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Coeffective Basic Cohomologies
of K-Contact and Sasakian Manifolds

Cristian Ida & Paul Popescu

Abstract. In this paper, we define coeffective de Rham cohomology
for basic forms on a K-contact or Sasakian manifold M , and we dis-
cuss its relation with usual basic cohomology of M . When M is of
finite type (for instance, it is compact), several inequalities relating
some basic coeffective numbers to classical basic Betti numbers of M

are obtained. In the case of Sasakian manifolds, we define and study
coeffective Dolbeault and Bott–Chern cohomologies for basic forms.
Also, in this case, we prove some Hodge decomposition theorems for
coeffective basic de Rham cohomology, relating this cohomology with
coeffective basic Dolbeault or Bott–Chern cohomology. The notions
are introduced in a similar manner with the case of symplectic and
Kähler manifolds.

1. Introduction and Preliminary Notions

1.1. Introduction

The coeffective cohomology was introduced by Bouché [6] for symplectic mani-
folds. More exactly, a symplectic form ω defines a special subcomplex of the de
Rham complex (F •(M), d) of differential forms on M : it consists of the forms ϕ

that are annihilated by ω, that is, ϕ ∧ ω = 0. Since ω is closed, we have in fact a
subcomplex of (F •(M), d) whose cohomology is called coeffective. This coho-
mology is related with the truncated de Rham cohomology by the class ω. Further
significant developments of coeffective cohomologies in many different contexts
(symplectic, Kähler, (almost) cosymplectic, (almost) contact, quaternionic mani-
folds) are given by a series of papers of de Andrés, Fernández, de León, Ibáñez,
Mencía, Chinea, Marrero [2; 8; 9; 14; 15; 16], and other papers by these authors.
For Kähler manifolds, both cohomologies (coeffective cohomology and de Rham
cohomology truncated by [ω]) are isomorphic for p �= n, dimM = 2n, though in
general they are different for non-Kähler symplectic manifolds [2]. For symplec-
tic manifolds of finite type, the coeffective numbers of the symplectic manifold
and several inequalities relating them to the Betti numbers were introduced. Sim-
ilar results were obtained in the context of almost contact [9; 15] and quaternionic
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manifolds [16]. Also, a coeffective Dolbeault cohomology for compact Kähler
and indefinite Kähler manifolds is studied in [18].

Our aim in this paper is to study the coeffective de Rham, Dolbeault, and Bott–
Chern cohomologies for basic forms of (compact) K-contact or Sasakian mani-
folds with respect to the Reeb foliation Fξ of the fundamental Reeb vector field ξ ,
giving a new contribution concerning basic cohomology of K-contact or Sasakian
manifolds. Notice that a background about the basic cohomology of K-contact
and Sasakian manifolds can be found in Chapter VII of [7]. Other developments
of basic cohomologies of K-contact and Sasakian manifolds in a similar direction
as in the recent studies for symplectic manifolds, [27], are given in [19].

The structure of the paper is as follows. In the preliminary subsection, fol-
lowing [7; 23], we briefly recall some elementary definitions about basic forms,
basic star operator, basic de Rham Laplacian, and basic de Rham cohomology on
K-contact manifolds.

We notice that if η is the contact form of M , then dη is basic with respect to
the Reeb foliation Fξ . Thus, in Section 2, we begin our study with the coeffective
de Rham cohomology for basic forms on a K-contact manifold M . The main
ingredient is given by the isomorphism between the space of basic differential
forms on M and the space of differential forms on the orbit space Mξ of Fξ , which
is known to be symplectic (or Kählerian in the Sasakian case). Thus, following
the classical study of coeffective cohomology of symplectic manifolds (see [14]),
we define the coeffective basic de Rham cohomology of M and prove that when
M is compact Sasakian,

Hp(Ab(M)) ∼= H̃
p
b (M) ∀p �= n,

where Hp(Ab(M)) denotes the coeffective basic cohomology group of degree
p of M , and H̃

p
b (M) is the subspace of the basic de Rham cohomology group

of M consisting of those classes a ∈ H
p
b (M) such that a ∧ [dη] = 0, or in other

words, the truncated basic de Rham cohomology group of degree p. Notice that
for an arbitrary K-contact manifold, Hp(Ab(M)) vanishes for every p ≤ n − 1,
where dimM = 2n+ 1. Also, using a technique based on the long exact sequence
in cohomology associated with an exact short sequence of complexes, we obtain
that the coeffective basic de Rham cohomology groups of a K-contact or Sasakian
manifold M of finite type have finite dimension. In this case, if we denote by
c
p
b (M) = dimHp(Ab(M)), called the coeffective basic numbers of order p of

M , then they satisfy the following inequalities:

b
p
b (M) − b

p+2
b (M) ≤ c

p
b (M) ≤ b

p
b (M) + b

p+1
b (M) ∀p ≥ n + 1,

where b
p
b (M) = dimH

p
b (M) is the basic Betti number of order p of M .

As a consequence, for a compact Sasakian manifold, we deduce that

c
p
b (M) = b

p
b (M) − b

p+2
b (M) ∀p ≥ n + 1,

which means that the coeffective basic numbers of a compact Sasakian manifold
measure the jumps between the basic Betti numbers.
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In the end of Section 2, using an exact sequence in cohomology (which is the
foliation analogue of the Gysin sequence), we prove that the following isomor-
phism holds:

Hp(A(M)) ∼= Hp−1(Ab(M)) ∀p = 1, . . . ,2n + 1,

where H •(A(M)) is the coeffective de Rham cohomology of M considered in
[15].

In Section 3, we consider basic complex-valued forms on a Sasakian manifold
M , and taking into account that dη is a basic form of complex type (1,1), in a
similar manner with coeffective Dolbeault cohomology of Kähler manifolds (see
[18]), we define and study coeffective basic Dolbeault cohomology of a Sasakian
manifold. We prove that when M is compact,

Hr,s(Ab(M)) ∼= H̃
r,s
b (M) ∀r + s �= n,

where Hr,s(Ab(M)) denotes the coeffective basic cohomology group of type
(r, s) of M , and H̃

r,s
b (M) is the truncated basic Dolbeault cohomology group

of type (r, s). In the case where M is a compact Sasakian manifold, we prove
a Hodge decomposition theorem for coeffective basic de Rham cohomology of
M , relating this cohomology with coeffective basic Dolbeault cohomology of M .
Also, several inequalities relating the coeffective basic Hodge numbers to the clas-
sical basic Hodge numbers are given similarly as in the de Rham case.

The aim of Section 4 is to construct a coeffective basic Bott–Chern cohomol-
ogy of a Sasakian manifold M . In this sense, we first define basic Bott–Chern
and Aeppli cohomology of M , and we obtain a Hodge–Bott–Chern decomposi-
tion theorem for basic forms of M . Next, in a similar manner with the study of
coeffective basic de Rham and Dolbeault cohomology of M , we define and study
a coeffective Bott–Chern cohomology for basic forms on M .

The main methods used here are similar and closely related to those used in [6;
9; 14; 15; 16].

1.2. Preliminaries

Let (M,F, ξ, η, g) be a (2n + 1)-dimensional almost contact manifold; that is
(see [3; 4; 7; 23]), F is a (1,1)-tensor field, η is a 1-form, ξ is a vector field, and
g is a Riemannian metric on M such that

F 2 = − Id+η ⊗ ξ, η(ξ) = 1, and

g(FX,FY) = g(X,Y ) − η(X)η(Y )
(1.1)

for every X,Y ∈ X (M), where Id is the identity transformation. Then we have
F(ξ) = 0 and η(X) = g(X, ξ) for all X ∈ X (M). The fundamental 2-form � of
M is defined by �(X,Y ) = g(X,FY), and the (2n+ 1)-form η ∧�n is a volume
form on M . The almost contact metric manifold is said to be: contact if dη =
�; K-contact if it is contact and ξ is Killing; normal if [F,F ] + 2dη ⊗ ξ = 0;
Sasakian if it is contact and normal. If M is Sasakian manifold, then it is K-
contact [3].
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Consider the field F 0(M) = F(M) of smooth real-valued functions defined
on M . For each p = 1, . . . ,2n + 1, denote by Fp(M) the module of p-forms, by
F(M) = ⊕

p≥0 Fp(M) the exterior algebra of M , and by 〈·, ·〉 the natural scalar
product on F(M).

Recall that the differential form ω on M is called basic if it is horizontal (i.e.,
ıξω = 0, where ıξ denotes the interior product with respect to ξ ) and invariant
(i.e., Lξω = 0, where Lξ denotes the Lie derivative with respect to ξ ). Denote
by F

p
b (M) the subspace of all basic p-forms on the manifold M . It is a mod-

ule over the ring F 0
b (M) = Fb(M) of basic functions on M (i.e., Lξ f = 0).

Let Fb(M) = ⊕
p≥0 F

p
b (M) be the graded algebra of all basic forms on M .

By the Cartan identity Lξ = dıξ + ıξ d we easily obtain that the exterior dif-
ferential of a basic form is also basic, so we can consider the basic differential
db = d|Fp

b (M) : Fp
b (M) −→ F

p+1
b (M).

Thus, the basic forms constitute a subcomplex (
⊕

p≥0 F
p
b (M), db) of the de

Rham complex (
⊕

p≥0 Fp(M),d). The cohomology of this subcomplex is de-
fined by

Hb(M) =
⊕
p≥0

H
p
b (M),

H
p
b (M) = ker{db : Fp

b (M) → F
p+1
b (M)}/db(F

p−1
b (M)).

This cohomology plays the role of de Rham cohomology of the orbit space of the
K-contact manifold M , and we call it the basic de Rham cohomology or simply
the basic cohomology of M . Moreover, the space of basic cohomology H •

b (M) is
an invariant of the characteristic foliation Fξ and therefore is an invariant of the
K-contact structure on the manifold M . The relation between the basic cohomol-
ogy H •

b (M) and de Rham cohomology H •(M) of the K-contact manifold M is
the same as in the general case of a foliation generated by a nonsingular Killing
vector field (see, e.g., [26], Thm. 10.13, p. 139). On compact K-contact mani-
folds, the basic cohomology groups enjoy some special properties. In particular,
there is a transverse Hodge theory [7; 11; 13].

Let � be the usual star operator on M . If ω ∈ F
p
b (M), then the (2n − p)-form

ıξ � ω is basic. Therefore, we can define the basic star operator �b : Fp
b (M) −→

F
2n−p
b (M) by

�bω = (−1)pıξ � ω. (1.2)

Also, the usual scalar product 〈·, ·〉 on Fp(M) restricted to basic forms, is denoted
by 〈·, ·〉b , and is given by

〈ω,θ〉b =
∫

M

ω ∧ �bθ ∧ η (1.3)

for all ω,θ ∈ F
p
b (M). We denote by the symbol A∗ the adjoint of the operator

A : Fb(M) → Fb(M) with respect to 〈·, ·〉b . As it is well known, the 〈·, ·〉b-adjoint
d∗
b of db satisfies d∗

b = − �b db�b .
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The basic de Rham Laplacian 	b is defined in terms of db and its adjoint d∗
b

by

	b = dbd
∗
b + d∗

b db. (1.4)

The space Hp
b (M) of basic harmonic p-forms on M is then defined to be the

kernel of 	b : Fp
b (M) → F

p
b (M), and Hp

b (M) = kerdb ∩ kerd∗
b . The transverse

Hodge theorem [13] then says that

F
p
b (M) = Imdb ⊕ Imd∗

b ⊕ ker	b (1.5)

(see also [10]), and each basic cohomology class has an unique harmonic repre-
sentative, that is,

H
p
b (M) ∼= Hp

b (M). (1.6)

2. Coeffective de Rham Cohomology for Basic Forms

Throughout this section, M is a (compact) K-contact manifold of dimension 2n+
1, and sometimes M is Sasakian. We start with a fundamental result, which plays
an important role for our purpose.

Theorem 2.1 [23]. Let M be a K-contact manifold of dimension 2n + 1, and
Mξ the orbit space of the Reeb foliation Fξ defined by ξ . If π : M → Mξ is the
natural projection, then π∗ : Fp(Mξ ) → F

p
b (M) is an isomorphism.

Proof. Obviously, π∗ is injective. We prove now that for any ϕ ∈ F
p
b (M), there

exists ϕ′ ∈ Fp(Mξ ) such that ϕ = π∗ϕ′. Since ϕ is horizontal (i.e., ıξ ϕ =
0), the values ϕ(X1, . . . ,Xp) can be nonzero only when the tangent vectors
{X1, . . . ,Xp} ∈ TxM are orthogonal on ξ . But the condition Lξϕ = 0 shows that
ϕ is invariant by the Reeb group {�t }t∈R, that is, �∗

t ϕ = ϕ. It follows that

ϕ(�t∗X1, . . . ,�t∗Xp) = ϕ(X1, . . . ,Xp),

and so at the point π(x), a p-form ϕ′
π(x)

with the property ϕx = π∗ϕ′
π(x)

is well
defined. But x is arbitrary in M , and then the p-form ϕ′ ∈ Fp(Mξ ) with the
property ϕ = π∗ϕ′ is well defined, which proves that F

p
b (M) ⊆ Imπ∗.

It remains only to prove that Imπ∗ ⊆ F
p
b (M). Remark that for any ϕ′ ∈

Fp(Mξ ), we have �∗
t π

∗ϕ′ = π∗ϕ′, ıξπ
∗ϕ′ = 0; hence, Lξπ

∗ϕ′ = 0, and then
π∗ϕ′ ∈ F

p
b (M). �

Also, it is well known that (Mξ ,�) is symplectic with dη = π∗�, and when M

is Sasakian, (Mξ ,�) is Kählerian. We now have

Lemma 2.1. The operator L : F
p
b (M) → F

p+2
b (M) defined by Lϕ = ϕ ∧ dη is

injective for p ≤ n − 1 and surjective for p ≥ n − 1.

Proof. According to [6], we have that the symplectic operator L′ : Fp(Mξ ) →
Fp+2(Mξ ) given by L′ϕ′ = ϕ′ ∧ � is surjective for p ≥ n − 1 and injective for
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p ≤ n − 1. Now, by Theorem 2.1, for every ϕ ∈ F
p
b (M), there is ϕ′ ∈ Fp(Mξ )

such that ϕ = π∗ϕ′ and

Lϕ = ϕ ∧ dη = π∗ϕ′ ∧ π∗� = π∗(ϕ′ ∧ �) = (π∗ ◦ L′)ϕ′.
Thus, the operator L is also injective for p ≤ n − 1 and surjective for p ≥ n − 1.

�
Now, as in the case of classical coeffective cohomology (see [6; 9; 15]), we con-
sider the subspace Ap

b (M) ⊂ F
p
b (M) defined by

Ap
b (M) = {ϕ ∈ F

p
b (M)|ϕ ∧ dη = 0} = kerL|Fp

b (M).

A basic form ϕ ∈ Ap
b (M) is said to be a coeffective basic p-form on M .

Since db commutes with L, we can consider the subcomplex of basic de Rham
complex of M , namely, (A•

b(M), db), called the coeffective basic de Rham com-
plex of M . The cohomology groups of this complex are called coeffective basic
de Rham cohomology groups of M and are denoted by Hp(Ab(M)).

As a consequence of Lemma 2.1, we get the following:

Proposition 2.1. Let M be a K-contact manifold of dimension 2n + 1. Then
Ap

b (M) = {0} for p ≤ n − 1, and therefore

Hp(Ab(M)) = {0} for p ≤ n − 1. (2.1)

Let us consider the subspace of H
p
b (M) given by the basic de Rham cohomology

classes truncated by the basic de Rham class [dη], namely,

H̃
p
b (M) = {a ∈ H

p
b (M)|a ∧ [dη] = 0}. (2.2)

We notice that as in the case of compact cosymplectic manifolds or compact Käh-
ler manifolds (see [9; 18]), we can obtain a relation between the coeffective basic
de Rham cohomology of a compact Sasakian manifold M and the basic de Rham
cohomology of M truncated by [dη] in the following way.

Let us denote by [·] the basic de Rham cohomology classes and by {·} the
coeffective basic de Rham classes.

Proposition 2.2. For any K-contact manifold M of dimension 2n+1, the natural
mapping

αp({ϕ}) = [ϕ] (2.3)

is surjective for p ≥ n.

Proof. Let a ∈ H̃
p
b (M), that is, a ∈ H

p
b (M) and a ∧ [dη] = 0 in H

p+2
b (M).

Consider a representative ϕ of a and suppose that ϕ /∈ Ap
b (M) (notice that if

ϕ ∈ Ap
b (M), then ϕ defines a basic cohomology class in Hp(Ab(M)) such that

αp({ϕ}) = a).

Since a ∧ [dη] = 0, there exists σ ∈ F
p+1
b (M) such that ϕ ∧ dη = dbσ . Then,

by Lemma 2.1 there exists γ ∈ F
p−1
b (M) such that Lγ = σ . Thus, L(ϕ − dbγ ) =

0 and db(ϕ − dbγ ) = 0. Hence, ϕ − dbγ defines a basic cohomology class in
Hp(Ab(M)) such that αp({ϕ − dbγ }) = a. �
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We also notice that for compact Sasakian manifolds, we have

	bL = L	b. (2.4)

This follows by a direct calculation using the following known identities from
Sasakian geometry [17; 22; 23]:

	ϕ = 	bϕ + L�ϕ + eη�dϕ − eη d�ϕ,

	Lϕ − L	ϕ = 4(n − p − 1)Lϕ + 4deηϕ,

and

(�Lk − Lk�)ϕ = 4k[(n − p − k + 1)Lk−1ϕ + eηıξL
k−1ϕ],

where L0ϕ = ϕ and L−1ϕ = 0. Here 	 = dd∗ + d∗d is the usual Laplacian on
M , eη : Fp(M) → Fp(M) is defined by eηϕ = η ∧ ϕ, and � = �L� = − �b L�b

is the adjoint of L with respect to 〈·, ·〉 and 〈·, ·〉b , respectively.
Relation (2.4) says that the map L : Hp

b (M) → Hp+2
b (M) is well defined on

the space of harmonic basic p-forms on M . Moreover, by the Bouché result for
compact Kähler manifolds (see [6]) and taking into account the Theorem 2.1, we
have that

Lemma 2.2. Let M be a compact Sasakian manifold of dimension 2n + 1. The
operator L :Hp

b (M) →Hp+2
b (M) is surjective for p ≥ n − 1.

This also follows directly using Lemma 2.1 and basic Hodge decomposition (1.5).
We have the following:

Theorem 2.2. Let M be a compact Sasakian manifold of dimension 2n+1. Then

Hp(Ab(M)) ∼= H̃
p
b (M) ∀p �= n. (2.5)

Proof. We consider two cases.
Case 1: p ≤ n − 1.
From (2.1) we know that Hp(Ab(M)) = {0} for p ≤ n − 1. Moreover, from

the isomorphism (1.6) we have

H̃
p
b (M) ∼= {ϕ ∈Hp

b (M)|ϕ ∧ dη ∈ db(F
p+1
b (M))}

∼= {ϕ ∈Hp
b (M)|ϕ ∧ dη = 0}. (2.6)

Thus, from Lemma 2.1 we conclude that H̃
p
b (M) = {0} for p ≤ n − 1. This fin-

ishes the proof for p ≤ n − 1.
Case 2: p ≥ n + 1.
We shall see that the mapping αp given by (2.3) is an isomorphism for p ≥

n + 1. By Proposition 2.2 it suffices to show the injection.
Let a ∈ Hp(Ab(M)) be such that αp(a) = 0 in H̃

p
b (M) and suppose that ϕ is

a representative of a. Since αp(a) = αp({ϕ}) = [ϕ] = 0 in H̃
p
b (M), there exists

ψ ∈ F
p−1
b (M) such that

ϕ = dbψ.
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Suppose that ψ /∈ Ap−1
b (M) (notice that if ψ ∈ Ap−1

b (M), then a = 0, and we
conclude the proof). Since L commutes with db, we have db(Lψ) = L(dbψ) =
Lϕ = 0; therefore, Lψ defines a basic cohomology class [Lψ] ∈ H

p+1
b (M).

From the isomorphism (1.6) we have

Lψ = h + dbγ

for h ∈ Hp+1
b (M), γ ∈ F

p
b (M). Since p ≥ n + 1 and h ∈ Hp+1

b (M), by

Lemma 2.2 there exists σ ∈Hp−1
b (M) such that Lσ = h, and since p − 1 ≥ n, by

Lemma 2.1 there exists σ1 ∈ F
p−2
b (M) such that γ = Lσ1. Thus,

L(ψ − σ − dbσ1) = 0 and db(ψ − σ − dbσ1) = ϕ.

Then a = {ϕ} is the basic zero class in Hp(Ab(M)), and this finishes the proof.
�

Now following an argument similar to that in [15], we relate the coeffective basic
de Rham cohomology with the basic de Rham cohomology of K-contact mani-
folds by means of a long exact sequence in basic cohomology.

Let us consider the following short exact sequence for any degree p:

0 −→ kerL|Fp
b (M) = Ap

b (M)
ib−→ F

p
b (M)

L−→ Imp+2
b L −→ 0. (2.7)

Since L commutes with db, the sequence (2.7) becomes a short exact sequence of
basic differential complexes:

0 −→ (kerL|Fp
b (M), db) = (Ap

b (M), db)

ib−→ (F
p
b (M), db)

L−→ (Imp+2
b L,db) −→ 0. (2.8)

Therefore, we have the associated long exact sequence in cohomology [28]:

· · · −→ Hp(Ab(M))
H(ib)−→ H

p
b (M)

H(L)−→ Hp+2(Imb L)
δb
p+2−→ Hp+1(Ab(M)) −→ · · · , (2.9)

where H(ib) and H(L) are the induced homomorphisms in basic cohomology
by ib and L, respectively, and δb

p+2 is the connecting homomorphism defined in

the following way: if [ϕ] ∈ Hp+2(Imb L), then δb
p+2[ϕ] = [dbψ] for ψ ∈ F

p
b (M)

such that Lψ = ϕ.
From Lemma 2.1 it follows that Imp+2

b L = F
p+2
b (M) for p ≥ n − 1. As a

consequence, we have

Hp+2(Imb L) = H
p+2
b (M) ∀p ≥ n.

Furthermore, the long exact sequence in basic cohomology (2.9) may be ex-
pressed as

· · · −→ Hp(Ab(M))
H(ib)−→ H

p
b (M)

H(L)−→ H
p+2
b (M)

δb
p+2−→ Hp+1(Ab(M)) −→ · · · (2.10)
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for p ≥ n. Now, we shall decompose the long exact sequence (2.10) into a five-
term exact sequence:

0 → Im δb
p+1 = kerH(ib)

i→ Hp(Ab(M))

H(ib)−→ H
p
b (M)

H(L)−→ H
p+2
b (M)

δb
p+2−→ Im δb

p+2 → 0. (2.11)

If H
p
b (M) are finite-dimensional (for instance if M is compact), then we denote

by b
p
b (M) = dimH

p
b (M) the basic pth Betti number of M (see [7]). Since 0 ≤

dim(Im δb
p) ≤ b

p
b (M) for p ≥ n + 2, we have the following result.

Proposition 2.3. Let M be a K-contact manifold of dimension 2n + 1 such that
H

p
b (M) are finite-dimensional. Then the coeffective basic de Rham cohomology

group Hp(Ab(M)) has finite dimension for p ≥ n + 1.

Thus, for every p ≥ n + 1, we can define the coeffective basic numbers of M by
c
p
b (M) = dimHp(Ab(M)). Notice that c

p
b (M) = 0 for p ≤ n − 1.

From (2.11) we have

dim(Im δb
p+1) − dimHp(Ab(M)) + dimH

p
b (M)

− dimH
p+2
b (M) + dim(δb

p+2) = 0

for p ≥ n + 1, from which we deduce

dim(Im δb
p+1) − c

p
b (M) + b

p
b (M) − b

p+2
b (M) + dim(Im δb

p+2) = 0. (2.12)

Now, as a consequence of (2.12), we obtain that the coeffective basic numbers of
M are bounded by upper and lower limits depending on the basic Betti numbers
of the K-contact manifold M .

Theorem 2.3. Let M be a K-contact manifold of dimension 2n + 1 such that
H

p
b (M) are finite-dimensional. Then

b
p
b (M) − b

p+2
b (M) ≤ c

p
b (M) ≤ b

p
b (M) + b

p+1
b (M) (2.13)

for every p ≥ n + 1.

Since b2n
b (M) = 1 and b

p
b (M) = 0 for every p ≥ 2n+ 1, we obtain the following:

Corollary 2.1. Let M be a K-contact manifold of dimension 2n + 1. Then
c2n
b (M) = 1.

We also have the following:

Theorem 2.4. Let M be a compact Sasakian manifold of dimension 2n+1. Then

c
p
b (M) = b

p
b (M) − b

p+2
b (M) ∀p ≥ n + 1. (2.14)

Proof. The proof follows in a similar manner the proof of Theorem 5.1 from [9]
or Theorem 4.1 from [14] and consists of computing the connecting mapping
δb
p+2.
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Let a ∈ H
p+2
b (M). Taking into account the Hodge theory for basic forms on

compact Sasakian manifolds (see [7]), we may consider the unique harmonic rep-
resentative ϕ of the basic de Rham cohomology class a.

Then, by Lemma 2.2, there exists a harmonic basic p-form ψ such that
Lψ = ϕ. The theorem follows by the definition of the connecting homomorphism,
δb
p+2ϕ = [dbψ] = 0. �

In the end of this section, we give a relation between the coeffective de Rham
cohomology H •(A(M)) of a compact K-contact manifold M [14] and our basic
coeffective de Rham cohomology of M .

Recall that if M is compact, then the Lie group of isometries of the metric g is
compact, and then the closure of the subgroup {exp(tξ)}t∈R is a compact Abelian
Lie group, that is, it is isomorphic to a torus T . Denoting by F •

b (M)T the complex
of T -invariant forms on M , according to Proposition 7.2.1 from [7], the sequence

0 −→ F •
b (M)

ı−→ F •(M)T
ıξ−→ F •−1

b (M) −→ 0 (2.15)

is an exact sequence of complexes, which leads to the following long exact se-
quence in cohomology:

· · · −→ H
p
b (M)

ı∗−→ Hp(M)
jp−→ H

p−1
b (M)

δp−→ H
p+1
b (M) −→ · · · , (2.16)

where δp is the connecting homomorphism given by δp[ϕ] = [Lϕ] = [dη] ∪ [ϕ],
and jp is the composition of the map induced by ıξ with the isomorphism
Hp(F •(M)T ) ∼= Hp(M).

Taking into account that ıξL = Lıξ , we have that

0 −→A•
b(M)

ı−→ A•(M)T
ıξ−→A•−1

b (M) −→ 0 (2.17)

is an exact sequence of coeffective complexes, where A•(M) is the space of co-
effective forms on M , that is, of ϕ ∈ F •(M) such that Lϕ = 0, and A•(M)T is
the space of coeffective T -invariant forms.

Now, if we consider the long exact sequence in cohomology (2.16) for coef-
fective forms, then we obtain that the connecting homomorphism δp vanishes for
every p, so we get the short exact sequence in coeffective cohomology,

0 −→ Hp(A(M))
jp−→ Hp−1(Ab(M)) −→ 0 (2.18)

for every p ≥ 1, which gives the following:

Theorem 2.5. If M is a compact K-contact manifold of dimension 2n + 1, then

Hp(A(M)) ∼= Hp−1(Ab(M)) ∀p = 1, . . . ,2n + 1. (2.19)

3. Coeffective Basic Dolbeault Cohomology

In this section, we extend our study for basic forms with complex values on a
Sasakian manifold M obtaining a coeffective basic Dolbeault cohomology on M .
In the case where M is a compact Sasakian manifold, we prove a Hodge decom-
position theorem for coeffective basic de Rham cohomology of M , relating this
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cohomology with basic coeffective Dolbeault cohomology of M . The notions are
introduced in a similar manner as for Kähler manifolds; see [18].

For our purpose, the complex-valued forms on Sasakian manifolds play an im-
portant role. For this reason, we need to recall some notions about Dolbeault basic
operators on Sasakian manifolds. Notice that an endomorphism F determines a
complex structure on the contact distribution D = kerη and that on a Sasakian
manifold we have NF (X,Y ) = 0 for any X,Y ∈D, where NF denotes the Nijen-
huis tensor associated to F . Then the complexified space of basic p-forms admits
the decomposition

F
p
b (M) ⊗R C =

⊕
r+s=p

F
r,s
b (M), (3.1)

where F
r,s
b (M) is the space of basic forms of type (r, s), that is, the basic forms

that can be nonzero only when they act on r vector fields from D1,0 and on s

vector fields from D0,1. Here we have considered the decomposition of the com-
plexified contact distribution, namely, D⊗R C = D1,0 ⊕D0,1. Then, by applying
the classical method used in the case of almost complex manifolds (see, e.g., [20],
p. 125–126) a simple calculation proves that

dbF
r,s
b (M) ⊂ F

r+1,s
b (M) ⊕ F

r,s+1
b (M),

and so the basic exterior derivative admits the decomposition db = ∂b + ∂b , where

∂b : F r,s
b (M) → F

r+1,s
b (M); ∂b : F r,s

b (M) → F
r,s+1
b (M).

By d2
b = 0 we deduce

∂2
b = ∂

2
b = ∂b∂b + ∂b∂b = 0. (3.2)

On the other hand, we have the decomposition d∗
bω = ∂∗

bω + ∂
∗
bω, induced

by the decomposition db = ∂b + ∂b of the basic differential and some formulas
similar to (3.2), namely,

∂∗2
b = ∂

∗2
b = ∂∗

b ∂
∗
b + ∂

∗
b∂

∗
b = 0. (3.3)

Notice that the classical Hodge identities from Kähler geometry also hold on
a compact Sasakian manifold, as shown in [25]. See also Lemma 7.2.7 from [7]
or Lemma 3.4.4 from [11] in a more general case of transversally Kählerian foli-
ations. If we define

	b = dbd
∗
b + d∗

b db, 	∂b
= ∂b∂

∗
b + ∂∗

b ∂b, 	∂b
= ∂b∂

∗
b + ∂

∗
b∂b, (3.4)

then we have the following:

Lemma 3.1 ([7]). On a compact Sasakian manifold, we have

	b = 	∂b
+ 	∂b

= 2	∂b
= 2	∂b

.

Also, the equality ∂
2
b = 0 induces the differential complex (F

r,•
b (M), ∂b); its co-

homology groups

H
r,s
b (M) = ker{F r,s

b (M)
∂b→ F

r,s+1
b (M)}/∂b(F

r,s−1
b (M))
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are the analogs of Dolbeault cohomology groups from Kähler geometry (see [20;
21]) and are called the basic Dolbeault cohomology groups of the Sasakian man-
ifold M [7]. In particular, there is a transverse Hodge theory for the operator ∂b;
see [7; 12].

Since dη ∈ F
1,1
b (M), as in the previous subsection, we consider the subspace

Ar,s
b (M) ⊂ F

r,s
b (M) defined by

Ar,s
b (M) = {ϕ ∈ F

r,s
b (M)|ϕ ∧ dη = 0} = kerL|Fr,s

b (M).

A basic form ϕ ∈ Ar,s
b (M) is said to be a coeffective (bigraduate) basic form of

bidegree (r, s).
By ∂bdη = 0 the operator L commutes with the operator ∂b . Therefore, we can

consider the subcomplex of basic Dolbeault complex of M , namely, (Ar,•
b , ∂b)

for 0 ≤ r ≤ n; it is called the coeffective basic Dolbeault complex of M . The
cohomology groups of this subcomplex are called coeffective basic Dolbeault
cohomology groups of M and are denoted by Hr,s(Ab(M)).

Taking into account the decomposition (3.1), we obtain the following version
of Lemma 2.1 when L acts on F

r,s
b (M).

Lemma 3.2. The operator L : F r,s
b (M) → F

r+1,s+1
b (M) defined by Lϕ = ϕ ∧ dη

is injective for r + s ≤ n − 1 and surjective for r + s ≥ n − 1.

As a consequence of Lemma 3.2, we get the following:

Proposition 3.1. Let M be a regular Sasakian manifold of dimension 2n + 1.
Then Ar,s

b (M) = {0} for r + s ≤ n − 1, and therefore

Hr,s(Ab(M)) = {0} for r + s ≤ n − 1. (3.5)

Let us denote by [dη]D the basic Dolbeault class of dη in H
1,1
b (M) and con-

sider the subspace of H
r,s
b (M) given by the basic Dolbeault cohomology classes

truncated by the class [dη]D , namely,

H̃
r,s
b (M) = {a ∈ H

r,s
b (M)|a ∧ [dη]D = 0}. (3.6)

Next, we define the mapping αr,s : Hr,s(Ab(M)) → H̃
r,s
b (M) by

αr,s({ϕ}D) = [ϕ]D, (3.7)

where {ϕ}D denotes the cohomology class of a coeffective basic form ϕ in
Hr,s(Ab(M)), and [ϕ]D denotes the cohomology class of a basic form ϕ in
H

r,s
b (M). This mapping allows us to give the following relation between the coef-

fective basic Dolbeault cohomology groups of the Sasakian manifold M and the
subspaces of the basic Dolbeault cohomology groups given by (3.6).

Proposition 3.2. If M is a regular Sasakian manifold of dimension 2n + 1, then
the mapping αr,s defined by (3.7) is surjective for r + s ≥ n.

Proof. It follows in a similar manner as in the proof of Proposition 2.6 from [18]
(for Kähler manifolds) using the same technique as in Proposition 2.2. �
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In the following, we relate the coeffective basic Dolbeault cohomology groups
and the subspaces of the basic Dolbeault cohomology groups given by (3.6) for
compact Sasakian manifolds, and we prove a coeffective version of the basic
Hodge decomposition theorem for coeffective basic Dolbeault cohomology.

Now by Lemma 3.1 and taking into account that 	∂b
preserves the bigradua-

tion of basic forms, we have the following version of Lemma 2.2 when L acts on
the space Hr,s

b (M) = ker	∂b
of harmonic basic forms of type (r, s).

Lemma 3.3. The operator L : Hs−1,s−1
b (M) →Hr,s

b (M) is surjective for r + s ≥
n + 1.

Theorem 3.1. For a compact Sasakian manifold M of dimension 2n+1, we have

Hr,s(Ab(M)) ∼= H̃
r,s
b (M), (3.8)

for r + s �= n.

Proof. It follows in a similar manner as in the proof of Theorem 3.2 from [18]
(for compact Kähler manifolds), using the same technique as in Theorem 2.2. �

Now, using this result, by similar arguments as in the proof of Theorem 3.3 from
[18] (for Kähler manifolds) we will obtain a Hodge decomposition theorem for
coeffective basic Dolbeault cohomology of compact Sasakian manifolds.

Theorem 3.2. If M is a compact Sasakian manifold of dimension 2n + 1, then
we have

(i) H̃ p(M) ∼= ⊕p
r+s H̃

r,s
b (M);

(ii) Hp(Ab(M)) ∼= ⊕p
r+s H r,s(Ab(M)) for r + s ≥ n + 1.

Proof. Let a ∈ H̃
p
b (M), and let ϕ be a representative of a. Without loss the gen-

erality, we can assume that ϕ is basic harmonic. From (3.1) we have the decom-
position

ϕ = ϕp,0 + · · · + ϕr,s + · · · + ϕ0,p,

and taking into account that ker	b = ker	∂b
, since 	∂b

ϕ = 	bϕ = 0 and 	∂b

preserves the bigraduation, we have

	∂b
ϕp,0 = · · · = 	∂b

ϕr,s = · · · = 	∂b
ϕ0,p = 0.

Moreover, since dη is of bidegree (1,1) basic form and ϕ ∧ dη = 0, we have

ϕp,0 ∧ dη = · · · = ϕr,s ∧ dη = · · · = ϕ0,p ∧ dη = 0.

Taking into account the Hodge theory for basic forms on Sasakian manifolds (see
[7]), we have

H̃
r,s
b (M) ∼= {ϕ ∈ Hr,s

b (M)|ϕ ∧ dη ∈ ∂b(F
r+1,s
b (M))}

∼= {ϕ ∈ Hr,s
b (M)|ϕ ∧ dη = 0}. (3.9)

Thus, part (i) follows by (3.9).
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Now, from part (i), Theorem 2.2, and Theorem 3.1 we have

Hp(Ab(M)) ∼= H̃
p
b (M) ∼=

⊕
r+s=p

H̃
r,s
b (M) ∼=

⊕
r+s=p

Hr,s(Ab(M)),

and part (ii) follows. �

Let us denote c
r,s
b (M) = dimHr,s(Ab(M)).

Corollary 3.1. For a compact Sasakian manifold of dimension 2n+ 1, we have

c
p
b (M) =

∑
r+s=p

c
r,s
b (M)

for p ≥ n + 1.

Remark 3.1. Using the same technique as in the previous section, we can relate
the coeffective basic Dolbeault cohomology of Sasakian manifolds by means of a
long exact sequence in basic cohomology, and we can prove that

h
r,s
b (M) − h

r+1,s+1
b (M) ≤ c

r,s
b (M) ≤ h

r,s
b (M) + h

r,s+1
b (M) ∀r + s ≥ n + 1,

where h
r,s
b (M) = dimH

r,s
b (M) are the basic Hodge (r, s)-numbers of M .

Also, when M is compact, we obtain

c
r,s
b (M) = h

r,s
b (M) − h

r+1,s+1
b (M) ∀r + s ≥ n + 1.

4. Coeffective Basic Bott–Chern Cohomology

In this section, we first define the basic Bott–Chern and Aeppli cohomology of a
Sasakian manifold M , and we obtain a Hodge–Bott–Chern decomposition theo-
rem for basic forms of M . Next, in similar manner with the study of coeffective
basic de Rham and Dolbeault cohomology of M , we define and study a coeffec-
tive Bott–Chern cohomology for basic forms on M .

4.1. Hodge–Bott–Chern Decomposition for Basic Forms

In the first part of this subsection, we define the basic Bott–Chern and Aeppli co-
homology groups of M . In the second part, we define a basic Bott–Chern Lapla-
cian and obtain a Hodge–Bott–Chern-type decomposition theorem for basic forms
on M .

Definition 4.1. The differential complex

· · · −→ F
r−1,s−1
b (M)

∂b∂b−→ F
r,s
b (M)

∂b⊕∂b−→ F
r+1,s
b (M) ⊕ F

r,s+1
b (M) −→ · · · (4.1)
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is called the basic Bott–Chern complex of M , and the basic Bott–Chern cohomol-
ogy groups of M of bidegree (r, s) are given by

H
r,s
b,BC(M)

= ker{∂b : F r,s
b (M) → F

r+1,s
b (M)} ∩ ker{∂b : F r,s

b (M) → F
r,s+1
b (M)}

Im{∂b∂b : F r−1,s−1
b (M) → F

r,s
b (M)} .

Next, as in the classical case (see [1; 5; 24]), we consider the dual of the basic
Bott–Chern cohomology groups given by

H
r,s
b,A(M) = ker{∂b∂b : F r,s

b (M) → F
r+1,s+1
b (M)}

Im{∂b : F r−1,s
b (M) → F

r,s
b (M)} + Im{∂b : F r,s−1

b (M) → F
r,s
b (M)}

and called the basic Aeppli cohomology groups of bidegree (r, s) of M .

Proposition 4.1. The exterior product induces a bilinear map

∧ : Hp,q

b,BC(M) × H
r,s
b,A(M) → H

p+r,q+s
b,A (M). (4.2)

Proof. Let ϕ,ψ ∈ F
r,s
b (M). If ϕ is db-closed and ψ is ∂b∂b-closed, then ϕ ∧ ψ

is ∂b∂b-closed. Also, if ϕ is db-closed and ψ is db-exact, then ϕ ∧ ψ is db-exact,
and if ϕ is ∂b∂b-exact and ψ is ∂b∂b-closed, then ϕ ∧ ψ is db-exact.

For the last assertion, we have

ϕ ∧ ψ = ∂b∂bθ ∧ ψ = 1

2
db[(∂b − ∂b)θ ∧ ψ + (−1)r+sθ ∧ (∂b − ∂b)ψ]. �

In particular,

H
r,s
b,BC(M) × H

n−r,n−s
b,A (M) → H

n,n
b,A(M) = H 2n

b (M) ∼= R.

In the following, we define the Bott–Chern Laplacian for basic forms of type
(r, s) by

	b
BC = ∂b∂b(∂b∂b)

∗ + ∂∗
b ∂b + ∂

∗
b∂b. (4.3)

This operator is self-adjoint, that is, 〈	b
BCϕ,ψ〉b = 〈ϕ,	b

BCψ〉b . Also, for a basic
form ϕ ∈ F

r,s
b (M), we have

〈	b
BCϕ,ϕ〉b = 〈∂b∂b(∂b∂b)

∗ϕ + ∂∗
b ∂bϕ + ∂

∗
b∂bϕ,ϕ〉b

= 〈(∂b∂b)
∗ϕ, (∂b∂b)

∗ϕ〉b + 〈∂bϕ, ∂bϕ〉b + 〈∂bϕ, ∂bϕ〉b
= ‖(∂b∂b)

∗ϕ‖2 + ‖∂bϕ‖2 + ‖∂bϕ‖2,

where ‖ϕ‖2 = 〈ϕ,ϕ〉b . Thus, we obtain the following:

Proposition 4.2. 	b
BCϕ = 0 if and only if (∂b∂b)

∗ϕ = ∂bϕ = ∂bϕ = 0.

We denote by Hr,s
b,BC(M) the space of 	b

BC-harmonic basic forms of type (r, s)

on M .
Following the ideas from [27], we now show that H

∗,∗
b,BC(M) is finite-

dimensional by analyzing the space of its harmonic basic forms. First, let us
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consider a related fourth-order elliptic differential operator (see [12] for general
transversally Hermitian foliations), namely,

	̃b
BC = ∂b∂b∂

∗
b∂

∗
b + ∂

∗
b∂

∗
b ∂b∂b + ∂

∗
b∂b∂

∗
b ∂b + ∂∗

b ∂b∂
∗
b∂b + ∂

∗
b∂b + ∂∗

b ∂b. (4.4)

This operator has the same kernel as 	b
BC. Indeed,

0 = 〈ϕ, 	̃b
BCϕ〉b

= ‖∂bϕ‖2 + ‖∂bϕ‖2 + ‖(∂b∂b)
∗ϕ‖2 + ‖∂b∂bϕ‖2 + ‖∂∗

b ∂bϕ‖2 + ‖∂∗
b∂bϕ‖2,

and the three additional terms clearly do not give any additional conditions
and are automatically zero by the requirement ∂bϕ = ∂bϕ = 0. Essentially, the
presence of the second-order differential terms ensures that the spaces ker	b

BC
and ker 	̃b

BC coincide. Using the classical Hodge identities for Sasakian mani-
folds (see Lemma 7.2.7 from [7]) in relation (4.4), we also obtain the follow-
ing:

Proposition 4.3. If M is a compact Sasakian manifold of dimension 2n + 1,
then

	̃b
BC = 	∂b

	∂b
+ ∂∗

b ∂b + ∂
∗
b∂b.

Moreover, the harmonic spaces Hr+s
b (M) ∩ F

r,s
b (M), Hr,s

b (M), and Hr,s
b,BC(M)

coincide, and also dη is harmonic basic (1,1)-form with respect to every Lapla-
cian 	b , 	∂b

, and 	b
BC, respectively.

We have now the following:

Theorem 4.1. Let M be a compact Sasakian manifold of dimension 2n + 1.
Then

(i) dimHr,s
b,BC(M) < ∞;

(ii) there is an orthogonal decomposition

F
r,s
b (M) = Hr,s

b,BC(M) ⊕ Im(∂b∂b) ⊕ (Im ∂∗
b + Im ∂

∗
b); (4.5)

(iii) there are the canonical isomorphisms

Hr,s
b,BC(M) ∼= H

r,s
b,BC(M) ∼= H

r,s
b (M).

Proof. (i) Because only the highest order differential need to be kept for comput-
ing the principal symbol of a Laplace operator, by the calculations of 	̃b

BC from
Proposition 4.3 it follows that the principal symbol of 	̃b

BC is equal to that of the

square of the operator 	∂b
, and so it is positive. Thus, 	̃b

BC is elliptic, and hence
its kernel Hr,s

b,BC(M) is finite-dimensional.

With 	̃b
BC elliptic, assertion (ii) then follows directly by applying elliptic the-

ory. For (iii), using the decomposition of (ii), we have

ker(∂b + ∂b) = Hr,s
b,BC(M) ⊕ Im(∂b∂b). (4.6)
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This must be so since for a form ϕ ∈ F
r,s
b (M) given by ϕ = ψ + ∂b∂bθ + ∂∗

b θ1 +
∂

∗
bθ2, where ψ ∈Hr,s

b,BC(M), we have ∂bϕ = ∂bϕ = 0 if and only if

0 = 〈θ1, ∂b(∂
∗
b θ1 + ∂

∗
bθ2)〉b + 〈θ2, ∂b(∂

∗
b θ1 + ∂

∗
bθ2)〉b

= 〈∂∗
b θ1 + ∂

∗
bθ2, ∂

∗
b θ1 + ∂

∗
bθ2〉b

= ‖∂∗
b θ1 + ∂

∗
bθ2‖2,

which implies ∂∗
b θ1 + ∂

∗
bθ2 = 0, that is, desired decomposition from (4.6). Thus,

every cohomology class of H
•,•
b,BC(M) contains a unique harmonic representa-

tive, and Hr,s
b,BC(M) ∼= H

r,s
b,BC(M), that is, the first isomorphism of (iii). Since

ker 	̃b
BC = ker	∂b

, the second isomorphism of (iii) follows by H
r,s
b (M) ∼=

Hr,s
b (M) and Hr,s

b (M) = Hr,s
b,BC(M). �

Corollary 4.1. If M is a compact Sasakian manifold of dimension 2n + 1, then
H

r,s
b,BC(M) is finite-dimensional.

Now, let us define the Aeppli Laplacian for basic forms of type (r, s) on M

by

	b
A = ∂b∂

∗
b + ∂b∂

∗
b + (∂b∂b)

∗∂b∂b, (4.7)

which is not elliptic, but if we change it by

	̃b
A = ∂b∂

∗
b + ∂b∂

∗
b + ∂

∗
b∂

∗
b ∂b∂b + ∂b∂b∂

∗
b∂

∗
b + ∂b∂

∗
b∂b∂

∗
b + ∂b∂

∗
b ∂b∂

∗
b, (4.8)

this is elliptic.
Now, if we denote Hr,s

b,A(M) = ker 	̃b
A ∩ F

r,s
b (M), then by applying elliptic

theory arguments, similar to Theorem 4.1, we have the following:

Theorem 4.2. Let M be a compact Sasakian manifold of dimension 2n+1. Then

(i) dimHr,s
b,A(M) < ∞;

(ii) there is an orthogonal decomposition

F
r,s
b (M) = Hr,s

b,A(M) ⊕ (Im ∂b + Im ∂b) ⊕ Im(∂
∗
b∂

∗
b ); (4.9)

(iii) there is a canonical isomorphism

Hr,s
b,A(M) ∼= H

r,s
b,A(M).

Corollary 4.2. If M is a compact Sasakian manifold, then H
r,s
b,A(M) is finite-

dimensional.

Finally, let us remark that �b gives an isomorphism H
r,s
b,BC(M) ≈ H

n−r,n−s
b,A (M).

4.2. Coeffective Bott–Chern Cohomology for Basic Forms

In this subsection, we define and study a coeffective Bott–Chern cohomology for
basic forms on Sasakian manifolds.
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Since the operator L commutes with both operators ∂b and ∂b , we can consider
the subcomplex of Bott–Chern complex of M

· · · −→Ar−1,s−1
b (M)

∂b∂b−→ Ar,s
b (M)

∂b⊕∂b−→ Ar+1,s
b (M) ⊕Ar,s+1

b (M) −→ · · · (4.10)

for 1 ≤ r, s ≤ n, called the coeffective basic Bott–Chern complex of M . The co-
homology groups of the complex (4.10) are called coeffective basic Bott–Chern
cohomology groups of M and are denoted by H

r,s
BC(Ab(M)).

By Lemma 3.2 we get the following:

Proposition 4.4. Let M be a regular Sasakian manifold of dimension 2n + 1.
Then

H
r,s
BC(Ab(M)) = {0} for r + s ≤ n − 1. (4.11)

Since ∂bdη = ∂bdη = 0, we have that [dη]BC ∈ H
1,1
BC (M), and we consider the

subspace of H
r,s
b,BC(M) given by the basic Bott–Chern cohomology classes trun-

cated by the basic Bott–Chern class [dη]BC, namely,

H̃
r,s
b,BC(M) = {a ∈ H

r,s
b,BC(M)|a ∧ [dη]BC = 0}. (4.12)

Next, we define the mapping αr,s : Hr,s
BC(Ab(M)) → H̃

r,s
b,BC(M) by

αr,s({ϕ}BC) = [ϕ]BC, (4.13)

where {ϕ}BC denotes the cohomology class of a coeffective basic form ϕ in
H

r,s
BC(Ab(M)), and [ϕ]BC denotes the basic cohomology class of a basic form

ϕ in H
r,s
b,BC(M). This mapping allows us to give a relation between the coeffec-

tive basic Bott–Chern cohomology groups of the Sasakian manifold M and the
subspaces of the basic Bott–Chern cohomology groups given by (4.12), just in
the case of coeffective basic de Rham and Dolbeault cohomology of M . In the
following, our aim is to find a link between the coeffective basic Bott–Chern co-
homology groups and the subspaces of the basic Bott–Chern cohomology groups
given by (4.12) for compact Sasakian manifolds and to prove a coeffective version
of the basic Hodge decomposition theorem for the basic Bott–Chern cohomology.

Proposition 4.5. If M is a regular Sasakian manifold of dimension 2n + 1, then
the mapping αr,s defined by (4.13) is surjective for r + s ≥ n.

Proof. Let a ∈ H̃
r,s
b,BC(M), that is, a ∈ H

r,s
b,BC(M) and a ∧ [dη]BC = 0 in

H
r+1,s+1
b,BC (M). Consider a representative ϕ of a and suppose that ϕ /∈ Ar,s

b (M)

(notice that if ϕ ∈ Ar,s
b (M), then ϕ defines a basic cohomology class in

H
r,s
BC(Ab(M)) such that αr,s({ϕ}BC) = a).
Since a ∧ [dη]BC = 0, there exists σ ∈ F

r,s
b (M) such that ϕ ∧ dη = ∂b∂bσ .

Then, by Lemma 3.2 there exists γ ∈ F
r−1,s−1
b (M) such that Lγ = σ . Thus,
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L(ϕ − ∂b∂bγ ) = 0 and ∂b(ϕ − ∂b∂bγ ) = ∂b(ϕ − ∂b∂bγ ) = 0. Hence, ϕ −
∂b∂bγ defines a basic cohomology class in H

r,s
BC(Ab(M)) such that αr,s({ϕ −

∂b∂bγ }BC) = a. �

Now, taking into account relation (2.4), the classical Hodge identities for Sasakian
manifolds, and Proposition 4.3, we have

	̃b
BCL − L	̃b

BC = −2i∂b∂b, (4.14)

and so, if ϕ ∈ Hr,s
b,BC(M), then Lϕ ∈Hr+1,s+1

b,BC (M).

Theorem 4.3. For a compact Sasakian manifold M of dimension 2n+1, we have

H
r,s
BC(Ab(M)) ∼= H̃

r,s
b,BC(M) (4.15)

for r + s /∈ {n,n + 1}.
Proof. Using an argument similar to that used in [18], we consider two cases
using the same technique as in Theorem 2.2.

Case 1: r + s ≤ n − 1.
From (4.11) we know that H

r,s
BC(Ab(M)) = {0} for r + s ≤ n − 1. Moreover,

from Theorem 4.1 (the first isomorphism of (iii)) we have

H̃
r,s
b,BC(M) ∼= {ϕ ∈ Hr,s

b,BC(M)|ϕ ∧ dη ∈ ∂b∂b(F
r,s
b (M))}

∼= {ϕ ∈ Hr,s
b,BC(M)|ϕ ∧ dη = 0}. (4.16)

Thus, from Lemma 3.2 we conclude that H̃
r,s
b,BC(M) = {0} for r + s ≤ n − 1. This

finishes the proof for r + s ≤ n − 1.
Case 2: r + s ≥ n + 2.
We will see that the mapping αr,s given by (4.13) is an isomorphism for r +s ≥

n + 1. By Proposition 4.5 it suffices to show the injection.
Let a ∈ H

r,s
BC(Ab(M)) be such that αr,s(a) = 0 in H̃

r,s
b,BC(M) and suppose that

ϕ is a representative of a. Since αr,s(a) = αr,s({ϕ}BC) = [ϕ]BC = 0 in H̃
r,s
b,BC(M),

there exists ψ ∈ F
r−1,s−1
b (M) such that

ϕ = ∂b∂bψ.

Suppose that ψ /∈ Ar−1,s−1
b (M) (notice that if ψ ∈Ar−1,s−1

b (M), then a = 0, and
we conclude the proof). Since L commutes with ∂b and ∂b , we have ∂b∂b(Lψ) =
L(∂b∂bψ) = Lϕ = 0; therefore, Lψ defines a basic Aeppli cohomology class
[Lψ]A ∈ H

r,s
b,A(M). From Theorem 4.2 (the isomorphism (iii)) we have

Lψ = ψ1 + ∂bγ1 + ∂bγ2

for ψ1 ∈ Hr,s
b,A(M), γ1 ∈ F

r−1,s
b (M), and γ2 ∈ F

r,s−1
b (M). Since r + s ≥ n + 2

and ψ1 ∈ Hr,s
b,A(M) = Hr,s

b (M), by Lemma 3.3 there exists ψ2 ∈ Hr−1,s−1
b (M) =

Hr−1,s−1
b,A (M) such that Lψ2 = ψ1, and since r + s − 1 ≥ n + 1, by Lemma 3.2
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there exist σ1 ∈ F
r−2,s−1
b (M) and σ2 ∈ F

r−1,s−2
b (M) such that γ1 = Lσ1 and

γ2 = Lσ2, respectively. Thus,

L(ψ − ψ2 − ∂bσ1 − ∂bσ2) = 0 and ∂b∂b(ψ − ψ2 − ∂bσ1 − ∂bσ2) = ϕ.

Then, a = {ϕ}BC is the zero basic class in H
r,s
BC(Ab(M)), and this finishes the

proof. �

Now, using the previous result, by similar arguments as in the proof of Theo-
rem 3.2 we obtain a Hodge decomposition theorem for the coeffective basic Bott–
Chern cohomology of compact Sasakian manifolds.

Theorem 4.4. If M is a compact Sasakian manifold of dimension 2n + 1, then
we have:

(i) H̃ p(M) ∼= ⊕p
r+s H̃

r,s
b,BC(M);

(ii) Hp(Ab(M)) ∼= ⊕p
r+s H

r,s
BC(Ab(M)) for r + s ≥ n + 2.

Finally, let us denote by c
r,s
b,BC(M) = dimH

r,s
BC(Ab(M)). Then we have the fol-

lowing:

Corollary 4.3. If M is a compact Sasakian manifold of dimension 2n + 1, then

c
p
b (M) =

∑
r+s=p

c
r,s
b,BC(M), for r + s ≥ n + 2.
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