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Topological Obstructions for Rational Cuspidal Curves in
Hirzebruch Surfaces

Maciej Borodzik & Torgunn Karoline Moe

Abstract. We study rational cuspidal curves in Hirzebruch surfaces.
We provide two obstructions for the existence of rational cuspidal
curves in Hirzebruch surfaces with prescribed types of singular points.
The first result comes from Heegaard Floer theory and is a generaliza-
tion of a result by Livingston and the first author. The second criterion
is obtained by comparing the spectrum of a suitably defined link at
infinity of a curve with spectra of its singular points.

1. Introduction

Let C be a reduced and irreducible algebraic curve in a smooth complex sur-
face X. A singular point p on C is called a cusp if it is locally irreducible. The
curve is called cuspidal if all its singularities are cusps.

Cuspidal curves in the projective plane have been investigated in classical al-
gebraic geometry and have been subject of intense study the past three decades.
The renewed interest in these curves in the 1980s came after results by Lin and
Zaidenberg [19] and Matsuoka and Sakai [21]. Moreover, two questions about
plane cuspidal curves were asked by Sakai in 1994 (see [15]), and ever since, sev-
eral attempts have been made to describe and classify rational cuspidal curves in
the projective plane (see [6; 10; 11; 12; 13; 18; 20; 32; 33; 34; 36; 37]).

In [23] the second author turned the attention to cuspidal curves in Hirzebruch
surfaces and found that many of the results for plane cuspidal curves could be
extended to curves in Hirzebruch surfaces (see [24; 25]). Indeed, this does not
come as a surprise since the Hirzebruch surfaces are linked to each other and
the projective plane by birational transformations and since such transformations
clearly transform rational curves to rational curves. However, the picture is some-
what more complicated; in general, a cuspidal curve might acquire some multi-
branched singular points under a birational transformation. Therefore, there is no
direct correspondence between rational cuspidal curves in CP 2 and rational cus-
pidal curves in Hirzebruch surfaces.

In the present article we continue this work and extend two results from the
plane case to the case of cuspidal curves in Hirzebruch surfaces. The first result,
given in Theorem 1.1, is a consequence of Heegaard Floer theory, and it is a
generalization of the result by Livingston and the first author [3]. We refer to
Section 2 for explaining notation used in the theorem and especially to Section 2.2
for the definition of the function R.

Received June 16, 2015. Revision received October 12, 2015.

761

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


762 Maciej Borodzik & Torgunn Karoline Moe

Theorem 1.1. Let C be a rational cuspidal curve of type (a, b) in a Hirzebruch
surface Xe with e ≥ 0. Let g = (a − 1)(b − 1) + 1

2b(b − 1)e. Then for every
m ∈ [−g,g] and for any presentation m + g = s1b + s2(a + be) + 1, where s1
and s2 are integers, we have

R(m + g) ≥ P(s1, s2), (1.2)

where R is the counting function for the semigroups of the singular points of C,
and

P(s1, s2) = (s1 + 1)(s2 + 1) + 1

2
s2(s2 + 1)e.

Notice that if m + g − 1 is not divisible by gcd(a, b), then Theorem 1.1 does not
provide a direct restriction on the value of R(m + g).

In Section 3.5 we show an alternative, algebraic proof of inequality (1.2), fol-
lowing the ideas of [11]. As a matter of fact, Theorem 3.16 gives a lower bound
for a function R for any rational cuspidal curve in any algebraic surface. It is nat-
ural to conjecture that the d-invariants estimate used in the proof of Theorem 1.1
will give the same bound.

We also remark, that if m + g /∈ [−g,g], then the value of R(m + g) is fixed:
it is 0 if m + g < 0 and m if m + g > 2g.

Our second result is about the semicontinuity property of the spectrum. It puts
restrictions on the spectrum of singular points of a rational cuspidal curve in Xe.

Theorem 1.3. Let C be a rational cuspidal curve of type (a, b) in Xe. Let
Sp1, . . . ,Spn be the spectra of its singular points. Let Sp∞

a,b be the spectrum at
infinity given in Table 1. Then for every x ∈ (0,1) such that x /∈ Sp∞

a,b , we have

n∑
j=1

#Spj ∩ (x, x + 1) ≤ #Sp∞
a,b ∩ (x, x + 1),

n∑
j=1

#Spj \ (x, x + 1) ≤ #Sp∞
a,b \ (x, x + 1).

(1.4)

These two results, Theorem 1.1 and Theorem 1.3, give two restrictions for possi-
ble configurations of singular points on a cuspidal curve. As we show in Section 6,
the two results differ in nature. Indeed, for unicuspidal curves, the semigroup dis-
tribution property obstructs cases where the multiplicities are large (close to b),
whereas the spectrum semicontinuity is effective in obstructing curves with low
multiplicities.

1.1. Structure

In this article we first set up the notation in Section 2. In Section 3 we use Hee-
gaard Floer theory to establish Theorem 1.1. In Section 4 we study the link at
infinity of curves in Hirzebruch surfaces. In Section 5 we show how the spectrum
of the link at infinity can be computed, and the result is as shown in Table 1. Our
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Table 1 Spectrum at infinity of a type (a, b) curve. Here w = a +be,
and p,q are assumed to be integers, 1 ≤ p ≤ w − 1, 1 ≤ q ≤ b − 1.
The number x is in the interval [0,2]

The value of x Multiplicity of x in Sp∞
a,b

1. x = 1 a + b − 1

2. x = p
w

and x = q
b

for some p and q
⌊pb

w

⌋ + ⌊qa
b

⌋ − 1

3. x = 1 + p
w

and x = 1 + q
b

for some p and q a + b − 1 − ⌊pb
w

⌋ − ⌊qa
b

⌋
4. x = p

w
for some p but x �= q

b
for any q

⌊pb
w

⌋
5. x = 1 + p

w
for some p but x �= 1 + q

b
for any q b − 1 − ⌊pb

w

⌋
6. x = q

b
for some q but x �= p

w
for any p

⌊qa
b

⌋
7. x = 1 + q

b
for some q but x �= 1 + p

w
for any p a − 1 − ⌊qa

b

⌋
8. For all other x 0

main result in this section, giving new restrictions for cuspidal curves, is Theo-
rem 1.3 that compares the spectrum of singular points of the curve to the spectrum
of the link at infinity. Finally, in Section 6 we give some examples of possible ap-
plications.

2. Generalities

2.1. Hirzebruch Surfaces

Let Xe, e ≥ 0, be a Hirzebruch surface, regarded as a projectivization of a rank
2 bundle O ⊕O(−e) over CP 1. Let L be a fiber, and M0 the special section, so
that the intersections and self-intersections are as follows:

L2 = 0, M2
0 = −e, L · M0 = 1.

We define M = eL + M0, so M2 = e. Then L and M generate H2(Xe;Z), and
the intersection matrix is (

0 1
1 e

)
.

Definition 2.1. For integers a ≥ 0 and b > 0 (b ≥ 0 when e = 0), a curve C ⊂
Xe is of type (a, b) if it is irreducible and its homology class is aL + bM ∈
H2(Xe).

Remark 2.2. Unless stated otherwise, we shall suppose that C is rational and
cuspidal.

We denote

d = C2 = (aL + bM)2 = 2ab + b2e.
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Furthermore, let

c = gcd(a, b), a′ = a/c, b′ = b/c.

The arithmetic genus of C is given by the formula (see [23, Cor. 3.1.4]).

g = (a − 1)(b − 1) + 1

2
b(b − 1)e. (2.3)

2.2. Singular Points and Semigroups

(We refer to [38, Chap. 4] for more details about semigroups of singular points.)
Let z be a cuspidal singular point of C. We can associate with z a semigroup Sz

of nonnegative integers. For a quasi-homogeneous singularity given by xp −yq =
0 with p, q coprime, the semigroup is generated by p and q . We always assume
that 0 ∈ Sz.

Given any semigroup in Z≥0, we define the function RS : Z → Z by

RS(t) =
{

#S ∩ [0, t), t > 0,

0, t ≤ 0.
(2.4)

We have the following fact.

Lemma 2.5. If S is a semigroup of a singular point z with Milnor number μ (the
genus of the link of the singular point is then μ/2), then for all m ≥ 0, we have
RS(m + μ) = m + μ/2.

Proof. The complement Z≥0 \ S has precisely μ/2 elements, and the largest is
μ − 1; see [38, Chap. 4]. �

Given any two functions R1,R2 : Z → Z bounded from below, we define their
infimum convolution to be

R1 � R2(t) = min
k∈Z R1(k) + R2(t − k).

The infimum convolution is clearly commutative and associative.

Definition 2.6. Let C ⊂ Xe be a cuspidal curve (not necessarily rational). Then
the R-function of C is defined as

R = RS1 � RS2 � · · · � RSn,

where S1, . . . , Sn are semigroups corresponding to singular points of C.

We have the following corollary to Lemma 2.5.

Corollary 2.7. If g is the sum of genera of the links of singular points of a
cuspidal curve C, then R(2g + m) = g + m for any m ≥ 0.
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3. A Criterion from the Complement of C and Related Invariants

Suppose that C is a rational cuspidal curve in Xe. We consider N , a tubular neigh-
borhood of C in Xe. Let Y be the boundary of N with reversed orientation, and
let W = Xe \ N . We have

∂W = Y.

The main goal of this section is to give a proof of Theorem 1.1. The key re-
sult in our proof is the theorem by Ozsváth and Szabó; see [30, Thm. 9.6]. It
gives a lower bound on the d-invariant of a three-manifold bounding a smooth
negative-definite (that is, having negative-definite intersection form on second ho-
mologies) four-manifold. The d-invariant, also known as the correction term, is
a rational number associated to any closed three-dimensional manifold equipped
with a spinc structure whose first Chern class is torsion. The d-invariant is defined
in [30] using Heegaard Floer theory.

In our context, that is, when Y is a rational homology sphere and W is a
negative-definite smooth four-manifold, [30, Thm. 9.6] can be formulated as fol-
lows.

Theorem 3.1. For any spinc structure s on Y extending to a spinc structure t on
W , we have

d(Y, s) ≥ 1

4
(c2

1(t) − 3σ(W) − 2χ(W)). (3.2)

In order to use this result, we need to decrypt the information encoded in inequal-
ity (3.2). We will do this in the following steps, following the pattern used in [1;
2; 3].

• Describe Y as a surgery on a knot in S3 and compute its d-invariants.
• Study homological properties of W , in particular, show that the intersection

form is negative definite.
• Check which spinc structures on Y extend over W .
• Compute c2

1(t) for such structures.
• Compute d(Y, s).

3.1. The Manifold Y and its d-Invariants

We shall need the following characterization of Y .

Proposition 3.3. Let K1, . . . ,Kn be the links of the singularities on the curve
C, and K = K1# · · ·#Kn. Then −Y is a surgery on S3 along K with surgery
coefficient C2 = 2ab + b2e = d .

Proof. The proof is the same as in the case where Xe is the projective plane;
see [3]. �

As a corollary, we can write down homologies of Y .

Corollary 3.4. We have H1(Y ) = Z/dZ and H2(Y ) = 0.
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Lemma 3.5. The genus of the knot K is equal to g (defined in (2.3)).

Proof. This follows immediately from the genus formula (2.3) and the fact that
C is rational. �

Remark 3.6. We notice that d − 2g = 2a + 2b + be − 2 > 0, unless a = 1, b = 0
or b = 1, a = e = 0. The last two cases imply that C is a line (a = 1, b = 0 imply
that C = L is the fiber, and b = 1, a = e = 0 imply that C = M is the section in
CP 1 ×CP 1). In the future we will ignore these trivial cases.

Since Y is presented as an integer surgery on a knot with slope d , it has an enu-
meration of spinc structures sm, where m ∈ [−d/2, d/2). Details are presented in
Section 3.3. Given that result, we have the following:

Proposition 3.7 (see [3, Thm. 5.1]). The d-invariant d(Y, sm) is equal to

−d(Y, sm) = (d − 2m)2 − d

4d
− 2(R(m + g) − m),

where R is the R-function from Definition 2.6.

Proof. The proof of Proposition 3.7 consists of two steps. First, the knot K (see
Proposition 3.3) is a connected sum of algebraic knots (or, more generally, L-
space knots). Therefore, we can compute the Heegaard Floer chain complex
CFK∞(K) using the Alexander polynomials of K1, . . . ,Kn. The Alexander poly-
nomial of an algebraic knot is tightly related to the semigroup of the singular point
(see [38]), so the R-function enters the formula.

The second part is expressing Heegaard Floer homology of +d surgery on K

(that is, of −Y ) in terms of CFK∞(K). This part uses the fact that d > 2g; see
Remark 3.6. Lastly, we note that by [30] reversing the orientation amounts to
reversing the sign of the d-invariant. �

3.2. Homological Properties of W

We begin with the following result.

Lemma 3.8. We have H2(W) = Z and H1(W) = Z/cZ, where we recall that
c = gcd(a, b).

Proof. Set X = Xe. Consider the long exact sequence of the pair (X,W). By
excision, H∗(X,W) ∼= H∗(N,Y ). The latter group is Z in degrees 2, 4 and 0 oth-
erwise by Thom isomorphism. Hence, H3(W) = Z, and the long exact sequence
of the pair gives the two following exact sequences:

0 H4(X) ∼= Z H4(X,W) ∼= Z H3(W) 0,

0 H2(W) H2(X) H2(X,W) ∼= Z H1(W) 0.

It follows that b3(W) = 0. To study H2(W), we observe that the map from
H2(X) → H2(X,W) ∼= Z can be described explicitly. Namely, for z ∈ H2(X) rep-
resented by a (real) surface Z intersecting C transversally, z is mapped to Z · C
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times the generator. In particular, L is mapped to L · C = b, and M is mapped to
M · C = a + be. The image of H2(X) in H2(X,W) is therefore generated by a,
b. Hence,

H2(W) = Z and H1(W) = Z/cZ. �

Our aim is to compute the intersection form on W . Notice that the class H = (a′ +
b′e)L − b′M intersects trivially with C, so it belongs to the kernel of H2(X) →
H2(X,W). In particular, it descends to a class in H2(W) (by a slight abuse of
notation we will still denote it by H ) with self-intersection equal to

(−2a′b′ − b′b′e) = − d

c2
.

Lemma 3.9. The class H generates H2(W).

Proof. The intersection form on W , that is, the map H2(W) → Hom(H2(W),Z),
is given by the sequence of maps

H2(W) → H2(W,Y )
�→ H 2(W)

�← Hom(H2(W),Z).

Here the first map is the exact sequence of the pair (W,Y ), the second map is
the Poincaré duality isomorphism, and the third follows from the universal coeffi-
cient theorem. In particular, coker(H2(W) → Hom(H2(W),Z)) is isomorphic to
coker(H2(W) → H2(W,Y )). With Y = ∂W , we have

0 → coker(H2(W) → H2(W,∂W)) → H1(Y ) → H1(W) → 0.

All the groups in the short exact sequence are finite, so taking the cardinalities,
we obtain

|H1(Y )| = |H1(W)| · | coker(H2(W) → H2(W,∂W))|.
It follows that

| coker(H2(W) → Hom(H2(W),Z))| = d/c2.

Since H2(W) has rank one, the cardinality of the cokernel is precisely the absolute
value of the self-intersection of a generator. If H were a nontrivial multiple of a
generator, the cokernel of the intersection form would be smaller than d/c2. �

We notice that by the universal coefficient theorem, H 2(W) ∼= Z ⊕ Z/cZ; in
particular, H 2(W ;Q) ∼= Q. The classes L and M can be regarded as classes in
H 2(W) under the composition H2(X) → H 2(X) → H 2(W), where the first map
is the Poincaré duality, and the second is the restriction homomorphism. We have
L · H = −b′ and M · H = a′, so in H 2(W ;Q), L is −b′ times the generator, and
M is a′ times the generator. Since the intersection form on H 2(W) is the inverse
of the intersection form on the nontorsion part of H2(W), the classes in H 2(W ;Z)

represented by L and M have the following intersections:

L2 = −b2

d
, M2 = −a2

d
, L · M = −ab

d
. (3.10)
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3.3. Spinc Structures on Y and W

A spinc structure on a manifold U is a choice of a complex line bundle L over
U and of a spin structure on the bundle T N ⊗ L−1. When speaking of restricting
or prolonging spinc structures from one submanifold to another, the intuition that
the spinc structures are “like line bundles” is very convenient.

If U is a three-dimensional rational homology sphere, then spinc structures
are in a bijective correspondence with elements in H1(U,Z) ∼= H 2(U,Z). If U

is represented as a integral surgery along a knot in S3, then we have a simple
description of the spinc structures on U ; see [31, Sect. 4].

Proposition 3.11. Let K be a knot in S1, and d > 0 be an integer. Let Z be a
4-manifold obtained by attaching a two-handle to a ball B4 along K with framing
d (in this way, ∂Z = S3

d(K) =: U ). Then

• Any spinc structure on U extends to Z.
• For any m ∈ [−d/2, d/2), there is a unique spinc structure on Z, which extends

to a spinc structure tm over Z such that

〈c1(tm),�〉 + 2m = d,

where � is a generator of H2(Z) consisting of the core of the two handle
capped with a Seifert surface for K .

This proposition allows us to characterize the spinc structures for −Y that extend
over W because of the description −Y = S3

d(K) in Proposition 3.3.

Definition 3.12. For any m ∈ [−d/2, d/2), the spinc structure sm on −Y is the
spinc structure that extends to tm over N .

Notice that a spinc structure on −Y induces a spinc structure on Y . We ask, which
spinc structures on Y extend over W and what is the first Chern class of such an
extended spinc structure? To answer this question, we note that if a spinc structure
sm on Y extends over W , then it can be glued with tm on N to form a spinc

structure on the whole Hirzebruch surface Xe. Conversely, a spinc structure on
Xe can be restricted to W . To study which spinc structures on Y extend over W ,
it is enough to study restrictions of spinc structures on Xe to W .

By [14, Sect. 1.4.2], the first Chern class induces an isomorphism between
the set of spinc structures Spinc(Xe) and the set of characteristic elements
in H 2(Xe;Z). We recall that x ∈ H 2(Xe;Z) is characteristic if for any w ∈
H2(Xe;Z), we have 〈x,w〉 = w · w mod 2. It is clear that characteristic elements
on Xe are classes r1L + r2M such that r2 is even and r1 is congruent to e mod-
ulo 2.

So let us consider a class r1L + r2M with r1, r2 as before. The corresponding
spinc structure on Xe restricts to the spinc structure t on N with

〈c1(t),C〉 = (r1L + r2M) · C = r1b + r2a + r2be.
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Let us define

k = r1b + r2a + r2be and m = (d − k)/2.

If m ∈ [−d/2, d/2), then it follows that t restricts to the class sm on W . Using
(3.10), we can compute the square of the first Chern class of tm on W . Let us
summarize this discussion in the following result.

Lemma 3.13. Let m ∈ [−d/2, d/2). If m = (d − k)/2 is such that k can be pre-
sented as r1b + r2a + r2be for r2 even and r1 ≡ e mod 2, then the spinc structure
sm on Y extends to a spinc structure tk on W with

c2
1(tk) = − (r1b − r2a)2

d
.

Often, k can be presented as r1b + r2a + r2be with r2 even and r1 ≡ e mod 2 in
more than one way. This means that the extension of sm is not unique, and we
eventually get more than one restriction coming from Theorem 3.1.

3.4. Proof of Theorem 1.1

Let us now choose two integers s1 and s2. Set

r1 = 2a + e − 2 − 2s1 and r2 = 2b − 2 − 2s2.

As before, we write k = r1b + r2(a + be) and m = (d − k)/2. We have

m + g = s2b + s1(a + be) + 1.

Therefore, Lemma 3.13 and Theorem 3.1, together with computations of d-
invariants in Proposition 3.7, give us

k2 − (r1b − r2a)2

8d
≤ R(m + g) − m. (3.14)

After straightforward but tedious computations, we obtain

R(s1b+s2(a+be)+1) ≥ (s1 +1)(s2 +1)+ 1

2
s2(s2 +1)e =: P(s1, s2). (3.15)

To conclude the proof, we need to find the range for which (3.15) holds. We
have m ∈ [−d/2, d/2); hence, m + g ∈ [g − d/2, g + d/2). By Remark 3.6 we
have d > 2g, so g − d/2 < 0 and g + d/2 > 2g. Thus, [0,2g] ⊂ [g − d/2, g +
d/2]. The values of R(k) for k outside of [0,2g] are well understood; see Corol-
lary 2.7.

3.5. Alternative Proof of Theorem 1.1 via Bézout-like Argument

The following result is a direct generalization of [11, Prop. 2], and it provides an
algebraic proof of Theorem 1.1.

Theorem 3.16. Let X be a projective algebraic surface, and C a rational cuspi-
dal curve on it with singular points z1, . . . , zn. Let L be a line bundle on X such
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that t := 〈c1(L),C〉 > 0, the space of global sections �(X,L) has positive dimen-
sion, and L have no section vanishing entirely on C. Then for the R-function as
in Definition 2.6, we have

R(t + 1) ≥ dim�(X,L).

Proof. Denote U = �(X,L). For a section u ∈ U , we denote by mj(u) the inter-
section multiplicity of u−1(0) and C at zj . If u does not vanish at zj , then we set
mj(u) = 0.

Given nonnegative integers p1, . . . , pn, set

V = V (p1, . . . , pn) := {u ∈ U : ∀jmj (u) ≥ pj }.
Then V is a linear subspace of U .

Lemma 3.17. We have

codimV ≤
∑

#Si ∩ [0,pj ),

where Sj is the semigroup associated with the singular point zj .

Given this result, we finish the proof of Theorem 3.16 by contradiction. Namely,
fix p > t and suppose that p1, . . . , pn satisfy p1 + · · · + pn = p, but

∑
#Sj ∩

[0,pj ) < dimU . By Lemma 3.17 the space V (p1, . . . , pn) has positive dimen-
sion; hence, there exists a section u of L such that D := u−1(0) intersects C at
points zj with multiplicity at least pj . Since D · C = 〈c1(L),C〉 = t by assump-
tion, we must have C ⊂ D. But this contradicts the assumption that no section
of L vanishes entirely on C. This implies that

∑
#Sj ∩ [0,pj ) ≥ dimU . With

notation as in Section 2.2, we write this as∑
Rj (pj ) ≥ dimU.

Taking the infimum over all possible numbers pj satisfying
∑

pj = p, we infer
that R(p) ≥ dimU . This is exactly the statement of Theorem 3.16. �

Proof of Lemma 3.17. Notice that by definition of the semigroup we have
mj(u) ∈ Sj for any j . It follows that it is enough to show the lemma only for
p1 ∈ S1, . . . , pn ∈ Sn. We proceed by induction on ν := ∑

#Sj ∩[0,pj ). If ν = 0,
then it follows that p1 = · · · = pn = 0, so there is nothing to prove. Suppose that
the lemma holds for p1, . . . , pn and let p′

1 be the next element in S1 after p1 (the
argument works for arbitrary zj ; we fix j = 1 for simplicity). If ν ≥ dimU − 1,
then the statement of Lemma 3.17 is that

codimV (p′
1,p2, . . . , pn) ≤ ν + 1 = dimU,

which holds always if V is not empty. So the only relevant case is ν < dimU − 1.
The condition m1(u) > p1 defines a subspace of V (p1, . . . , pn) of codimension
at most 1. But m1(u) > p1 implies that m1(u) ≥ p′

1. This means that

codim(V (p′
1,p2, . . . , pn) ⊂ V (p1, . . . , pn)) ≤ 1
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and the codimension of V (p′
1,p2, . . . , pn) in U is at most one greater than the

codimension of V (p1, . . . , pn). Since #S1 ∩ [0,p′
1) = 1 + #S1 ∩ [0,p1), the in-

duction step is accomplished. �

Example 3.18. As an application of Theorem 3.16, let us discuss the case where
X = Xe is a Hirzebruch surface and C is of type (a, b). Let us choose s1 > 0 and
s2 ≥ 0 such that s1 < a, s2 < b. Let L = O(s1L + s2M). It is clear that no section
of L vanishes on C. Otherwise, the sheaf O((s1 − a)L + (s2 − b)M) would have
a section, but this is impossible since the assumptions s1 < a, s2 < b guarantee
that O((a − s1)L + (b − s2)M) is very ample; see [16, Cor. V.2.18]. We have

t = 〈c1(L),C〉 = (s1L + s2M) · (aL + bM) = s1b + s2(a + be).

Since s1 > 0 and s2 ≥ 0, we also have

dim�(Xe,L) = χ(L).

The last quantity can be computed using the Riemann–Roch theorem. We obtain

χ(L) = P(s1, s2).

Theorem 3.16 now gives the same inequality as Theorem 1.1.

Remark 3.19. In Example 3.18 the range of s1, s2 is slightly different than the
range in Theorem 1.1. It is not hard to extend the range of s1, s2 using, for in-
stance, [8, Prop. 4.3.3] or formula in [23, p. 18] to compute dim�(X,L) and to
check that L does not admit a section vanishing entirely on C. We did not extend
it in Example 3.18 because it is only an alternative proof of Theorem 1.1.

4. The Link at Infinity for Hirzebruch Surfaces

The main goal of Sections 4 and 5 is to establish Theorem 1.3. We first pass to
describing the link of a curve at infinity.

Let C be a curve of type (a, b) in a Hirzebruch surface Xe. Let L be a vertical
line, and M0 the special section. Then Xe \ (L ∪ M0) = C2. Let N be a tubular
neighborhood of L ∪ M0. Then ∂N ∼= S3, and the intersection of C with ∂N is
a candidate for a link of C at infinity. In our computations we assume for sim-
plicity that C intersects both L and M0 transversally. Making the intersection of
C transverse to L is simple: we can choose L to be a transverse fiber, and the
set of transverse fibers is open-dense. Yet, in order to make C transverse to M0,
we might need to perturb M0 in the smooth category. This will not affect our
reasoning because the link at infinity will be shown to be a topological invariant
and the proof of the semicontinuity of the spectrum works even in the topological
category.

In this approach we will follow the ideas of [28].

4.1. The Link at Infinity: A First Glance in the Plane

To illustrate our computations, we begin with a rather standard example of com-
puting the link at infinity of a quasi-homogeneous curve in C2.
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Figure 1 Left: The line at infinity L∞ and the link of the singularity
of C at infinity. A similar picture appears in [28, p. 462]. Right: Adding
a two-handle to the neighborhood of the point at infinity yields a tubu-
lar neighborhood of the line at infinity. Its boundary is a large sphere
in C2

So let C be given by xp − yq = 0 in C2 with q > p and gcd(p, q) = 1. Its link
at infinity is clearly the torus knot T (p,q). We will show an alternative approach
for computing this link, following essentially [28].

First, let us study the intersection of C with the line at infinity. We choose the
coordinates z = 1

x
and u = y

x
, and the line at infinity in these coordinates is given

by z = 0. The equation xp − yq = 0 transforms into

1

zp
− uq

zq
= 0,

that is,

zq−p − uq = 0.

Take a small ball B with a center at (z, u) = (0,0) and let S = ∂B . The line
at infinity intersects S along an unknot, whereas C intersects S along the torus
knot T (q, q − p), that is, the link of the singularity on the curve zq−p − uq = 0;
see Figure 1 (left). The unknot and the torus knot are presented schematically in
Figure 2. This torus knot has the linking number q with the unknot, corresponding
to the fact that the intersection number of C with L is equal to q .

Adding a two-handle to B along the unknot with framing 1 yields the tubular
neighborhood of the line at infinity; see Figure 1 (right), the framing is exactly the
self-intersection of the line at infinity. The boundary of this tubular neighborhood
is a large sphere in C2, that is, the complement of the line of infinity seen from
outside. On the other hand, this sphere is also the result of a +1 surgery on the
unknot.

The +1 surgery on the unknot, that is, blowing down the unknot with framing
+1 means that the torus knot T (q − p,q) acquires a negative Dehn twist along
the longitude, so it becomes the torus knot T (−p,q) in the large sphere. This
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1

T (q − p,q)

Figure 2 A schematic presentation of the link from Figure 1 (left
part). The unknot is the intersection of the line at infinity with S,
whereas the torus knot, represented here by a segment, is the inter-
section of C with S

0−e

−e 0

Figure 3 The plumbing diagram of the regular neighborhood of a
“line at infinity” of a Hirzebruch surface and the corresponding surgery
presentation of the three sphere

sphere is seen from outside, so we need to reverse the orientation obtaining the
link T (p,q). This is the link of C at infinity.

4.2. Plumbing at Infinity and the Nagata Transform

On a Hirzebruch surface we need to find an analogue to the notion of a line at
infinity. We choose one particular fiber L and a horizontal section M ′, which is a
smooth rational curve isotopic to the special section; for example, we can take M ′
to be a smooth perturbation of the special section M0. We have L2 = 0, L ·M ′ = 1,
and M ′2 = −e. Consider N , the tubular neighborhood of L ∪ M ′ and Y = ∂N .
The complement Xe \N is a four-ball, and ∂N is a three-sphere. As a boundary of
a neighborhood of L ∪ M ′, Y is a plumbed 3-manifold with a plumbing graph as
depicted in Figure 3 (left). It will be more convenient to use a surgery description
of a plumbed manifold as on the right-hand side of Figure 3.

There exists a birational map between Xe and Xe−1, which is a sequence of one
(−1) blow-up and (−1) blow-down. In algebraic geometry, this birational map is
called the Nagata transform (sometimes referred to as an elementary transforma-
tion); see Figure 4 for an illustration. Successive Nagata transforms of the Hirze-
bruch surface Xe yield, after a finite number of steps, the situation in Figure 5.
Contracting the −1 curve yields an unknot with framing 1 (this corresponds to the
well-known fact that X1 is CP 2 blown up in one point). Contracting this unknot,
we obtain S3.
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Figure 4 Nagata transform at the level of links at infinity. The
surgery presentation on the left corresponds to Xe , it is blown up to
the diagram at the center, and then the middle component is contracted,
yielding a presentation corresponding to Xe−1

−1 0

Figure 5 Last stage of the Nagata transform

Figure 6 Figure 1 revisited. This time the ball B (the shaded region)
captures all the intersection points of C with L∪M ′, as well as L∩M ′

4.3. The Link at Infinity of Curves in Hirzebruch Surfaces

Now we want to use the Nagata transform to describe the link at infinity of a
given curve in a Hirzebruch surface. For simplicity, we restrict to the case where
C is a type (a, b) curve in Xe intersecting L and M ′ transversally. By definition
in H2(Xe;Z) we have C = aL + bM = aL + b(M0 + eL); hence, C · L = b and
C · M ′ = C · M0 = a + be − be = a. Let z1, . . . , zb = C ∩ L and w1, . . . ,wa =
C ∩ M ′. Choose a ball B lying in a small tubular neighborhood of L ∩ M ′ and
containing all the points z1, . . . , zb , w1, . . . ,wa and L ∩ M ′ as in Figure 6. Let
S = ∂B . The intersection of L ∪ M ′ with S forms a Hopf link. On gluing two-
handles to B along this link, with framings respectively L2 and M ′2 we obtain a
tubular neighborhood of L ∪ M ′. The boundary of this tubular neighborhood is a
large sphere in C2 = Xe \ (L ∪ M ′) seen from outside. This large sphere is thus
the effect of a (0,−e) surgery on the Hopf link; compare with Figure 3.
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−e

T (ax, a)

0

T (by, b)

Figure 7 The link consisting of a meridians going around −e framed
circle with x twists and b meridians of the 0 framed circle with y full
twists

Figure 8 The Nagata transform and its effect on the link consisting
of a meridians of the −e framed circle and b meridians of the 0 framed
circle

The intersection C ∩ S consists of a + b components, corresponding to points
z1, . . . , zb and w1, . . . ,wa . Since C is smooth at all these points and it is trans-
verse to L ∪ M ′, each component of the intersection is an unknot. The unknots
corresponding to z1, . . . , zb have linking number 1 with the link L ∩ S, whereas
the unknots corresponding to w1, . . . ,wa have linking number 1 with M ′ ∩ S. To
be consistent with Section 4.1, we remark that the first set of meridians forms the
torus link T (0, b), whereas the second set forms the torus link T (0, a). We present
these torus links schematically in Figure 7, where we introduced also integer pa-
rameters x and y. At the beginning we have x = y = 0, but later we will have to
allow that x, y �= 0.

Our aim is to see these two torus links in a standard sphere, that is, to contract
the framed Hopf link in Figure 3 (right). This is performed inductively, and the
induction step is the Nagata transform. We will explain now how the two torus
links in Figure 7 change under the Nagata transform.

Start with the intermediate stage of the Nagata transform; in Figure 8 it is the
middle link. Blowing down either the middle circle or the right circle in this link
(this corresponds to going to the right link and to the left link, respectively) does
not affect T (ax, a). If the middle circle is blown down, then the link T (by, b)

also remains unchanged. However, if we blow down the right circle, then the
meridians of the right circle get an additional twist, as well as a clasp with the
middle circle, so that T (by, b) becomes T (b(y + 1), b). The Nagata transform
corresponds to going from the left link to the right link in Figure 8, so that T (b(y+
1), y) becomes T (by, b), T (ax, a) is unchanged, and the framing of the left circle
is changed from −e to −(e − 1).
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−1

T (0, a)

0

T (b(1 − e), b)

1

T (b(1 − e), b)T (a, a)

Figure 9 On the left: the link of C at infinity after e − 1 Nagata
transforms. On the right, this link after blowing down the −1 curve

a components

e full

right twists

b components

Figure 10 The link at infinity of a curve of degree (a, b)

After e − 1 subsequent Nagata transforms, the framing of the left circle be-
comes −1. We blow down the circle obtaining a link, with only one circle (with
framing +1) and torus links T (a, a) and T ((1 − e)b, b) linked to it; see Figure 9.

Blowing down the circle with framing +1 on the right of Figure 9 means that
the two torus links will acquire a negative twist. That is, the T (a, a) torus link
will become the T (0, a) torus link again, whereas T (b(1 − e), b) will become the
T (−be, b) torus link. The two torus links are now clasped: each of the compo-
nents of T (0, a) with each of the components of T (−be, b) will form a negative
Hopf link. As in the case of the link at infinity of a curve in CP 2, we have to
reverse the orientation. In this way the T (−be, b) will become T (be, e), whereas
T (0, a) will remain T (0, a). The negative Hopf link will become the positive
Hopf link. The final result is shown in Figure 10.

Definition 4.1. The link in Figure 10 is called the link at infinity of a curve of
degree (a, b). We denote this link by La,b .

5. Hermitian Variation Structure of the Link at Infinity

In this section we determine the spectrum of the curve C at infinity using the
language of Hermitian Variation Structures for links as introduced in [5]. Her-
mitian Variation Structure is encoded in so-called Hodge numbers pk

λ(u) and qk
λ ,

k = 1,2, . . . , where λ �= 0 is a complex number in the unit disk (and pk
λ = 0 if

|λ| < 1, whereas qk
λ = 0 if |λ| = 1), and u ∈ {±1}. Even a sketchy definition of
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pk
λ and qk

λ is beyond the scope of the paper. To give a flavor, suppose that L is a
fibered link and let h be the monodromy operator. Then pk

λ(1) + pk
λ(−1) is pre-

cisely the number of Jordan blocks of h with eigenvalue λ and size k, and qk
λ is the

number of Jordan blocks of size k and eigenvalue λ. The sign u = ±1 in pk
λ(u)

roughly corresponds to the value of the jump of the Tristram–Levine signature
at λ. We now state the following rigorous results proved in [5]; for simplicity, we
assume that qk

λ = 0. This is so in case of all algebraic links because the Alexander
polynomial has no roots outside the unit circle.

Proposition 5.1. Let L be a link whose Alexander polynomial has no roots out-
side the unit circle. Then

	L =
∏
λ∈S1

(t − λ)
∑

k,u kpk
λ(u).

Moreover, let σL(ξ) be the Tristram–Levine signature function of L with ξ ∈ S1.
If ξ �= 1, then

σL(ξ) = −
∑
λ<ξ
k odd
u=±1

upk
λ(u) +

∑
λ>ξ
k odd
u=±1

upk
λ(u) +

∑
k even
u=±1

upk
ξ (u),

where for ξ = e2πix and λ = e2πiy with x, y ∈ (0,1), we say that ξ > λ if x > y.

In the following we will gather enough data about pk
λ(u) to be able to compute

the spectrum of the link at infinity. We will do this in four steps. First, we will
compute the Alexander polynomial of La,b . Then we use the fact that La,b is a
splice link to show via the monodromy theorem that the pk

λ(u) vanish for k > 2
and for k = 2 if λ = 1. Next, we compute the equivariant signatures of the link at
infinity. Then we use the equivariant signatures and the Alexander polynomial to
gather enough conditions on the Hodge numbers to recover the noninteger part of
the spectrum. In the latter step the Hodge numbers for λ = 1 will be determined
from the linking matrix of the components of La,b as in [4, Sect. 3].

The proof of Theorem 1.3 is presented at the end of this section.

5.1. Splice Presentation of La,b and its First Consequences

After a series of observations about the link La,b , our first result on the Hodge
numbers is given in Lemma 5.6.

We begin with the following observation.

Lemma 5.2. The link at infinity La,b is a graph link. Its Eisenbud–Neumann dia-
gram is as on Figure 11.

We denote by L1 and L2 the splice components of La,b . On Figure 11 the com-
ponent L1 is presented on the left, whereas the component L2 is on the right. For
these components, we have the following estimates.
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e0

1 1
(b) (a)

e0

Figure 11 The link La,b and its splice components. There are a ar-
rowheads on the left and b arrowheads on the right

Lemma 5.3. The multiplicity of the multilink L1 is equal to b, whereas the multi-
plicity of L2 is equal to w = a + be.

Proof. The results follow from straightforward computations; see, for exam-
ple, [26]. �

Then we make the following observation about La,b .

Corollary 5.4. The link La,b is a fibered link.

Proof. Because the multiplicity of every node is nonnegative, this follows from
[9, Thm. 11.2]. �

Moreover, [9, Thm. 11.3] allows us to explicitly compute the Alexander polyno-
mial of La,b .

Lemma 5.5. The Alexander polynomial of La,b is equal to

	(t) = (t − 1)(tw − 1)b−1(tb − 1)a−1.

The fact that La,b is a graph link affects the Hodge numbers in the following way.

Lemma 5.6 (The monodromy theorem; see [9, Sect. 13] or [26]). We have
pk

λ(u) = 0 for k > 2 and for k = 2 and λ = 1. Moreover, the only positive val-
ues of pk

λ(u) can appear if λ is a root of unity of order w or b.

The Alexander polynomial is the characteristic polynomial of the monodromy
h acting on H1(F ), where F is the fiber of the fibration of the complement to
La,b . By Lemma 5.6 the monodromy has Jordan block of size at most 2. We can
compute the Jordan blocks of size 2 from the characteristic polynomial of the
monodromy operator restricted to the image hc − 1, where c = gcd(w,b). The
algorithm in [9, Sect. 14] or [26] allows us to compute this as well. We obtain

	2(t) = tc − 1

t − 1
.

This polynomial affects the Hermitian Variation Structure related to the link La,b ,
but it does not affect its spectrum.
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α4

(m4)

α3

(m3)

α2

(m2)

α1

(m1)

αn
(mn)

Figure 12 Notation used in proof of Lemma 5.7

5.2. The Equivariant Signatures of the Link at Infinity

The equivariant signatures of a link are integer numbers associated to any λ ∈ S1.
For λ �= 1, the equivariant signature is half the jump of the Tristram–Levine sig-
natures, that is, for λ = e2πix and x ∈ (0,1), we have

2σλ = lim
y→x+ σ(e2πiy) − lim

y→x− σ(e2πiy).

We refer to [22] for discussion of various definitions of signatures and relations
between them.

In this part we use Neumann’s algorithm (see [27]) to compute the equivariant
signatures of L1 and L2 for λ ∈ S1 \ {1}. The equivariant signatures are splice
additive, and hence the signature of La,b is the sum of the signatures of L1 and
L2. For x ∈ (0,1), we denote by σ 1

x , respectively σ 2
x , the equivariant signature of

L1, respectively L2, corresponding to the value λ = e2πix .
The following lemma is the core result.

Lemma 5.7. For p = 1, . . . ,w − 1, the signature is equal to

σ 1
p/w = 2

⌊
pb

w

⌋
− (b − 1) − δ,

where δ = 1 if w divides pb, otherwise it is 0. Similarly, for q = 1, . . . , b − 1, the
signature

σ 2
q/b = 2

⌊
qa

b

⌋
− (a − 1) − δ′,

where δ′ = 1 if b divides qa, otherwise it is 0.

Proof. The two parts (for L1 and L2) are analogous; we will prove only the first
one. The second part can be deduced from the first by swapping the roles of a and
b and setting e = 0.

The algorithm in [27] is the following. Consider a splice component as in Fig-
ure 12. A general splice component can have leaf type vertices, but the output is
the same if the leaf vertices are replaced by arrowheads with multiplicity mi = 0.
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One chooses β1, . . . , βn to be integers satisfying

βjα1 · · · α̂j · · ·αn ≡ 1 mod αj .

The elements β1, . . . , βn are not uniquely defined, but the ambiguity does not
affect the result. The multiplicity of the splice component is

m =
∑

mjα1 · · · α̂j · · ·αn.

The numbers sj = (mj − βjm)/αj are integers. For any p = 1, . . . ,m − 1, the
equivariant signature σp/m is equal to

2
n∑

j=1

〈
sjp

w

〉
,

where x �→ 〈x〉 is the sawtooth function, that is,

〈x〉 =
{

{x} − 1
2 , x /∈ Z,

0, x ∈ Z.
(5.8)

Application of this algorithm to L1 is straightforward. As depicted in Fig-
ure 11, the (multi)link L1 has b arrowheads with multiplicity 1 and one arrow-
head with multiplicity a. That gives m1 = · · · = mb = 1, mb+1 = a. Furthermore,
α1 = · · · = αb = 1 and αb+1 = e, We have β1 = · · · = βb = 0 and βb+1 = 1. The
multiplicity is w = a + be. We have s1 = · · · = sb = 1 and sb+1 = −b.

According to [27], the equivariant signature at λ ∈ S1 is zero unless λ =
e2πip/w for some p = 1, . . . ,w − 1. In the latter case the equivariant signature
is equal to

σ 1
p/w = 2

b+1∑
j=1

〈
sjp

w

〉
= 2b

〈
p

w

〉
− 2

〈
pb

w

〉
.

The expression for σ 1
p/w can be rewritten as

σ 1
p/w = 2

⌊
pb

w

⌋
− (b − 1) − δ, (5.9)

where δ = 1 if w|pb (that is, if b
p
w

is an integer), otherwise δ = 0. This proves
the first part. �

We then observe that since b divides qa if and only if b divides qw, the case δ = 1
is equivalent to δ′ = 1. Hence, this happens only if x can be written as p/w and
x can be written as q/b for some integers p and q . Note that this observation is
reflected in the structure of Table 1: the contribution of an element x that can be
written both as p

w
and as q

b
(the second row in Table 1) is not merely a sum of the

contribution from the fourth and sixth rows.
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5.3. The Part λ �= 1 of the Spectrum

Now we pass to the third step in our process, where we relate the Hodge numbers
to the Alexander polynomial and to the equivariant signatures for λ �= 1.

Remark 5.10. For the reader’s convenience, in Section 5.5 we discuss the sign
conventions used throughout this section. We also present a sample computation
of the spectrum.

We begin with the following observation (see [5, Sect. 4.1]):∑
u=±1

(p1
λ(u) + 2p2

λ(u)) = ordt=λ 	(t)

=

⎧⎪⎨⎪⎩
b − 1 if λ = e2πip/w,

a − 1 if λ = e2πiq/b,

a + b − 2 if λ = e2πiq/b = e2πip/w,

(5.11)

where we should interpret the expressions like λ = e2πiq/b as “there exists q ∈ Z

such that λ = e2πiq/b”.
On the other hand, the equivariant signature can be computed from Hodge

numbers as

p1
λ(−1) − p1

λ(+1) = σ 1
x + σ 2

x , (5.12)

where x is such that e2πix = λ. To complete the picture, we note that

p2
λ(+1) + p2

λ(−1) = ordt=λ 	2(t),

but we will not need this formula.
Even though the last three formulae are insufficient to determine the full Her-

mitian Variation Structure of La,b corresponding to the eigenvalue λ, the terms
p2

λ(+1) and p2
λ(−1) give the same contribution to all the three formulae. Luck-

ily, their contribution to the spectrum is also the same. The first two formulae are
enough to recover the spectrum. Let us cite a result from [5, Sect. 2.3].

Proposition 5.13. Let x ∈ (0,1) and λ = e2πix . Then the multiplicity of x in the
spectrum is equal to

Ax := p1
λ(−1) + p2

λ(+1) + p2
λ(−1),

and the multiplicity of 1 + x in the spectrum is equal to

Bx := p1
λ(+1) + p2

λ(+1) + p2
λ(−1).

We now observe that Ax + Bx is the order at λ of the Alexander polyno-
mial, whereas Ax − Bx is equal to the equivariant signature. Hence, knowing
the Alexander polynomial from Lemma 5.5 and the equivariant signature from
Lemma 5.7, we can compute explicitly Ax and Bx , that is, find the spectrum. The
results of the computations is presented in Table 1. We omit the details here.
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5.4. The Part λ = 1 of the Spectrum

It remains to discuss the case of λ = 1. By Lemma 5.6 we have that p2
1(±1) = 0.

We also have that

p1
1(−1) + p1

1(+1) = ordt=1 	(t) = a + b − 1.

Lemma 5.14. We have p1
1(−1) = 0.

Proof. The argument is the same as in [4, Prop. 3.4.2]; we will show that the
linking form on the subspace of H1(F ) (recall that F is the fiber of the fibration of
the complement to La,b; in particular, it is a Seifert surface for L) spanned by the
components of La,b is negative definite. Let us denote by L1

1, . . . ,L
1
a , respectively

L2
1, . . . ,L

2
b , the components of La,b lying on a splice component L1, respectively

L2. We regard them as elements in H1(F ). In H1(F ) these cycles are subject to
one relation, namely L1

1 + · · · + L2
b = 0. Let us consider the element L in the

space spanned by L1
1, . . . ,L

2
b , that is,

L =
∑

γiL
1
i +

∑
δjL

2
j .

By the arguments of [26, Sect. 3] or [4, Sect. 3.7] the self-linking of L is equal to

−
∑
i<i′

(γi − γi′)
2 lk(L1

i ,L
1
i′) −

∑
j<j ′

(δj − δj ′)2 lk(L2
j ,L

2
j ′)

−
∑
i,j

(γi − δj )
2 lk(L1

i ,L
2
j ).

This expression is nonpositive because the linking numbers are nonnegative. If
it is zero, then for any i, j , we have γi = δj because lk(L1

i ,L
2
j ) = 1 for any i,

j . This implies that γ1 = · · · = γa = δ1 = · · · = δb , that is, the link represents
0 ∈ H1(F ). It follows that the linking form is negative definite, so the argument
in [26, proof of Thm. 3.4] implies that p1

1(−1) = 0. �

This shows the following result.

Proposition 5.15. The number 1 enters the spectrum with multiplicity a + b − 1,
whereas the number 2 does not belong to the spectrum.

In this way the computation of the spectrum of the link at infinity is completed.

5.5. Some Examples

It might be quite difficult not to get lost in various conventions. To show that the
sign conventions are consistent, we look at the positive trefoil, whose signature
function is −2 for z ∈ (e2πi/6, e2π5i/6) and zero outside of the closure of this
interval. The input for Neumann’s algorithm for the equivariant signature is m1 =
0, m2 = 0, m3 = 1, α1 = 2, α2 = 3, and α3 = 1, so that w = 6 and s1 = −3, s2 =
−4, s3 = 1. The equivariant signature 2

∑〈sjp/q〉 is equal to −1 for p/q = 1/6
and +1 for p/q = 5/6. The spectrum should be { 5

6 , 7
6 } (this is the spectrum of
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the singularity x2 + y3 = 0, and we can compute it from the Thom–Sebastiani
formula), and the Hodge numbers are p1

5/6(−1) = 1 and p1
1/6(+1) = 1; see [5,

Sect. 5.1]. In particular, the conventions we have been using are the following:

• The equivariant signatures are taken as
∑〈sjp/q〉, where 〈x〉 is the sawtooth

function; see (5.8).
• The equivariant signature is half the jump of the Tristram–Levine signature,

that is, half the difference between the right and left limits of the function x �→
σ(e2πix).

• The Hodge numbers p1
λ(+1) correspond to negative equivariant signature, and

the Hodge numbers p1
λ(−1) correspond to positive values of the equivariant

signature. Therefore, the equivariant signature is p1
λ(−1) − p1

λ(+1).
• The Hodge numbers p1

λ(−1) correspond to values in the spectrum in the inter-
val (0,1), whereas the Hodge numbers p1

λ(+1) correspond to values in (1,2).

Now let us present a computation of the spectrum.

Example 5.16. Suppose that a = 6, b = 4, and e = 0, so that w = 6. The equi-
variant signatures for σ 1

i/6 are equal to

−3,−1,0,1,3.

The equivariant signatures σ 2
j/4 are equal to

−3,0,3.

By additivity, the equivariant signatures of L4,6 at e2πix for

x ∈
{

1

6
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

5

6

}
are respectively

{−3,−3,−1,0,1,3,3};
the order of the root of the Alexander polynomials at each of these points is re-
spectively

{3,5,3,8,3,5,3}.
Hence, the part of the spectrum in (0,1) is{

1

4
,

1

3
,

1

2
,

1

2
,

1

2
,

1

2
,

2

3
,

2

3
,

3

4
,

3

4
,

3

4
,

3

4
,

5

6
,

5

6
,

5

6

}
,

and the part in (1,2) is symmetric. The value 1 appears in the spectrum with
multiplicity

a + b − 1 = 9.

The total number of elements in the spectrum is

w(b − 1) + b(a − 1) + 1 = 18 + 20 + 1 = 39.

Notice that twice the genus of a curve of type (4,6) is equal to (4−1)(2 ·6−2) =
30, and the difference 39 − 30 = 9 = a + b − 1.



784 Maciej Borodzik & Torgunn Karoline Moe

5.6. The Semicontinuity of the Spectrum

We are now ready to prove Theorem 1.3, comparing the spectrum of the link at
infinity to the spectrum of the singular points of C.

Proof of Theorem 1.3. We follow the argument of [4]. So suppose that C has sin-
gular points z1, . . . , zk . The links of singularities of z1, . . . , zk are denoted by
K1, . . . ,Kk . The spectrum of zj will be Spj , and μj denotes the Milnor num-
ber of zj . Notice that μj is the degree of the (univariate) Alexander polynomial
of Kj .

Pick L and M ′ as in Section 4.3. They intersect C transversally, and let N be a
tubular neighborhood of L∪M ′. The complement B = Xe \N is a standard 4-ball.
We may and will assume that z1, . . . , zk are all in B . By definition La,b = C ∩ ∂B

is the link of C at infinity. Set C′ = C ∩ B and let C′′ be a smoothing of C′, that
is, a smooth curve obtained by replacing a neighborhood of each of the singular
points z1, . . . , zk of C′ by a corresponding Milnor fiber. For example, if C′ is
given by F−1(0) for some complex analytic function F : B → C (such that ∇F

does not vanish identically on C′), then C′′ can be taken to be F−1(t) where t is
a noncritical value of F sufficiently close to 0. The intersection of C′′ with the
boundary of B is isotopic to La,b . With this definition, C′′ is isotopic to the fiber
of La,b; see [28; 29].

Suppose x ∈ [0,1] is such that ξ := e2πix is not a root of the Alexander poly-
nomials of La,b . Then, by [4, Prop. 2.5.5] we have

−σLa,b
(ξ) + (1 − χ(C′′)) ≥

k∑
j=1

(−σKj
(ξ) + μj ),

σLa,b
(ξ) + (1 − χ(C′′)) ≥

k∑
j=1

(σKj
(ξ) + μj ),

(5.17)

where σL(ξ) denotes the Tristram–Levine signature of L evaluated at ξ .
Now we have that 1 − χ(C′′) = b1(C

′′), but C′′ is isotopic to the fiber of the
link La,b . So b1(C

′′) is just the degree of the Alexander polynomial of La,b .
Rewrite (5.17) as

∓σLa,b
+ deg	La,b

≥
k∑

j=1

(∓σKj
(ξ) + deg	Kj

). (5.18)

By [4, Cor. 2.4.6], (5.18) is precisely the statement of Theorem 1.3. �

6. Examples and Applications

In this section we will show applications of Theorems 1.1 and 1.3 and get re-
sults about rational cuspidal curves in Hirzebruch surfaces. In particular, we show
that the theorems imply that not all possible (after fundamental results, that is,



Rational Cuspidal Curves in Hirzebruch Surfaces 785

the genus formula etc.) cusps can exist on such curves. Moreover, we give ex-
plicit constructions of some of the possible curves that pass the obstructions in
the theorems.

6.1. A Simple Multiplicity Estimate

The following result bounding the multiplicity of a singularity on a curve in a
Hirzebruch surface is a trivial consequence of Bézout’s theorem. The standard
proof is given, for instance, in [23, Thm. 3.1.5]. We show that for rational cuspidal
curves, it can also be proven using topological methods.

Proposition 6.1. Let r be the multiplicity of a singular point on a curve (in
general, not necessarily rational or cuspidal) C of type (a, b) in the Hirzebruch
surface Xe. Then r ≤ b.

Proof. Suppose now that the curve C is rational and cuspidal. We set s1 = 1 and
s2 = 0 in Theorem 1.1 and obtain R(b+1) ≥ 2 for the R function associated with
C (see Definition 2.6). Suppose that z1, . . . , zn are singular points of C and that
R1, . . . ,Rn are the corresponding semigroup densities as in (2.4). Let us consider
the point zk for k = 1, . . . , n. Set m1 = · · · = mk−1 = 0, mk+1 = · · · = mn = 0,
and mk = b + 1, so that

∑
mj = b + 1. By the definition of the infimum convo-

lution we get

R1(m1) + · · · + Rn(mn) ≥ R(m1 + · · · + mn).

But R1(m1) = · · · = Rk−1(mk−1) = Rk+1(mk+1) = · · · = Rn(mn) = 0. Eventu-
ally, we obtain

Rk(b + 1) ≥ 2.

But if zk has multiplicity greater than b, then zero is the only element in the semi-
group of zk that is smaller than b+1, which leads to the desired contradiction. �

6.2. Singular Points with Multiplicity 3 on (4,4) Curves

Consider curves of type (4,4) in the Hirzebruch surface Xe. Such a curve has
genus 6e + 9. We ask whether such a curve can have a singularity of type
(3,6e + 10)? Note that the genus formula implies that if a (4,4) curve has such a
singularity, then it is rational and cuspidal.

Proposition 6.2. If e is even, then a (4,4) curve in Xe cannot have a (3,6e+10)

singularity.

Proof. Set s1 = 1 + e/2 and s2 = 1. We obtain s1b + s2(a + be) + 1 = 6e + 9.
Theorem 1.1 implies that R(6e + 9) ≥ 2e + 4. But R(6e + 9) is the number of the
elements in the interval [0,6e + 8] that belong to the semigroup generated by 3
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and 6e + 10. This is exactly the set of all integers in [0,6e + 8] divisible by 3. Its
cardinality is 2e + 3, so we get a contradiction. �

The result does not say anything about the case where e is odd. In fact, Theo-
rem 1.1 will not obstruct the existence of a (3,6e + 10) singularity on a (4,4)

curve in Xe for e odd.

6.3. Curves of Type (6,6) with One Cusp with One Single Puiseux Pair in X0

We now compute the spectra for the link at infinity and the link at the cusp for
rational unicuspidal curves of type (6,6) with a single Puiseux pair in X0. We do
this for all curves with Puiseux pair that fits the genus formula, and there are three
such curves. The computations show that Theorem 1.3 obstructs the existence of
one of these curves. Moreover, we provide a sketch of the construction of one
of the other curves. Note that we cannot say anything about the existence of the
remaining curve.

Let C be a unicuspidal curve of type (6,6) in X0, and let the cusp have a single
Puiseux pair. We have a = b = 6, g = (6 − 1)(6 − 1) = 25, and 2g = 50. The
list of theoretically possible Puiseux pairs is (2,51), (3,26), and (6,11). Using
Table 1, we find:

Sp∞
6,6 =

{
1

6

1

,
1

3

3

,
1

2

5

,
2

3

7

,
5

6

9

,111,
7

6

9
,

4

3

7

,
3

2

5

,
5

3

3

,
11

6

1}
,

where the exponent denotes the multiplicity of the element.

(2,51) For this Puiseux pair, we choose x = 1
2 + ε for some ε such that 1

51 >

ε > 0. Then
#Sp∞

6,6 ∩ (x, x + 1) = 48.

On the other hand,

Sp2,51 ∩ (x, x + 1) =
{

1

2
+ 1

51
, . . . ,

1

2
+ 50

51

}
;

hence,
#Sp2,51 ∩ (x, x + 1) = 50.

By Theorem 1.3 this is not possible, so such a cusp cannot exist on a curve
of type (6,6).

In the next two cases the spectrum does not obstruct the existence. To show this,
we need to verify finitely many values of x, a task which can be done for instance
using a computer. We present calculation for one specific value of x, the one
close to the inverse of the multiplicity of the singular point. This is motivated by
an observation that in most cases if Theorem 1.3 gives an obstruction, then this
obstruction can be seen for that value of x (this is not a rigorous statement, it is
rather a hint for applying Theorem 1.3).

(3,26) For this Puiseux pair, we choose x = 1
3 + ε for some ε such that 1

26 >

ε > 0. Then
#Sp∞

6,6 ∩ (x, x + 1) = 48.



Rational Cuspidal Curves in Hirzebruch Surfaces 787

On the other hand,

Sp3,26 ∩ (x, x + 1) =
{

1

3
+ 1

26
, . . . ,

1

3
+ 25

26
,

2

3
+ 1

26
, . . . ,

2

3
+ 17

26

}
;

hence,

#Sp3,26 ∩ (x, x + 1) = 42.

This does not violate Theorem 1.3.
(6,11) For this Puiseux pair, we choose x = 1

6 + ε for some ε such that 1
11 >

ε > 0. Then

#Sp∞
6,6 ∩ (x, x + 1) = 44.

On the other hand,

Sp6,11 ∩ (x, x + 1) =
{

1

6
+ 1

11
, . . . ,

1

6
+ 10

11
,

1

3
+ 1

11
, . . . ,

1

3
+ 9

11
,

1

2
+ 1

11
, . . . ,

1

2
+ 7

11
,

2

3
+ 1

11
, . . . ,

2

3
+ 5

11
,

5

6
+ 1

11
, . . . ,

5

6
+ 3

11

}
;

hence,

#Sp6,11 ∩ (x, x + 1) = 34.

This curve passes the criterion from Theorem 1.3, and it can in fact be
constructed by a simple transformation of the plane unicuspidal curve
y5z − x6 = 0. Indeed, blow up two points on the line y = 0, which is
tangent to the curve at the cusp with coordinates (0 : 0 : 1), and contract
its strict transform; see Example 6.4 and [23].

6.4. A Finiteness Theorem

As an application of Theorem 1.3, we shall prove the following result.

Theorem 6.3. Suppose a, b > 0 are fixed. Then there is only a finite number of
triples (r, s, e) such that

• r, s ≥ 2 are coprime, e ≥ 0;
• A singularity of type (r, s) occurs on a rational cuspidal curve of type (a, b)

in Xe;
• r < b and r �= b − 1 if b is even.

Put differently, for given (a, b) and sufficiently large e, the only possible ra-
tional cuspidal curves of type (a, b) in Xe with one singular point having one
Puiseux pair (r, s) are those with b = r or b = r + 1 and b even.
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Before we give the proof of Theorem 6.3, we construct two families of curves in
Hirzebruch surfaces with b = r . This shows that Theorem 6.3 is close to optimal.

Example 6.4. It is possible to construct two series of curves from Theorem 6.3
using the Cremona transformations of the plane curve Cd given by the defining
polynomial xd−1z−yd . Note that the curves in the below series exist for all d ≥ 3
and e, k ≥ 0, except (e, k) = (0,0).

(1) Curves of type (kd, d) in Xe with one cusp and Puiseux pair
(d, (e + 2k)d − 1).

(2) Curves of type (k(d − 1) + 1, d − 1) in Xe with one cusp and Puiseux pair
(d − 1, (e + 2k)(d − 1) + 1).

Sketch of construction. The constructions of the two series of curves in Exam-
ple 6.4 are very similar; hence, we sketch only the construction of the first curves
and indicate the initial blow up for the latter curves. For similar constructions with
details, see [24].

Given the plane unicuspidal curve Cd as before, observe that Cd is unicuspidal
and that the cusp has multiplicity sequence [d −1]; see [24] for notation. We blow
up a point on the tangent line, say T , to the curve at the cusp. This gives in X1

a rational unicuspidal curve of type (0, d) with a cusp with multiplicity sequence
[d − 1]. The fiber through the cusp, that is, the strict transform of T , intersects the
curve only at the cusp, with intersection multiplicity d . Now, performing subse-
quent elementary transformations with center on the special section and the fiber
through the cusp gives the series in Xe for e ≥ 1 and k = 0.

Performing a similar elementary transformation of the curve in X1, this time
with center outside the special section, gives in X0 a curve of type (d, d) with one
cusp with multiplicity sequence [d, d − 1]. Since the fiber through the cusp does
not intersect the curve outside the cusp, it is again possible to construct the series
for e ≥ 0 and k = 1.

It can be shown by induction that a similar construction works for all e, k ≥ 0,
except (e, k) = (0,0); see [24]. Ultimately, we end up with unicuspidal curves
of type (kd, d), where the cusp has multiplicity sequence [de+2k−1, d − 1]. By
[7, Thm. 12, p. 516], this multiplicity sequence corresponds to the Puiseux pair
(d, (e + 2k)d − 1).

Note that the second series of curves is constructed from the same plane curves,
in this case by blowing up the smooth intersection point of the curve and a generic
line through the cusp. �

Proof of Theorem 6.3. We shall use Theorem 1.3 for x = 1
2 and study the as-

ymptotic of both sides of (1.4) as e goes to infinity. Unfortunately, it turns
out that the number of elements of the spectrum of the singular point of type
(r, s) that are contained in ( 1

2 , 3
2 ) and the number of elements of the spectrum

at infinity that are contained in the same interval both grow like 3
4g, where

g = 1
2 (r − 1)(s − 1) = (a − 1)(b − 1) + 1

2b(b − 1)e is the arithmetic genus of
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the curve. Therefore, a more careful analysis of both terms of inequality (1.4) has
to be conducted.

In what follows we will assume that e is large compared to a and b. Assume
that C is a rational unicuspidal curve in Xe of type (a, b), where the cusp has one
Puiseux pair (r, s) with r < s. We use the notation

Sr,s = #Spr,s ∩
(

1

2
,

3

2

)
,

S∞ = #Sp∞
a,b ∩

(
1

2
,

3

2

)
,

where Spr,s is the spectrum of the singular point of type (r, s). In our computation
we shall focus ourselves on terms linear in e, neglecting elements that are of lower
order with respect to e. We shall write x � y (where x and y are some expressions
depending on e) if x−y

e
tends to zero as e goes to infinity.

For example, we have

2g = 2(a − 1)(b − 1) + b(b − 1)e � b(b − 1)e � (a + be)(b − 1) = w(b − 1).

Furthermore, by Proposition 6.1 we have that r ≤ b; hence, (s − 1)(r − 1) =
(r − 1)s − (r − 1) � (r − 1)s.

Remark 6.5. It might happen that 1
2 belongs to Sp∞

a,b , so we cannot use Theo-
rem 1.3 directly. In that case, we use Theorem 1.3 for a value of x sufficiently
close to 1

2 (and sufficiently close is a notion depending on e: if e is large, then
|x − 1

2 | must be very small). The difference between the number of those ele-
ments in the spectrum (we consider Sp∞

a,b and Spr,s ) that are in (x,1 + x) and

those that are in ( 1
2 , 3

2 ) is equal to the multiplicity of 1
2 in the spectrum, so it is

� 0 as e goes to infinity. Since we are interested in the asymptotics only, we will
work with the interval ( 1

2 , 3
2 ).

Let us first deal with Sr,s . Notice that Sr,s is twice the number of elements in Spr,s

in the interval ( 1
2 ,1), that is,

1

2
Sr,s =

r−1∑
i=1

s−1∑
j=1

{
1 if i

r
+ j

s
∈ ( 1

2 ,1),

0 otherwise

=
r−1∑
i=1

#

{
j : j ∈

(
s

2
− is

r
, s − is

r

)
∩ {1,2, . . . , s − 1}

}

=
�r/2�∑
i=1

#

{
j ∈

(
s

2
− is

r
, s − is

r

)
∩ {1,2, . . . , s − 1}

}

+
r−1∑

i=�r/2�+1

#

{
j ∈

(
0, s − is

r

)
∩ {1,2, . . . , s − 1}

}
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(1)�
�r/2�∑
i=1

s

2
+

r−1∑
i=�r/2�+1

(
s − is

r

)

= s

2

⌊
r

2

⌋
+

(
r − 1 −

⌊
r

2

⌋)
s − s

2r

(
r(r − 1) −

⌊
r

2

⌋(⌊
r

2

⌋
+ 1

))
= s

(
r

2
− 1

2

⌊
r

2

⌋
− 1

2
+ 1

2r

⌊
r

2

⌋2

+ 1

2r

⌊
r

2

⌋)
.

The asymptotic equality (1) holds because the difference between the number of
integer elements in an interval is equal to its length up to adding or subtracting 1.
On replacing the number of integers by the length of the interval, the error we
make is at most ±1 at most r − 1 times, but r ≤ b is small when compared to w.

If r is odd, then we get Sr,s � 2s( 3
8 r − 1

4 − 1
8r

). If r is even, then we get
Sr,s = 2s( 3

8 r − 1
4 ).

We now deal with the spectrum at infinity. Our first observation is that

S∞ � 2
w−1∑

p=w/2

⌊
pb

w

⌋
.

Indeed, in Table 1 we have listed the elements in the spectrum. But the contribu-
tion from all the items but the fourth and fifth in the table is bounded by a function
depending only on a, b, and not on w. We write

w−1∑
p=w/2

⌊
pb

w

⌋
∼=

w∑
p=w/2

(
pb

w
− 1

2

)
−

w∑
p=w/2

〈
pb

w

〉
, (6.6)

where 〈·〉 is the sawtooth function (see (5.8)), and “∼=” means that we neglect the
contribution of at most b instances of p, where pb

w
is an integer.

We have
∑w−1

p=w/2 p = 3
8w2 + lower order terms in w. Therefore, the first sum

in (6.6) gives a value asymptotically equal to w( 3
8b − 1

4 ). As for the second sum,
in (6.6) we shall use the following lemma.

Lemma 6.7. For fixed b > 1, we have

lim
w→∞

1

w

w−1∑
p=w/2

〈
pb

w

〉
=

{
0, b is even,
1

8b
, b is odd.

The proof of Lemma 6.7 is postponed until Section 6.6. Now we resume the proof
of Theorem 6.3. We observe that

s(r − 1) � 2g � w(b − 1). (6.8)

Our computations insofar show that

Sr,s �
{

3
4g + 1

4 s, r is even,
3
4g + ( 1

4 − 1
4r

)s, r is odd.
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As for S∞, we get

S∞ �
{

3
4g + 1

4w, b is even,
3
4g + ( 1

4 − 1
4b

)w, b is odd.

Depending on the parity of b and r , we have four cases.

• If b and r are even, then Sr,s is asymptotically greater than S∞ unless s � w.
But s(r − 1) � w(b − 1), so this exceptional case can occur only if b = r .
Theorem 1.3 obstructs asymptotically all cases with r < b.

• If b and r are odd, then we compare w b−1
b

with s r−1
r

. Since s(r − 1) �
w(b − 1), we see that for large e, the quantity S∞ is smaller than Sr,s unless
b = r .

• The case b odd and r even is completely obstructed (for e large) by Theo-
rem 1.3.

• Suppose b is even and r is odd. We compare s r−1
r

with w b−1
b−1 . If r < b − 1,

then we have asymptotically Sr,s > S∞, so Theorem 1.3 applies. We cannot
obstruct the case r = b − 1. �

6.5. Dedekind Sums and Reciprocity Laws

For the reader’s convenience, we include some elementary facts about Dedekind
sums. We refer to [35] or [17] for more detail.

Let p, q be positive integers. The Dedekind sum is the following expression:

s(p, q) =
q−1∑
i=0

〈
i

q

〉〈
pi

q

〉
.

Dedekind sums appear in number theory in various places; see, for instance,
[35]; in combinatorics, when they are used to compute the number of lattice points
in polytopes; and in low-dimensional topology, where they appear in connection
with lens spaces, Seifert fibered manifolds and signatures of torus knots: see [17]
for more detail.

The most important result we use is the Dedekind reciprocity law.

Theorem 6.9. If p and q are coprime, then

s(p, q) + s(q,p) = 1

12

(
p

q
+ q

p
+ 1

pq
− 3

)
.

There are many ways to generalize the Dedekind sum, of which we use only one,
the so-called Dedekind–Rademacher sum D(p,q, r) defined as

D(p,q, r) =
r−1∑
i=0

〈
pi

r

〉〈
qi

r

〉
.

The Dedekind reciprocity law generalizes to the Rademacher reciprocity law (or
the “three-term law”), which is stated as follows.
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Theorem 6.10. If p, q , r are pairwise coprime, then

D(p,q, r) + D(r,p, q) + D(q, r,p) = p2 + q2 + r2 − 3pqr

12pqr
.

6.6. Proof of Lemma 6.7

Our goal is to compute the limit of the sequence 1
w

aw , where

aw :=
w−1∑

p=w/2

〈
pb

w

〉
.

We write

aw =
w−1∑

p=w/2

〈
pb

w

〉
=

w−1∑
p=w/2

〈
pb

w

〉⌊
2p

w

⌋

=
w−1∑
p=0

〈
pb

w

〉⌊
2p

w

⌋
=

w−1∑
p=0

〈
pb

w

〉(
2p

w
−

〈
2p

w

〉
+ 1

2

)

=
w−1∑
p=0

〈
pb

w

〉
2p

w
−

w−1∑
p=0

〈
pb

w

〉〈
2p

w

〉
+ 1

2

w−1∑
p=0

〈
pb

w

〉
. (6.11)

We write

bw =
w−1∑
p=0

〈
pb

w

〉
2p

w
,

cw =
w−1∑
p=0

〈
pb

w

〉〈
2p

w

〉
,

dw = 1

2

w−1∑
p=0

〈
pb

w

〉
,

so that aw = bw − cw + dw . The computation of the limit 1
w

aw splits into three
lemmas of increasing difficulty.

Lemma 6.12. We have dw = 0.

Proof. Suppose b and w are coprime. Then b is invertible modulo w, so after
changing variables, the sum becomes

∑w−1
p=0 〈 p

w
〉, which is zero by elementary

calculations. If b and w are not coprime, then we write c = gcd(b,w), w′ = w/c,
b′ = b/c, and the sum is equal to c

∑w′−1
p=0 〈pb′/w′〉, so we reduce to the previous

case. �

Lemma 6.13. We have lim 1
w

bw = 1
6b

.
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Proof. Let again c = gcd(b,w) and w′ = w/c, b′ = b/c. We have

bw = 2c

b

w′−1∑
p=0

〈
pb′

w′

〉
pb′

w′ .

Like in Lemma 6.12, we write

w′−1∑
p=0

〈
pb′

w′

〉
pb′

w′ =
w′−1∑
p=0

〈
pb′

w′

〉(
pb′

w′ − 1

2

)
+ 1

2

w′−1∑
p=0

〈
pb′

w′

〉
=

w′−1∑
p=0

〈
pb′

w′

〉2

,

where we have used the fact that
∑w′−1

p=0 〈pb′/w′〉 = 0. By assumption, b′ and w′
are coprime. Substituting for p the multiple pb′′, where b′′ is the inverse of b′
modulo w′, we obtain

w′−1∑
p=0

〈
pb′

w′

〉2

=
w′−1∑
p=0

〈
p

w′

〉2

= s(1,w′).

By Theorem 6.9 (and the elementary observation that s(w′,1) = 0) the expression
evaluates to 1

12 (w′ + 2/w′ − 3). The lemma follows immediately. �

Lemma 6.14. If b is odd, then we have lim 1
w

cw = 1
24b

, whereas if b is even, then

lim 1
w

cw = 1
6b

.

Proof. The term cw is the Rademacher–Dedekind symbol D(2, b,w). We would
like to use the Rademacher reciprocity law, but in order to do this, we need to pass
to a subsequence of w because we need that 2, b, w are pairwise coprime. The
following claim allows us to compute lim 1

w
cw by passing to a subsequence given

by some arithmetic progression.

Claim. |cw − cw+1| < 3
2b + 33

4 .

To prove the claim, notice that δp,b,w := 〈pb
w

〉 − 〈 pb
w+1 〉 is equal to pb

w(w+1)
< b

w
,

unless any one of the three conditions holds:

• ⌊pb
w

⌋
>

⌊ pb
w+1

⌋
;

• ⌊pb
w

⌋
is an integer;

• ⌊ pb
w+1

⌋
is an integer.

In each of these cases we have δp,b,w < 1. The last two cases occur at most b times
each. If the first case occurs, then there exists k ∈ Z such that pb

w
≥ k >

pb
w+1 . This

implies that p ∈ [wk
b

,
(w+1)k

b
). Notice that p < w; hence, k < b, and the length

of the interval is at most 1. Therefore, it cannot contain more than one integer.
Hence, the first case occurs at most b times. Combining these cases (they are not
mutually exclusive, but we can be slightly wasteful), we obtain

|δp,b,w| ≤
{

1 for at most 3b values of p ∈ {0,1, . . . ,w − 1},
1
w

for all other values of p.
(6.15)
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We now write∣∣∣∣〈pb

w

〉〈
2p

w

〉
−

〈
pb

w + 1

〉〈
2p

w + 1

〉∣∣∣∣
≤

∣∣∣∣〈pb

w

〉
−

〈
pb

w + 1

〉∣∣∣∣∣∣∣∣〈2b

w

〉∣∣∣∣ +
∣∣∣∣〈 2b

w + 1

〉
−

〈
2b

w

〉∣∣∣∣∣∣∣∣〈 pb

w + 1

〉∣∣∣∣
≤ 1

2
|δp,b,w| + 1

2
|δp,2,w|,

where we used the fact that |〈x〉| ≤ 1
2 for all x. We sum up this inequality over

p ∈ {0, . . . ,w−1}. Combining this with (6.15) and adding a 1
4 for the term p = w,

which appears in the formula for cw+1 (and does not appear in the formula for cw),
we obtain

|cw − cw+1| ≤ 1

4
+ 1

2

w−1∑
p=0

|δp,b,w| + |δp,2,w| ≤ 1

4
+ 1

2
(3b + 1) + 1

2
(3 · 2 + 1)

= 3

2
b + 33

4
.

This proves the claim. We now resume the proof of Theorem 6.3. We split it into
two cases.

Case 1. b is odd. Suppose w is coprime to b and 2. By the Rademacher reci-
procity law (Theorem 6.10),

cw = b2 + w2 + 4 − 6bw

24bw
−

2∑
p=0

〈
pw

2

〉〈
bw

2

〉
−

b−1∑
p=0

〈
2p

b

〉〈
pw

b

〉
.

The two sums on the left are sums of bounded (as w goes to infinity) number of
summands, each of which bounded by 1

4 . It follows that

lim
w→∞

w coprime with 2 and b

1

w
cw = lim

w→∞
1

w

b2 + w2 + 4 − 8bw

24bw
= 1

24b
.

By the claim the limit of the subsequence of 1
w

cw over w coprime with 2 and b is
the same as the limit of the sequence 1

w
cw .

Case 2. b is even. Suppose w is even and gcd(b,w) = 2. Write w′ = w/2,
b′ = b/2. Then we have

cw = 2
w′−1∑
p=0

〈
pb′

w′

〉〈
p

w′

〉
= 2s(b′,w′).

By the Dedekind reciprocity law (Theorem 6.9),

s(b′,w′) = 1

12

(
w′

b′ + w′

b′ + 1

b′w′ − 3

)
− s(w′, b′).
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The expression s(w′, b′) is a sum of b′ terms, each bounded by 1
4 ; hence,

limw′→∞ 1
w′ s(w′, b′) = 0. This means that

lim
w→∞

gcd(b,w)=2

1

w
cw = 1

6b
.

By the claim the limit of a subsequence of 1
w

cw is the same as the limit of the full
sequence. �
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