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Dedicated to Bill Helton on the occasion of his ?? birthday

Abstract. To each continuous function f : R→ R there is an associ-
ated trace function on n × n real symmetric matrices Trf . The classi-
cal Klein lemma states that f is convex if and only if Trf is convex.
In this note we present an algebraic strengthening of this lemma for
univariate polynomials f : Trf is convex if and only if the noncommu-
tative second directional derivative of f is a sum of Hermitian squares
and commutators in a free algebra. We also give a localized version of
this result.

1. Introduction

Trace-convexity is a notion frequently used in free probability and free analysis
[SV06; KV14], where, for example, the trace of certain potentials is assumed to
be convex; see [Gui06; Car10; GS09] or the references therein. One of the basic
technical tools of the trade is the so-called Klein lemma saying that a continuous
function f : R → R is convex if and only if the associated trace function Trf :
Sn → R is convex for all n ∈ N. (Here Sn denotes the set of all real symmetric
n × n matrices.) We call such a function trace-convex.

In this note we establish an algebraic version of Klein’s lemma. That is, we
give an algebraic certificate using sums of squares and commutators in the free
algebra on two letters whose existence is equivalent to trace-convexity of a poly-
nomial. Indeed, we show that trace-convexity of a univariate real polynomial p

is equivalent to its second noncommutative derivative p′′(x)[h] being a sum of
Hermitian squares plus commutators.

The article is organized as follows. Section 2 fixes notation, terminology, and
gives some preliminaries. Then Section 3 contains our main results, and we con-
clude with remarks and algorithmic considerations in Section 4.
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2. Notation and Preliminaries

2.1. Matrices

There is a natural partial ordering on Sn defined by X � Y if the symmetric matrix
X − Y is positive semidefinite, that is, if its eigenvalues are all nonnegative. Sim-
ilarly, X � Y if X − Y is positive definite, that is, all its eigenvalues are positive.

2.2. Noncommutative (nc) Polynomials

Even if p is a univariate polynomial, it naturally has noncommutative derivatives,
which are polynomials in two freely noncommuting variables.

Let x = (x1, . . . , xg) denote a g-tuple of free noncommuting variables, and
let R〈x〉 denote the associative R-algebra freely generated by x. Its elements are
called (nc) polynomials. An element of the form aw where 0 	= a ∈ R and w is
a word in the variables x is called a monomial and a its coefficient. The empty
word ∅ is the multiplicative identity for R〈x〉.

There is a natural involution T on R〈x〉 that reverses words. For example,

(2 − 3x2
1x2x3)

T = 2 − 3x3x2x
2
1 .

A polynomial p is a symmetric polynomial if pT = p. Because xT
j = xj , we

refer to the variables as symmetric variables. The degree of an nc polynomial
p, denoted deg(p), is the length of the longest word appearing in p. Let R〈x〉k
denote the polynomials of degree at most k.

2.3. Derivatives

Given a polynomial p ∈ R〈x〉, the �th noncommutative directional derivative
of p in the direction h is

p(�)(x)[h] := d�p(x + th)

dt�

∣∣∣∣
t=0

.

Thus, p(�)(x)[h] is the polynomial that evaluates to

d�p(X + tH)

dt�

∣∣∣∣
t=0

for every n ∈N and every choice of tuples X,H ∈ S
g
n.

Let p′(x)[h] denote the noncommutative first derivative of p and we denote
the Hessian, the second noncommutative derivative of p in the direction h, by
p′′(x)[h]. Equivalently, the Hessian of p can also be defined as the part of the
noncommutative polynomial

r(x)[h] := 2(p(x + h) − p(x)) ∈R〈x〉[h] := R〈x1, . . . , xg, h1, . . . , hg〉
that is homogeneous of degree two in h.

If p′′ 	= 0, that is, if p is an nc polynomial of degree two or more, then its
Hessian p′′(x)[h] is a polynomial in the 2g variables x1, . . . , xg , h1 . . . , hg , which
is homogeneous of degree two in h and has degree equal to the degree of p.



On Trace-Convex Noncommutative Polynomials 133

2.4. Commutators, Cyclic Equivalence

A polynomial of the form [p,q] := pq − qp for p,q ∈ R〈x〉 is a commutator.

Two polynomials f,g ∈ R〈x〉 are called cyclically equivalent (f
cyc
∼ g) if f − g

is a sum of commutators in R〈x〉. Cyclic equivalence can be easily checked; see
[KS08, Remark 1.3].

2.5. Trace-Convexity

We now introduce the central notion used in this article.

Definition 2.1. A symmetric polynomial p ∈ R〈x〉 is trace-convex if for each
n and each pair of g tuples of n × n symmetric matrices X = (X1, . . . ,Xg) and
Y = (Y1, . . . , Yg), we have

1

2
(Trp(X) + Trp(Y )) ≥ Trp

(
X + Y

2

)
. (2.1)

Equivalently,

Trp(X) + Trp(Y )

2
− Trp

(
X + Y

2

)
≥ 0. (2.2)

We sometimes restrict (2.1) or, equivalently, (2.2), to hold only for X, Y in a
domain D. In this case, p is trace-convex on D.

2.6. Related Notions

Noncommutative polynomials and noncommutative rational functions arise in
several contexts including systems theory [BGM06; BGM05] and is a part of the
new field of free (freely noncommutative) analysis [SV06; KV14; AM15]. Sums
of squares representations are a theme in both the commutative and noncommu-
tative settings [Pu13].

There is a related notion of matrix-convexity of an nc polynomial. A symmet-
ric polynomial p ∈ R〈x〉 is matrix-convex if

p(X) + p(Y )

2
− p

(
X + Y

2

)
� 0

for all tuples of symmetric matrices X, Y . Note, that even if p is a univariate
polynomial, p(x + y) is an nc polynomial in x, y since X and Y need not com-
mute. This convexity condition is very strong and leads to extreme rigidity. For
instance, by Helton and McCullough [HM04a], every matrix-convex polynomial
is of degree at most two, a result that depends on two key observations. First, p is
matrix-convex if and only if p′′(x)[h] is matrix-positive, that is,

p′′(X)[H ] � 0
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for all X,H ∈ S
g
n and n ∈ N [CHSY03]. Second, q ∈ R〈x〉 is matrix-positive if

and only if it is a sum of Hermitian squares, that is,

q =
∑
j

rT
j rj

for some rj ∈ R〈x〉 [Hel02; McC01].
We refer the reader to [Kra36; Eff09; Han97; OST07; Uci02] for further studies

of operator-monotonicity.

3. Results

We are now ready to present the main results of this article characterizing uni-
variate trace-convex polynomials with algebraic certificates involving sums of
squares.

Theorem 3.1 (global version). If p is a univariate polynomial, then the following
are equivalent.

(i) p is convex;
(ii) Trp is convex, that is, p is trace-convex;

(iii) p′′(x)[h] is a sum of Hermitian squares and commutators.

Next, we present a local version of Theorem 3.1 characterizing univariate poly-
nomials that are trace-convex on a matrix-interval. This time the algebraic certifi-
cates involve weighted sums of squares.

Theorem 3.2 (local version). Suppose p is a univariate polynomial and −∞ <

a < b < ∞.

(1) Trp is convex on aI ≺ X ≺ bI if and only if p is convex on (a, b) if and only
if p′′(x)[h] is cyclically equivalent to a polynomial of the form

finite∑
i

qi(x)[h]T qi(x)[h] +
finite∑

i

ri(x)[h]T (x − a)ri(x)[h]

+
finite∑

i

si(x)[h]T (b − x)si(x)[h] +
finite∑

i

ti (x)[h]T (x − a)(b − x)ti(x)[h]

+
finite∑

i

(x − a)ui(x)[h]T (b − x)ui(x)[h] (3.1)

for some qi, ri, si , ti , ui ∈R〈x〉[h] homogeneous of degree one in h.
(2) Trp is convex on bI ≺ X if and only if p is convex on (b,∞) if and only if

p′′(x)[h] is cyclically equivalent to a polynomial of the form

finite∑
i

qi(x)[h]T qi(x)[h] +
finite∑

j

rj (x)[h]T (x − b)rj (x)[h].
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(3) Trp is convex on X ≺ aI if and only if p is convex on (−∞, a) if and only if
p′′(x)[h] is cyclically equivalent to a polynomial of the form

finite∑
i

qi(x)[h]T qi(x)[h] +
finite∑

j

rj (x)[h]T (a − x)rj (x)[h].

The proofs of Theorems 3.1 and 3.2 occupy the remainder of this section.

3.1. Symmetrizer

One of our main tools in analyzing second derivatives of univariate nc polynomi-
als is the following operation of symmetrization.

Definition 3.3. Given d ∈ N and nc polynomials y1, . . . , yd , define Symd(y1,

. . . , yd) to be the nc polynomial

Symd(y1, . . . , yd) = 1

d!
∑
σ∈Sd

yσ(1) · · ·yσ(d).

Often we will omit the subscript d .

Lemma 3.4. Let y1, . . . , yd be nc polynomials. If σ ∈ Sd , then

Symd(yσ(1), . . . , yσ(d)) = Symd(y1, . . . , yd).

Proof. Trivial. �

Lemma 3.5. Fix 1 ≤ k ≤ d . If y1, . . . , yd are nc polynomials and ak is a constant,
then

Symd(y1, . . . , yk−1, yk − ak, yk+1, . . . , yd)

= Symd(y1, . . . , yk−1, yk, yk+1, . . . , yd)

− ak Symd−1(y1, . . . , yk−1, yk+1, . . . , yd).

Proof. The polynomial Symd(y1, . . . , yk−1, yk − ak, yk+1, . . . , yd) is a sum of
products of polynomials, each of which contains yk − ak . Distributing the yk − ak

in each product gives

1

d!
∑
σ∈Sd

yσ(1) · · ·yσ(d) − ak

1

d!
d∑

j=1

∑
σ(j)=k

yσ(1) · · ·yσ(j−1)yσ(j+1) · · ·yσ(d). (3.2)

For 1 ≤ j ≤ d , let Sd,j denote those σ ∈ Sd such that σ(j) = k. Given a permuta-
tion σ ∈ Sd,j , define σ̃ to be

σ̃ (i) =

⎧⎪⎨
⎪⎩

k, i = 1,

σ (i − 1), 1 ≤ i − 1 < j,

σ(i), j < i.
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Given a fixed j , the mapping from Sd,j to Sd,1 defined by σ �→ σ̃ is a bijection,
and further,

yσ̃ (2) · · ·yσ̃ (d) = yσ(1) · · ·yσ(j−1)yσ(j+1) · · ·yσ(d).

Therefore, (3.2) simplifies to

1

d!
∑
σ∈Sd

yσ(1) · · ·yσ(d) − ak

1

(d − 1)!
∑

σ(1)=k

yσ(2) · · ·yσ(d)

= Symd(y1, . . . , yk−1, yk, yk+1, . . . , yd)

− ak Symd−1(y1, . . . , yk−1, yk+1, . . . , yd). �

3.2. From Commutative to Noncommutative Polynomials

For a univariate polynomial p, let dp
dx

and d2p

dx2 denote the ordinary first and second
derivative of p (and p′ and p′′ the first and second nc derivative of p).

Lemma 3.6. Let p be a univariate polynomial. If

d2p

dx2
= (x − a1) · · · (x − ad),

then

p′′(x)[h] = Symd+2(x − a1, . . . , x − ad,h,h).

Proof. First, consider the simple case d2p

dx2 (x) = xd for which

p = 1

(d + 2)(d + 1)
xd+2 + �,

where � is some linear polynomial. Computing the second nc derivative of xd+2

gives two times the sum of all words of degree d in x and degree two in h. There-
fore, for each i < j , the coefficient of the word with an h as the ith and j th letters
in p′′(x)[h] is

2

(d + 2)(d + 1)
.

Examining Sym(x, . . . , x, h,h), we see that, for each i < j , the coefficient of the
word with an h as the ith and j th letters is

1

(d + 2)!d!2! = 2

(d + 2)(d + 1)
.

Next, consider the general case d2p

dx2 = (x − a1) . . . (x − ad). We see that

d2p

dx2
=

d∑
k=0

( ∑
1≤i1<···<id−k≤n

(−1)d−kai1 . . . aid−k
xk

)
.
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By linearity,

p′′(x)[h] =
d∑

k=0

∑
1≤i1<···<id−k≤n

(−1)d−kai1 . . . aid−k
Symk+2(x, . . . , x, h,h).

Repeated application of Lemma 3.5 to each (x − ai) in the expression Sym(x −
a1, . . . , x − ad,h,h) shows that this last expression is equal to Sym(x −
a1, . . . , x − ad,h,h). �

3.3. On Hankel Matrices

Recall that an (n+1)× (n+1) square matrix T is called Hankel if it has constant
antidiagonals, that is,

Ti,j = Ti−1,j+1

for 0 < i ≤ n and 0 ≤ j < n. A finite sequence c0, . . . , c2m generates an (m + 1)×
(m + 1) Hankel matrix T with

Ti,j = ci+j , 0 ≤ i, j ≤ m.

We refer to [Dym07] for more on Hankel matrices.

Lemma 3.7. For all k, �, d ∈ N with � ≤ k, there is a regular Borel measure sup-
ported on R such that

1(2d+k
j+�

) =
∫

xj dμ

for 0 ≤ j ≤ 2d . In particular, the Hankel matrix generated by the finite sequence
(1/

(2d+k
�+j

)
)2d
j=0 is positive semidefinite.

Proof. Consider the measure

dμ = 2d + k + 1

(x + 1)2d+k+2
xk dx

on the half-line [0,∞). The j th moment of this measure is∫ ∞

0
xj+k 2d + k + 1

(x + 1)2d+k+2
dx.

Using the substitution x = 1
t
− 1 gives

∫ 1

0
(2d + k + 1)(1 − t)j+kt2d+k−(j+k) dt

= (2d + k + 1)B(2d + k − (j + k) + 1, (j + k) + 1) = 1(2d+k
j+k

) ,

where B(x, y) denotes the beta function. �
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Lemma 3.8. Given a positive integer d and n0, n1, . . . , nd ∈ N, let 1i,j denote
the ni × nj matrix all of whose entries are 1. If H = (Hi,j )

d
i,j=0 is a positive

semidefinite (d + 1) × (d + 1) matrix, then the block matrix (of total size n × n

where n = ∑
nj )

C = (
Hi,j 1i,j

)d

i,j=0

is also positive semidefinite.

Proof. Let N denote the max of {n0, . . . , nd}, and let 1 denote the N × N matrix
each of whose entries is 1. The tensor (Kronecker) product H ⊗1 is positive semi-
definite since both H and 1 are. Finally, C is obtained from H ⊗1 by compressing
to a subspace (removing appropriate rows and columns) and is thus positive semi-
definite. �

3.4. A Uniform Representation of the Symmetrizer

Proposition 3.9. Fix a positive integer d and nonnegative integer k. There exists
a vector-valued polynomial W(x,h, c) in the nc variables x and h and commuting
variables c = (c1, . . . , cd) (thus, each cj commutes with all other variables) and
positive semidefinite matrices C and C0, . . . ,Ck such that:

(1) the polynomial Sym(x − b1, . . . , x − b2d , h1, h2) (in the nc variables x, h1,
h2 and commuting variables b1, . . . , b2d ) is cyclically equivalent to

W(x,h1, b1, . . . , bd)T CW(x,h2, bd+1, . . . , b2d); (3.3)

(2) the polynomial Sym(x − a1, . . . , x − ak, x − b1, . . . , x − b2d , h1, h2) (in the
nc variables x, h1, h2 and commuting variables a1, . . . , ak ; b1, . . . , b2d ) is
cyclically equivalent to

k∑
�=0

∑
τ∈Sk

(x − aτ(1)) · · · (x − aτ(�))W(x,h1, b1, . . . , bd)T (x − aτ(�+1))

· · · (x − aτ(k))C�W(x,h2, bd+1, . . . , b2d). (3.4)

Proof. Note that equation (3.3) follows from equation (3.4) by choosing k = 0.
The polynomial Sym(x − a1, . . . , x − ak, x − b1, . . . , x − b2d , h1, h2) is a sum of
products that can be cyclically permuted so that they are of the form

(x − aτ(1)) · · · (x − aτ(�))(x − bσ(1)) · · · (x − bσ(m))h1(x − aτ(�+1))

· · · (x − aτ(k))(x − bσ(m+1)) · · · (x − bσ(2d))h2, (3.5)

for some 0 ≤ � ≤ k, 0 ≤ m ≤ 2d , σ ∈ S2d , τ ∈ Sk . There are 2d + k + 2 cyclic
permutations of (3.5) within Sym(x −a1, . . . , x −ak, x −b1, . . . , x −b2d, h1, h2).
Further, the factors of the form x − c, with c a scalar, can be commuted with each
other as long as they do not pass over an hj . Given a set of factors that appear to
the left of h1, the other side of h1 must consist of the remaining unused factors.
This means that up to cyclic permutation each term is uniquely determined by
which factors appear between h1 and h2. Therefore, the polynomial Sym(x −
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a1, . . . , x − ak, x − b1, . . . , x − b2d , h1, h2), up to cyclic equivalence, contains a
product of the form (3.5) with coefficient equal to

(� + m)!(2d + k − � − m)!(2d + k + 2)

(2d + k + 2)! = 1(2d+k
�+m

)
(2d + k + 1)

. (3.6)

By cyclic permutation, we can express (3.5) uniquely in the form

(x − aτ(1)) · · · (x − aτ(�))(x − bφ(1)) · · · (x − bφ(d−r))h1(x − bφ(d−r+1))

· · · (x − bφ(d))(x − aτ(�+1)) · · · (x − aτ(d))(x − bd+ρ(1))

· · · (x − bd+ρ(s))h2(x − bd+ρ(s+1)) · · · (x − bd+ρ(d)), (3.7)

where φ,ρ ∈ Sd . Let fs(x,h, c1, . . . , cd) be a vector consisting of all unique poly-
nomials in the nc variables x, h and commuting variables c = (c1, . . . , cd) of the
form

(x − cρ(1)) · · · (x − cρ(s))h(x − cρ(s+1)) · · · (x − cρ(d)),

where ρ ∈ Sd . Note that the length of fs is
(
d
s

)
. Also, let 1r,s denote the

(
d
r

) × (
d
s

)
matrix all of whose entries are 1. Then for all �, r, s,

1

�!(k − �)!
∑
τ∈Sk

(x − aτ(1)) · · · (x − aτ(�))fr(x,h1, b1, . . . , bd)T (x − aτ(�+1))

· · · (x − aτ(d))1r,sfs(x,h2, bd+1, . . . , b2d) (3.8)

is equivalent to the sum of all distinct polynomials of the form (3.7), each of which
has the coefficient

1( 2d+k
�+2d−(r+s)

)
(2d + k + 1)

(3.9)

in Sym(x − a1, . . . , x − ak, x − b1, . . . , x − b2d , h1, h2).
Let

W(x,h, c1, . . . , cd) =
⎛
⎜⎝

f0(x,h, c1, . . . , cd)
...

fd(x,h, c1, . . . , cd)

⎞
⎟⎠ ,

let

H� = 1

(2d + k + 1)�!(k − �)!

⎛
⎜⎜⎜⎜⎜⎜⎝

1
(2d+k

� )
1

(2d+k
�+1 )

· · · 1
(2d+k

�+d )
1

(2d+k
�+1 )

1
(2d+k

�+2 )
· · · 1

( 2d+k
�+d+1)

...
... · · · ...

1
(2d+k

�+d )
1

( 2d+k
�+d+1)

· · · 1
(2d+k
�+2d)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and define
C� = ((H�)r,s1r,s).

By Lemma 3.7, H� is positive semidefinite, and thus, by Lemma 3.8, C� is posi-
tive semidefinite. Further, when we sum the polynomials (3.8) multiplied by co-
efficients (3.9) over all (�, r, s), we get (3.4). �
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3.5. Connecting Trace-Convexity and Trace-Positivity

A set D ⊆ ⋃
n S

g
n =: Sg is called open if each D(n) := D ∩ S

g
n is open.

Lemma 3.10. A symmetric nc polynomial p ∈ R〈x〉 is trace-convex on an open
set D ⊆ S

g if and only if its Hessian p′′(x)[h] is trace-positive on D×S
g , that is,

Trp′′(X)[H ] ≥ 0 (3.10)

for all n ∈ N, X ∈D(n) and H ∈ S
g
n.

Proof. First, suppose that p is trace-convex on D. In this case, given n ∈ N, X ∈
D(n) and H ∈ S

g
n, the polynomial of t ∈R,

q(t) = Tr(p(X + tH) + p(X − tH) − 2p(X))

takes nonnegative values (for small enough t) and q(0) = 0. Hence,

0 ≤ d2q

dt2
(0) = Trp′′(X)[H ].

Thus, p′′ is trace-positive on D × S
g .

Now suppose p′′ is trace-positive on D × S
g and let n ∈ N, X ∈ D(n), and

H ∈ S
g
n be given such that X ± H ∈ D. Consider the real polynomial

r(t) = Tr(p(X + tH) + p(X − tH) − 2p(X)).

Observe that r(0) = 0,

dr

dt
(0) = Tr(p′(X)[H ] − p′(X)[H ]) = 0,

and

d2r

dt2
(c) = Tr(p′′(X + cH)[H ] + p′′(X − cH)[H ]).

In particular, by hypothesis the second (ordinary) derivative of r is nonnegative.
By Taylor’s theorem, there is a 1 > c > 0 such that

Tr(p(X + H) + p(X − H) − 2p(X)) = r(1) = 1

2

d2r

dt2
(c) ≥ 0,

and thus p is trace-convex on D. �

The parallel between trace-convexity and matrix-convexity stops here due to the
failure of a tracial version of Helton’s sum of squares theorem [Hel02; McC01].
That is, a trace-positive nc polynomial is not necessarily a sum of Hermitian
squares and commutators [KS08]. For more on matrix-positive polynomials, see,
for example, [Hel02; HM04b; PNA10], and for trace-positive nc polynomials, we
refer to [BK12; BCKP13] (see also [CDT10]) and the references therein.
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3.6. Proof of the Main Results

Proof of Theorem 3.1. Suppose (i) holds. Then d2p

dx2 is nonnegative on R, which

implies that it is a sum of polynomials of the form A(x − b1)
2 . . . (x − bd)2 with

A ≥ 0. Lemma 3.6 and Proposition 3.9 now imply that p′′(x)[h] is a sum of
squares plus commutators, that is, (iii) holds.

If (iii) holds, that is, p′′(x)[h] is a sum of Hermitian squares plus commutators,
then it is clear that Tr(p′′(x)[h]) is nonnegative (that is, p′′ is trace positive),
which implies, by Lemma 3.10, that Tr(p(x)) is convex, establishing (ii). Finally,
that (ii) implies (i) is obvious. �

Proof of Theorem 3.2. (1) If p′′(x)[h] is of the form (3.1), then it is clear that for
aI ≺ X ≺ bI and all H , Trp′′(X)[H ] is nonnegative. (Note that (X − aI)(bI −
X) � 0 since X − aI and bI − X commute.) So, by Lemma 3.10, Trp is convex
on aI ≺ X ≺ bI , and p is convex on (a, b).

Conversely, if p is convex on (a, b), then d2p

dx2 (x) is nonnegative for x ∈ (a, b),
which implies that it is a sum of polynomials each of one of the following forms
[PR00]:

(a) A(x − b1)
2 · · · (x − bd)2,

(b) A(x − a)(x − b1)
2 · · · (x − bd)2,

(c) A(b − x)(x − b1)
2 · · · (x − bd)2,

(d) A(x − a)(b − x)(x − b1)
2 · · · (x − bd)2,

where A > 0 and d ≥ 0. The result now follows from applying Lemma 3.6 and
Proposition 3.9.

The proofs of (2) and (3) are similar and left as an exercise for the reader. �

4. Concluding Remarks

4.1. An Alternative Proof of the Equivalence between Trace-Convexity
and Convexity

Here we present an alternative proof (cf. [Gui09, p. 74]) of the equivalence be-
tween trace-convexity and convexity for univariate nc polynomials, which avoids
the sum of squares certificates. The argument applies naturally to continuous func-
tions p : (a, b) → R.

Proposition 4.1. Let a, b ∈ [−∞,∞] with a < b. If p : (a, b) → R is continu-
ous, then Trp is convex on aI ≺ X ≺ bI if and only if p is convex on (a, b).

Proof. If Trp is convex on (a, b), then for 1 × 1 matrices between aI and bI , the
trace Trp is equal to p, and hence p is convex on (a, b).

For the converse, fix t ∈ [0,1] and X,Y ∈ Sn for some n ∈ N such that aI ≺
X,Y ≺ bI . Then tX + (1 − t)Y is a symmetric matrix and can be decomposed
as OT �O , where O is orthogonal, and � is diagonal with entries λ1, . . . , λn.
Further,

(OT �O)n = OT �nO and TrOT �nO = TrOOT �n = Tr�n.
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Extending this to general polynomials, we have

Trp(OT �O) = Trp(�) =
n∑

i=1

p(λi).

Conjugating by O gives

� = tOXOT + (1 − t)OYOT .

Since both X and Y are symmetric, they can be decomposed as X = OT
X�XOX

and Y = OT
Y �Y OY , where OX and OY are orthogonal, and �X and �Y are diag-

onal with entries λX
i and λY

i , respectively.
Let OT OX = A = (aij )1≤i,j≤n and OT OY = B = (bij )1≤i,j≤n, which are

both orthogonal matrices. The iith entry of the matrix tOxOT = tAT �XA is

(tAT �xA)ii =
n∑

k=1

ta2
ikλ

X
k .

Similarly, the iith entry of (1 − t)BT �Y B is

((1 − t)BT �y)ii =
n∑

k=1

(1 − t)b2
ikλ

Y
k .

Adding the two together gives

λi =
n∑

k=1

ta2
ikλ

X
k +

n∑
k=1

(1 − t)b2
ikλ

Y
k .

Since A and B are orthogonal,
∑n

k=1 a2
ik = ∑n

k=1 b2
ik = 1. Therefore, λi is a

convex combination of the λX
i and λY

i terms. Further, since aI ≺ X,Y ≺ bI , each
of the λX

i and λY
i is in (a, b). Therefore, if p is convex on (a, b), then

Tr(tX + (1 − t)Y ) = Trp(tOXOT + (1 − t)OYOT )

=
n∑

i=1

p

( n∑
k=1

ta2
ikλ

X
k +

n∑
k=1

(1 − t)b2
ikλ

Y
k

)

≤
n∑

i=1

( n∑
k=1

ta2
ikp(λX

k ) +
n∑

k=1

(1 − t)b2
ikp(λY

k )

)

=
n∑

k=1

(
t

( n∑
i=1

a2
ik

)
p(λX

k ) +
( n∑

i=1

b2
ik

)
p(λY

k )

)

= t

n∑
k=1

p(λX
k ) + (1 − t)

n∑
k=1

p(λY
k )

= t Trp(X) + (1 − t)Trp(Y ).

Hence, Trp(X) is convex on aI ≺ X ≺ bI . �
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4.2. Algorithmic Aspects

There are now several computer algebra packages available capable of assisting
work in free convexity and free real algebraic geometry. Namely

(1) NCAlgebra [HOSM+] running under Mathematica;
(2) NCSOStools [CKP11] running under MATLAB.

The former is more universal in that it implements manipulation with noncom-
mutative variables, including nc rationals and several algorithms pertaining to
convexity. The latter is focused on free positivity, sums of squares and numerics.

Example 4.2. Here is a simple example computed with the aid of NCSOStools.

We demonstrate our results on p = 15x2 − 5x4 + x6. Note that d2p

dx2 = (x − 1)2 ×
(x + 1)2, so p is convex. To compute a noncommutative trace-convexity certifi-
cate, we proceed as follows:
>> NCvars x;
>> p=15*x^2 - 5*x^4 + x^6;
>> [iscConvex,g,sohs,s] = NCisCycConvex(p,10e-10);
>> iscConvex
iscConvex =

1
>> sohs
sohs =

5.47722558*h1-1.82574651*h1*x^2-1.82573252*x*h1*x-1.82574651*x^2*h1
0.007151308*h1*x-0.007145828*x*h1

-1e-09*h1*x^2+0.000279894*x*h1+2e-09*x*h1*x-1e-09*x^2*h1
1.63298798*h1*x^2-0.204119565*x*h1*x-1.42870107*x^2*h1

0.790214359*x*h1*x-0.790862166*x^2*h1
0.000187011*x^2*h1

Since iscConvex = 1, we believe that p is trace-convex. To obtain an ex-
act (symbolic) proof as opposed to the numerical evidence presented before, we
proceed as follows. We try to manually find a sum of squares and commutators
certificate of p′′(x)[h] as NCSOStools then outputs more intermediate results
that we can analyze.
>> p2=NC2d(p);
>> [IsCycEq,X,base,sohs,g,SDP_data,L] = NCcycSos(p2);
>> X
X =

30.0000 -0.0000 0.0000 -10.0000 -9.9999 -10.0000
-0.0000 0.0001 -0.0001 0.0000 0.0000 -0.0000
0.0000 -0.0001 0.0001 -0.0000 0.0000 0.0000

-10.0000 0.0000 -0.0000 6.0000 3.0000 1.0003
-9.9999 0.0000 0.0000 3.0000 3.9994 3.0000

-10.0000 -0.0000 0.0000 1.0003 3.0000 6.0000
>> base
base =

’h1’
’h1*x’
’x*h1’
’h1*x*x’

http://www.math.ucsd.edu/~ncalg/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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’x*h1*x’
’x*x*h1’

Here X is the Gram matrix corresponding to our sum of squares SDP (semi-
definite program), and base is the corresponding border vector. The second and
third rows and column of X are a direct summand corresponding to a polynomial
cyclically equivalent to 0. Thus, with

X =

⎛
⎜⎜⎝

30 −10 −10 −10
−10 6 3 1
−10 3 4 3
−10 1 3 6

⎞
⎟⎟⎠ , v =

⎛
⎜⎜⎝

h

hx2

xhx

x2h

⎞
⎟⎟⎠ ,

it is easy to verify

vT Xv
cyc
∼ p′′

and that X � 0. Factor X = RT R, where, with s = 1√
6

, t =
√

5
2 , u =

√
30
3 ,

R =

⎛
⎜⎜⎝

0 0 0 0
0 s −2s s

0 −t 0 t

−3u u u u

⎞
⎟⎟⎠ .

Letting u = Rv, the three nonzero entries of u,

q1 = s(hx2 − 2xhx + x2h),

q2 = t (hx2 − x2h),

q3 = u(3h − hx2 − xhx − x2h),

satisfy

p′′(x)[h] cyc
∼ q∗

1 q1 + q∗
2 q2 + q∗

3 q3.
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