
Michigan Math. J. 65 (2016), 321–332

Curves Disjoint from a Nef Divisor

John Lesieutre & John Christian Ottem

Abstract. On a projective surface it is well known that the set of
curves orthogonal to a nef line bundle is either finite or uncountable.
We show that this dichotomy fails in higher dimension by construct-
ing an effective, nef line bundle on a threefold that is trivial on count-
ably infinitely many curves. This answers a question of Totaro. As a
pleasant corollary, we exhibit a quasi-projective variety with only a
countably infinite set of complete, positive-dimensional subvarieties.

1. Introduction

If L is a nef line bundle on a smooth complex projective surface, then the set of
curves C such that L · C = 0 is either finite or uncountable (when some such C

moves in a positive-dimensional family). This follows essentially from the Hodge
index theorem (see Section 1.1). In [7], Totaro asked whether this remains true in
higher dimensions:

Question. Is there a nef line bundle L on a normal complex projective variety X

such that the set of curves C with L · C = 0 is countably infinite?

In this note we construct examples of such L in any dimension greater than two,
which are in fact effective and movable divisors. Perhaps the surprising thing is
not that such examples exist, but that they turn out to be so accessible: our example
is the blow-up of P3 at eight very general points, and L is the anticanonical divisor.
Our main result is the following:

Theorem 1. There exists a smooth projective rational threefold X with nef an-
ticanonical divisor such that the set of curves C with −KX · C = 0 is countably
infinite and Zariski dense.

In particular, since −KX is effective in the example, the complement of the zero
set of a global section gives an example of the following:

Corollary 2. There exists a quasi-projective variety with only a countably infi-
nite set of complete, positive-dimensional subvarieties.

We show in Corollary 7 that this is impossible in dimension less than 3. Further-
more, we show that the question has an affirmative answer even if the line bundle
is required to be big and nef, which is impossible in dimension less than four (cf.
Remark 13).
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Corollary 3. There exists a smooth projective fourfold Y and a big and nef line
bundle M on Y such that the set of curves C with M · C = 0 is countably infinite.

Note that when the line bundle L is semiample, these sorts of pathologies do not
occur. In that case, some multiple of L defines a morphism to projective space
X → PN that contracts exactly the curves orthogonal to L, so this locus is Zariski
closed. In particular, if X is a Mori dream space, then every nef line bundle is
semiample and so is zero on an either finite or uncountable set of curves. This
includes all examples in which X is the blow-up of P3 at r ≤ 7 points.

1.1. The Surface Case

Here we prove a slight generalization of Totaro’s result [7] for the dimension 2
case. This result will be needed in the proof of Theorem 1.

Proposition 4. Suppose that S is a complex projective surface and let L be a
line bundle on S (not necessarily nef). Then the set of irreducible curves C with
L · C = 0 is either finite or uncountable. Moreover, when L is nef, the set of
curves C /∈ R>0L with L · C = 0 is finite, and all these curves have negative self-
intersection.

We note that the set defined is uncountable if and only if there exists an algebraic
family of curves Ct such that L · Ct = 0 for all t . This follows since the Hilbert
scheme has only countably many components.

Proof of Proposition 4. It suffices to prove the result for S smooth. Indeed, if π :
S′ → S is a desingularization of S, and L′ = π∗L, then the curves with L′ ·C = 0
are the (finitely many) curves contracted by π , together with the transforms of the
curves with L · C = 0.

Let C denote the set of irreducible curves C on X such that L · C = 0. We
assume for a contradiction that C is countably infinite.

Suppose first that L is a nef line bundle. If L2 > 0, then L is big, and there are
at most ρ−1 curves with L ·C = 0, and they all satisfy C2 < 0 by the Hodge index
theorem. If L2 = 0, then there can be at most 2(ρ − 2) curves C ∈ C with C /∈
R>0L, and they all satisfy C2 < 0. Indeed, changing the sign on the intersection
form defines an inner product on V = L⊥/RL � Rρ−2, and the claim follows by
Lemma 6 below. Furthermore, Totaro showed that given three pairwise disjoint
connected effective divisors D1, D2, D3 with proportional divisor classes, there
is a map f : S → B to a smooth curve such that the Di are all rational multiples
of fibers of f [8, Thm. 2.1]. Applying this to our situation, we see that a stronger
statement holds: Given any set of r > 2ρ distinct curves C1, . . . ,Cr so that L ·
Ci = 0, one of the Ci has a rational multiple that moves in a family. In particular,
if |C | > 2ρ, then C is uncountable.

Suppose now that L is an arbitrary line bundle, not necessarily nef. Pick ρ

distinct curves C1, . . . ,Cρ such that L · Ci = 0. Then in N1(S), we must have a
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relation between them of the form

m1C1 + · · · + msCs ≡ ms+1Cs+1 + · · · + mρCρ, (1)

where mi ≥ 0 are integers. Let D1 (resp. D2) denote the effective divisor on the
left-hand side (resp. right-hand side) of this equation. Given any irreducible curve
C, at least one of D1 or D2 does not contain C in its support, and so either
D1 · C ≥ 0 or D2 · C ≥ 0. But D1 and D2 are numerically equivalent, and we
thus conclude that D1 (and hence D2) is nef.

We claim next that there exists a curve C ∈ C such that D1 · C > 0. Indeed, if
|C | > 2ρ and every curve in C has D1 ·C = 0, then some element of C moves in
a family by the preceding arguments, applied to the nef class D1. But then C is
uncountable. Now, for ε > 0 small and rational, the Q-divisor M = D1 + εC ∈ C
is nef and big. Taking n large and divisible, the linear system |nM| has positive di-
mension, and the fixed components are supported on the curves C1, . . . ,Cs,C that
all lie in C . After subtracting the fixed components, we again obtain a positive-
dimensional family of curves Ct such that L · Ct = 0. This contradiction com-
pletes the proof. �

Remark 5. The proof shows that the proposition also holds when L is an R-
divisor.

Lemma 6. Suppose that V = Rn and x1, . . . , xm are distinct, nonzero vectors
spanning V such that xi · xj ≤ 0 for i �= j . Then it must be that m ≤ 2n.

Proof. We show that in fact if m ≥ n + 2, there exist pairwise orthogonal linear
subspaces �1, . . . , �m−n of V such that each �i contains dim�i +1 xis that span �i .
The maximal m is then achieved when each of the �i is one-dimensional, so that
m = 2n.

We proceed by induction on n, the case n = 2 being clear. For n > 2, we
may assume that each xi does not point in the opposite direction of xn (in
which case xj ∈ x⊥

n for each j /∈ {i, n}, and we instead consider V = x⊥
n ). Write

xi = yi + λixn, where yi ∈ x⊥
n and λi ≤ 0. We find that yi · yj ≤ 0 for i �= 0, with

strict inequality if both λi, λj �= 0. By induction, we obtain orthogonal linear sub-
spaces �′

1, . . . , �
′
m−n of x⊥

n satisfying the conclusions of the lemma. Without loss
of generality, we may assume that �′

1 contains every yi such that λi < 0. Then
define �1 = �′

1 +Rxn and �i = �′
i for i > 1. �

When L = OS(D) is effective and the number of curves orthogonal to L is finite,
the previous proof shows that it is bounded by a number depending only on the
Picard number of S. In fact, as remarked in [7], the bound 2(ρ −2) for the number
of negative curves in L⊥ is even sharp; it can be attained, for example, on the
blow-up of P1 × P1 at ρ − 2 generic points, letting L be the pullback of one of
the fibers. Interestingly, the proof of Lemma 6 also shows that the value 2(ρ − 2)

is obtained in general if and only if we can partition the curves into ρ − 2 sets of
mutually orthogonal pairs of classes, as in the example.
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Corollary 7. Suppose that U is a quasiprojective surface over C. Then the set
of complete curves in U is either finite or uncountable.

Proof. Let X be a compactification of U with π : Y → X a resolution of X,
and set V = π−1(U). If C is a complete curve contained in V , then either C is
contracted by π , or π(C) is a complete curve contained in V . Since only finitely
many curves are contracted, it suffices to prove the claim for V . Consider the
boundary � = Y − V . The complete curves in V are precisely the curves C on Y

that are not components of � but satisfy � · C = 0. By Proposition 4 the set of
these curves is either finite or uncountable. �

2. The Rational Threefold

Let p1, . . . , p8 be eight very general points in P3. By this we mean that the points
are chosen from the complement of a countable union of closed subvarieties in
(P3)8; exactly which subvarieties of the parameter space are to be avoided will
be made precise later. Since the points are general, the linear system of quadric
surfaces containing the points is a one-dimensional pencil. Let Q0, Q1 be two
distinct smooth quadric surfaces in this pencil. The base-locus of the pencil, B =
Q0 ∩ Q1, is a smooth genus 1 curve, which is a bidegree (2,2) divisor on the
quadrics.

Define π : X → P3 to be the blow-up of P3 at the points p1, . . . , p8 and let B ′
be the strict transform of B on X. The pencil of quadrics determines a rational
map f : X ��� P1 defined outside the curve B ′. The fibers of this map are blow-
ups of quadric surfaces in the eight points p1, . . . , p8.

Write H = π∗OP3(1) and let E1, . . . ,E8 be the exceptional divisors of π .
Similarly, let h = H 2 be the class of the transform of a general line in P3, and let
e1, . . . , e8 denote classes of lines in E1, . . . ,E8 (which are projective planes). We
have N1(X) = ZH ⊕ZE1 ⊕ · · ·⊕ZE8 and N1(X) = Zh⊕Ze1 ⊕ · · ·⊕Ze8, and
we will call these generators the standard bases for N1(X) and N1(X).

Let L = −KX be the anticanonical divisor of X: this is the nef divisor we
are looking for. In terms of this basis, the canonical divisor is given by −4H +
2E1 + · · · + 2E8. Note that L is nef since its base-locus is exactly the curve B ′
and L · B ′ = −KX · B ′ = (−KX)3 = 0. Note also that the fibers of f correspond
to divisors in the linear system |− 1

2KX|.
There are many curves C such that L · C = 0. For example, let C be the strict

transform of the line l through the points p1 and p2. The normal bundle of C is
isomorphic to O(−1) ⊕ O(−1) and the class of C is h − e1 − e2. Furthermore,
we have

L · C = −KX · C = degNC + degKC = −2 + 2 = 0.

Let Q be the quadric surface in the pencil containing l as one of its rulings. Then
the strict transform S of Q is the blow-up of Q in p1, . . . , p8, and the curve C is a
(−2)-curve on S (i.e., a smooth rational curve of self-intersection −2), with class
π∗O(0,1) − E1 − E2 in Pic(S).
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The same thing happens if we take C to be the strict transform of a twisted
cubic curve in P3 through six of the points p1, . . . , p6; the class of C is 3h −
e1 − · · · − e6, and L · C = 0. There is a unique quadric surface Q in the pencil
containing the twisted cubic, and its strict transform S contains C as a (−2)-
curve.

In fact, we will show below that there are countably infinitely many curves C

on X such that L · C = 0: these will be constructed as the strict transforms of the
lines in P3 through a pair of points and under sequences of Cremona transforma-
tions on P3 based at quadruples of points. These are all rigid rational curves with
normal bundle isomorphic to O(−1) ⊕O(−1). Moreover, the set of these curves
is Zariski dense in X.

Lemma 8. Let S be a smooth rational surface with −KS nef and K2
S = 0. If C

is an irreducible curve such that KS · C = 0, then either C ∈ |−mKS | for some
integer m ≥ 1, or C is a smooth rational curve of self-intersection −2.

Proof. The Hodge index theorem implies that C2 ≤ 0. If C2 < 0, then C ·KS = 0
implies C2 = −2 and pa(C) = 0 by the adjunction formula, and hence C � P1.
So suppose C2 = 0. For any C′ ∈ K⊥

S , either C′ ·C = 0, or we have (tC+C′)2 > 0
for some t > 0. In the latter case we again obtain a contradiction using the Hodge
index theorem. Thus, we have that C⊥ = K⊥

S , and hence C = −mKS for some
m ≥ 1 since −KS is not divisible in Pic(S) (since a rational surface with K2

S = 0
contains a (−1)-curve C, and KS · C = −1). �

So far we have not used the fact that the points p1, . . . , p8 are very general on B ,
meaning that they are chosen in the complement of a countable union of subvari-
eties of B8. This is essential for the following result.

Lemma 9. Let B ⊂ P3 be a smooth quartic curve of genus 1. Then for a very
general Q in the pencil, there are no relations in Pic(B) between line bundles on
Q and the points p1, . . . , p8.

Proof. We first claim that the line bundle OQ(1,−1) is nontorsion for some
smooth quadric Q in the pencil. Indeed, fix two points p,q ∈ B such that
p − q ∈ Pic0(B) is nontorsion and the divisor 2p + 2q embeds E into a smooth
quadric Q ⊂ P3. Then OQ(1,−1) pulls back to 2p − 2q , which is nontorsion.

Now, let M be a line bundle on Q. For each set of integers a1, . . . , a8, not
all zero, such that M ′ = M(−a1p1 − · · · − a8p8)|B has degree 0 on B , there is
a proper Zariski closed subset of points (p1, . . . , p8) ∈ B8 such that the M ′ is
effective on B (that is, M ′|B = OB ). If the points p1, . . . , p8 are chosen outside
the countable union of all these closed subsets running through all the choices
M,a1, . . . , a8, then no nontrivial line bundle on Q restricts to the trivial bundle
on B .

Now by semicontinuity the same statement remains true for a very general
quadric in the pencil. �
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We are now ready to prove the main result of this section.

Lemma 10. The set of curves C ⊂ X for which L · C = 0 is at most countably
infinite.

Proof. Suppose that C is an irreducible curve with L ·C = 0. If C is not contained
in the base locus of |− 1

2KX|, then C meets some fiber S ∈ |− 1
2KX| of the map

f : X ��� P1 at a point not contained in B ′. If C is not contained in the fiber
S, then S · C is positive, and so too is L · C. Consequently, if C is a curve with
L ·C = 0, then either C is the unique curve B ′ in the base locus, or C lies in some
fiber S of f . In the following, we will assume that C �= B ′.

Assume first that S is smooth. Then S is the strict transform of a smooth
quadric, that is, the blow-up of P1 × P1 along eight points. By Lemma 8, C is
either linearly equivalent to a multiple of −KS = B ′ or is a (−2)-curve on S.
However, the normal bundle of B ′ in S is

OS(B ′)|B ′ = O(−KS)|B ′ = O(S)|B ′ = OP3(2)(−p1 − · · · − p8)|B,

which has degree 0 and is nontorsion for very general p1, . . . , p8, and so no mul-
tiple of B ′ moves in S. It follows that the only curve on S with class proportional
to −KS is B ′ itself. We conclude that C ⊂ S is a (−2)-curve. Since −KS is nef,
the number of (−2)-curves on S is finite by Proposition 4.

The family f also has four singular fibers Ss , each isomorphic to an eight-
point blow-up of a quadric cone. By genericity of the points, we may assume that
the curve B ′ does not pass through the singular point of any of these fibers. Let
σ : S̃s → Ss be the blow-up at the singular point, so that S̃s is isomorphic to the
blow-up of P(O⊕O(2)) at eight points. Then σ ∗(B ′) is anticanonical, and S̃s is a
smooth rational surface with −K

S̃s
nef and K2

S̃s
= 0. It follows that −K

S̃s
has no

movable multiple by the same argument used to prove this in the smooth fibers.
So the strict transform of C on S̃s must be a (−2)-curve, and, as before, there are
only finitely many such curves since −K

S̃s
is nef.

Since the set of (−2)-curves in any fiber is finite, we are reduced to showing
that there are only countably many smooth fibers of f containing (−2)-curves.

Note that C corresponds to a divisor through the points p1, . . . , p8 on some
quadric surface Q. Restricting the section defining C in Q to B gives a relation
in Pic0(B) � B between the points p1, . . . , p8 and line bundles coming from Q.
However, by Lemma 9 there are only countably many fibers where this happens.

�

3. Cremona Actions

Additional curves with L · C = 0 will be constructed using repeated applica-
tions of the standard Cremona transformation on P3, yielding “elementary (−1)-
curves”, considered by Laface and Ugaglia [3]. The standard Cremona transfor-
mation Cr : P3 ��� P3 is given by

Cr(x0, x1, x2, x3) = (x−1
0 , x−1

1 , x−1
2 , x−1

3 ).
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Let π : X → P3 be the blow-up of P3 at the four standard coordinate points.
The rational map Cr◦π : X ��� P3 can be factored as follows:

Y

p p′

X
Cr

π

X′

π ′

P3 Cr
P3

Here p is the blow-up of X along the transforms of the six lines through pairs
of the four coordinate points. The exceptional divisors of p are isomorphic to
P1 × P1, and p′ is the contraction of the “other ruling” of each P1 × P1. The
induced map Cr is a flop of these curves, and π ′ then blows down the strict trans-
forms of the four planes through three of the four points, realizing X′ as the blow-
up of P3 at four points as well.

The Cremona transformation has the following properties: (i) Cr is an isomor-
phism in codimension 1, (ii) it preserves the canonical class (i.e., Cr

∗
(KX′) =

KX), and (iii) it induces isomorphisms M : N1(X) → N1(X′) and M̌ : N1(X) →
N1(X

′), given in the standard bases by the matrices M and M̃ , where

M =

⎛
⎜⎜⎜⎜⎝

3 1 1 1 1
−2 0 −1 −1 −1
−2 −1 0 −1 −1
−2 −1 −1 0 −1
−2 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎠ , M̃ =

⎛
⎜⎜⎜⎜⎝

3 2 2 2 2
−1 0 −1 −1 −1
−1 −1 0 −1 −1
−1 −1 −1 0 −1
−1 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎠ .

If p = (p1, . . . , p8) is an eight-tuple of distinct points in P3 with the first four
not coplanar, we denote by Crp : P3 ��� P3 the transformation A−1 ◦Cr◦A where
A is the linear transformation taking p1, . . . , p4 to the standard coordinate points.
(If the points are in general position, then A is uniquely determined if we addition-
ally impose that it also fixes the point (1,1,1,1).) Write q for the new eight-tuple
(p1, . . . , p4,Crp(p5), . . . ,Crp(p8)).

Let Xp denote the blow-up of P3 at the eight points of p, and Xq denote the
blow-up of P3 at the eight points of q. The previous discussion shows that the
map Crp : P3 ��� P3 induces a birational map Crp : Xp ��� Xq, which flops the
six lines between two of the four points p1, . . . , p4.

The crucial observation is that a very general configuration of eight points in
P3 has infinite orbit under the group generated by Cremona transformations. This
fact was essentially known to Coble [1]; see [2] for a more modern account.

4. Proof of Theorem 1

We are now in position to complete the proof of Theorem 1. Again, we let X

denote the blow-up of P3 in a very general configuration p = (p1, . . . , p8) of
eight points. We have already seen that the set of curves C such that L · C = 0
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correspond to (−2)-curves on the fibers of f : X ��� P1 and that this set is at most
countably infinite. It remains only to show that this set is in fact infinite.

Lemma 11. There is an infinite set of curves C ⊂ X with L · C = 0.

Proof. Starting from the very general configuration p0 = p, construct a sequence
of configurations p0,p1, . . . ,pn, . . . so that pi−1 is obtained from pi by making a
Cremona transformation centered at the first four points of pi and then permuting
the eight-tuple to move the first entry to the end of the list. The “very general”
assumption on p0 guarantees that no four points ever become coplanar (using [3,
Lemma 2.6]), and so the requisite Cremona transformations are well defined.

This gives rise to a sequence of rational maps

· · · Crpn+1
Xpn

Crpn
Xpn−1

Crpn−1 · · · Crp1
Xp0 = X.

If C is a curve on Xpn such that the strict transform of C on Xpi
is disjoint

from the indeterminacy locus of Xpi
��� Xpi−1 for all 1 ≤ i ≤ n, then the strict

transform of C on Xp has numerical class M̃n
σ ([C]), where

M̃σ =
(

M̃ 0
0 I4

)(
1 0
0 	σ

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 2 2 2 0 0 0 0
−1 −1 0 −1 −1 0 0 0 0
−1 −1 −1 0 −1 0 0 0 0
−1 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−1 0 −1 −1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 	σ the matrix encoding the permutation of the points.
If we take �n to be a line through p7 and p8 on Xpn , then its strict transform

on Xp is a curve Cn of class M̃n
σ (h − e7 − e8); that the strict transforms of �n are

disjoint from the indeterminacy loci is checked in [3]. It is easy to verify that the
matrix M̃σ has a 3 × 3 Jordan block associated to the eigenvalue 1, and a direct
calculation then shows that the degrees of the classes [Cn] = M̃n

σ (h − e7 − e8)

grow without bound as n is increased, so the curves Cn are distinct.
However, for every value of n, we have −KXp · Cn = 0: the curve �n ⊂ Xpn

is a rational curve with normal bundle O(−1) ⊕O(−1), and the same is true for
its strict transform Cn ⊂ Xp because �n does not meet the indeterminacy locus
of the map Xpn ��� Xp. It follows that these give an infinite set of curves with
L · C = 0. �

Remark 12. It is well known that the classes in K⊥
X on a very general point-

set blow-up of projective space form a root system (in our case, it is the T -shaped
Dynkin diagram T4,4,2), and the Cremona transformations and permutations of the
points induce elements in the corresponding Weyl group. Moreover, the curves on
which KX is zero are exactly the orbit of the class of a line in N1(X) under this
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Weyl group. (See [2] or [6] for more precise statements.) The composition of the
Cremona transformation and a permutation of the points used corresponds to the
action of a Coxeter element in this group (cf. [5]).

A more detailed account can be found in [4]: the curves here are (up to permuta-
tion of the indices) the curves “Cn” constructed in Lemma 5.2. Although [4] deals
with the blow-up of P3 at nine points, the same argument works with only eight
points; the only difference is that the matrix M̃σ considered here has a 3 × 3 Jor-
dan block associated to the eigenvalue 1, rather than an eigenvalue greater than 1.

Together, Lemmas 10 and 11 complete the proof of Theorem 1. The corollaries
stated in the introduction follow immediately.

Proof of Corollary 2. Fix a very general smooth representative S of |− 1
2KX|, and

let U = X − S ⊂ X. It is clear that every complete curve C in U must satisfy
S · C = − 1

2KX · C = 0, and we have already shown that the set of curves with
this property is countably infinite. Moreover, none of these curves C except B ′
is contained in S, but they all satisfy S · C = 0. Consequently, all such C are
contained in U . �

Proof of Corollary 3. Let H be a very ample divisor on X and consider the vari-
ety Y = P(OX ⊕OX(H)). The fourfold Y admits two obvious maps: first, there is
a P1-bundle p : Y → X; second, there is a contraction q : Y → CX of the section
E ⊂ Y determined by the quotient OX ⊕ OX(H) → OX , yielding the projective
cone CX over X.

Fix an ample divisor G on CX, and take M = p∗(L) + q∗(G). The pullback
p∗(L) is certainly nef, and since q is birational and G is ample, q∗(G) is big and
nef. The line bundle M , being the sum of a nef line bundle and a big and nef one,
is itself big and nef.

Suppose now that C is a curve with M · C = 0. It must be that q∗(G) · C = 0,
so C is contracted by q and lies in the exceptional section E ⊂ Y . Under the
identification E ∼= X, the restriction M|E = p∗(L)|E is simply the line bundle L,
and so the set of curves C ⊂ E with M · C = 0 is countable. �

The same construction using P(OX ⊕OX(H)⊕r ) with r ≥ 1 gives examples as in
Corollary 3 for any dimension greater than three.

Remark 13. If L is a big and nef line bundle on a threefold X, then the set
of curves with L · C = 0 is either finite or uncountable. Indeed, L is Q-linearly
equivalent to a sum A + E with A ample and E effective. Any curve with (A +
E) ·C = 0 must be contained in the support of E. For any component Ei ⊂ E, the
divisor L|Ei

is nef and hence zero on either finitely many or uncountably many
curves; this follows from the two-dimensional statement applied on a resolution
of Ei .
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5. Remarks

5.1. Blow-Ups of P1 × P1 × P1

We obtain a similar example by considering a six-point blow-up of P1 × P1 ×
P1. Here the canonical divisor on the blow-up Y is given by 2D where D =
π∗O(1,1,1)−E1 −· · ·−E6. Again there is a one-dimensional family of (1,1,1)-
divisors passing though the six points. Each (1,1,1)-divisor corresponds to a Del
Pezzo surface of degree 6 (in fact, each map to P1 ×P1 is the blow-up of P1 ×P1

in two points). It follows that Y is fibered into blow-ups of P1 ×P1 in eight points,
as before.

Again there are many curves on Y such that −KY · C = 0. For example, when
an exceptional divisor of a Del Pezzo surface passes through one of the points, the
strict transform is a (−2)-curve on Y that satisfies KY ·C = 0. Here an infinite se-
quence of such curves can be obtained by applying the Cremona transformations
of the form

(x0, x1) × (y0, y1) × (z0, z1) �→ (x1, x0) × (y0/x0, y1/x1) × (z0/x0, z1/x1).

This transformation, and its permutations, generates an infinite representation in
GL(N1(Y )R), as shown by Mukai in [6], and so arguing as before, we obtain
infinitely many curves on Y such that −KY · C = 0.

This threefold is not isomorphic to the previous example. There is however a
birational map from X = Bl8P3 to Y that is an isomorphism in codimension 1.
Both Bl4P3 and Bl2(P1 × P1 × P1) have toric fans that are refinements of the
fan in R3 spanned by the faces of the unit cube. From the toric description it is
straightforward to see that the map φ : X ��� Y flops three of the six rational
curves that are flopped by the Cremona involution.

In particular, −KY is also nef, and zero on exactly countably infinitely many
curves, namely the strict transforms of the curves Cn ⊂ X. We still have −KY ·
Cn = 0 since the Cn are disjoint from the indeterminacy locus of the Cremona
map, and hence from the three curves flopped by φ : X ��� Y .
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There is a classical correspondence between eight-tuples of points in P3 (up
to automorphism) and six-tuples of points in P1 × P1 × P1, the association map.
Our X is the blow-up of P3 at eight very general points, and Y is the blow-up of
P1 × P1 × P1 at the associated set of six points.

Remark 14. We are grateful to Vesselin Dimitrov for pointing out another affir-
mative example to Totaro’s question. Let π : X → C be an nonisotrivial family of
smooth abelian surfaces over a smooth projective curve C, and let Z ⊂ X be the
zero section. Such a family of abelian surfaces exists because the boundary of the
Satake compactification of the moduli space has codimension 2.

Fix a symmetric, ample divisor A on the generic fiber Xη. Taking the clo-
sure of A, we obtain a divisor A0 on X. Let B = A0 − (A0 · Z)π∗(c) be the
divisor corrected so that B has intersection 0 with Z. Write n : X → X for the
multiplication-by-n map. The line bundle B satisfies n∗B = n2B .

We claim that B is nef. First, we check that B is π -ample, that is, that B|π−1(c)

is ample for every c. This is surely the case for general c since B|π−1(c) =
A|π−1(c). If a divisor is ample on a single fiber of a smooth family of abelian
varieties, it is ample on every fiber.

Hence, B is π -ample. We must also show that B · Y ≥ 0 if Y is a horizontal
curve. In that case, the intersection B ·Y = (1/deg(π |Y ))h(Y ), where h(Y ) is the
canonical height of Y with respect to A [9, (2.5.3)]. This height is 0 if and only
if Y is a torsion section of X. In particular, B has intersection 0 with any of the
countably many torsion sections of π .

In this case, the divisor B is not effective and so does not yield an example as
in Corollary 2.

Remark 15. If φ : X ��� X+ is the flop of a disjoint set of rational curves Bi with
normal bundles OP1(−1) ⊕ OP1(−1), and H is a divisor on X with strict trans-
form H̃ on X+, then H̃ 3 = H 3 − ∑

i (H · Ci)
3. For every n, the map Xpn ��� X

flops such a collection of disjoint rational curves. If Hn is a plane in Xpn , it has
positive intersection with each of these 6n curves. It follows that the strict trans-
forms Gn ⊂ X of the divisors Hn ⊂ Xpn define a sequence of irreducible divisors
on X for which the top self-intersection is not bounded below. This shows that
the most naïve three-dimensional analog of the Bounded Negativity Conjecture
for surfaces does not hold: on a threefold, there is no lower bound on D3 for
irreducible divisors D.

5.2. A Question

The example here shows that it is possible for a linear subspace of N1(X) to
contain precisely a countable number of irreducible curves: −K⊥

X ⊂ N1(X) is
such a subspace. Since −KX is nef, −K⊥

X ∩ NE(X) is in fact an extremal face of
the cone of curves NE(X) containing a countable number of irreducible curves.
Related is the following:
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Question. Let X be a smooth projective variety, and let α ∈ N1(X) be a numer-
ical cycle class. Can it happen that the set of irreducible curves on X with class
proportional to α is countably infinite?

Again, this cannot happen on a surface.
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