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Strong Regular Embeddings of Deligne–Mumford
Stacks and Hypertoric Geometry

Dan Edidin

Abstract. We introduce the notion of strong regular embeddings
of Deligne–Mumford stacks. These morphisms naturally arise in the
related contexts of generalized Euler sequences and hypertoric geom-
etry.

1. Introduction

Let G be a finite group acting on affine schemes X = SpecA and Y = SpecB ,
and let f : Y → X be a G-equivariant morphism. Since f is G-equivariant, there
is an induced map of invariant subrings AG → BG corresponding to a morphism
of quotients g : Y/G → X/G. Certain algebro-geometric properties of the mor-
phism f (typically related to finiteness) are automatically preserved by the mor-
phism g. For example, if f is finite, then the induced morphism of quotients
g : Y/G → X/G is also finite. Likewise, if |G| is a unit in SpecB and f : Y → X

is a closed embedding, then g : Y/G → X/G is as well.
On the other hand, many properties of the morphism f will not descend. If

f is flat or smooth, the induced morphism of quotients need not be. Instead, we
can impose additional conditions on the actions of G on X and Y to ensure that
a property of morphisms of schemes does descend to the quotient. Two obvious
conditions that suffice are that G act freely or that G act trivially on both spaces.

Note, however, that these conditions are not necessary. For example, if Y =
X × Z and G acts trivially on Z, then Y/G = X/G × Z, so the flat projection
Y → X descends to a flat projection Y/G → X/G, and the diagram

Y ��

��

X

��
Y/G �� X/G

is Cartesian.
This is an example of a stabilizer preserving morphism, meaning that for every

point y ∈ Y , the map of stabilizers Staby Y → Stabf (y) X is an isomorphism of
groups. A folklore theorem [KM, cf. Lemma 6.3] states that an étale stabilizer-
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preserving morphism is strongly étale. This means that the morphism of quotients
Y/G → X/G and the diagram

Y ��

��

X

��
Y/G �� X/G

is Cartesian.
In this paper we turn our attention to the problem of determining when a

regular embedding i : Y ↪→ X descends to a regular embedding of quotients
j : Y/G ↪→ X/G (necessarily of codimension d since dimY = dimY/G and
dimX = dimX/G). The G-equivariant morphism Y → X is a local model for
a morphism ι : Y → X of Deligne–Mumford stacks. We say that a morphism of
Deligne–Mumford stacks is a strong regular embedding if the induced morphism
of coarse spaces Y → X is a regular embedding and the diagram of stacks and
spaces

Y ��

��

X

��
X �� Y

is Cartesian.
Although any immersion of stacks is stabilizer preserving, not every regular

embedding is strong (Example 3.1). Our first result, Theorem 2.2, is a character-
ization of strong regular embeddings. When Y ↪→ X is a strong regular embed-
ding of smooth stacks, we use Artin’s approximation theorem [Art] to prove that
the induced morphism of coarse spaces Y ↪→ X is étale locally the section of a
smooth morphism. As a corollary, we prove that if X̃ → X is a functorial resolu-
tion of singularities (in the sense of [Kol]), then the fiber product Ỹ = Y ×X X̃ is
a resolution of singularities of Y .

We also prove that the pullback on Chow groups (I ι)∗ : CH∗(IX ) →
CH∗(IY) commutes with the Chen–Ruan orbifold product, thereby giving a ring
homomorphism of orbifold Chow rings CH∗

orb(X ) → CH∗
orb(Y).

1.1. Applications

Strong regular embeddings arise in two related contexts, generalized Euler se-
quences and hypertoric geometry.

1.1.1. Generalized Euler Sequences. Let T be a torus acting with finite unram-
ified inertia on a smooth scheme X. The quotient stack X = [X/T ] is a smooth
Deligne–Mumford stack whose coarse space is a scheme by Sumihiro’s theorem
[Sum]. The cotangent bundle T ∗X fits into a generalized Euler sequence of vector
bundles on X

0 → T ∗X → [T ∗X/T ] → X × Lie(T )∗ → 0,
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which implies by Theorem 2.2 that the inclusion T ∗X → [T ∗X/T ] is a strong
regular embedding. We prove that if M and N are the coarse spaces of T ∗X
and [T ∗X/T ], respectively, then the regular embedding i : M → N induces an
isomorphism of integral Chow groups i∗ : CH∗(N) → CH∗(M). We also con-
jecture that if Ñ → N is a functorial resolution of singularities, then the pull-
back along the morphism M̃ → Ñ obtained by base change induces an isomor-
phism of integral Chow rings CH∗(Ñ) → CH∗(Ñ). Finally, we prove that the
pullback (I ι)∗ : CH∗(I [T ∗X/T ]) → CH∗(IT ∗X ) induces an isomorphism of
orbifold Chow rings.

1.1.2. Hypertoric Stacks. Hypertoric varieties were first defined by Bielawski and
Dancer [BD] and give a large and interesting class of algebraic symplectic mani-
folds with complete hyper-Kähler metrics. Algebraic symplectic manifolds natu-
rally occur in a variety of mathematical contexts including representation theory
(Springer resolutions, Nakajima quiver varieties, Slodowy slices), string theory
(moduli spaces of Higgs bundles), and mirror symmetry (Gromov–Witten theory
of K3 surfaces and T ∗P1).

The theory was further developed by a number of authors including Hausel
and Sturmfels [HS] and Proudfoot [Pro2; Pro1].

Let T be a torus of rank d , and let V be an n-dimensional representation
of T with d × n weight matrix A = (aij ). There is a natural algebraic mo-
ment map μ : V × V ∗ → Lie(T )∗, and the hypertoric variety Y(A, θ) is defined
as the double reduction (V × V ∗)////T , where the first reduction is an alge-
braic symplectic reduction with respect to μ, and the second reduction is a GIT
quotient with respect to the torus action linearized with respect to a character
θ ∈ X(T ).

The hypertoric variety Y(A, θ) naturally embeds in a Lawrence toric variety
X(A±, θ), which is the GIT quotient (V × V ∗)//T . Following Jiang and Tseng
[JT1], we refer to the corresponding quotient stack Y(A, θ) (resp. X (A±, θ)) as
a hypertoric stack (resp. Lawrence toric stack). If the character θ is generic, then
the stacks Y(A, θ) and X (A±, θ) are Deligne–Mumford, and the corresponding
varieties are their coarse spaces.

In Section 5 we prove that the embedding Y(A, θ) ↪→ X (A±, θ) is a strong
regular embedding. This implies that the morphism Y(A, θ) → X(A±, θ) is
a regular embedding which is étale locally a section of smooth morphism,
so that any functorial resolution of singularities of the Lawrence toric stack
X(A±, θ) pulls back to resolution of singularities of the hypertoric variety
Y(A, θ).

We also prove (Theorem 5.5) that the inclusion morphism ι : Y(A, θ) ↪→
X (A±, θ) induces an isomorphism of integral Chow rings CH∗(X (A±, θ)) →
CH∗(X (A, θ)) and integral Chow groups CH∗(X(A±, θ)) → CH∗(Y(A, θ)).

As a corollary of Theorems 5.5 and 2.7, we also prove (Corollary 2.9) that the
inclusion of inertia stacks IY(A, θ) → IX (A±, θ) induces an isomorphism of
integral orbifold Chow rings. With rational coefficients, this result was previously
obtained by Jiang and Tseng [JT1].
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1.2. Conventions and Notation

1.2.1. Generalities on Stacks. Unless otherwise stated, we work with Deligne–
Mumford stacks of finite type (and hence finite presentation) over a Noetherian
scheme S.

Let X be a Deligne–Mumford stack. If T is an S-scheme and T
x→ X is a T -

valued point, then we use the notation Aut(x) to denote the T -group IsomT (x, x).
If X is a Deligne–Mumford stack, then we denote by IX the inertia stack

X ×X×X X where the fiber product is taken with respect to the diagonal X →
X ×X . Because X is Deligne–Mumford, the natural morphism IX → X is un-
ramified. The fiber of IX → X over a T -valued point T

x→ X is the T -group
Aut(x). We denote by I 2X the double inertia stack defined as the fiber product
IX ×X IX . Note that I 2X is not in general equivalent to the stack I (IX ).

A Deligne–Mumford stack X has finite inertia if the morphism IX → X is
finite. The stack is separated if the diagonal X → X ×X is finite. Any separated
stack has finite inertia, but the converse need not hold.

Following [AOV], we say that a Deligne–Mumford stack is tame if it has finite
inertia and if for every geometric point Speck

x→ X of X , the finite group Aut(x)

is linearly reductive over Speck. This is equivalent to saying that |Aut(x)| is
prime to the characteristic of k.

An algebraic space X is a coarse space of a stack X if there is a morphism
X π→ X such that

(i) π is initial for maps from X to algebraic spaces, that is, for any morphism
f : X → Z with Z an algebraic space, there is a unique morphism of alge-
braic spaces g : X → Z such that the morphism f factors as g ◦ π ,

(ii) π induces a bijection between geometric points of X and geometric points
of X.

The universal property (i) implies that the coarse space is unique up to (unique)
isomorphism of algebraic spaces.

A fundamental theorem of Keel and Mori [KM] implies that any stack with
finite inertia has a coarse space X.

A stack X is a quotient stack if it is equivalent to a stack of the form [X/G]
where X is an algebraic space and G is flat closed subgroup scheme of GLn(S)

for some n. Equivalently, we may assume that X = [X′/GLn(S)] where X′ is the
algebraic space (X × GLn(S))/G.

If X = [X/G] is a quotient stack, then the coarse space of X of X is the
geometric quotient X/G in the category of algebraic spaces.

1.2.2. Chow Groups. If X is a scheme defined over a field, then we denote by
CHd(X) the group of d-dimensional cycles modulo rational equivalence. Like-
wise, we denote by CHd(X) the group of codimension-d cycles modulo rational
equivalence. When X is equidimensional of dimension n, CHd(X) = CHn−d(X).
Set CH∗(X) = ⊕

d CHd(X) and CH∗(X) = ⊕
d CHd(X). If f : Y → X is proper,

then there is a pushforward f∗ : CHd(Y ) → CHd(X). Likewise if f is flat, or
an lci morphism, then there is a pullback f ∗ : CHd(X) → CHd(Y ). When X is
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smooth, the diagonal is a regular embedding, and pullback along the diagonal
defines a graded ring structure on CH∗(X).

This definition of Chow groups formally extends to algebraic spaces.
If G is a linear algebraic group acting on an algebraic space X, then we

can define equivariant Chow groups [EG1]. The group CHd
G(X) is defined as

CHd((X × U)/G) where U is an open set in a representation V of G such that
G acts freely on U and codim(V \ U) > d . This definition is independent of the
representation V and the open set U .

If X is a Deligne–Mumford stack, then CHd(X ) denotes the Chow group in
codimension d defined by Kresch in [Kre]. Typically, we will work with quotient
stacks X = [X/G]. In this case, CHd(X ) = CHd

G(X) where CHd
G(X) denotes the

equivariant Chow group defined before. Note that CHd(X ) can be nonzero for
d > dimX , although this group will be torsion. Likewise, the group CHd(X ) can
be nonzero for negative d .

Bloch defined for a scheme X, higher Chow groups CHd(X, k) parameterizing
cycles of dimension d +k on X×�k , which intersect the faces of �k transversely.
(Here �k denotes the algebraic k-simplex Speck[t0, . . . , tk]/(t0 + · · · + tk − 1).)
In this definition CHd(X,0) = CHd(X).

A key property of higher Chow groups proved by Bloch [Blo] and Levine
[Lev] is that if X is an arbitrary scheme and Z ⊂ X is a closed subscheme with
complement U , then there is a localization long exact sequence

· · · → CHd(Z, k) → CHd(X, k) → CHd(U, k) → ·· · (1)

extending the classical localization sequence

CHd(Z) → CHd(X) → CHd(U) → 0

for ordinary Chow groups.

1.2.3. Regular Embeddings. A closed embedding of schemes Y ↪→ X is a regular
embedding if Y is Zariski locally cut out by a regular sequence of functions on X.
This notion readily generalizes to Deligne–Mumford stacks by replacing Zariski
locally with étale locally. Precisely, a closed embedding of Deligne–Mumford
stacks Y ↪→ X is a regular embedding if there is an étale surjective morphism
U →X with U a scheme such that morphism of schemes obtained by base change
along U →X is a regular embedding.

2. Definitions and Statements of Results

Definition 2.1. A morphism of Deligne–Mumford stacks ι : Y → X is said to be
a strong regular embedding if the induced morphism of coarse spaces i : Y → X

is a regular embedding and the diagram

Y ι→ X
↓ ↓
Y

i→ X

is Cartesian.
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Our first result is the following characterization of strong regular embeddings:

Theorem 2.2. Let ι : Y → X be a regular embedding of tame Deligne–Mumford
stacks, and let Y → X be the corresponding embedding of coarse spaces. The
following conditions are equivalent:

(i) ι : Y → X is a strong regular embedding.
(ii) There is a stratification of Y by locally closed substacks such that the normal

bundle Nι restricted to each stratum is trivial.
(ii′) If Y is a scheme, then Nι is locally trivial in the Zariski topology on Y .
(iii) For every geometric point Speck

y→ Y , the pullback of (Nι)y is a trivial
representation of the inertia group Gy = Aut(y).

(iv) For every geometric point Speck
y→ Y , there is a strongly étale morphism

[U/Gy] → X with U affine such that normal bundle to the regular embed-
ding Y ×X [U/G] ↪→ [U/G] is trivial.

(v) For every geometric point Speck
y→ Y , there is a strongly étale morphism

[U/Gy] → X where U is an affine scheme such that Y ×X U is defined by
a G-fixed regular sequence in O(U).

2.1. Strong Regular Embeddings and Resolutions of Singularities

Given a strong regular embedding ι : Y → X of smooth Deligne–Mumford
stacks, we obtain a regular embedding of the possibly singular coarse spaces
Y → X.

Our next result shows that this morphism is rather distinguished among regular
embeddings in that it is étale locally a section of a smooth morphism.

Definition 2.3. A regular embedding Y
i

↪→ X with the following local structure
is called a tubular regular embedding: For each point of y ∈ Y ⊂ X, there is a
commutative diagram

Z

���
��

��
��

�
�� Z′

��

�� W

��
Y �� X

where W → X and Z → Y are étale neighborhoods of y, Z → Z′ is étale, and
Z′ → W is a section of a smooth morphism.

Theorem 2.4. Let Y → X be a strong regular embedding of smooth Deligne–
Mumford stacks. Then the induced regular embedding Y → X is a tubular regular
embedding.

As an application of Theorem 2.4, we can show that the induced morphisms of
coarse moduli spaces has a strong functorial property with respect to resolutions
of singularities.
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Corollary 2.5. Let ι : Y → X be a strong regular embedding of smooth tame
Deligne–Mumford stacks defined over a perfect field k. Then, if X̃ is a canoni-
cal (functorial) resolution of singularities of X, then Y ×X Ỹ is a resolution of
singularities of Y .

Remark 2.6. In a recent preprint, Buonerba [Buo] proved functorial resolution of
tame quotient singularities in arbitrary characteristic. This implies that the coarse
space of every tame, smooth Deligne–Mumford stack admits a functorial resolu-
tion of singularities.

2.2. Strong Regular Embeddings and Orbifold Products

For stacks defined over a field, we also obtain the following result about orbifold
products. See Section 3.3 for the notation. The proof will be given in Section 3.3.

Theorem 2.7. Let ι : Y → X be a strong regular embedding of smooth tame
Deligne–Mumford stacks, and let I ι : IY → IX be the induced morphism of in-
ertia stacks. The pullback (I ι)∗ : CH∗(IX ) → CH∗(IY) commutes with the orb-
ifold products on CH∗(IX ) and CH∗(IY).

As an application, we obtain the following corollaries, which will be proved in
Section 4 and Section 5, respectively.

Corollary 2.8. Let T be a torus acting on a smooth variety X so that X =
[X/T ] is a tame Deligne–Mumford stack. Then, the pullback (I ι)∗ : CH∗(I [T ∗ ×
X/T ]) → CH∗(IT ∗X ) induces an isomorphism of orbifold Chow rings
CH∗

orb([T ∗X/T ]) → CH∗
orb(T

∗X ).

Corollary 2.9. If Y(A, θ) is a hypertoric stack1 and X (A, θ) is the associated
Lawrence toric stack, then the pullback on Chow groups (I ι)∗ : CH∗(X (A, θ)) →
CH∗(Y(A, θ)) induces an isomorphism of orbifold Chow rings.

The analogous results also hold for orbifold K-theory.

Remark 2.10. With rational coefficients, Corollary 2.9 was proved by direct cal-
culation by Jiang and Tseng in [JT1, Thm. 3.10].

3. Proofs of Theorems

3.1. Proof of Theorem 2.2

(i) 	⇒ (ii), (ii′). Since the relative dimension of the morphism Y ι→ X is nec-
essarily the same as the relative dimension of the morphism Y

i→ X, the normal
bundle Nι is the pullback of the normal bundle Ni . If Y is an algebraic space, then
it has a stratification by schemes, and on each open stratum, Ni is locally trivial.
Refining the stratification if necessary, we obtain one where Ni is trivial on each
open stratum. Pulling back to Y gives the desired conclusion about Nι. (Note that

1See Section 5 for notation and definitions.
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we are using the fact that tame quotients are preserved by base change along the
strata.) In the case where Y is a scheme, then Ni is locally trivial in the Zariski
topology, and (ii′) follows.

(ii) 	⇒ (iii). Let Speck
y→ Y be a geometric point of Y . Our hypothesis (ii)

implies that the pullback of Nι to BGy is trivial. This means that the fiber of Nι at
y is a trivial Gy -module, which is assertion (iii).

(iii) 	⇒ (iv). By the local structure theorem for Deligne–Mumford stacks (cf.
[AOV, Lemma 2.2.3]), every geometric point y → Y has a strongly étale neigh-
borhood isomorphic to [U/Gy] where U is an affine scheme and Gy = Auty(Y).
The pullback N of Nι to [U/Gy] corresponds to a Gy -equivariant vector bundle
N on the affine scheme U . Let O be a point of U mapping to y so that O is
fixed by Gy . In a neighborhood of the fixed point O , the bundle N is nonequiv-
ariantly trivial. Taking the intersection over all g ∈ Gy of the translates of this
neighborhood, we obtain a Gy -invariant neighborhood of O such that the restric-
tion of N to this neighborhood is nonequivariantly trivial. Replacing U with this
neighborhood, we may assume that N decomposes as

⊕
V V ⊗ OrV

U , where the
sum is over the irreducible representations of Gy . By hypothesis the fiber of N

at the fixed point O is a trivial representation. So N must be globally trivial as a
Gy -equivariant bundle.

(iv) 	⇒ (v). Again, let O be a fixed point for the Gy action that maps to y,
and let V = Y ×X U . Then Y ×X [U/Gy] = [V/Gy]. Since O is a fixed point,
the local ring A = OU,O has an induced action of Gy . Let B denote the local
ring OV,G, so B = A/I . We wish to show that I is generated by a Gy -fixed
regular sequence. By assumption Gy acts trivially on the B-module I/I 2. Then
I/I 2 is free with basis x1, . . . , xr , each of which is Gy -fixed. Let x1, . . . , xm

be lifts of these elements to a regular sequence in A. By construction gxi ≡
xi mod I 2. Since G is linearly reductive, the G-module has a Reynolds oper-
ator ρ. Let yi = ρ(xi); then yi ≡ xi mod I 2, so the yi form a Gy -fixed regular
sequence that generate I .

(v) 	⇒ (i). Since [U/G] → X is strongly étale, the corresponding morphism
U/G → X is étale, and to check that ι : Y → X is a strong regular embedding, it
suffices to check that the morphism [V/G] → [U/G] is a strong regular embed-
ding where V = Y ×X U .

As before, assume that U = SpecA and V = SpecA/I . Then we must show
that the kernel of the morphism of invariant rings AG → (A/I)G is generated by
a regular sequence and that A/I = AG ⊗AG (A/I)G.

Let x1, . . . , xr ∈ A be a regular sequence of G-fixed elements that generate I .
Then these elements also generate the invariant ideal IG. Since G is linearly re-
ductive, (A/I)G = AG/IG as AG-modules. Also, since AG is a subring of A, the
sequence x1, . . . , xn is also regular in AG. Finally, since I is generated by G-fixed
elements, IGA = I , so A/I = A ⊗AG (A/I)G, as claimed.
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Example 3.1. We illustrate the failure of the theorem when ι is not a strong regu-
lar embedding. Let Y = A2 with the action of G = ±1 given by (−1)(x, y) =
(−x,−y), and let X = {(0,0)}. Then the morphism of quotient stacks BG =
[X/G] → [Y/G] is a regular embedding. However, the induced morphism of
coarse moduli spaces is the inclusion of the singular point in the affine quadric
cone Speck[x2, y2, xy].

In this example, I is not generated by a G-fixed regular sequence, and IG is
generated by (x2, xy, y2), which do not form a regular sequence in the invariant
subring k[x2, xy, y2]. The normal bundle to Y in X is the vector bundle on BG
corresponding to the nontrivial two-dimensional representation of G with weights
(−1,−1).

On the other hand, if we consider the action given by (−1)(a, b) = (−a, b)

and let Y = Z(y), then Y is defined by a G-fixed regular sequence, and I = (y) =
IG, so that A/I = Speck[x] is obtained by extension of scalars from AG/IG =
Speck[x2].
Example 3.2. The tameness assumption is crucial, so that the group G is lin-
early reductive. Let k be field of characteristic 2, and let G = Z2 act on k[x, y] by
exchanging coordinates. Let I = (x + y). Then I is generated by a G-fixed reg-
ular sequence. However, the sequence of G-modules 0 → I → A → A/I does
not remain exact after taking G-invariants since the map AG = k[x + y, xy] →
(A/I)G = k[x, y]/(x +y) is not surjective. In particular, the map Spec(A/I)G →
SpecAG is not a closed embedding. Hence, the regular embedding of stacks
[(SpecA/I)/G] → [(SpecA)/G] is not a strong regular embedding.

3.2. Proofs of Theorem 2.4 and Corollary 2.5

Proof of Theorem 2.4. Let y → Y ↪→X be a geometric point. By the local struc-
ture theorem for tame Deligne–Mumford stacks there is a strongly étale neighbor-
hood [U/Gy,O] → (X , y) where U = SpecA is affine and O ∈ U is Gy -fixed.

Since the morphism Y → X is representable and affine, the inverse image V

of Y in U is affine, and the morphism ([V/Gy],O) → (Y, y) is also strongly
representable, and we have a Cartesian square

([V/Gy ],O)
� � ��

��

([U/Gy],O)

��
(Y, y)

� � �� (X , y)

where the vertical maps are strongly étale.
Thus, we are reduced to the case that X = [U/G] with U = SpecA affine,

G a finite reductive group, and Y = [V/G] where V = SpecA/I is a closed
subscheme whose ideal I = (f1, . . . , fr) is generated by a G-invariant regular
sequence. Since O ∈ U in assumed to be G-fixed, there is an induced action of G

on Â, the completion of A at the maximal ideal of O . Since V is smooth over the
ground scheme, there is an isomorphism of G-algebras Â 
 Â/I [[f 1, . . . , f r ]]
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where the f i is any lift of fi to A. Since G acts trivially on the fi , we obtain an
isomorphism (Â)G 
 (Â/I )G[[f 1, . . . , f r ]].

We claim that (Â)G = ÂG, where the completion of AG is taken at the contrac-
tion of the maximal ideal m corresponding to O ∈ SpecA. To see this, we argue
as follows. Since G is linearly reductive, there is an isomorphism of AG-algebras
(Ã)G = ÂG, where Ã is the completion of A at m∩AG [EG2, Lemma 4.2]. Next,
observe that since O is a G-fixed point, the inverse image of m∩ AG in SpecA is
the single point O This means that (m ∩ AG)A is m-primary and the two ideals
generate the same topology on A. Hence, Ã = Â.

Thus, the completion of the local ring of X = U/G at the image of O is iso-
morphic to a formal power series ring over the completion of the local ring of
Y = V/G at the image P of O in Y . Applying Artin’s étale approximation the-
orem [Art, Cor. 2.6], there are a scheme W and étale morphisms W → X and
W → Y × Ar whose image contains P and P × 0 where 0 is the origin in Ar .
Let Z′ = Y ×Y×Ar Z, so the induced morphism Z′ → W is a section of a smooth
morphism. Applying Artin’s approximation to Z′ and Y yields étale morphisms
Z → Y and Z → Z′ and a commutative diagram

Z

���
��

��
��

�
�� Z′

��

�� W

��
Y �� X �

Corollary 2.5 follows from Theorem 2.4 and the following proposition.

Proposition 3.3. Let BR be a resolution of singularities functor that is functorial
for smooth morphisms [Kol, Chapter 3], and let i : Y → X be a tubular regular
embedding. Let X̃ = BR(X). Then i∗X̃ is a resolution of singularities of X̃. (Here
i∗X̃ refers to the fiber product Y ×X X̃.)

Proof. First, suppose that i : Y → X is a section of a smooth morphism
π : X → Y . In this case, by functoriality, X̃ = π∗Ỹ where Ỹ = BR(Y ). Since
π ◦ i = 1Y , i∗X̃ = Ỹ .

For the general case, observe that if Y → X is a regular embedding, then the
image of the smooth locus of Y is contained in the smooth locus of X. The reason
is that any regular embedding with a smooth source must have a smooth target by
[EGA4, Thm. 17.12.1].

Thus, i∗Y → Y is an isomorphism over the smooth locus of Y . To finish the
proof, we must show that i∗Y is smooth. This can be done after étale base change.
By hypothesis we have a commutative diagram

Z

h

���
��

��
��

�
g �� Z′

��

j �� W

f

��
Y

i �� X
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where j is a section of a smooth morphism and f , g, h are étale. Hence, Z̃ =
g∗j∗f ∗X̃. On the other hand, by commutativity g∗j∗f ∗X̃ = h∗i∗X̃. Thus, i∗X̃
is smooth after base change by the étale morphism h. �

Remark 3.4. A result similar to Proposition 3.3 was proved by Lowengrub [Low].

3.3. Orbifold Products and Proof of Theorem 2.7

3.3.1. Definition of the Obstruction Class and Orbifold Product. If X is a smooth
Deligne–Mumford stack with finite stabilizer, then Chen and Ruan [CR] defined
an exotic ring structure on the cohomology of the inertia stack IX called the
orbifold product. This product has been studied by many authors and extended to
both Chow groups and K-theory. We briefly recall the definition of the orbifold
product using the formalism developed in [JKK; EJK1; EJK2].

Denote by I 2X the fiber product IX ×X IX . Denote by e1 and e2 the two
projections I 2X → X . Since I 2X has the structure as a relative group scheme
over IX , there is an additional morphism μ : I 2X → IX corresponding to the
composition in this group.

The orbifold product on CH∗(IX ) is defined as follows. Given α,β ∈
CH∗(IX ),

α 
 β = μ∗(e∗
1α · e∗

2β · eu(RX )),

where RX is the obstruction bundle and eu denotes its top Chern class. (Note that
IX is in general not equidimensional.) This product preserves the age grading on
the Chow groups of IX . (See [JKK] for the definition of the age grading.)

An analogous product can be defined in K-theory, where the symbol eu(RX)

refers to the K-theoretic Euler class λ−1(R
∗
X).

We denote by CH∗
orb(X ) the group CH∗(IX ) with the orbifold product and

age grading.
If we make the very mild assumption that X = [X/G] with G a linear alge-

braic group acting with finite stabilizer on a smooth algebraic space X , then the
formalism of [JKK; EJK1; EJK2] can be used to define the class of the obstruc-
tion bundle in K0(I

2X ), the Grothendieck group of vector bundles on I 2X . To
do this, we recall the definition of the logarithmic trace.

Definition 3.5 [EJK1, Definition 4.3]. Let X be an algebraic space with the
action of an algebraic group Z, and let V → X be a Z-equivariant vector bundle
on X. Let g be a finite order automorphism of order r of the fibers of V → X such
that the action of g commutes with the action of Z. Set L(g)(V ) = ∑r−1

k=1
k
r
Vk ∈

K0(Z,X) ⊗ Q where Vk is the e2πik/r -eigenspaces for the action of g. (Here
K0(Z,X) denotes the Grothendieck group of Z-equivariant vector bundles on X.)

Remark 3.6. Observe that L(g)(V ) = 0 if and only if g acts trivially on the fibers
of V → X.
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Under the assumption that X = [X/G], IX = [IGX/G] and I 2X = [I 2
GX/G]

where IGX = {(g, x) | gx = x} and I 2
GX = {(g1, g2, x) | g1x = g2x}. Follow-

ing [EJK1], I 2
GX decomposes into a disjoint sum indexed by double conjugacy2

classes � ⊂ G × G. Specifically, IGX = ∐

 I
 where

I
 = {(g1, g2, x) | g1x = g2x = x, (g1, g2) ∈ 
}.
If (g1, g2) ∈ 
, then [I
/G] = [Xg1,g2/ZG(g1, g2)] where ZG(g1, g2) is the sub-
group of G centralizing g1 and g2.

On a component [I
/G] = [Xg1,g2/ZG(g1, g2)], the class of the obstruction
bundle is given as an element of K0(ZG(g1, g2),X

g1,g2) by the formula [EJK2,
Defs. 2.2.3, 2.2.6, 2.3.3]

LR(T) := L(g1)(T|Xg1,g2 ) + L(g2)(T|Xg1,g2 )

+ L((g1g2)
−1)(T|Xg1,g2 ) −T|Xg1,g2 + (T|Xg1,g2 )

g1,g2 . (2)

Here T is the class in K0(G,X) corresponding to the tangent bundle of the stack
X = [X/G].

3.4. Proof of Theorem 2.7

Theorem 3.7. Let Y → X be a strong regular embedding of smooth tame
Deligne–Mumford quotient stacks, and let RX be the class of the obstruction
bundle for the orbifold product in K0(I

2X ). Then RY = I 2ι∗RX where RY is
the obstruction bundle for the orbifold product on Y and I 2ι : I 2Y → I 2X is the
inclusion.

A necessary ingredient in the proof of Theorem 3.7 is the following property of
strong regular embeddings.

Proposition 3.8. Let ι : Y → X be a strong regular embedding of tame smooth
Deligne–Mumford stacks, and let IY and IX be their respective inertia stacks.
Then the normal bundle of IY in IX is the pullback of the normal bundle of Y
in X . Likewise, the normal bundle to I 2Y in I 2X is the pullback of the normal
bundle of Y in X .

Example 3.9. The hypothesis that Y is smooth is crucial. Let X = [A2/μ2]
where μ2 acts by −1 · (a, b) = (−a,−b). Let V = V (xy), and let V = [V/μ2].
Since V is defined by a μ2-invariant function, the embedding V → X is a strong
regular embedding of pure codimension one. The inertia IX is the disjoint sum
X

∐
Bμ2, and the inertia IY is the disjoint sum of Y

∐
Bμ2. Thus, the embed-

ding of IY in IX does not have pure codimension one, so the normal bundle if
IY in IX cannot be the pullback of the normal bundle of Y in X .

2A double conjugacy class is the orbit of a pair (g1, g2) ⊂ G × G under the diagonal action of G by
conjugation.
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Proof of Proposition 3.8. Since Y →X is a closed embedding, the diagram

IY

��

I ι �� IX

��
Y ι �� X

is Cartesian. Moreover, since Y and X are smooth, IY and IX are also smooth,
so I ι is also a regular embedding. To check that the normal bundle of IY in IX
is the pullback of the normal bundle of Y and X , it suffices to prove that the two
embeddings have the same codimension.

This can be checked after base change by strongly étale morphism. Thus, we
can assume that X = U/G, where U is affine and G is a finite group, and Y =
[V/G], where V is a closed subscheme cut out by a G-fixed regular sequence.
Since X = [U/G], the inertia stack IX is the quotient stack [IGU/G] where IGX

is the inertia group for the action of G. Since G is finite, IGU = ∐
g∈G Ug where

Ug is the subscheme fixed by g. Likewise, IY = [IGV/G] and IGV = ∐
g∈G V g .

Thus, it suffices to check that V ↪→ U is a G-equivariant embedding of affine
schemes of pure codimension d and V is defined by a G-fixed regular sequence.
Then for any g ∈ G, the codimension of V g in Ug is also d . Let y ∈ V g be a point,
and let Gy be the stabilizer of y, which necessarily contains g. The argument used
in the proof of Theorem 2.2 shows that the complete local ring Ôy,U is isomorphic
as a Gy -module to Ôy,V [[T1, . . . , Td ]] where Gy acts trivially on the Ti . Hence,

Ôy,Ug = Ô〈g〉
y,U = O〈g〉

y,V [[T1, . . . , Td ]],
so the codimension is preserved.

A similar argument shows that the normal bundle of I 2Y in I 2X is also the
pullback of the normal bundle to IY in IX . �

Proof of Theorem 3.7. If Y ↪→ X is a strong regular embedding, then by Propo-
sition 3.8 we have the following identity in K0(ZG(g1, g2), (Y

g1,g2)):

TX |Yg1,g2 = TY|Yg1,g2 + N |Yg1,g2 ,

where N is the normal bundle of Y in X . Moreover, since ι is a strong regular em-
bedding, the fibers of N |Yg1,g2 are trivial modules for the action of the group gen-
erated by g1, g2. Hence, L(g1)(N) = L(g2)(N) = L((g1g2)

−1)(N) = 0. Also,
since g1, g2 act trivially on N , N = Ng1,g2 . Substituting into formula (2), we see
that LT (TX )|Yg1,g2 = LT (TY ), which proves the proposition. �

Proof of Theorem 2.7. To prove the theorem, we must show the following identity
for any α,β ∈ CH∗(IX ):

μ∗(e∗
1(I ι)∗(α) · e∗

2(I ι)∗(β) · eu(RY )) = (I 2ι)∗(μ∗(e∗
1α · e∗

2β · eu(RX )). (3)

By Theorem 3.7, RY = (I 2ι)∗RX . By Proposition 3.8 the normal bundle of
I 2Y in I 2X is the pullback of the normal bundle to IY in IX . It follows [Ful,
Thm. 6.2(b, c)] that e∗

i ◦ (I ι)∗ = (I 2ι)◦e∗
i as morphisms CH∗(IX ) → CH∗(I 2Y).
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Applying [Ful, Thm. 6.2(a, b)] also implies that μ∗ ◦ (I 2ι)∗ = (I ι)∗ ◦μ∗ as a mor-
phism CH∗(I 2X ) → CH∗(IY).

Substituting these identities into equation (3) yields the theorem. �

3.5. Examples

Let X = [A3/μ3] where the generator ω of μ3 acts by ω(a, b, c) = (a,ωb,ω2c).
Since A3 is a representation of μ3, CH∗(X ) = CH∗(Bμ3) = Z[t]/3t . The inertia
IX has three components indexed by μ3. The identity section I1 is isomorphic to
X , and the components Iω and Iω2 are both isomorphic to A1 × Bμ3, which is
identified with the quotient [{(a,0,0)}/Bμ3]. The Chow groups CH∗(IX ) have a
natural CH∗(Bμ3)-module structure, which is preserved by the orbifold product,
so we write CH∗(IX ) = ⊕

m∈μ3
Z[t]/(3t).

Since μ3 is abelian, there are nine double conjugacy classes, and I 2X has
nine components indexed by μ3 × μ3. For each pair (m1,m2) ∈ μ3 × μ3, let
R(m1,m2) be the restriction of the obstruction bundle to the component I 2

m1,m2
=

[(A3)m1,m2/μ3]. Let ξ be the defining representation of μ3. Then the tangent
bundle T of X corresponds to the representation 1 + χ + χ2 where 1 denotes
the trivial representation. Using the formula of [EJK1], we obtain R(ω,ω) = χ2,
R(ω2,ω2) = χ , and R(m1,m2) = 0 for all other pairs (m1,m2) ∈ μ3 × μ3.

If we denote by lm with m ∈ μ3 the generator of the Z[t]/(3t)-module
CH∗(Im), then we obtain the following identities for the orbifold product:

lω 
 lω = 2t lω,

lω 
 lω2 = 2t2l1,

lω2 
 lω2 = t lω,

and l1 acts as the identity. Hence,

CH∗
orb(IX ) = Z[t, lω, lω2]/(3t, l2

ω − 2t lω, lωlω2 − 2t2, l2
ω2 − t lω2).

We will now consider various substacks of X and compare orbifold Chow
rings. To start, let Y = [A2/μ3] where ω · (b, c) = (ωb,ω2c). The map A2 → A3,
(b, c) �→ (0, b, c) induces a strong regular embedding of stacks Y → X since the
ideal of A2 in A3 is generated by the μ3-fixed function x. Again, CH∗(IY) is
isomorphic to the

⊕
m∈μ3

Z[t]/(3t), and the pullback induced by the inclusion
IY → IX maps lω to lω and lω2 to lω2 , and direct calculation shows that the
pullback induces an isomorphism CH∗

orb(Y) → CH∗
orb(X ).

Now let Y be the substack [A2/μ3] where ω · (a, b) = (a,ωb). The map
A2 → A3, (a, b) �→ (a, b,0), induces an embedding Y → X , but since the defin-
ing equation of A2 in A3 is not μ3-invariant, this is not a strong regular em-
bedding. Indeed, a direct calculation shows that R(ω,ω) = 0, so that RY is not
the pullback of RX . Again, CH∗(IY) is isomorphic to

⊕
m∈μ3

Z[t]/(3t), and
the pullback induced by the inclusion Y → X maps lm to lm. However, because
Rω,ω = 0, the orbifold Chow ring has the presentation

CH∗
orb(IY) = Z[t, l1, l2]/(3t, lω2 − lω, lωlω2 − 2t2, lω2 lω2 − t lω2),
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and we see that the map that sends the generator lm of CH∗(IXm) to the generator
lm of CH∗(IYm) is not a homomorphism of orbifold Chow rings.

Finally, let Y = [Z/μ3] where Z = V (yz−1) ⊂ A3. Since the equation yz−1
is μ3-fixed, the map Y → X is a strong regular embedding. Since μ3 acts freely
on Z, on the quotient stack Y is represented by the scheme A1 ×Gm. Thus, IY =
Y , and so (IY)ω and (IY)ω2 are both empty. Thus, CH∗(IY) = CH∗(A1 ×Gm) =
Z, and the orbifold product is trivial. The pullback induced by the inclusion Y →
X maps lω and lω2 to 0, and the map on orbifold Chow rings is the homomorphism

Z[t, lω, l2
ω]/(3t, l2

ω − 2t lω, lωlω2 − 2t2, l2
ω2 − t lω2) → Z

given by setting t , lω, lω2 to be equal to 0.

4. Application: The Generalized Euler Sequence
and Cotangent Bundle Stacks

Let T be a torus acting on a smooth variety X defined over a field k so that the
quotient stack X = [X/T ] is a tame Deligne–Mumford stack.

In this section we consider two natural quotient stacks that arise from this data,
namely T ∗X and [T ∗X/T ]. The first stack is intrinsic to X , whereas the latter
depends on the presentation of X as a quotient stack. There is an exact sequence
of vector bundles on X

0 → T ∗X → [T ∗X/T ] → [X × Lie(T )∗/T ] → 0. (4)

Since T is a torus, Lie(T ) is a trivial T -module, and the last bundle in the se-
quence is the trivial bundle [X/T ] × Lie(T ). We call (4) the generalized Euler
sequence because, when X = An+1 \ {0} and T = Gm acts with weights all equal
to one, then X = [X/T ] = Pn, and (4) is the usual Euler sequence for the cotan-
gent bundle of Pn.

Our goal is to understand the relationship between the stacks T ∗X and
[T ∗X/T ]. Since both stacks are vector bundles over X , the inclusion i : T ∗X →
[T ∗X/T ] induces a pullback isomorphism i∗ : CH∗([T ∗X/T ]) → CH∗(X ).

However, stronger results hold. Let M be the coarse space of T ∗X , and let
N be the coarse space of [T ∗X/T ]. By Sumihiro’s theorem [Sum] the action of
a torus on a normal variety is locally linearizable in the Zariski topology. This
implies that the coarse spaces M, N, and X are all k-varieties.

There is a commutative triangle of morphisms of schemes:

M i ��

���
��

��
��

� N

����
��

��
��

X

Note that in general M and N are not vector bundles over X.

Proposition 4.1. The inclusion ι : T ∗X → [T ∗X/T ] is a strong regular em-
bedding, so the inclusion M → N is a regular embedding that is étale locally
isomorphic to a section of a smooth morphism.
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Proof. Observe that the sequence T ∗X → [T ∗X/T ] → [X × Lie(T )∗/T ] is ex-
act and Lie(T )∗ is a trivial T -module (because T is diagonalizable). Hence, the
normal bundle to ι is the trivial bundle T ∗X × Lie(T )∗, so ι is a strong regular
embedding. �

Corollary 4.2. If Ñ is a canonical (functorial) resolution of singularities of N,
then M̃ := M ×N Ñ is a resolution of singularities as well.

The main result of this section is the following result about the Chow groups of
M and N.

Theorem 4.3. The pullback ι∗ : CH∗(N) → CH∗−dimT (M) is an isomorphism of
integral Chow groups.

Theorem 4.3 follows from a more general result about strong regular embeddings
of vector bundles on not-necessarily smooth quotient stacks.

Let T be a diagonalizable group (as opposed to a torus) acting on a reduced
scheme X such that the quotient X = [X/T ] is a tame Deligne–Mumford stack.

Let

0 �� V ′

���
��

��
��

�
�� V

��

�� V ′′

����
��

��
��

�� 0

X
be a short exact sequence of vector bundles on X such that there is a stratification
of X on which V ′′ is trivial, so the inclusion V ′ → V is a strong regular embedding
by Theorem 2.2. Denote by V and V′ the coarse moduli spaces of V and V ′,
respectively, and let i : V′ → V be the inclusion.

Theorem 4.4. If V is a scheme, then the pullback on (higher) Chow groups
i∗ : CH∗(V, i) → CH∗−d(V′, i) is an isomorphism with integer coefficients.

Remark 4.5. Note that since T is only assumed diagonalizable, it is not necessar-
ily connected, so the coarse spaces for the quotient stacks are not a priori schemes.
However, the assumption that V is a scheme is required for the proof because we
use the localization theorem for higher Chow groups. If we knew that this se-
quence was also valid for algebraic spaces, then the theorem would go through
without this hypothesis.

We first prove a special case of Theorem 4.4.

Lemma 4.6. The conclusion of Theorem 4.4 holds for classifying stacks BH

where H is a finite, linearly reductive group.

Proof. A vector bundle on BH is a stack V = [V/H ] where V is a linear
representation of H . The coarse space of V is the quotient scheme V/H =
SpecO(V )H .
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By hypothesis we are given a short exact sequence

0 → V ′ → V → V ′′ → 0

of H -modules such that V ′′ is trivial.
Since H is linearly reductive, any short exact sequence of H -modules splits, so

V = V ′ ⊕V ′′, and the inclusion V ′ → V = V ′ ⊕V ′′ is the 0-section of the projec-
tion V ′ ⊕V ′′ → V ′. Moreover, since H acts trivially on V ′′, V/H = V ′/H ×V ′′,
and the inclusion of quotients V ′/H → V/H is the inclusion of the 0-section
of the trivial vector bundle V ′/H × V → V ′/H . Since the pullback along the
0-section of a vector bundle induces isomorphisms of (higher) Chow groups, the
lemma follows. �

Lemma 4.7. If X = [X/T ] is a reduced Deligne–Mumford quotient stack with T

a diagonalizable group, then there is a dense open substack U ⊂ X such that U is
isomorphic to BH ×W where H is a finite diagonalizable group and W is affine.

Proof. Embedding T into a torus T ′, the stack X can be presented as the quo-
tient [(X ×T T ′)/T ′]. Since T and T ′ are assumed to be smooth, X ×T T ′ is
also reduced. Replacing T with T ′, we may assume that it is a torus. By [Tho,
Lemma 4.3] there is a dense T -invariant open subspace of X that is a separated
scheme. Replacing X by this open subset, we may assume that X is a reduced,
separated scheme.

By [Tho, Prop. 4.10] there are an affine open subspace U ⊂ X and a diago-
nalizable subgroup T ′ ⊂ T with quotient torus T ′′ such that T acts via the ho-
momorphism T → T ′′ and T ′′ acts freely on U . If we let W = U/T , then U is
T -equivariantly isomorphic to T/T ′ × W . Since [U/T ] is Deligne–Mumford, it
follows that H = T ′ is a finite group, and so we see that [U/T ] is equivalent to
BH × W . �

Let V be a vector bundle on X , and let U be an open substack. Let VU denote the
restriction of V to a vector bundle on U , and let VU be its coarse moduli space.

Lemma 4.8. Let V ′ → V → V ′′ be an exact sequence of vector bundles on
X = [X/T ] satisfying the hypothesis of the theorem. Then there is a dense open
substack U ⊂ X such that the pullbacks i∗U : CH∗(VU ) → CH∗(V′

U ) is an iso-
morphism. (Here iU : V′

U → VU is the inclusion of coarse spaces.)

Proof. By Lemma 4.7 there is a dense open substack U ⊂ X isomorphic to BH ×
W where H is a finite diagonalizable group and W is affine. The restriction of a
vector bundle V to U is a sum of vector bundles of the form [V/H ] ⊗ E where V

is a representation of H and E is a vector bundle on W . Therefore, given an exact
sequence V ′ → V → V ′′, we can shrink W and hence U so that each of these
bundles restricted to U is of the form V ⊗OW . We can then repeat the argument
of Lemma 4.6. �

Lemma 4.9. Let X be a tame Deligne–Mumford stack, and let U be an open set
with complement Z (with the reduced induced substack structure). Let X, U, and
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Z be the coarse spaces of X, U, and Z, respectively. Then the inclusion Z → X
(resp. U → X ) induces a closed (resp. open) immersion Z → X (resp. U → X),
and U = X \ Z.

Proof. Again using the structure theorem for coarse moduli spaces, we can reduce
to the case that X = [SpecA/G] for some finite group G. Then U = [W/G]
where W is a G-invariant open set. Let Y = SpecA\W . The coarse moduli space
of U is π(W) where π : SpecA → SpecAG is the quotient map. Likewise, the
coarse moduli space of Z is π(Y ).

Since the morphism π is a geometric quotient, its geometric fibers are G-orbits
of geometric points. It follows that π(W) is open in X = SpecAG and equal to
π(SpecA) \ π(Z). �

Proof of Theorem 4.4. Observe that if V is a vector bundle on X and U ⊂ X is
an open substack, then the complement of V|U (with its reduced induced stack
structure) is VZ where Z is the complement of U with its reduced induced stack
structure. Hence, by Lemma 4.9 the complement of the coarse space VU is the
coarse space VZ .

Now by Lemma 4.8 there is an open substack U ⊂ V such that the in-
clusion V′

U → VU induces a pullback isomorphism of (higher) Chow groups
CHd(V′

U , i) → CHd(VU , i) for every d , i. By Noetherian induction we may
assume that the inclusion V′

Z → VZ also induces a pullback isomorphism of
(higher) Chow groups. The theorem follows by applying the localization exact
sequence for higher Chow groups (1). �

Proof of Corollary 2.8. By Theorem 2.7 we know that the pullback (I ι)∗ :
CH∗(I (TX )) → I ([T ∗X/G]) commutes with the orbifold product. Thus, it suf-
fices to show that (I ι)∗ is an isomorphism of Abelian groups. This follows be-
cause both T ∗X and [T ∗X/G] are vector bundles over X = [X/G], so IT ∗X
and I [T ∗X/G] are both vector bundles over IX . Hence, the pullback I ι∗ is an
isomorphism. �

Remark 4.10. The methods used to prove Theorem 4.3 and Theorem 4.4 yield
analogous isomorphisms for the K-theory of coherent sheaves. Since K-theory is
naturally defined for schemes over an arbitrary base, we do not need to assume
that the base scheme is a field. Also, there is a localization long exact sequence
for the higher K-theory of algebraic spaces, so we can obtain the K-theory result
in more generality. In particular, we may assume that X is a smooth algebraic
space defined over a Noetherian scheme S and that T is diagonalizable, that is,
isomorphic to a closed subgroup of a torus.

5. Application: Hypertoric Stacks and Lawrence Toric Stacks

For simplicity of exposition (see Remark 5.1), we work over an algebraically
closed field of characteristic 0.
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A natural algebraic way to construct hypertoric varieties is via geometric in-
variant theory (GIT) as follows.

Fix integers d , n with n ≥ d and let V be an n-dimensional representation
of the rank d torus T . Choosing a diagonalizing basis for the action of Td , let
A = (aij ) ∈ Zd×n be the matrix of weights for the action of d . We denote by ak

the kth column vector of A. We assume that A has maximal rank over Q, which
is equivalent to assuming that the generic stabilizer is finite.

There is a natural action of T on V × V ∗, and with an appropriate choice
of basis, the weight matrix for this action is A± = (a1, . . . , an − a1, . . . ,−an) ∈
Zd×2n.

If θ ∈ Zd is a character of T , then we can consider the θ -stable and semistable
loci in V × V ∗. For generic choice of θ , (V × V ∗)s = (V × V ∗)ss . The quotient
stack X (A±, θ) := [(V × V ∗)s/T ] is called a Lawrence toric stack. The GIT
quotient X(A±, θ) := (V ×V ∗)θ //T is the coarse moduli space of X (A±, θ) and
is called a Lawrence toric variety. Note that the coordinate ring of V ×V ∗ contains
invariant elements, so the GIT quotient X(A±, θ) is not projective. However, it is
semiprojective, meaning that it is projective over Spec Sym((V × V ∗))T .

The representation V ×V ∗ has a natural T -invariant algebraic symplectic pair-
ing μ : (V × V ∗) → Lie(Td)∗ = Cd . If we choose coordinates (x1, . . . , xn) on V

and dual coordinates (y1, . . . , yn) on V ∗ so that Td acts on xi with weight ai and
on yi with weight −ai , then μ is given by the formula

(x1, . . . , xn, y1, . . . , yn) �→ (μ1, . . . ,μn),

where μi = ∑
j aij xj yj .

The quotient Y(A, θ) = μ−1(0)//θT is the associated hypertoric variety. Fol-
lowing Jiang and Tseng [JT2], we refer to the quotient stack

Y(A, θ) := [(μ−1(0) ∩ (V × V ∗)s)/T ]
as a hypertoric stack. The variety Y(A, θ) is the coarse space of Y(A, θ).

Remark 5.1. We can also consider hypertoric stacks defined over an algebraically
closed field of characteristic p, provided we assume that the weights ai are all
coprime to p. This assumption ensures that our hypertoric stacks are tame.

Example 5.2. If A = (a0, . . . , an) is a 1 × (n + 1) matrix with all ai positive,
then we denote by P(a0, . . . , an) the quotient stack [An+1 \ {0}/Gm] where Gm

acts with weights (a0, . . . , an). If θ is positive, then Y(A, θ) = T ∗P(a0, . . . , an),
and the Lawrence toric stack X (A±, θ) equals [T ∗(An+1 \ {0})/T ].
Theorem 5.3. The stack X (A±, θ) has a Zariski open cover by open sets U , each
isomorphic to (Y(A, θ) ∩ U) × Ad , such that, under this isomorphism, ι corre-
sponds to a section of the projection U → (X (A, θ) ∩ U).

In particular, the inclusion ι : Y(A, θ) ↪→ X (A±, θ) is a strong regular em-
bedding of smooth Deligne–Mumford stacks.
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Applying Corollary 2.5, we obtain as a corollary the following result about reso-
lutions of singularities.

Corollary 5.4. Let X̃ → X(A±, θ) be a canonical resolution of singularities
of the Lawrence toric variety X(A±, θ) and set X̃ := Y(A, θ) ×X(A±,θ) X̃. Then
Ỹ → Y(A, θ) is a resolution of singularities of the hypertoric variety Y(A, θ).

As in the case of cotangent bundles, we also have a result about integral Chow
groups and Chow rings as well.

Theorem 5.5. The pullback ι∗ : CH∗(X (A±, θ)) → CH∗(Y(A, θ)) is an isomor-
phism of integral Chow rings of Deligne–Mumford stacks.

Also, if Y(A, θ)
i

↪→ X(A±, θ) is the inclusion of a hypertoric variety into the
corresponding Lawrence toric variety, then the pullback i∗ : CHk(X(A±, θ)) →
CHk−d(Y(A, θ)) is an isomorphism of integral Chow rings.

The analogous statements also hold for the K-theory of coherent sheaves.

Proof of Theorem 5.3. By [HS, Cor. 4.4] a point is θ -stable if it lies in the com-
plement of the vanishing of the irrelevant ideal

Bθ =
〈 ∏
σ(C,θ)

: C any column basis of A

〉
,

where σ(C, θ) is defined as follows: If C = {ai1, . . . , aid}, then there are unique
nonzero3 rational numbers λ1, . . . , λd such that

λ1ai1 + λ2ai2 + · · · + λdaid = θ

and

σ(C, θ) = {xij : λj > 0} ∪ {yil : λl < 0}.
Each set of indices in σ(C, θ) corresponds to a maximal cone in the fan of the toric
stack X (A±, θ). Let Uσ(C,θ) ⊂ V ×V ∗ be the principal open set corresponding to
the monomial xσ(C,θ) = ∏

σ(C,θ) xij yil , and let Uσ(C,θ) = [Uσ(C,θ)/T ]. By con-
struction the Uσ(C,θ) form an open cover of (V ×V ∗)s . Theorem 5.3 then follows
from the following proposition. �

Proposition 5.6. Let σ = σ(C, θ) for some fixed subset C of the columns of A. If
W ⊂ Uσ is a G2n

m -invariant irreducible closed subset transverse to μ−1(0), then
W is T -equivariantly isomorphic to (μ−1(0) ∩ W) × Ad where T acts trivially
on Ad . Under this isomorphism, the inclusion W ∩ μ−1(0) ↪→ W corresponds to
a section of the projection (μ−1(0) ∩ V ) ×Ad → μ−1(0) ∩ V .

3The assumption that θ is generic ensures that all of the λi are nonzero. The condition that the λi are
nonzero for each column basis of A is equivalent to the condition that every θ -semistable point
is stable.
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Proof. After reordering the coordinates, we may assume that xσ = (x1x2 · · ·xk)×
(yk+1yk+2 · · ·yd) for some k with 0 ≤ k ≤ d . Since A has rank d , we may also per-
form row operations over Z to ensure that aii �= 0 for i ≤ d . Then on Uσ the hyper-
toric equations {∑aij xj yj }di=1 can be rewritten as xi +(1/yi)

∑
j �=i (aij /aii)xj yj

if i > k and yi + (1/xi)
∑

j �=i (aij /aii)xj yj if i ≤ k. Then we can define an iso-

morphism (μ−1(0)∩Uσ )×Ad → Uσ where T acts trivially on the second factor
by the formula

((x1, . . . , xn, y1, . . . , yn), (z1, . . . , zd))

�→
(

x1, . . . , xk,
zk+1

yk+1
, . . . ,

zd

yd

,

xd+1, . . . , xn,
z1

x1
, . . . ,

zk

xk

, yk+1, . . . , yn

)
. (5)

Observe that if Z is a G2n
m -invariant irreducible closed subset of A2n, then

Z (with its reduced scheme structure) is defined by linear equations. Thus, if
W ⊂ Uσ(C,θ) is a nonempty irreducible G2n

m -invariant closed subset transverse
to μ−1(0), then W = Uσ ∩ V (xi1, . . . , xil , yj1, . . . , yjm) for some sets indices
{i1, . . . , il}, {j1, . . . , jm}, with {i1, . . . , il}∩{1, . . . , k} = ∅ and {j1, . . . , jm}∩{k+
1, . . . , d} = ∅.

If {i1, . . . , il} ∩ {k + 1, . . . , d} = ∅ and {j1, . . . , jm} ∩ {1, . . . , d} = ∅ as well,
then isomorphism (5) restricts to a T -equivariant isomorphism W → (W ∩
μ−1(0)) ×Ad .

If this is not the case, then we can assume, without loss of generality, that
j1 ∈ {1, . . . , d}, and after reordering coordinates, we have that j1 = 1. Let V1 ⊂ V

be the submodule where x1 = 0, and let A′ be the matrix obtained by deleting
the first column of A. Then W is a closed subset of Gm × (V1 × V ∗

1 ), and the
hypertoric equations

∑
aij xj yj restrict on V1 × V ∗

1 to the equations for Y(A′, θ)

in X (A′±, θ). The transversality assumption ensures that the hypertoric equations
do not degenerate on W . Therefore, by induction on dimV we can conclude that
the conclusion of the lemma holds for the embedding μ−1(0) ∩ W ↪→ W . �

Proof of Theorem 5.5. The proof is similar to the proof of [HS, Thm. 1.1]. Since
X(A±, θ) is a semiprojective toric variety, it is the toric variety of a fan �θ in
a lattice N that has full dimensional support. A vector v ∈ N determines a one-
parameter subgroup λv that acts on the toric variety X(A±, θ). If v is in the sup-
port of the fan �θ , then the action on X(A±, θ) is filterable. This means that we
can order the fixed components for the action of λv so that the Bialynicki–Birula
decomposition of X(A±, θ) with respect to this action gives a filtration

∅ = U0 ⊂ U1 ⊂ · · · ⊂ Ur = X(A±, θ)

such that for every i ≥ 1, the set Ui \ Ui−1 is a closed subset of Uσ where σ is a
maximal cone in the fan of X.

Now if λv is the one-parameter subgroup corresponding to the sum of the
generators for the rays in the fan �θ , then λv is the image of the diagonal one-
parameter subgroup of the torus G2n

m under the quotient map G2n
m → G2n−d

m [HS,
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Proof of Lemma 6.5]. Since the hypertoric equations are homogeneous in the vari-
ables x1, . . . , xn, y1, . . . , yn, it follows that the quotient Y(A, θ) is invariant under
the action of λv .

As observed by Hausel and Sturmfels, the fixed loci for the λv actions on
X(A±, θ) and Y(A, θ) are equal since these two semiprojective varieties have a
common core.

The Białynicki-Birula decomposition of Y(A, θ) gives a filtration

∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vr = Y(A, θ)

such that Vi \ Vi−1 is closed in Ui \ Ui−1. Moreover, since the hypertoric equa-
tions have positive weight with respect to the action of λv , the codimension of a
component of the Białynicki-Birula decomposition of Y(A, θ) in the correspond-
ing component of the Białynicki-Birula decomposition of X(A±, θ) is constant.

By construction of X(A±, θ) as a geometric invariant theory quotient, the in-
verse image of the affine toric open subset Uσ is an open set Uσ(C,θ) for some
column basis C of A. Likewise, any torus-invariant closed subset of W ⊂ Uσ ap-
pearing in the filtration corresponds to a G2n

m invariant closed subset W ⊂ Uσ(C,θ)

that is transverse to μ−1(0).
By Proposition 5.6 there is a T -equivariant isomorphism (μ−1(0) ∩ W) ×

Ad → W where T acts trivially on second factor. Hence, the pullbacks ι∗
and i∗ induce isomorphisms of (higher) Chow groups CHj (Ui+1 \ Ui , k) →
CHj−d(Vi+1 \ Vi , k) and i∗ : CHj (Ui+1 \ Ui , k) → CHj−d(Vi+1 \ Vi , k) for all
for all nonnegative integers j , k where Ui = [Ui/T ] and Vi = [Vi/T ].

Using induction on the stratifications U· and V· and the localization long exact
sequence for higher Chow groups, we see that pullback of (higher) Chow groups
i∗ : CH∗(X(A±, θ), k) → CH∗(Y(A, θ), k) is an isomorphism.

The same argument also works for the (higher) K-theory of coherent sheaves.
�

Remark 5.7. Although this result is a Chow group analogue of Hausel and Sturm-
fels’s earlier result on cohomology [HS], the Chow and cohomology groups of a
singular toric variety need not be equal. Also observe that the same methods can
be used to show that there are corresponding isomorphisms in algebraic K-theory.

Remark 5.8. The proof of Theorem 5.5 makes crucial use of the fact that a
Lawrence toric variety is projective over the affine toric variety Spec(V × V ∗)T
since this condition implies that it has a stratification by unions of torus orbits.
It would be interesting to give an example where the conclusion of Theorem 5.5
fails for a non-quasi-projective quotient of an open set in (V × V ∗) on which T

acts properly; cf. [dMM, Rem. 3.3].

Proof of Corollary 2.9. Again, by Theorem 2.7 it suffices to show that the pull-
back (I ι)∗ : CH∗(IX (A±, θ)) → CH∗(IY(A, θ)) is an isomorphism of Abelian
groups. Unlike the proof of Corollary 2.8, this not immediate because X (A±, θ)

and Y(A, θ) are not vector bundles over a common base.
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To prove this isomorphism, we fix some notation. Let X(A±, θ) = (V ×
V ∗)s and Y(A, θ) = μ−1(0) ∩ X(A±, θ). Then X (A±, θ) = [X(A±, θ)/T ] and
Y(A±, θ) = [Y(A±, θ)/T ].

Observe that IT (X(A±, θ)) = ∐
{g∈T ||g|<∞} X(A±, θ)g because T is diago-

nalizable and acts properly. Hence,

IX (A±, θ) = [IT (X(A±, θ))/T ] =
∐

{g∈T ||g|<∞}
[X(A±, θ)g/T ],

and a similar statement holds for IY(A, θ). (Note that all disjoint sums are finite
since if T acts properly on a space X, then Xg = ∅ for all but finitely many g ∈ T .)

Observe that if V is a T -module and g ∈ T , then (V ∗)g = (V g)∗ so (V ×
V ∗)g = V g × (V g)∗ as T -modules. Also, if θ is a character, then

(V g × (V g)∗)s = (V g × (V g)∗) ∩ (V × V ∗)s,
where stability is taken with respect to the character θ . Since the action of T on V

is diagonalized, the submodule V g is obtained by setting coordinates xi1, . . . , xik

to zero. Hence, X(A±, θ)g = X(A±
g , θ) where Ag is the matrix obtained from

A by deleting the i1, . . . , ik th columns. (Note that k and the integers i1, . . . , ik
depend on g.) Hence, IX (A±, θ) = ∐

{g∈T ||g|<∞} X (A±
g , θ). A similar argument

shows that IY = ∐
{g∈T ||g|<∞} Y(Ag, θ). Hence, by Theorem 5.5 the pullback

I ι∗ : CH∗(IX (A±, θ)) → CH∗(IY(A, θ)) is an isomorphism. �

We conclude with a conjecture.

Conjecture 5.9. If X̃ is a canonical (hence toric) resolution of singularities of
the Lawrence toric variety X(A,θ) and Ỹ = Y(A, θ)×X(A,θ) X̃, then the pullback
CH∗(X̃) → CH∗(Ỹ ) is an isomorphism.
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