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Cohomology Support Loci of Local Systems
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Abstract. The support S of Sabbah’s specialization complex is a si-
multaneous generalization of the set of eigenvalues of the monodromy
on Deligne’s nearby cycles complex, of the support of the Alexander
modules of an algebraic knot, and of certain cohomology support loci.
Moreover, it equals conjecturally the image under the exponential map
of the zero locus of the Bernstein–Sato ideal. Sabbah showed that S

is contained in a union of translated subtori of codimension one in
a complex affine torus. Budur and Wang showed recently that S is a
union of torsion-translated subtori. We show here that S is always a
hypersurface and that it admits a formula in terms of log resolutions.
As an application, we give a criterion in terms of log resolutions for
the (semi)simplicity as perverse sheaves, or as regular holonomic D-
modules, of the direct images of rank one local systems under an open
embedding. For hyperplane arrangements, this criterion is combinato-
rial.

1. Introduction

1.1. Cohomology Support Loci

For a topological space T , let MB(T ) be the moduli space of rank 1 C-local
systems on T . The cohomology support loci of T are defined as

V(T ) = {L ∈ MB(T ) | dimH
�

(T ,L) �= 0}
and are homotopy invariants of T . It was shown recently in [BW15a; BW15b] that
V(T ) are finite unions of torsion-translated affine subtori of the affine algebraic
group MB(T ) ∼= Hom(H1(T ,Z),C∗) if T is a smooth complex quasi-projective
algebraic variety or a small ball complement of the germ of a complex analytic set
in a complex manifold. It remains though a difficult task to compute cohomology
support loci. This article is an application of the structure result for cohomology
support loci.

Let j : U → X be the open embedding in a complex manifold X of the com-
plement of a hypersurface f −1(0), where f : X → C is an noninvertible analytic
function. For x ∈ f −1(0), let Ux be the complement in a small ball in X cen-
tered at x of f −1(0). Then MB(Ux) ∼= (C∗)r , where r is the number of analytic
branches of f at x. In this paper, we show that if we take the union, in a certain
sense, of the cohomology support loci V(Ux) for all points x ∈ f −1(0), then the
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resulting set V(U,X) is much easier to deal with and that it contains a wealth of
geometric information.

More precisely, for a point x ∈ f −1(0), define the map

resx : MB(U) → MB(Ux)

as the restriction of a local system on U to Ux . Define

V(U,X) =
⋃

x∈f −1(0)

res−1
x (V(Ux)) ⊂ MB(U).

Note that with these general assumptions on X and U , it can happen that MB(U)

is infinite-dimensional and V(U,X) has infinitely many irreducible components.
Note that V(U,X) can be similarly defined for any open proper subset U of a
complex analytic space X, namely, as the the set of rank 1 local systems on U

with nontrivial cohomology locally on U along the complement X \ U .
We show that V(U,X) admits a simple formula in terms of log resolutions,

in a sense to be made clear further. Consider first the case where U = Ux and
X = Bx is a small ball at x. That is, f is the germ of an analytic function. We can
assume that f is reduced and that F = (f1, . . . , fr ) is the collection of reduced
analytic branches of f . In particular, f = ∏

i=1 fi on Bx . Let μ : Y → X be a log
resolution of f that also blows up the point x. Let Ej with j ∈ J be the irreducible
components of (f ◦ μ)−1(0). Let aij be the order of vanishing of fi along Ej .
Let E◦

j = Ej \ ⋃
i �=j (Ei ∩ Ej). Define

Zmon
F,x (t1, . . . , tr ) =

∏
j∈J with
μ(Ej )=x

(t
a1j

1 · . . . · tarj
r − 1)

−χ(E◦
j )

.

By [Sab90] this is the multivariable monodromy zeta function at x of Sabbah’s
specialization complex, which we will bring into focus soon. It is also a multi-
variable version of a classical formula of A’Campo [AC75].

For a rational function Q(t1, . . . , tr ), let Z(Q) and PZ(Q) denote the zero
locus and, respectively, the union of the polar and the zero locus of Q.

With this notation, we prove the following:

Theorem 1.1. Let F = (f1, . . . , fr ) : (X,x) → (Cr ,0) be a collection of germs
of noninvertible irreducible analytic functions on a complex manifold. Let f =∏r

i=1 fi . Assume that for all points y ∈ f −1(0) close to x, the germ of f at y is
reduced. Then

V(Ux,Bx) =
⋃

y∈f −1(0)

y closeto x

PZ(Zmon
F,y ) ⊂ MB(Ux) = (C∗)r ,

where the union is over generic points y of the finitely many strata of a Whitney
stratification for f −1(0). In particular, V(Ux,Bx) is a finite union of torsion-
translated codimension one subtori of (C∗)r .
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It is well known that V(Ux,Bx) is a generalization of the set of eigenvalues of
the monodromy of the cohomology of the Milnor fibers of f at points ranging
over its zero locus; see [BW15b, Prop. 1.3]. Therefore this theorem generalizes
an observation of Denef [Den93] that every such eigenvalue for f appears as a
pole or a zero of the monodromy zeta function of f at some point y ∈ f −1(0).

As a corollary, we obtain a simple combinatorial formula in the case of hyper-
plane arrangements:

Theorem 1.2. Let F = (f1, . . . , fr ) be a collection of linear forms on X = Cn

defining mutually distinct hyperplanes. Then

V(U,X) = Z
(∏

W

( ∏
i:fi(W)=0

ti − 1

))
,

where the first product is over the dense edges W of f = ∏
i fi .

Theorem 1.1 is a particular case of a more general result, as we explain next.

1.2. Sabbah’s Specialization Complex

Sabbah’s specialization complex, introduced in [Sab90], is a simultaneous gen-
eralization of Deligne’s nearby cycles complex and of the Alexander modules
of an algebraic knot. Given a collection F = (f1, . . . , fr ) of analytic functions
fi : X → C on a complex manifold, Sabbah defined a complex ψF (CX) with
A-constructible cohomology on f −1(0), where A = C[t±1 , . . . , t±r ] is the affine
coordinate ring of (C∗)r , and f = ∏

i fi . This complex is the analog of Deligne’s
nearby cycles complex ψf (CX) for the case r = 1. Whereas ψf (CX) governs
the Milnor monodromy information, Sabbah’s ψF (CX) governs the more general
Alexander-type invariants.

One of the main results of [Sab90] is about the support in (C∗)r of the stalks
of ψF (CX) given by the A-module structure, denoted

Suppx(ψF (CX)),

which is shown in loc. cit. to be included in a special hypersurface whose irre-
ducible components are translated subtori.

In [BW15b], it was shown that each component of Suppx(ψF (CX)) is a
torsion-translated subtorus of (C∗)r . This follows from the relation with coho-
mology support loci, as we describe now. Identify MB((C∗)r ) with (C∗)r via
monodromies around the coordinate axes. Let

γU,F : (C∗)r = MB((C∗)r ) → MB(U)

be the map that pulls back local systems from (C∗)r to U via F , where U =
X \ f −1(0). Then, by [Bud15; LiMa14],

Suppx(ψF (CX)) = γ −1
U,F (res−1

x (V(Ux))). (1)
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Define the support of Sabbah’s specialization complex as

S(F ) =
⋃

x∈f −1(0)

Suppx(ψF (CX))
(1)= γ −1

U,F (V(U,X)) ⊂ (C∗)r .

Equivalently, easier to remember but less precise,

S(F ) = {rank one local systems on (C∗)r with H
� �= 0 locally on U

along f −1(0) under the map F : U → (C∗)r}.
Theorem 1.1 is then a particular case of the following surprisingly strong im-

provement of the original result of Sabbah:

Theorem 1.3. Let F = (f1, . . . , fr ) : X →Cr be a collection of noninvertible an-
alytic functions on a complex manifold. Let f = ∏r

i=1 fi and assume that f −1(0)

admits a finite Whitney stratification. Then

S(F ) =
⋃

x∈f −1(0)

PZ(Zmon
F,x ),

where the union is over generic points x of the Whitney strata. In particular, S(F )

is a finite union of torsion-translated codimension one subtori of (C∗)r .

We show in Example 3.2 that V(U,X) can fail to be of pure codimension one.
Without the finiteness assumption on the number of Whitney strata, S(F ) could
be a countable union of torsion-translated codimension one subtori. This assump-
tion is satisfied, for example, in the algebraic case or in the local analytic case.

1.3. Bernstein–Sato Ideals

Let us mention that a different way to compute S(F ) without appealing to a log
resolution was conjectured in [Bud15]:

Conjecture 1.4. Let F = (f1, . . . , fr ) : X →Cr be a collection of noninvertible
analytic functions on a complex manifold such that f −1(0) admits a finite Whitney
stratification, where f = ∏r

i=1 fi . Then

S(F ) = Exp(Z(BF )),

where Exp : Cr → (C∗)r is the map α 
→ exp(2πiα), and Z(BF ) is the zero locus
of the Bernstein–Sato ideal of F .

It is also conjectured in loc. cit. that the Bernstein–Sato ideal BF , although not
necessarily principal, is generated by products of linear polynomials of type∑r

i=1 bisi + b with bi ∈ N, b ∈ N \ {0}. Theorem 1.3 suggests surprisingly that
more might be true, namely, that the zero locus Z(BF ) is of pure codimension
one. All these conjectures are of course true for the r = 1 case by classical results
of Malgrange and Kashiwara.
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It was proved in [Bud15] that, for the above conjecture, we have the inclusion

S(F ) ⊂ Exp(Z(BF )). (2)

In Remark 4.2, we fix a gap in the proof in loc. cit. of this inclusion.

1.4. Semisimplicity of Direct Images

Let j : U → X be an open embedding of the complement of a nonempty hy-
persurface in a complex manifold of dimension n. For a local system L of rank
one on U , the shifted complex L[n] is perverse on U . The derived direct im-
age Rj∗(L[n]) and the direct image with compact supports j!(L[n]) are perverse
sheaves on X. Let Perv(X) denote the Abelian and Artinian category of perverse
sheaves on X. We address the question of how to detect if Rj∗(L[n]) and j!(L[n])
are semisimple. In this case, simplicity and semisimplicity are equivalent.

In the space of rank one local systems on U , MB(U), define the nonsimple
locus

Vns(U,X) = {L ∈ MB(U) | Rj∗(L[n]) �= (semi)simple in Perv(X)}.
We prove the following (semi)simplicity criterion and relation with cohomology
support loci:

Theorem 1.5. Let U be the complement of a nonempty hypersurface in a complex
manifold X. Then

Vns(U,X) = V(U,X).

Moreover, since V(U,X) is stable under taking the inverses of local systems (see,
e.g., [BW15b, Thm. 1.2] for a more general statement), V(U,X) is also the locus
of local systems L with j!(L[n]) not (semi)simple.

In particular, we have the following:

Corollary 1.6. If F = (f1, . . . , fr ) : X → Cr is a collection of noninvertible
analytic functions, f = ∏r

i=1 fi , U = X \ f −1(0), then

S(F ) = γ −1
U,F (Vns(U,X)).

Hence, the (semi)simplicity question is answered in terms of log resolutions and,
conjecturally, from the Bernstein–Sato ideal of F if f −1(0) admits only finitely
many Whitney strata.

Since perversity is a local condition, the theorem follows from the local case,
namely, from

Vns(Ux,Bx) = V(Ux,Bx)

for all x ∈ X \ U .
By the Riemann–Hilbert correspondence the (semi)simplicity criterion has

a D-module counterpart. Let DX denote the sheaf of analytic linear differen-
tial operators on X. Let Modrh(DX) be the category of regular holonomic left
DX-modules. Let DRX : Modrh(DX) → Perv(X) be the de Rham functor, an
equivalence of categories. Let F be as in Corollary 1.6. For λ ∈ (C∗)r , let
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α ∈ Exp−1(λ) ⊂ Cr and k ∈ N, k � 0. We have the known isomorphisms in
Modrh(DX):

j∗
(
DU

r∏
i=1

f
αi

i

)
∼= OX[f −1]

r∏
i=1

f
αi

i
∼= DX

r∏
i=1

f
αi−k
i

∼= DX[s]f s
r∏

i=1

f
αi

i /(s + k)DX[s]f s
r∏

i=1

f
αi

i ,

j!
(
DU

r∏
i=1

f
αi

i

)
∼= DX[s]f s

r∏
i=1

f
αi

i /(s − k)DX[s]f s
r∏

i=1

f
αi

i .

Here j∗ and j! are the direct image and, respectively, the special direct image for
regular holonomic D-modules such that

DRU

(
DU

r∏
i=1

f
αi

i

)
∼= Lλ[n],

DRX

(
j∗

(
DU

r∏
i=1

f
αi

i

))
= Rj∗(Lλ[n]),

DRX

(
j!

(
DU

r∏
i=1

f
αi

i

))
= j!(Lλ[n]).

Now we can easily make the translation of the (semi)simplicity criterion from
Theorem 1.5 into D-modules:

Corollary 1.7. With the assumptions as in Corollary 1.6,

S(F ) =
{
λ ∈ (C∗)r

∣∣∣ j∗
(
DU

r∏
i=1

f
αi

i

)
�= (semi)simple in Modrh(DX)

}

=
{
λ ∈ (C∗)r

∣∣∣ j!
(
DU

r∏
i=1

f
αi

i

)
�= (semi)simple in Modrh(DX)

}
.

Together with Theorems 1.2 and 1.5, this gives a very easy necessary and suf-
ficient combinatorial criterion for simplicity of direct images in the case of hy-
perplane arrangements. A limited sufficient criterion had been obtained earlier by
Abebaw and Bøgvad [AB12].

2. Sabbah’s Specialization Complex

In this section, we recall a few facts about Sabbah’s specialization complex from
[Sab90; Bud15; LiMa14].

Let F = (f1, . . . , fr ) : X →Cr be a collection of analytic functions on a com-
plex manifold X of dimension n. Let f = ∏r

i=1 fi and U = X \ f −1(0). Let
j : U → X and i : f −1(0) → X be the natural open and, respectively, closed em-
beddings.
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Consider the following commutative diagram of fibered squares of natural
maps:

f −1(0)
i

X

F

U
j

F

Û
π

F̂

Cr (C∗)r (̂C∗)rπ̂

where π̂ = Exp : (̂C∗)r → (C∗)r is the universal covering.

Definition 2.1. Sabbah’s specialization complex functor of F is defined by

ψF = i−1Rj∗Rπ!(j ◦ π)∗ : Db
c (X,C) → Db

c (f −1(0),A),

where A = C[t1, t−1
1 , . . . , tr , t

−1
r ]. Here Db

c (X,C) is the derived category of
bounded complexes of sheaves with C-constructible cohomology on X, and
Db

c (f −1(0),A) is the derived category of bounded complexes of sheaves with
A-constructible cohomology on f −1(0). We call ψF (CX) Sabbah’s specializa-
tion complex.

Lemma 2.2 ([Bry86]). When r = 1, ψf (CX) as defined here equals the shift by
[−1] of Deligne’s nearby cycles complex together with the action of the mon-
odromy.

Definition 2.3. For any finitely generated A-module M , the support of M is the
zero locus of the annihilator ideal of M :

Supp(M) = Z(ann(M)) ⊂ (C∗)r .

Let P be a prime ideal in A of height 1. Then P is principal, and we let �(P )

denote the generator of P , which is well defined up to multiplication by units of A.
Denote by AP the localization of A at P . Then AP is a principal ideal domain.
Assume that Supp(M) is proper in (C∗)r , that is, Supp(M) has codimension at
least 1 in (C∗)r . Then MP has finite length as an AP -module, which is denoted
by lg(MP ). The characteristic polynomial of M is defined as

�(M) =
∏
P

�(P )lg(MP ),

where the product is over all the prime ideals in A of height 1 such that Z(P ) ⊂
Supp(M). Since Supp(M) is proper, this product is indeed a finite product. The
prime factors of �(M) are in one-to-one correspondence with the codimension
one irreducible hypersurfaces of (C∗)r contained in Supp(M).

Definition 2.4. For G ∈ Db
c (X,A) and a point x ∈ X, the support of G at x is

defined by

Suppx(G) :=
⋃
i

Supp(Hi (G)x) ⊂ (C∗)r ,
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and the multivariable monodromy zeta function of G at x is defined by

Zmon
x (G)(t1, . . . , tr ) :=

∏
i

�(Hi (G)x)
(−1)i ∈C(t1, . . . , tr ).

Definition 2.5. The support of Sabbah’s specialization complex is defined as

S(F ) =
⋃

x∈f −1(0)

Suppx(ψF (CX)).

The multivariable monodromy zeta function of F at x ∈ f −1(0) is defined as

Zmon
F,x (t1, . . . , tr ) = Zmon

x (ψF (CX))(t1, . . . , tr ).

Let μ : Y → X be a log resolution of f that also blows up the point x. Let Ej

with j ∈ J be the irreducible components of (f ◦ μ)−1(0). Let aij be the order
of vanishing of fi along Ej . Let E◦

j = Ej \ ⋃
i �=j (Ei ∩ Ej). Then, we have the

following generalization of A’Campo’s formula:

Theorem 2.6 ([Sab90, 2.6]).

Zmon
F,x (t1, . . . , tr ) =

∏
j∈J with
μ(Ej )=x

(t
a1j

1 · . . . · tarj
r − 1)

−χ(E◦
j )

.

In the introduction, we have used the following:

Lemma 2.7 ([Bud15; LiMa14]). We have:

(a) Suppx(ψF (CX)) = γ −1
U,F (res−1

x (V(Ux))), and

(b) S(F ) = γ −1
U,F (V(U,X)).

Remark 2.8. Here, res−1
y (V(Uy)) is what was called in [Bud15; LiMa14] the

uniformization V(Uy)
unif of V(Uy) with respect to MB(Ux) for y ∈ f −1(0) close

to x. As pointed out in [LiMa14], in all the statements in [Bud15] where the uni-
form support Suppunif

x (ψF (CX)) appears, the unif should be dropped to conform
to what is proven in [Bud15]. Indeed, the support Suppx(ψF (CX)) needs no uni-
formization.

Theorem 2.9 ([BW15b, Thm. 1.4]). Every irreducible component of
Suppx(ψF (CX)) is a torsion-translated subtorus of (C∗)r for all x ∈ f −1(0).

Definition 2.10. Let M = (mkj ) ∈ Np×r . The specialization FM of F by M is
the map FM : X → Cp given by

x 
→ (f
m11
1 . . . f m1r

r (x), . . . , f
mp1
1 . . . f

mpr
r (x)).

The specialization FM is nondegenerate if the induced map on tori (C∗)r →
(C∗)p given by M is surjective and

∑p

k=1 mki �= 0 for all i such that fi is nonin-
vertible.
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For the next theorem, see [Bud15, Prop. 3.31] or [Sab90, 2.3.8].

Theorem 2.11. If G = FM is a nondegenerate specialization of F , then, for all x,

τ−1
M (Suppx(ψF (CX))) = Suppx(ψG(CX)),

where

τM : (C∗)p → (C∗)r

τM : (λ1, . . . , λp) 
→ (λ
mp1
1 . . . λ

mp1
p , . . . , λ

m1r

1 . . . λ
mpr
p ).

3. S(F )

3.1. Proof of Theorem 1.3

When r = 1, the result is due to J. Denef:

Theorem 3.1 ([Den93, Lemma 4.6]). Let f : (Cn, x) → (C,0) be a germ of an
analytic function. If λ is an eigenvalue of the monodromy on the cohomology of
the Milnor fiber of f at x, then there exists a point y ∈ f −1(0) near x such that λ

is a zero or pole of the monodromy zeta function of f at y.

We prove now the case r > 1. We will use the notation as in the statement of The-
orem 1.3. The inclusion of the right-hand side into the left-hand side follows from
the fact that PZ(Zmon

F,x ) ⊂ Suppx(ψF (CX)) by the definition of the monodromy
zeta function. We prove now the reverse inclusion.

By Theorem 2.9, Suppx(ψF (CX)) and PZ(Zmon
F,x ) have dense subsets of tor-

sion points. Hence, we only need to show that each torsion point of S(F ) is con-
tained in PZ(Zmon

F,x ) for some x.
It is clear that the trivial point (1, . . . ,1) is contained in

⋃
x∈f −1(0) PZ(Zmon

F,x ).
Choose any nontrivial torsion point P of S(F ). Write, by reindexing if neces-

sary,

P = (e
2π

√−1m1
m , . . . , e

2π
√−1ml

m ,1, . . . ,1),

where mi and m are all positive integers, and mi < m. Without loss of gen-
erality, assume that P ∈ Suppx(ψF (CX)). Set mi = m for l < i ≤ r and m =
(m1, . . . ,mr). Then we have a map associated to the r-tuple of numbers m:

τm : C∗ → (C∗)r ,
given by τ 
→ (τm1, . . . , τmr ).

Consider the specialization f m = ∏r
i=1 f

mi

i of F . This is a nondegenerate
specialization, and hence Theorem 2.11 applies. In particular,

τ−1
m (Suppx(ψF (CX))) = Suppx(ψf m(CX)).

By Lemma 2.2 the right-hand side of this equation is the set of the eigenvalues of
the monodromy on the cohomology of the Milnor fiber of f m at x.

Set λ = exp(2π
√−1/m), so that P = (λm1, . . . , λmr ). Hence,

λ ∈ τ−1
m (Suppx(ψF (CX))). Theorem 3.1 gives that there exists a point y ∈
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f −1(0) near x such that λ is a zero or pole of the monodromy zeta function
of f m at y. Without loss of generality, we can assume that λ is a zero of Zmon

f m,y .
A result of Sabbah [Sab90, Thm. 2.5.7(c)] states that the monodromy zeta func-
tion of the specialization is the specialization of the monodromy zeta function.
More precisely,

Zmon
f m,y(t) = Zmon

F,y (t
m1
1 , . . . , tmr

r ). (3)

It follows that P = (λm1, . . . , λmr ) is also a zero of Zmon
F,y . This finishes the proof

of Theorem 1.3.

Example 3.2. Whereas S(F ) = γ −1
U,F (V(U,X)) is of pure codimension one, it is

not always the case that the same is true about V(U,X). Take X = P1 × P1 and
U = C∗ ×C. Then

X \ U = ({0} × P1) ∪ ({∞} × P1) ∪ (P1 × {∞})
is a hypersurface in X. Then MB(U) = C∗ by identifying a local system of rank
one on U with the monodromy around {0} × P1. Let x = {0} × {∞} ∈ X \ U .
Then the pair (Ux,Bx) has the homotopy type of the pair ((C∗)2,C2). Hence,
MB(Ux) = (C∗)2 with local systems identified with the monodromies around the
germs of {0} × P1 and, respectively, P1 × {∞} at x. In particular, the restriction
map

resx : MB(U) = C∗ → MB(Ux) = (C∗)2

is just the inclusion of the first coordinate subtorus C∗ × {1} ↪→ C∗ ×C∗. More-
over, the image of resx is contained in V(Ux,Bx) = (C∗ × {1}) ∪ ({1} × C∗). In
particular, res−1

x (V(Ux,Bx)) = MB(U). So also V(U,X) = MB(U).

3.2. Proof of Theorem 1.2

We refer to [Bud15] for the definition of the terminology “dense edges”. It was
shown in [Bud15, Prop. 6.7] that the right-hand side of the equation is the codi-
mension one part of V(U,X), and hence the theorem follows.

4. Proof of Theorem 1.5

As mentioned in the introduction, it suffices to prove the local case. Namely, we
will prove that

Vns(Ux,Bx) = V(Ux,Bx)

for all x ∈ X \ U . We can assume that X \ U = f −1(0) for a reduced germ of an
analytic function f : (Bx, x) → (C,0).

To simplify the notation, from now we will use (X,U) = (Bx,Ux) where con-
venient. Let j : U → X and i : f −1(0) → X be the natural open and, respectively,
closed embeddings.

The following facts are well known; see [Dim04; dCM09]. In Db
c (X,C), we

have the distinguished triangle

j!j−1 → id → i∗i−1 +1−→,
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where id is the identity functor. Applying this to Rj∗(L[n]), where L is a local
system of rank one on U , we obtain the distinguished triangle

j!(L[n]) → Rj∗(L[n]) → i∗i−1Rj∗(L[n]) +1−→ .

Since j is a Stein morphism, the first two complexes on the left are actually per-
verse on X. More precisely, j!(L[n]) is up to a shift the extension by zero over
a closed analytic complement of the local system L. Hence, it has constructible
cohomology sheaves. Since j is a Stein morphism, by [Dim04, 5.2.17] and the
remark thereafter, j!(L[n]) is a perverse sheaf. Since Verdier duality preserves
perversity, Rj∗(L[n]) is also perverse, being the Verdier dual of j!(L∨[n]).

Hence, applying the long exact sequence of perverse cohomology, we obtain
an exact sequence in Perv(X),

0 → pH−1(i∗i−1Rj∗(L[n])) → j!(L[n]) → Rj∗(L[n])
→ pH0(i∗i−1Rj∗(L[n])) → 0, (4)

and the vanishing

pHj (i∗i−1Rj∗(L[n])) = 0 for j �= −1,0.

By definition the image in Perv(X) of the middle map is the intersection complex
of L, also known as the intermediate extension of the perverse sheaf L[n]:

ICX(L) = j!∗(L[n]) = im{j!(L[n]) → Rj∗(L[n])}.
It is known that ICX(L) is a simple perverse sheaf on X. Moreover, all simple per-
verse sheaves on X are of the type (iZ̄)∗(jZ)!∗(M[dZ]), where Z is an irreducible
locally closed smooth subvariety of X, jZ is the open embedding of Z → Z̄ in its
closure, iZ̄ is the inclusion Z̄ → X, dZ is the complex dimension of Z, and M is
an irreducible local system on Z.

Lemma 4.1. Let L be a rank one local system on U . Then Rj∗(L[n]) is semisimple
in Perv(X) if and only if it is simple. The same holds for j!(L[n]).
Proof. If Rj∗(L[n]) is semisimple in Perv(X), then one of the simple factors
must be ICX(L), and the other factors must be supported on f −1(0). Taking
the Verdier dual of Rj∗(L[n]), which is j!(L−1[n]), where L−1 is the dual local
system, we then have that j!(L−1[n]) is a direct sum of ICX(L−1) with fac-
tors supported on f −1(0). Since j!(L[n]) = (j!L)[n] and j!L is the extension by
zero in this case, it follows that there are no factors supported on f −1(0). Hence,
j!(L−1[n]) and thus Rj∗(L[n]) are simple. �

From now on, we focus on the question about the simplicity of Rj∗(L[n]). If
Rj∗(L[n]) is not simple, then in Perv(X),

ICX(L) �Rj∗(L[n]),
where by the strict inclusion we mean a monomorphism that is not an iso-
morphism. In particular, Rj∗(L[n]) is not quasi-isomorphic to j!(L[n]) in
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Db
c (X,C). The same is then true for the stalk at some point y close to x. Hence,

H
�

(Rj∗(L[n])y) is not all zero. But

H
�

(Rj∗(L[n])y) = �(By,R
�+nj∗(L)) = H

�+n(Uy,L).

Hence, L has nontrivial cohomology on Uy . This proves the inclusion Vns(U,

X) ⊂ V(U,X).
Conversely, suppose that Rj∗(L[n]) is simple in Perv(X), that is,

ICX(L) = Rj∗(L[n]).
Then, we claim that the outer terms in (4) vanish simultaneously:

K(L) := pH−1(i∗i−1Rj∗(L[n])) = 0,

C(L) := pH0(i∗i−1Rj∗(L[n])) = 0.

It is clear that C(L) and K(L−1) must vanish. To show that K(L) must also
vanish, we recall that there is another description of C(L) and K(L) in terms
of Deligne’s nearby cycles functor. More precisely, there is an exact sequence in
Perv(X),

0 → K(L) → pψf (L[n]) T −id−−−→pψf (L[n]) → C(L) → 0,

where pψf = ψf [−1] is the shifted nearby cycles functor, which restricts to a
functor on perverse sheaves, and T is the monodromy. Since the length of a per-
verse sheaf is additive for exact sequences, it follows that K(L) and C(L) have
the same length as perverse sheaves. Hence, K(L) also vanishes.

Therefore, in this case, by (4) we have that j!(L[n]) = Rj∗(L[n]). Since j!L is
the extension by zero, the stalks at points on f −1(0) must be zero. As before, this
implies that the cohomology of L in small ball complements Uy of f −1(0) must
be zero for all y ∈ f −1(0). This shows that V(U,X) ⊂ Vns(U,X), which finishes
the proof of the theorem.

Remark 4.2. The proof of inclusion (2) contains a small gap in [Bud15, 5.2].
It is shown there that the proof reduces to the local case. In that case, it is also
shown that Exp(Z(BF )) ⊃ Vns(U,X). This can also be seen now as an immedi-
ate consequence of Corollary 1.7 of this article. The gap is in the argument that
Vns(U,X) contains V(U,X). This is what we have just shown, so the gap is now
fixed.
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