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How to Determine the Sign of a Valuation on C[x, y]
Pinaki Mondal

Abstract. Given a divisorial discrete valuation centered at infinity on
C[x, y], we show that its sign on C[x, y] (i.e. whether it is negative or
nonpositive on C[x, y]\C) is completely determined by the sign of its
value on the last key form (key forms being the avatar of key polynomi-
als of valuations [Mac36] in “global coordinates”). We also describe
the cone of curves and the nef cone of certain compactifications of
C2 associated with a given valuation centered at infinity and give a
characterization of the divisorial valuations centered at infinity whose
skewness can be interpreted in terms of the slope of an extremal ray of
these cones, yielding a generalization of a result of [FJ07]. A byprod-
uct of these arguments is a characterization of valuations that “deter-
mine” normal compactifications of C2 with one irreducible curve at
infinity in terms of an associated “semigroup of values”.

1. Introduction

Notation 1.1. Throughout this section, k is a field, and R is a finitely generated
k-algebra.

In algebraic (or analytic) geometry and commutative algebra, valuations are usu-
ally treated in the local setting, and the values are always positive or nonnegative.
Even if it is a priori not known if a given discrete valuation ν is positive or non-
negative on R \ k, it is evident how to verify this, at least if ν(k \ {0}) = 0: we
have only to check the values of ν on the k-algebra generators of R. For valua-
tions centered at infinity however, in general, it is nontrivial to determine if it is
negative or nonpositive on R \ k:

Example 1.2. Let R := C[x, y], and for every ε ∈R with 0 < ε < 1, let νε be the
valuation (with values in R) on C(x, y) defined as follows:

νε(f (x, y)) := −degx(f (x, y)|y=x5/2+x−1+ξx−5/2−ε )

for all f ∈C(x, y) \ {0}, (1)

where ξ is a new indeterminate, and degx is the degree in x. A direct computation
shows that

νε(x) = −1, ν(y) = −5/2,

νε(y
2 − x5) = −3/2, νε(y

2 − x5 − 2x−1y) = ε.
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Is νε negative on C[x, y]? Let g := y2 −x5 −2x−1y. The fact that νε(g) > 0 does
not seem to be of much help for the answer (especially if ε is very small) since
g /∈ C[x, y] and νε(xg) < 0. However, g is precisely the last key form (Defini-
tion 2.4) of νε (see Example 2.8), and therefore Theorem 1.4 implies that νε is not
nonpositive on C[x, y], that is, no matter how small ε is, there exists fε ∈C[x, y]
such that νε(fε) > 0.

In this paper, we settle the question of how to determine if a valuation centered
at infinity is negative or nonpositive on R for the case that R = C[x, y]. Given
a valuation ν centered at infinity on C[x, y], we explicitly construct a rational
function (which is the ‘last key form’ of the valuation) g such that the sign of ν(g)

determines the answer. Let X̄ be a compactification of C2 such that the center of
ν on X̄ is a curve C. The construction of the rational function g depends on the
Puiseux parametrization of generic ‘curvettes’ transversal to C. Replacing the
computation of this Puiseux parametrization with ‘infinitely near points’ yields a
straightforward generalization of our results in non-zero characteristic. This was
accomplished in [GM16] following the arXiv publication of the first version of
this article in 2013.

In Section 1.1 below we state the main results and describe the relation of
this question to the study of algebraic compactifications of affine varieties. In
Section 1.2 we give a geometric interpretation of our results. After introducing
some background material in Section 2, we prove the results in Section 3.

1.1. Motivation and Statements of Main Results

Recall that a divisorial discrete valuation (Definition 2.2) ν on R is centered at
infinity iff ν(f ) < 0 for some f ∈ R, or equivalently iff there is an algebraic
completion X̄ of X := SpecR (i.e. X̄ is a complete algebraic variety containing
X as a dense open subset) and an irreducible component C of X̄ \X such that ν is
the order of vanishing along C. On the other hand, one way to construct algebraic
completions of the affine variety X is to start with a degree-like function on R (the
terminology is from [Mon10] and [Mon14]), that is, a function δ : R → Z∪{−∞}
that satisfies the following “degree-like” properties:

P1. δ(f + g) ≤ max{δ(f ), δ(g)}, and
P2. δ(fg) ≤ δ(f ) + δ(g),

and construct the graded ring

Rδ :=
⊕
d≥0

{f ∈ R : δ(f ) ≤ d} ∼=
∑
d≥0

{f ∈ R : δ(f ) ≤ d}td , (2)

where t is an indeterminate. It is straightforward to see that X̄δ := ProjRδ is a
projective completion of X, provided that the following conditions are satisfied:

(Proj-1). Rδ is finitely generated as a k-algebra, and
(Proj-2). δ(f ) > 0 for all f ∈ R \ k.

A fundamental class of degree-like functions are divisorial semidegrees—these
are precisely the negatives of divisorial discrete valuations centered at infinity,
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and they serve as “building blocks” of an important class of degree-like functions
(see [Mon10; Mon14]). Therefore a natural question in this context is:

Question 1.3.1 Given a divisorial semidegree δ on R, how to determine if δ(f ) >

0 for all f ∈ R \ k? Or equivalently, given a divisorial discrete valuation ν on R

centered at infinity, how to determine if ν(f ) < 0 for all f ∈ R \ k?

In this paper, we give a complete answer to Question 1.3 for the case k = C

and R = C[x, y] (note that the answer for the case R = C[x] is obvious since
the only discrete valuations centered at infinity on C[x] are those that map x −
α 	→ −1 for some α ∈ C). More precisely, we consider the sequence of key forms
(Definition 2.4) corresponding to semidegrees and show the following:

Theorem 1.4. Let δ be a divisorial semidegree on C[x, y], and let g0, . . . , gn+1
be the key forms of δ in (x, y)-coordinates. Then

1. δ is nonnegative on C[x, y] \C iff δ(gn+1) is nonnegative.
2. δ is positive on C[x, y] \C iff one of the following holds:

a) δ(gn+1) is positive, or
b) δ(gn+1) = 0 and gk /∈C[x, y] for some k, 0 ≤ k ≤ n + 1.
Moreover, condition 2b is equivalent to the following condition:
b′) δ(gn+1) = 0 and gn+1 /∈C[x, y].

Remark 1.5. The key forms of a semidegree δ on C[x, y] are counterparts in
(x, y)-coordinates of the key polynomials of ν := −δ introduced in [Mac36] (and
computed in local coordinates near the center of ν). The basic ingredient of
the proof of Theorem 1.4 is the algebraic contractibility criterion of [Mon16a,
Thm. 4.1], which uses key forms. We note that key forms were already used in
[FJ07]2 (without calling them by any special name).

Remark 1.6. The requirement in Theorem 1.4 that δ be divisorial (i.e. −δ be
a divisorial valuation) is unnecessary: the only technical issue stems from valu-
ations with an infinite sequence of key polynomials, but one can determine the
sign of such a valuation by applying Theorem 1.4 to a divisorial valuation that
“approximates” it sufficiently closely.

Remark 1.7. The key forms of a semidegree can be computed explicitly from
any of the alternative presentations of the semidegree (see e.g. [Mon16a, Algo-
rithm 5.1] for an algorithm to compute key forms from the generic Puiseux series
(Definition 2.13) associated to the semidegree). Therefore Theorem 1.4 gives an
effective way to determine if a given semidegree is positive or nonnegative on
C[x, y].
1The analogous question regarding Property (Proj-1) for R = C[x, y] and δ a divisorial semidegree

is completely settled in [MN14] where the results of this paper are also applied to the moment
problem of planar semialgebraic sets.

2Under the assumptions of Lemma A.12 of [FJ07], the polynomials Uj constructed in Section A.5.3
of [FJ07] are precisely the key forms of −ν.
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Trees of valuations centered at infinity on C[x, y] were considered in [FJ07] along
with a parameterization of the tree called skewness α. The notion of skewness has
an “obvious” extension3 to the case of semidegrees, and using this definition, one
of the assertions of [FJ07, Thm. A.7] can be reformulated as the statement that
the following identity holds for a certain subtree of semidegrees δ on C[x, y]:

α(δ) = inf

{
δ(f )

dδ deg(f )
: f is a nonconstant polynomial in C[x, y]

}
, (3)

where

dδ := max{δ(x), δ(y)}. (4)

It is observed in [Jon12, p. 121] that in general relation in (3) is satisfied with
≤, and “it is doubtful that equality holds in general”. Example 3.1 shows that the
equality indeed does not hold in general. It is not hard to see that α(δ) can be
expressed in terms of δ(gn+1) (see (17)), and using that expression, we give a
characterization of the semidegrees for which (3) holds:

Theorem 1.8. Let δ be a semidegree on C[x, y], and g0, . . . , gn+1 be the corre-
sponding key forms.

1. (3) holds iff one of the following assertions is true:
a) δ(gn+1) ≥ 0, or
b) δ(gn+1) < 0 and gk ∈C[x, y] for all k, 0 ≤ k ≤ n + 1, or
Moreover, condition 1b is equivalent to the following condition:
b′) δ(gn+1) < 0 and gn+1 ∈C[x, y].

2. The inf in right-hand side of (3) can be replaced by min iff gn+1 ∈ C[x, y] iff
gk ∈ C[x, y] for all k, 0 ≤ k ≤ n+1; in this case the minimum is achieved with
f = gn+1.

Remark 1.9. It is possible to give a geometric characterization of the semide-
grees δ for which (3) holds. Indeed, [CPR05] introduced the notion of compact-
ifications of C2 that admit systems of numerical curvettes. In Section 1.2 and
Remark 1.14, we construct two compactifications X̄ and X̃ of C2 associated to δ.
[Mon13, Thm. 3.2] (which uses the results of this article) shows that (3) holds iff
X̄ (or equivalently, X̃) admits a system of numerical curvettes.

Our final result is the following corollary of the arguments in the proof of Theo-
rem 1.4, which answers a question of Professor Peter Russell.4

3In [FJ07] the skewness α was defined only for valuations ν centered at infinity that satisfied
min{ν(x), ν(y)} = −1. Here for a semidegree δ, we define α(δ) to be the skewness of −δ/dδ

(where dδ is as in (4)) in the sense of [FJ07].
4Prof. Russell’s question was motivated by the correspondence established in [Mon16a, Thm. 4.3]

between normal algebraic compactifications of C2 with one irreducible curve at infinity and
algebraic curves in C2 with one place at infinity. Since the semigroups of poles of planar curves
with one place at infinity are very special (see e.g. [Abh78; SS94]), he asked if similarly the
semigroups of values of semidegrees that determine normal algebraic compactifications of C2

can be similarly distinguished from the semigroup of values of general semidegrees. Whereas
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Corollary 1.10. Let δ be a semidegree on C[x, y]. Define

Sδ := {(deg(f ), δ(f )) : f ∈ C[x, y] \ {0}} ⊆ Z2, (5)

and let Cδ be the cone over Sδ in R2. Then

1. The following are equivalent:
a) Cδ is a closed subset of R2.
b) gk is a polynomial for all k, 0 ≤ k ≤ n + 1.
c) gn+1 is a polynomial.

2. The following are equivalent:
a) δ determines an analytic compactification of C2.
b) The positive x-axis is not contained in the closure C̄δ of Cδ in R2.

3. The following are equivalent:
a) δ determines an algebraic compactification of C2.
b) Cδ is closed in R2, and the positive x-axis is not contained in Cδ .
c) Sδ is a finitely generated semigroup, and (k,0) /∈ Sδ for all positive inte-

ger k.

Remark 1.11. The phrase “δ determines an algebraic (resp. analytic) compacti-
fication of C2” means “there exists a (necessarily unique) normal algebraic (resp.
analytic) compactification X̄ of X := C2 such that C∞ := X̄ \ X is an irreducible
curve and δ is proportional to the order of pole along C∞”. In particular, δ de-
termines an algebraic compactification of C2 if and only if δ satisfies conditions
(Proj-1) and (Proj-2) for k = C and R = C[x, y].
Remark 1.12. Sδ is isomorphic to the global Enriques semigroup (in the termi-
nology of [CPRL02]) of the compactification of C2 from Proposition 2.10. Also,
the assertions of Corollary 1.10 remain true if in (5) deg is replaced by any other
semidegree that determines an algebraic compactification of C2 (e.g. a weighted
degree with positive weights).

1.2. Cones of Curves on Compactifications of C2

In this section, we give geometric interpretations of Theorems 1.4 and 1.8 in terms
of the cone of curves and the nef cone on a compactification of C2 related to a
given semidegree.

Definition 1.13. Let Y be a normal compact algebraic surface. A (real) one
cycle on Y is a formal linear combination of irreducible curves on Y with coef-
ficients in R. It is possible (originally done by Mumford [Mum61]) to define an
intersection product on pairs of cycles on Y by passing to the desingularization
of Y . Two cycles C and C′ are numerically equivalent if (C,D) = (C′,D) for
each cycle D on Y . The (real) vector space of cycles modulo numerical equiva-
lence is denoted N1(Y ). The cone NE(Y ) of curves on Y is the subset of N1(Y )

Example 3.2 shows that they cannot be distinguished only by the values of the semidegree itself,
Corollary 1.10 shows that this can be done if paired with the degree of polynomials.
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consisting of (equivalence classes of) cycles with nonnegative coefficients. The
nef cone Nef(Y ) of Y is the set of (equivalence classes of) all cycles C on Y such
that (C,C′) ≥ 0 for all irreducible curves C′ on Y ; in other words, Nef(Y ) is the
cone that is dual to NE(Y ) via the intersection product.

Let C2 ⊆ P2 = C2 ∪L be the usual compactification of C2 (where L is the “line at
infinity”), and δ be a divisorial semidegree on C[x, y] centered at infinity. Assume
that δ �= deg. By local theory, there exists a minimal normal analytic compactifi-
cation X̄ of C2 with the following properties:

• the identification of C2 extends to a birational morphism π : X̄ → P2,
• the center of δ on X̄ is a curve at infinity.

It turns out (see Proposition 2.10) that the curve at infinity on X̄ has precisely two
irreducible components: one is the strict transform of L (call it C1), and the other
is the center of δ on X̄ (call it C2). If D is a curve on C2 defined by a polynomial
f ∈C[x, y], then its closure D̄ in X̄ is linearly equivalent to deg(f )C1 + δ(f )C2

as Weil divisors on X̄. It follows that N1(X̄) is generated by the equivalence
classes of C1 and C2. Theorem 1.4 is related to the question of whether (the
equivalence classes of) C1 and C2 generate the cone NE(X̄) of curves on X̄.
More precisely, an ingredient of Theorem 1.4 is the following result.

Theorem 1.4′. Let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates. Then

1. δ(gn+1) equals a negative rational number times the self intersection number
of C1.

2. δ(gn+1) ≥ 0 iff C1 and C2 generate NE(X̄). Let li be the half-line of all non-
negative real multiples of Ci , 1 ≤ i ≤ 2. Then:
a) l2 determines an edge of NE(X̄).
b) l1 determines an edge of NE(X̄) iff δ(gn+1) ≥ 0.
c) C1 is in the interior of NE(X̄) iff δ(gn+1) < 0.

Similarly, Theorem 1.8 is related to properties of the nef cone Nef(X̄) of X̄. More
precisely, let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates. Define the
Q-Cartier divisors C∗

1 := C1 + dδC2 and C∗
2 := C1 + mδδ(gn+1)

dδ
C2 on X̄, where dδ

is as in (4), and

mδ := gcd(δ(g0), . . . , δ(gn)). (6)

Let l∗i be the half-line of all nonnegative real multiples of C∗
i , 1 ≤ i ≤ 2.

Theorem 1.8′. δ(gn+1) ≥ 0 iff C∗
1 and C∗

2 generate Nef(X̄). More precisely:

1. l∗1 determines an edge of Nef(X̄).
2. l∗2 determines an edge of Nef(X̄) iff δ(gn+1) ≥ 0.
3. C∗

2 /∈ Nef(X̄) iff δ(gn+1) < 0.

Remark 1.14. Consider the minimal resolution of singularities π̃ : X̃ → X̄. Let
Ẽ be the union of the exceptional curves of π̃ with the strict transform of C1.
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Then assertion 1 of Theorem 1.4′ implies that

δ(gn+1) > 0 iff (C1,C1) < 0

iff the intersection matrix of Ẽ is negative definite, (7)

δ(gn+1) ≥ 0 iff (C1,C1) ≤ 0

iff the intersection matrix of Ẽ is nonpositive definite. (8)

In particular, the property that δ(gn+1) > 0 (resp. δ(gn+1) ≥ 0) is equivalent to
the purely numerical criterion (7) (resp. (8)), which is completely determined by
the weighted configuration of projective lines on X̃ \C2.

Remark 1.15. Let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates, and
let X̃ be as in Remark 1.14. Let C̃1, . . . , C̃k be the irreducible components of
X̃ \C2, and for each j , 0 ≤ j ≤ k, let δj be the semidegree on C[x, y] associated
to C̃j . It is not hard to see that the last key form of δj is gij for some ij , 1 ≤
ij ≤ n + 1. Moreover, in the case that δ(gn+1) ≥ 0, it turns out that δj (gij ) ≥ 0

for each j , 1 ≤ j ≤ k. Theorem 1.4 then implies that NE(X̃) is (the simplicial
cone) generated by C̃1, . . . , C̃k . Combining this with Remark 1.14, it follows that
if δ(gn+1) ≥ 0, then the cones NE(X̃) and Nef(X̃) are (simplicial and) completely
determined by the weighted configuration of projective lines on X̃ \C2. However,
if δ(gn+1) < 0, then Example 3.3 shows that in general the weighted configuration
of projective lines on X̃ \C2 does not determine NE(X̃) or Nef(X̃).

2. Preliminaries

Notation 2.1. Throughout the rest of the article, we write X := C2 with polyno-
mial coordinates (x, y) and denote by deg the usual degree in (x, y)-coordinates.
We also write X̄(0) for the copy of P2 into which X is embedded via the map
(x, y) 	→ [1 : x : y]. Note that the semidegree on C[x, y] corresponding to the
line at infinity on X̄0 is simply deg.

2.1. Divisorial Discrete Valuations, Semidegrees, Key Forms, and
Associated Compactifications

Definition 2.2 (Discrete valuations). A discrete valuation on C(x, y) is a map
ν : C(x, y) \ {0} → Z such that, for all f,g ∈ C(x, y) \ {0},
1. ν(f + g) ≥ min{ν(f ), ν(g)}, and
2. ν(fg) = ν(f ) + ν(g).

A discrete valuation ν on C(x, y) is called divisorial iff there exist a normal al-
gebraic surface Yν equipped with a birational map σ : Yν → X̄0 and a curve Cν

on Yν such that, for all nonzero f ∈ C[x, y], ν(f ) is the order of vanishing of
σ ∗(f ) along Cν . The center of ν on X̄0 is σ(Cν); ν is said to be centered at in-
finity (with respect to (x, y)-coordinates) iff the center of ν on X̄0 is contained
in X̄0 \ X; equivalently, ν is centered at infinity iff there is a nonzero polynomial
f ∈C[x, y] such that ν(f ) < 0.
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Definition 2.3 (Semidegrees). A (divisorial) semidegree on C(x, y) is a map
δ : C(x, y) \ {0} → Z such that −δ is a (divisorial) discrete valuation centered at
infinity.

Definition 2.4 (cf. definition of key polynomials in [FJ04, Def. 2.1], see also
Remark 2.6). Let δ be a divisorial semidegree on C[x, y] such that δ(x) > 0.
A sequence of elements g0, g1, . . . , gn+1 ∈C[x, x−1, y] is called the sequence of
key forms for δ if the following properties are satisfied:

P0. g0 = x, g1 = y.
P1. Let ωj := δ(gj ), 0 ≤ j ≤ n + 1. Then

ωj+1 < αjωj =
j−1∑
i=0

βj,iωi for 1 ≤ j ≤ n,

where
a) αj = min{α ∈ Z>0 : αωj ∈ Zω0 + · · · +Zωj−1} for 1 ≤ j ≤ n,
b) βj,i are integers such that 0 ≤ βj,i < αi for 1 ≤ i < j ≤ n (in particular,

βj,0 are allowed to be negative).
P2. For 1 ≤ j ≤ n, there exists θj ∈C∗ such that

gj+1 = g
αj

j − θjg
βj,0
0 · · ·gβj,j−1

j−1 .

P3. Let y1, . . . , yn+1 be indeterminates, and ω be the weighted degree on B :=
C[x, x−1, y1, . . . , yn+1] corresponding to weights ω0 for x and ωj for yj ,
0 ≤ j ≤ n + 1 (i.e. the value of ω on a polynomial is the maximum “weight”
of its monomials). Then, for every polynomial g ∈ C[x, x−1, y],
δ(g) = min{ω(G) : G(x,y1, . . . , yn+1) ∈ B,G(x,g1, . . . , gn+1) = g}. (9)

Theorem 2.5 ([Mon16a, Thm. 3.17], cf. [FJ04, Thm. 2.29]). There is a unique
and finite sequence of key forms for δ.

Remark 2.6. Let δ be as in Definition 2.4. Set u := 1/x and v := y/xk for some
k such that δ(y) < kδ(x), and let g̃0 = u, g̃1 = v, g̃2, . . . , g̃n+1 ∈ C[u,v] be the
key polynomials of ν := −δ in (u, v)-coordinates. Then the key forms of δ can be
computed from the g̃j as follows:

gj (x, y) :=
{

x for j = 0,

xk degv(g̃j )g̃j (1/x, y/xk) for 1 ≤ j ≤ n + 1.
(10)

Theorem 2.5 is an immediate consequence of the existence of key polynomials
(see e.g. [FJ04, Thm. 2.29]).

Example 2.7. Let p, q be integers such that p > 0, and δ be the weighted degree
on C(x, y) corresponding to weights p for x and q for y. Then the key forms of
δ are x, y.
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Example 2.8. Let ε := q/2p for positive integers p, q such that q < 2p, and δε

be the semidegree on C(x, y) defined as follows:

δε(f (x, y)) := 2p degx(f (x, y)|y=x5/2+x−1+ξx−5/2−ε )

for all f ∈ C(x, y) \ {0}, (11)

where ξ is a new indeterminate, and degx is the degree in x. Note that δε =
−2pνε , where νε is from Example 1.2 (we multiplied by 2p to simply make
the semidegree integer valued). Then the sequence of key forms of δε is x, y,
y2 − x5, y2 − x5 − 2x−1y.

The following property of key forms can be proved in a straightforward way from
their defining properties.

Proposition 2.9. Let δ and g0, . . . , gn+1 be as in Definition 2.4, and dδ and mδ

be as in respectively (4) and (6). Then

mδδ(gn+1) ≤ d2
δ . (12)

Moreover, we have equality in (12) iff δ = deg.

Let X̄0 := P2 be the usual compactification of C2 given by (x, y) ↪→ [1 : x : y]. If
δ is a divisorial valuation on C[x, y] centered at infinity, then by definition there
is a compactification X̄1 of C2 such that δ is the order of pole along an irreducible
curve C ⊆ X̄1 \C2. Without loss of generality, we may assume that X̄1 is nonsin-
gular and there is a morphism π : X̄1 → X̄0 that is identity on C2. Assume that δ

is not the degree in (x, y)-coordinates. Then C is an exceptional curve of π (i.e.
π(C) is a point). Let X̄ be the surface obtained from X̄1 by contracting all excep-
tional curves of π other than C (which is possible due to a criterion of Grauert
[Băd01, Thm. 14.20]). Then X̄ \C2 is the union of two irreducible curves, and the
following result, which follows from results of [Mon16b], describes the matrix of
intersection numbers of these curves in terms of the key forms of δ.

Proposition 2.10 ([Mon16b, Props. 4.2 and 4.7]). Given a divisorial semidegree
δ on C[x, y] such that δ �= deg and δ(x) > 0, there exists a unique compactifica-
tion X̄ of C2 such that

1. X̄ is projective and normal.
2. X̄∞ := X̄ \ X has two irreducible components C1, C2.
3. The semidegrees on C[x, y] corresponding to C1 and C2 are respectively deg

and δ.

Moreover, all singularities of X̄ are rational (which implies in particular that all
Weil divisors are Q-Cartier). Let g0, . . . , gn+1 be the key forms of δ. Then the
inverse of the matrix of intersection numbers (Ci,Cj ) of Ci and Cj , 1 ≤ i, j ≤ 2,
is

M =
(

1 dδ

dδ mδδ(gn+1)

)
, (13)

where dδ and mδ are as in respectively (4) and (6).
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We will use the following result, which is an immediate corollary of [Mon16a,
Thm. 4.3].

Proposition 2.11. Let δ, X̄ and C1, C2 be as in Proposition 2.10. Let g0, . . . ,

gn+1 be the key forms of δ. Then the following are equivalent:

1. There is a (compact algebraic) curve C on X̄ such that C ∩ C1 = ∅.
2. gk is a polynomial for all k, 0 ≤ k ≤ n + 1.
3. gn+1 is a polynomial.

The following follows from combining Theorems 4.1 and 4.3 of [Mon16a]:

Theorem 2.12. Let δ be a divisorial semidegree on C[x, y] such that δ(x) > 0,
and g0, . . . , gn+1 be the key forms of δ. Then δ determines a normal algebraic
compactification of C2 (in the sense of Remark 1.11) iff δ(gn+1) > 0 and gn+1 is
a polynomial.

2.2. Descending Puiseux Series

Note. The proofs of Theorems 1.4, 1.4′, and 1.8′ do not use the material of this
subsection. Proposition 2.20 and Corollary 2.22 are used in the proof of δ(gn+1) <

0 case of Theorem 1.8.

Definition 2.13 (Descending Puiseux series). The field of descending Puiseux
series in x is

C〈〈x〉〉 :=
∞⋃

p=1

C((x−1/p)) =
{∑

j≤k

aj x
j/p : k,p ∈ Z,p ≥ 1

}
,

where for each integer p ≥ 1, C((x−1/p)) denotes the field of Laurent series in
x−1/p . Let φ = ∑

q≤q0
aqxq/p be a descending Puiseux series where p is the

polydromy order of φ, that is, p is the smallest positive integer such that φ ∈
C((x−1/p)). Then the conjugates of φ are φj := ∑

q≤q0
aqζ qxq/p , 1 ≤ j ≤ p,

where ζ is a primitive pth root of unity. The usual factorization of polynomials in
terms of Puiseux series implies the following:

Theorem 2.14. Let f ∈ C[x, y]. Then there are unique (up to conjugacy) de-
scending Puiseux series φ1, . . . , φk , a unique nonnegative integer m, and c ∈ C∗
such that

f = cxm

k∏
i=1

∏
φij is a conjugate of φi

(y − φij (x)).

The relation between descending Puiseux series and semidegrees is given by the
following proposition, which is a reformulation of the corresponding result for
Puiseux series and valuations [FJ04, Prop. 4.1].

Proposition 2.15 ([Mon16b, Thm. 1.2]). Let δ be a divisorial semidegree on
C(x, y) such that δ(x) > 0. Then there exist a descending Puiseux polynomial
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(i.e. a descending Puiseux series with finitely many terms) φδ ∈ C〈〈x〉〉 and a
rational number rδ < ordx(φδ) such that, for every polynomial f ∈ C[x, y],

δ(f ) = δ(x)degx(f (x, y)|y=φδ(x)+ξxrδ ), (14)

where ξ is an indeterminate.

Definition 2.16. If φδ and rδ are as in Proposition 2.15, then we say that
φ̃δ(x, ξ) := φδ(x) + ξxrδ is the generic descending Puiseux series associated
with δ.

Example 2.17. Let p, q be integers such that p > 0, and δ be the weighted degree
on C(x, y) corresponding to weights p for x and q for y. Then φ̃δ = ξxq/p (i.e.
φδ = 0).

Example 2.18. Let δε be the semidegree from Example 2.8. Then φ̃δ = x5/2 +
x−1 + ξx−5/2.

The following result, which is an immediate consequence of [Mon16b, Prop. 4.2,
Assertion 2], connects descending Puiseux series of a semidegree with the geom-
etry of associated compactifications.

Proposition 2.19. Let δ, X̄, C1, C2 be as in Proposition 2.10, and let φ̃δ(x, ξ) :=
φδ(x)+ ξxrδ be the generic descending Puiseux series associated with δ. Assume
in addition that δ is not a weighted degree, that is, φδ(x) �= 0. Pick f ∈ C[x, y] \
{0} and let Cf be the curve on X̄ that is the closure of the curve defined by f on
C2. Then Cf ∩C1 = ∅ iff the descending Puiseux factorization of f is of the form

f =
k∏

i=1

∏
φij is a conjugate of φi

(y − φij (x)),

where each φi satisfies φi(x) − φδ(x) = cix
rδ + l.o.t. (15)

for some ci ∈C (where l.o.t. denotes lower-order terms in x).

The following result gives some relations between descending Puiseux series and
key forms of semidegrees and follows from standard properties of key polyno-
mials (in particular, the first three assertions follow from [Mon16a, Props. 3.17,
3.21, and 5.3], and the last assertion follows from the first one; a particular case
of the last assertion (namely, the case δ(y) ≤ δ(x)) was proved in [Mon16b, Iden-
tity (4.6)]).

Proposition 2.20. Let δ be a divisorial semidegree on C(x, y) such that
δ(x) > 0. Let φ̃δ(x, ξ) := φδ(x) + ξxrδ be the generic descending Puiseux series
associated to δ, and g0, . . . , gn+1 be the key forms of δ. Then:

1. There is a descending Puiseux series φ with

φ(x) − φδ(x) = cxrδ + l.o.t.
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for some c ∈ C (where l.o.t. denotes lower order terms in x) such that the
descending Puiseux factorization of gn+1 is of the form

gn+1 =
∏

φ∗ is a conjugate of φ

(y − φ∗(x)). (16)

2. Let the Puiseux pairs [Mon16a, Definition 3.2] of φδ be (q1,p1), . . . , (ql,pl)

(if φδ ∈ C((1/x)), then simply set l = 0). Set p0 := 1. Then

deg(gn+1) =
{

1 if φδ = 0,

max{1,degx(φδ)}p0p1 · · ·pl otherwise.

3. Write rδ as rδ = ql+1/(p0 · · ·plpl+1), where pl+1 is the smallest integer ≥ 1
such that p0 · · ·plpl+1rδ is an integer. Let dδ and mδ be as in respectively (4)
and (6). Then

mδ = pl+1,

dδ =
{

max{p1, q1} if φδ = 0,

max{1,degx(φδ)}p0p1 · · ·pl+1 otherwise.

4. Let the skewness α(δ) of δ be defined as in footnote 3. Then

α(δ) = mδδ(gn+1)/d
2
δ =

{ min{p1,q1}
max{p1,q1} = min{δ(x), δ(y)}/dδ if φδ = 0,

δ(gn+1)

dδ deg(gn+1)
otherwise.

(17)

The following lemma is a consequence of assertion 1 of Proposition 2.20 and the
definition of generic descending Puiseux series of a semidegree. It follows via a
straightforward but cumbersome induction on the number of Puiseux pairs of the
descending Puiseux roots of f , and we omit the proof.

Lemma 2.21. Let δ be a divisorial semidegree on C(x, y) such that δ(x) > 0. Let
φ̃δ(x, ξ) := φδ(x) + ξxrδ be the generic descending Puiseux series associated to
δ, and g0, . . . , gn+1 be the key forms of δ. Then, for all f ∈C[x, y] \C,

δ(f )

deg(f )
≥ δ(gn+1)

deg(gn+1)
. (18)

Now assume in addition that δ is not a weighted degree, that is, φδ(x) �= 0. Then
equality holds in (18) iff f has a descending Puiseux factorization as in (15).

Combining Propositions 2.11 and 2.19 and Lemma 2.21 yields the following:

Corollary 2.22. Consider the setup of Proposition 2.11. Assume in addition that
δ is not a weighted degree. Then assertions 1–3 of Proposition 2.11 are equivalent
to the following statement:

4. There exists f ∈ C[x, y] \C for which equality holds in (18).
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3. Proofs

Proof of Theorem 1.4′. Let X̄ be the projective compactification of X := C2 from
Section 1.2. With the notation in Proposition 2.10, the matrix of intersection num-
bers (Ci,Cj ) of Ci and Cj , 1 ≤ i, j ≤ 2, is

I = 1

d2
δ − mδδ(gn+1)

(−mδδ(gn+1) dδ

dδ −1

)
. (19)

In particular, (C1,C1) = − mδ

d2
δ −mδδ(gn+1)

δ(gn+1). Since δ �= deg (by the assump-

tions of Theorem 1.4′), assertion 1 of Theorem 1.4′ follows from Proposition 2.9.
It follows similarly that (C2,C2) < 0, so that [Kol96, Lemma II.4.12]5 implies
that l2 determines an edge of NE(X̄), which implies assertion 2a. Now observe
that

δ(gn+1) ≥ 0 ⇒ (C1,C1) ≤ 0 (assertion 1)

⇒ l1 determines an edge of NE(X̄)

[Kol96, Lemma II.4.12]. (20)

On the other hand, δ(gn+1) < 0 ⇒ (C1,C1) > 0 (assertion 1), which implies that
there exists β ∈Q such that with respect to the basis (C1,C2 +βC1) of N1(X̄), the
intersection form is of the form x2

1 −x2
2 . [Kol96, Lemma II.4.12] then implies that

C1 is in the interior of NE(X̄). The preceding sentence, together with (20), implies
assertions 2b and 2c. The first statement of assertion 2 follows from assertions 2a,
2b, and 2c. �

Proof of Theorem 1.4. Without loss of generality, we may (and will) assume that
δ �= deg and use the notation in Theorem 1.4′. Pick f ∈ C[x, y] \ {0} and let D̄f

be the closure in X̄ of the curve Df defined by f in C2, so that D̄f ∼ deg(f )C1 +
δ(f )C2. Consequently, δ(f ) ≥ 0 for all f ∈ C[x, y] \ {0} iff NE(X̄) is generated
by C1 and C2. Assertion 1 then follows from assertion 2 of Theorem 1.4′.

We now prove assertion 2. Proposition 2.11 implies that assertions 2b and 2b′
are equivalent. Therefore by assertion 1 it suffices to show that either 2a or 2b′
implies that δ is positive on C[x, y] \ C. Now if 2a holds, then (C1,C1) < 0
(Theorem 1.4′). A criterion of Grauert (adapted to the case of normal surfaces
in [Sak84, Thm. 1.2]) then implies that C1 is contractible, that is, there is a map
π : X̄ → X̄′ of normal analytic surfaces such that π(C1) is a point and π |X̄\C1

is
an isomorphism. In particular, for each f ∈ C[x, y], δ(f ) is the order of pole of
f along the irreducible curve at infinity on the compactification X̄′ of X := C2,
and consequently δ is positive on C[x, y] \ C, as required. Now assume that 2b′
holds. Then Theorem 1.4′ implies that (C1,C1) = 0. Assume (to the contrary of
our goal) that there exists f ∈ C[x, y] \ C such that δ(f ) = 0. Then we have

5Even though [Kol96, Lemma II.4.12] is proved for only nonsingular surfaces, its proof goes through
for arbitrary normal surfaces using the intersection theory due to [Mum61].
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(D̄f ,C1) = (deg(f )C1,C1) = 0, so that D̄f ∩ C1 = ∅. Proposition 2.11 then im-
plies that gn+1 is a polynomial, which contradicts 2b′. It follows that δ is positive
on C[x, y] \C, which completes the proof of assertion 2. �

Proof of Theorem 1.8′. A straightforward computation using the entries of the in-
tersection matrix I from (19) shows that

(C∗
i ,Cj ) = δij , (21)

where δij is the Kronecker delta. Since (C∗
1 +εC2,C2) < 0 for all ε > 0 and since

l2 is an edge of NE(X̄), identity (21) immediately implies assertion 1. To complete
the proof of Theorem 1.8′, it suffices to prove the (⇐) direction of assertions 2
and 3. Now if δ(gn+1) ≥ 0, then NE(X̄) is generated by C1 and C2 (assertion 2
of Theorem 1.4′), so that (21) implies that l∗2 is also an edge of Nef(X̄). This
implies the (⇐) direction of assertion 2. On the other hand, if δ(gn+1) < 0, then
C1 is in the interior of NE(X̄) (assertion 2c of Theorem 1.4′). Since (C∗

2 ,C1) = 0,
it follows that C∗

2 /∈ Nef(X̄), which implies the (⇐) direction of assertion 3, as
required to complete the proof of Theorem 1.8′. �

Proof of Theorem 1.8. Without loss of generality, we may (and will) assume that
δ �= deg and use the notation in Theorems 1.2 and 1.8′. Let φδ be as in Propo-
sition 2.20. Consider first the case that φδ = 0. Then n = 0, and the key forms
of δ are g0 = x and g1 = y (Example 2.7). On the other hand, (17) implies that
(3) holds, so that Theorem 1.8 is true in this case. Therefore we may (and will)
assume that φδ �= 0 and divide the proof into separate cases depending on δ(gn+1).

Case 1: δ(gn+1) ≥ 0. In this case, C∗
2 is on an edge of Nef(X̄) (asser-

tion 2 of Theorem 1.8′). Since any nef divisor is a limit of ample divisors and
large multiples of ample divisors have global sections, it follows that there exist
f1, f2, . . . ∈ C[x, y] such that D̄fk

∼ rk(C1 + skC2) for some rk, sk ∈ Q>0 such

that limk→∞ sk = mδδ(gn+1)

dδ
(where the D̄fk

are defined as in the proof of Theo-
rem 1.4). Identity (17) then implies that we have equality in (3) in this case.

Case 2: δ(gn+1) < 0. In this case, C1 is in the interior of NE(X̄) (Theorem 1.4′,
assertion 2c). [Kol96, Lemma II.4.12] (adapted to the case of normal surfaces as in
footnote 5) implies that NE(X̄) has an edge of the form {r(C1 − aC2) : r ≥ 0} for
some a ∈ Q>0 and, moreover, that there exists r > 0 such that rC1 − arC2 ∼ D̄g

for some g ∈ C[x, y]. Then deg(g) = r and δ(g) = −ar . Pick f ∈ C[x, y] \ C.
Since the “other edge” of NE(X̄) is spanned by C2 (Theorem 1.4′, assertion 2a),
it follows that D̄f ∼ sC2 + t (C1 − aC2) for some s ∈ Q≥0 and t ∈ Q>0, and
therefore

δ(f )

deg(f )
= s − ta

t
≥ −a = δ(g)

deg(g)
.

It follows that

inf

{
δ(f )

dδ deg(f )
: f ∈ C[x, y] \C

}
= δ(g)

dδ deg(g)
. (22)
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On the other hand, (17) implies that

α(δ) = δ(gn+1)

dδ deg(gn+1)
.

Lemma 2.21 and Corollary 2.22 then imply that we have an equality in (3) iff
gn+1 is a polynomial.

The assertions in Theorem 1.8 now follow from the conclusions of the two
cases. �

Proof of Corollary 1.10. We continue to assume that δ �= deg and use the notation
in the proof of Theorem 1.8. Identify Nef(X̄) with its image in R2 via the map
a1C1 + a2C2 	→ (a1, a2). Note that:

(A) The “upper edge” of Nef(X̄) is l∗1 = {r(1, dδ) : r ∈R≥0} (Theorem 1.8′), and
l∗1 ⊆ Cδ (since (1, dδ) = (deg(f ), δ(f )), where f is a general linear polyno-
mial in (x, y)).

(B) Cδ contains the “lower edge” of Nef(X̄) iff gn+1 is a polynomial iff gk is
a polynomial for all k, 0 ≤ k ≤ n + 1 (follows by combining Theorem 1.8,
Lemma 2.21, and Corollary 2.22).

Since Nef(X̄) is a closed cone and since Cδ contains the ample cone of X̄, these
observations imply assertion 1. For assertion 2, note that δ determines an analytic
compactification of C2

iff C1 is contractible

iff (C1,C1) < 0 (by Grauert’s criterion [Sak84, Thm. 1.2])

iff δ(gn+1) > 0 (Theorem 1.4′, assertion 1).

Since the arguments in the proof of Theorem 1.8 show that δ(gn+1) ≤ 0 iff the clo-
sure of Cδ contains the positive x-axis, this completes the proof of assertion 2. The
equivalence of assertions 3a and 3b follows from assertion 1 and Theorem 2.12.
Since 3c clearly implies 3b, it remains to show that 3b ⇒ Sδ is finitely generated.
Since Cδ is a rational cone, 3b implies that S̄δ := Cδ ∩ Z2 is finitely generated.
Since S̄δ is integral over Sδ (i.e. for every s ∈ S̄δ , there is a positive integer m such
that ms ∈ Sδ), it follows that Sδ is also finitely generated, as required to complete
the proof of the corollary. �

Example 3.1 (An example where (3) does not hold). Let δ be the semidegree on
C(x, y) defined as follows:

δ(f (x, y)) := degx(f (x, y)|y=x−1+ξx−2) for all f ∈C(x, y) \ {0},
where ξ is an indeterminate. Then the key forms of δ are x, y, y −x−1. Moreover,

dδ = max{δ(x), δ(y)} = max{1,−1} = 1,

mδ = gcd(δ(x), δ(y), δ(y − x−1)) = gcd(1,−1,−2) = 1,

and therefore (17) implies that

α(δ) = δ(y − x−1)/deg(y − x−1) = −2. (23)
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Now consider the surface X̄ from Proposition 2.10. Then the matrix M (from
Proposition 2.10) and the intersection matrix I of C1 and C2 are:

M =
(

1 1
1 −2

)
, I = M−1 = 1

3

(
2 1
1 −1

)
. (24)

In the notation in the proof of Theorem 1.4, we have D̄y ∼ deg(y)C1 +
δ(y)C2 = C1 − C2. It follows from (24) that (C,C) = −1/3 < 0, so that [Kol96,
Lemma II.4.12] implies that C spans an edge of the cone of curves on X̄, that is,
the polynomial g from Case 2 in the proof of Theorem 1.8 is y. It then follows
from identities (22) and (23) that

inf

{
δ(f )

dδ deg(f )
: f ∈ C[x, y] \C

}
= δ(y)

dδ deg(y)
= −1 > α(δ).

Example 3.2 (The semigroup of values does not distinguish semidegrees that
determine algebraic compactifications of C2). Let δ be the semidegree on C(x, y)

defined as follows:

δ(f (x, y)) := 2 degx(f (x, y)|y=x5/2+x−1+ξx−3/2) for all f ∈ C(x, y) \ {0},
where ξ is an indeterminate. Then the key forms of δ are x, y, y2 − x5,
y2 − x5 − 2x−1y with corresponding δ-values 2, 5, 3, 1. Since the δ-value of
the last key polynomial is positive, it follows from the arguments in the proof of
Corollary 1.10 that δ determines an analytic compactification of C2. But the last
key form of δ is not a polynomial, so that the compactification determined by δ

is nonalgebraic (Theorem 2.12). On the other hand, it follows from our compu-
tation of the values of δ and Corollary 2.22 that the semigroup of values of δ on
polynomials is

Nδ := {δ(f ) : f ∈ C[x, y]} = {2,3,4, . . . }.
Now let δ′ be the weighted degree on (x, y)-coordinates corresponding to weights
2 for x and 3 for y. Then δ′ determines an algebraic compactification of C2,
namely, the weighted projective surface P2(1,2,3). But Nδ = Nδ′ .

Example 3.3 (NE(X̃) or Nef(X̃) is not determined by purely numerical condi-
tions if δ(gn+1) < 0). Let δ′ be the semidegree on C(x, y) defined as follows:

δ′(f (x, y)) := degx(f (x, y)|y=ξx−2) for all f ∈ C(x, y) \ {0},
where ξ is an indeterminate; in other words, δ′ is the weighted degree on C[x, y]
corresponding to weights 1 for x and −2 for y. Then the key forms of δ′ are x, y.
Moreover,

dδ′ = max{δ′(x), δ′(y)} = max{1,−1} = 1,

mδ′ = gcd(δ′(x), δ′(y)) = gcd(1,−2) = 1.

Let X̄′ be the surface associated to δ′ via the construction in Proposition 2.10.
Then the matrix I ′ of curves C′

1 and C′
2 at infinity on X̄′ is identical to I from

(24), and it is straightforward to see that the weighted dual graphs of the curves
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0
E0

−2

E1

−2

E2

−1

E3

Figure 1 Dual graph of curves at infinity on X̃ and X̃′

at infinity (with respect to C2 = Spec(C[x, y])) on the minimal resolutions X̃ and
X̃′ of respectively X̄ and X̄′ are also identical; see Figure 1 (here E0 (resp. E3)
corresponds to the strict transform of C1 (resp. C2) in the case of X̃ and to the
strict transform of C′

1 (resp. C′
2) in the case of X̃′).

On the other hand, if D̄′
y is the closure of the x-axis in X̄′, then D̄′

y ∼
deg(y)C′

1 + δ′(y)C′
2 = C′

1 − 2C′
2. Since D̄y = C1 − C2 determines an edge of

NE(X̄), it follows that NE(X̄) � NE(X̄′) (via the natural isomorphism N1(X̄) ∼=
N1(X̄

′) given by the mapping C1 	→ C′
1, C2 	→ C′

2). Consequently, it follows that
the cones of curves and nef cones of X̃ and X̃′ are also not isomorphic.
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