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A Note on Cabled Slice Knots and Reducible Surgeries

Jeffrey Meier

Abstract. We consider the question of when a slice knot admits a
reducible Dehn surgery. By analyzing the correction terms associated
to such a surgery we show that slice knots cannot admit surgeries with
more than two summands. We also give a necessary Heegaard Floer
theoretic condition for a positive cable of a knot to be slice.

1. Introduction

Dehn surgery is one of the simplest and most important operations in three-
manifold topology, and understanding which three-manifolds can result from
Dehn surgery on a knot in S3 has been one of the major goals of modern low-
dimensional topology. We refer the reader to [6] for an introduction and compre-
hensive overview of the history and scope of this endeavor.

Perhaps the most basic question related to this goal is when the result of Dehn
surgery can be a reducible manifold (a manifold containing an essential two-
sphere). Moser’s classification of Dehn surgeries on torus knots [20] gave the
first nontrivial examples of this phenomenon:

S3
pq(Tp,q) ∼= L(p,q)#L(q,p).

Of course, the fact that S3
0(U) ∼= S1 × S2 can be thought of as a degenerate case

of this. Gabai [3] showed that no other knot in S3 admits a surgery to S1 × S2, so
we may assume that any nontrivial reducible surgery decomposes as a connected
sum.

Other interesting examples of reducible surgeries come from considering ca-
bled knots [7]. Let Jp,q denote the (p, q)-cable of J for some pair p,q ∈ Z with
p ≥ 2. (Throughout, p is the longitudinal winding number.) Then we have

S3
pq(Jp,q) ∼= L(p,q)#S3

q/p(J ).

Note that this generalizes the case of torus knots, which can be thought of as
cables of the unknot. Cabled knots represent the only known examples of knots
admitting reducible surgeries, and we have the following conjecture of Gonzales
Acuña and Short.

Cabling Conjecture ([4]). If K is a nontrivial knot in S3 and S3
r (K) is re-

ducible, then K = Jp,q for some knot J , and r = pq .
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There has been much progress made toward a positive resolution of this conjec-
ture. For example, it is known that any reducible surgery slope must be integral [5]
and that one summand must be a lens space [8]. Moreover, if a reducible surgery
on K yields a connected sum of lens spaces, then K is either a torus knot or a
cable thereof [9]. Many classes of knots are known to satisfy the conjecture, in-
cluding knots with symmetries [2; 11; 12], alternating and arborescent knots [18;
27], and knots with low bridge number [10; 14; 17; 25; 29].

Since any reducible surgery slope must be integral, it follows that every re-
ducible surgery on a cable knot yields a connected sum of a lens space with an
irreducible rational homology sphere (since p ≥ 2, the S3

q/p(J ) summand can-
not itself be reducible). In particular, all such surgeries have only two summands.
This motivates the following conjecture.

Two-Summands Conjecture. If K is a nontrivial knot in S3 and S3
r (K) is re-

ducible, then S3
r (K) ∼= Y1#Y2 with irreducible Y1 and Y2.

In a reducible surgery, there can be at most one summand that is not a lens
space [26], and there can be at most two summands that are not homology
spheres [16]. It follows that a reducible surgery with three summands (the high-
est possible number) must consist of two lens spaces summands and an integer
homology sphere summand. The two-summands conjecture is true for knots with
bridge number at most five and positive braid closures [29].

In the present paper, we restrict our attention to slice knots. A knot K ⊂ S3

is called slice if there exists a smooth, properly embedded disk D ⊂ B4 with
∂D = K . Our first result verifies the two-summands conjecture for slice knots.

Theorem 1.1. A slice knot in the three-sphere cannot admit a reducible surgery
with three irreducible summands.

The proof is straightforward. If K is a slice knot, then S3
pq(K) is integer ho-

mology cobordant to L(pq,1). Knowing this, we can compare the correction
terms of L(pq,1) to those of L(p,a)#L(q, b). A simple lemma shows that these
collections never match up. In fact, Theorem 1.1 holds for any knot K with
V0(K) = V0(K) = 0, where V0(K) is a Heegaard Floer theoretic knot invariant
coming from the knot Floer complex that determines the correction terms of surg-
eries on K [23; 24], and K denotes the mirror of K . The condition that V0(K) = 0
suffices in the case that the surgery is positive. Along these same lines, we have
the following observation.

Theorem 1.2. Suppose that K is a positive cable of a knot J . If K is slice, then
V0(J ) = 0.

As an application, let D denote the untwisted Whitehead double of the right-
handed trefoil knot. By Proposition 6.1 of [13] we know that V0(D) = 1. It fol-
lows that no positive cable of D is smoothly slice, even though the (p,1)-cable
of D is topologically slice for all p. (Note that this particular fact can also be
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deduced from work of Hom [15].) Theorem 1.2 complements the main result of
[28]; here, the proof is simplified by the following proposition.

Proposition 1.3. If Jp,q is algebraically slice, then q = 1.

There is a simple geometric argument that any (p,1)-cable of a slice knot is also
slice. Thus, we have the following conjecture.

Conjecture 1.4. The cabled knot Jp,q is slice if and only if J is slice and q = 1.

Theorem 1.2 and [15] give evidence that the conjecture is true at the level of
Heegaard Floer homology. Note that Conjecture 1.4 is true for fibered knots in
the homotopy-ribbon setting by Theorem 8.5 of [19].

2. Heegaard Floer Correction Terms

The main tool used in proving Theorem 1.1 is the correction terms coming from
Heegaard Floer homology. This theory was first formulated for closed three-
manifolds [22] before being shown to give invariants of four-manifolds [21]. For
our purposes, the most important aspects of the theory will be the Heegaard Floer
correction terms defined in [21].

Let Y be an oriented, closed three-manifold, and let Spinc(Y ) denote the col-
lection of Spinc structures associated to Y . For each s ∈ Spinc(Y ), let d(Y, s)

denote the correction term associated to (Y, s). A detailed development of this in-
variant can be found in [21], where it was shown to have the following properties.

(1) Let −Y denote the opposite orientation of Y . Then d(−Y, s) = −d(Y, s).
(2) Let s be the image of s under conjugation. Then d(Y, s) = d(Y, s).
(3) For any pairs (Y1, s1) and (Y2, s2),

d(Y1#Y2, s1#s2) = d(Y1, s1) + d(Y2, s2).

Let D(Y ) denote the collection of correction terms associated to Y . (Note that
elements of this set can appear with multiplicity greater than one.) Recall that
there is an affine identification Spinc(Y ) ≈ H 2(Y ;Z). For our purposes, the most
important aspect of the correction terms is that they are preserved under integer
homology cobordism.

Proposition 2.1. If Y1 and Y2 are integer homology cobordant, then D(Y1) =
D(Y2).

The correspondence between the collections of correction terms in the proposition
can be strengthened; see [1] for a proof and more detail. Here, we will not be too
concerned with fixing identifications and labelings of spinc structures.

Let L(p,q) denote the lens space obtained by p/q-surgery on the un-
knot in S3. In this case, Ozváth and Szabó [21] gave a canonical ordering on
Spinc(L(p,q)) by elements i ∈ Zp and a recursive formula for the correction
terms.
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Proposition 2.2. For any positive, relatively prime integers p > q and any inte-
ger 0 ≤ i < p + q , we have

d(−L(p,q), i) = pq − (2i + 1 − p − q)2

4pq
− d(−L(q, r), j), (1)

where r and j are the reductions modulo q of p and i, respectively.

This formula allows for the calculation the correction terms of any lens space
since L(1,0) ∼= S3 and d(S3) = 0.

Now, if K is slice, then there exists a concordance from K to the unknot U . It
follows that S3

p/q(K) is integer homology cobordant to S3
p/q(U) ∼= L(p,q). (The

Dehn surgery manifolds cobound a four-manifold that is obtained by perform-
ing “Dehn surgery cross I” on the concordance.) Thus, we obtain the following
corollary to Proposition 2.1.

Corollary 2.3. If K is slice, then

D(S3
p/q(K)) = D(L(p,q)).

In fact, this corollary holds for any K with V0(K) = 0. This follows from the
integer and rational surgery formulae developed in [23; 24].

3. Proof of Theorem 1.1

In this section, we prove the main theorem. First, we present a simple lemma that
gives an upper bound on the range of the correction terms for a given lens space.
Let δ(p, q) = maxD(L(p,q)) − minD(L(p,q)) denote this range.

Lemma 3.1. δ(p, q) ≤ p/4.

Proof. Note that δ(p, q) = δ(p,p − q) since L(p,q) ∼= −L(p,p − q). There-
fore, we may assume without loss of generality that p > q/2 > 0. Furthermore,
the recursive formula in Proposition 2.2 is easy to understand for small values
of q , and it can be checked that δ(p, q) ≤ p/4 whenever q < 8. (The calculations
breaks down into a finite number of cases based on the values of q and r .)

Thus, we assume that q ≥ 8. From equation (1) we have

δ(p, q) ≤ max
i,i′

{
(2i − p − q + 1)2 − pq

4pq
− (2i′ − p − q + 1)2 − pq

4pq

}
+ δ(q, r).

The bracketed term is maximized when i = 0 and i′ = (p + q − 1)/2 or i′ =
(p +q)/2, depending on whether p and q have opposite parity or not. The former
choice of i′ yields a more extremal value; so, in either case, we have

δ(p, q) ≤ (p + q − 1)2 − pq

4pq
− −pq

4pq
+ δ(q, r)

= (p + q − 1)2

4pq
+ δ(q, r).
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Since q < p, we have p + q − 1 < 2p, so

δ(p, q) ≤ 4p2

4pq
+ δ(q, r)

= p

q
+ δ(q, r).

Now, having shown that the claim holds for small values of p, we can proceed by
induction and assume that δ(q, r) ≤ q/4. Since q ≥ 8 and p > q/2, we have

δ(p, q) ≤ p

8
+ q

4
≤ p

8
+ p

8
= p

4
. �

We remark that this bound is sharp since δ(p,1) is p/4 when p is even and
(p2 − 1)/4p when p is odd. However, this bound appears to be far from sharp
once q > 1.

Theorem 1.1. A slice knot in the three-sphere cannot admit a reducible surgery
with three irreducible summands.

Proof. Suppose that K is a slice knot such that S3
r (K) has three irreducible sum-

mands. Since S3−r (K) ∼= −S3
r (K), there will be no loss of generality in assuming

that r > 0. Recall that at most one summand is not a lens space [26], whereas at
most two summands are not integer homology spheres [16]. It follows that pre-
cisely two summands are lens spaces and the third is a homology sphere:

S3
pq(K) = L(p,a)#L(q, b)#Y.

It follows that r = pq with p and q coprime. Since Y is an integer homology
sphere, it has only one correction term, d(Y ). By Corollary 2.3 we know that
D(S3

r (K)) = D(L(r,1)). These two facts give us that

D(L(pq,1)) = D(L(p,a)#L(q, b)) + d(Y ). (2)

It follows that the ranges of values on the left and the right must match. In partic-
ular, since d(Y ) is constant, we must have

δ(pq,1) ≤ δ(p, a) + δ(q, b).

By Lemma 3.1 we have that δ(p, a) ≤ p/4 and δ(q, b) ≤ q/4, so we have

δ(pq,1) ≤ p + q

4
. (3)

Now, if pq is even, we have δ(pq,1) = pq/4; so pq ≤ p + q . If pq is odd, then
we have δ(pq,1) = (pq − 1)(pq + 1)/4pq; so pq − 1 ≤ p + q . It follows that
either p = 1, q = 1, or p = q = 2. However, we have assumed that p and q are
coprime. Therefore, either L(p,a) or L(q, b) is S3, and the proof is complete. �

We conclude this section by remarking that the proof of Theorem 1.1 also shows
that surgery on a slice knot cannot produce a connected sum of two lens spaces;
thus, we recover a special case of a much stronger theorem of Greene [9].
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4. Proof of Theorem 1.2

We are grateful to Chuck Livingston for pointing out that the following result
should hold in the algebraically slice setting. Not only is this fact interesting in
its own right, but it greatly simplifies the proof of the ensuing theorem, which
was originally entirely Heegaard Floer theoretic. Let �K(t) denote the Alexander
polynomial of a knot K in S3.

Proposition 1.3. Let K = Jp,q denote the (p, q)-cable of a knot J . If K is alge-
braically slice, then q = 1.

Proof. Suppose that K = Jp,q is algebraically slice. Since K is algebraically
slice, we have that �K(t) = f (t)f (t−1) for some f (t) ∈ Z[t]. Furthermore, since
K is a cable, we can write �K(t) = �J (tp)�Tp,q (t). It follows that

�J (tp)�Tp,q (t) = f (t)f (t−1).

Let ξ be a root of �Tp,q (t). This means that ξ is a pqth root of unity that is
neither a pth root of unity nor a qth root of unity. It follows that ξ is a root of
f (t)f (t−1). Without loss of generality, we can assume that f (ξ) = 0. It follows
that f (ξ) = 0 as well, and we note that ξ = ξ−1. It follows that ξ is a root of both
f (t) and f (t−1). Since ξ has multiplicity one as a root of �Tp,q (t) and since we
have observed that it has multiplicity two as a root of f (t)f (t−1), it follows that
ξ is a root of �J (tp). Thus, ξp is a root of �J (t). This is true of any root ξ of
�Tp,q .

Now, let q1 be a prime factor of q , and let ξ = e2πi/pq1 . It follows that ξpq = 1,
but ξq 	= 1 and ξp 	= 1, so ξ is a root of �Tp,q (t). Therefore, ξp is a root of �J (t).
However, ξp is a primitive q1th root of unity, and q1 is prime. This implies that
the cyclotomic polynomial �q1(t) divides �J (t). This implies that �q1(1) = q1

divides �J (1), which is one, since �J (t) is an Alexander polynomial. It follows
that q1 = 1 and that this conclusion must hold for all prime factors of q . Therefore,
we must have q = 1, as desired. �

Theorem 1.2. Suppose that K is a positive cable of a knot J . If K is slice, then
V0(J ) = 0.

Proof. If K is the (p, q)-cable of J , and K is algebraically slice, then q = 1 by
Proposition 1.3. It follows that

S3
p(K) = L(p,1)#S3

1/p(J ).

If K is slice, then Corollary 2.3 tells us that

D(L(p,1)) = D(L(p,1)) + d(S3
1/p(J )).

It follows that d(S3
1/p(J )) = 0, which is equivalent to V0(J ) = 0 [23; 24]. �
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