+1
(E∨). (24)
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