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Strange Duality for Height Zero Moduli Spaces
of Sheaves on P2

Takeshi Abe

1. Introduction

Strange duality is a duality between vector spaces of global sections of line bun-
dles on moduli spaces of sheaves. Originally it was studied for moduli spaces of
vector bundles (or principal bundles) on curves (see [P]). In this paper we consider
the strange duality for moduli spaces of sheaves on P2.

Result

For a coherent sheaf E of positive rank r on P2, we define the rational numbers
μ(E) and �(E), called the slope and the discriminant, respectively, by

μ(E) = c1(E)

r
,

�(E) = 1

r

(
c2(E) − r − 1

2r
c1(E)2

)
.

For a positive integer r and rational numbers s, d , we denote by M(r, s, d) the
moduli space of rank r semistable sheaves E on P2 with μ(E) = s and �(E) = d .

We recall the definition of a strange duality map. Fix positive integers r ,
r ′ and rational numbers s, s′, d , d ′ such that χ(E ⊗ E′) = 0 for E ∈ M :=
M(r, s, d) and E′ ∈ M ′ := M(r ′, s′, d ′). Assume that s + s′ ≥ 0 (so that we have
H2(E ⊗ E′) = 0).

Consider the locus

� := {(E,E′) | H0(E ⊗ E′) �= 0} ⊂ M × M ′.

If H0(E⊗E′) �= 0 for all E ∈ M and E′ ∈ M ′, then � = M ×M ′. Now we assume
that for some E ∈ M and E′ ∈ M ′, we have Hi (E ⊗ E′) = 0, 0 ≤ i ≤ 2. In this
case, � is a divisor on M × M ′. The associated line bundle O(�) is expressed
as D �D′ for line bundles D on M and D′ on M ′. By the Kunneth theorem, the
section defining the divisor � gives rise to a duality map

H0(M ′,D′)∗ → H0(M,D).

We call this the strange duality map. The purpose of this paper is to prove the
following theorem.
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Theorem 1.1. Retain the notation and assumption in the previous paragraph. If
either M or M ′ is of height zero, then the strange duality map is bijective.

The height of a moduli space of sheaves on P2 is the notion introduced by Drezet
[D87]. We recall its definition in Section 2.3.

Outline of the Proof of Theorem 1.1

The proof of Theorem 1.1 is a combination of the following three results

(i) Drezet’s description of a moduli space of sheaves of height zero as a moduli
space of Kronecker modules [D87],

(ii) Derksen and Weyman’s duality theorem between spaces of global sections
of line bundles on the moduli of Kronecker modules [DW],

(iii) Coskun, Huizenga, and Woolf’s rational map of a moduli space of sheaves
of positive height to a moduli of Kronecker modules [CHW].

Assume, for example, that M ′ is of height zero and M has positive height. By (i)
and (iii) we have an isomorphism

�′ : M ′ → Kr ′

and a rational map
� : M · · · → Kr,

where Krand Kr ′ are moduli spaces of Kronecker modules with certain dimen-
sion vector. By (ii) we have an isomorphism

H0(Kr ′,L′)∗ → H0(Kr,L),

where L and L′ are certain line bundles on Kr and Kr ′, respectively. Consider a
sequence of maps

H0(M ′,�′∗L′)∗ ∼−→ H0(Kr ′,L′)∗ ∼−→ H0(Kr,L)
(∗)−→ H0(M,�∗L), (1.1)

where the first map is a dual of the pull-back by �′, and the last map is a pull-back
by �. We shall prove Theorem 1.1 by showing that

• �∗L � D and �∗L′ � D′,
• the composite of maps (1.1) is a strange duality map, and
• the map (∗) is an isomorphism.

Related Results

There are some other pairs (M,M ′) of moduli spaces of sheaves on P2 with cer-
tain numerical invariants for which the strange duality has been proved ([Da00;
Da02; A]).

For abelian surfaces, Marian and Oprea [MO09] formulated three versions of
strange duality and proved them on the numerical level. They proved two of them
for product abelian surfaces in [MO14]. They also proved the strange duality for
generic K3 surfaces under some numerical assumption in [MO13]. Bolognese,
Marian, Oprea, and Yoshioka [BMOY] studied the remaining one of the three
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versions of strange duality for abelian surfaces. They first proved it for product
abelian surfaces and then, using degeneration, for generic abelian surfaces.

Organization of the paper

In Section 2 we recall some results used in the proof of Theorem 1.1. In Section 3
we prove Theorem 1.1.

Notation and Convention

We work over an algebraically closed field k of characteristic zero. In this paper,
P(x) denotes the polynomial function(x + 1)(x + 2)/2.

2. Preliminaries

In Section 2.1 we fix the notation for moduli of sheaves and for G-linearized
line bundles. In Section 2.2 we recall basic facts about exceptional bundles. In
Section 2.3 we recall the definition of height introduced by Drezet. After fixing
notation for moduli of Kronecker modules in Section 2.4, we recall in Section 2.5
the duality theorem proved by Derksen and Weyman between spaces of global
sections of line bundles on the moduli of Kronecker modules. In Section 2.6 we
recall Drezet’s theorem saying that a moduli space of height zero is isomorphic
to a moduli space of Kronecker modules. In Section 2.7 we recall a rational map
constructed by Coskun, Huizenga, and Woolf of a moduli space of sheaves of
positive height to a moduli space of Kronecker modules.

2.1. Notation

For ξ = (r, s, d), where r ∈ Z≥0 and s, d ∈ Q, M(ξ) (resp. M(ξ)) denotes
the moduli space (resp. the moduli stack) of rank r semistable sheaves E with
μ(E) = s and �(E) = d . There is a natural morphism π : M(ξ) → M(ξ). If L is
a line bundle on M(ξ), then we simply write L for π∗L. Since H0(M(ξ),π∗L) �
H0(M(ξ),L) (cf. the argument of [BL, Prop. 8.4]), this abuse of notation does not
cause confusion.

Assume that an algebraic group G acts on a variety X. If χ : G → k× is a
character, then the G-linearized line bundle associated to χ , denoted by Lχ , is
a trivial line bundle X × k with the G-action g(x, a) := (gx,χ(g)a) for g ∈ G

and (x, a) ∈ X × k. The line bundle Lχ on the quotient stack G\X associated to
χ is the line bundle on G\X determined by Lχ on X. We have H0(G\X,Lχ ) �
H0(X,Lχ )G, that is, H0(G\X,Lχ ) is isomorphic to the space of semiinvariant
functions on X with weight χ . Here a function φ on X is semiinvariant with
weight χ if φ(gx) = χ(g)φ(x) for x ∈ X and g ∈ G.
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2.2. Exceptional Bundle

An exceptional bundle E on P2 is a stable vector bundle with Ext1(E,E) = 0.
A rational number α is called an exceptional slope if α is the slope of an excep-
tional bundle. For an exceptional slope α, there is only one (up to isomorphism)
exceptional bundle with slope α, which we denote by Eα ([DL, Lemma 4.3]).
This implies that

E∗
α � E−α and Eα ⊗O(n) � Eα+n.

The rank rα of a rational number α is defined to be the smallest positive integer
such that αrα ∈ Z. Put �α = 1

2 (1 − 1/r2
α). Then for an exceptional slope α, the

rank and discriminant of Eα are rα and �α , respectively (cf. the proof of [DL,
Lemma 4.3]). In particular, we know that �(Eα) < 1/2. This is another charac-
terization of exceptional bundles, that is, a stable sheaf E is exceptional if and
only if �(E) < 1/2.

The subset E ⊂ Q of all exceptional slopes is described as follows. For rational
numbers α, β with 3 + α − β �= 0, we define

α.β := α + β

2
+ �β − �α

3 + α − β
.

Let D := {(p/2q) | q ∈ Z≥0,p ∈ Z}. We define a function ε : D→ Q inductively
as follows:

• ε(n) = n for n ∈ Z,
• ε((2p + 1)/2q+1) = ε(p/2q).ε((p + 1)/2q).

Then ε is a strictly increasing function, and E = ε(D) ([DL, Thm. A]).
The following cohomological properties are used later. For α < β ,

Hom(Eβ,Eα) = 0, (2.1)

Exti (Eα,Eβ) = 0 for i > 0. (2.2)

Property (2.1) is a consequence of stability, and (2.2) is due to [D86, Thm. 6].
(Note that the vanishing (2.2) holds also for α = β .)

By [D86, p. 30], for α = ε(p/2q) and β = ε((p + 1)/2q), we have

χ(Eα,Eβ) = 3rαrβ(β − α). (2.3)

2.3. Height of Moduli Space

For ξ = (r, s, d) with r ∈ Z≥0 and s, d ∈ Q, we denote by Qξ the parabola in the
(μ,�)-plane defined by � = P(μ + s) − d . By the Riemann–Roch theorem, we
have

χ(E,F ) = r(E)r(F )(P (μ(F ) − μ(E)) − �(E) − �(F))

for sheaves E and F on P2 having positive ranks r(E) and r(F ), respectively. So,
for a sheaf E, the point (μ(E),�(E)) in the (μ,�)-plane lies on the parabola
Qξ if and only if χ(E ⊗ F) = 0 for F with μ(F) = s and �(F) = d .
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�
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� = 1
2

α − xα α + xαα

(α,1 − �α)

Qξ−α
Qξ−α−3

Figure 1 The graph of � = δ(μ) over (α − xα,α + xα)

For an exceptional slope α, put

xα := 3 − √
9 − 4/r2

α

2
.

Let Iα := {μ ∈ R | |μ − α| < xα}. Then Q is the disjoint union
⊔

α∈E(Iα ∩ Q)

[D87, Thm. 1]. Let δ : ⊔
α∈E Iα → R be the function such that δ(μ) = P(−|μ −

α|) − �α for μ ∈ Iα . Since xα is the smaller solution of the equation

P(−x) − �α = 1

2
,

the graph � = δ(μ) in the (μ,�)-plane is above the line � = 1
2 . For α − xα <

μ < α, the graph � = δ(μ) is part of Qξ−α , and for α < μ < α + xα , it is part of
Qξ−α−3 , where ξα = (1, α,�α). See Figure 1.

For a sheaf F with α −xα < μ(F) ≤ α, the point (μ(F ),�(F)) in the (μ,�)-
plane lies on the graph of � = δ(μ) if and only if χ(Eα,F ) = 0. If such a sheaf
F is semistable, then Exti (Eα,F ) = 0 for all i because we have Hom(Eα,F ) = 0
by semistability and Ext2(Eα,F ) � Hom(F,Eα−3)

∗ = 0 by duality and semista-
bility. Analogously, for a sheaf F with α < μ < α + xα , the point (μ(F ),�(F))

lies on the graph of � = δ(μ) if and only if χ(F,Eα) = 0. If such a sheaf F is
semistable, then Exti (F,Eα) = 0 for all i.

Let r ∈ Z>0 and s, d ∈ Q. If dimM(r, s, d) = 0, then s ∈ E and M(r, s, d) =
{E⊕r/rs

s } (see [DL, Prop. (4.4)]). Now assume that dimM(r, s, d) > 0. The ex-
ceptional slope α such that s ∈ Iα is called the associated exceptional slope to
M(r, s, d). We have d ≥ δ(s) [D87, Thm. 1]. The height h(M(r, s, d)) of the
moduli space M(r, s, d) is defined to be rrα(d − δ(s)). It is a nonnegative integer.
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2.4. Kronecker Module

Let V be a finite-dimensional vector space. A Kronecker V -module is a lin-
ear map e : A ⊗ V → B with A, B finite-dimensional vector spaces. The pair
(dimA,dimB) is called the dimension vector of the Kronecker module. A mor-
phism from a Kronecker V -module e : A ⊗ V → B to e′ : A′ ⊗ V → B ′ is a pair
(f, g) of linear maps f : A → A′ and g : B → B ′ such that g ◦e = e′ ◦ (f ⊗ idV ).

A submodule of a Kronecker V -module e : A ⊗ V → B is a Kronecker V -
module e : A′ ⊗ V → B ′ such that A′ and B ′ are subspaces of A and B , respec-
tively, and e′ = e|A′⊗V . A Kronecker V -module e : A ⊗ V → B is semistable
(resp. stable) if for any nonzero proper submodule e : A′ ⊗ V → B ′ of e, the
inequality

−dimA · dimB ′ + dimB · dimA′ ≤ 0 (resp. <)

holds.
We can also consider a family of Kronecker V -modules. For a scheme S, a

Kronecker V -module over S is a morphism e : A ⊗k V → B of OS -modules
with A, B locally free OS -modules of finite rank. The moduli stack KrV (a, b)

of Kronecker V -modules with dimension vector (a, b) is defined as follows.
KrV (a, b) associates to a scheme S the groupoid consisting of Kronecker V -
modules e : A ⊗k V → B over S such that rankA = a and rankB = b. We
denote by KrV (a, b)ss the open substack of KrV (a, b) consisting of semistable
Kronecker V -modules. We denote by KrV (a, b)ss the coarse moduli space of (S-
equivalence of) semistable Kronecker V -modules with dimension vector (a, b).
We have a natural morphism KrV (a, b)ss → Kr(a, b)ss . The stack KrV (a, b) is
described as a quotient stack of an affine space as follows. For a Kronecker V -
module e : ka ⊗ V → kb and (f, g) ∈ GL(a, b) := GL(a) × GL(b), let (f, g)e be
the Kronecker V -module g◦e◦(f ⊗ idV )−1. This defines a left action of GL(a, b)

on H := Hom(ka ⊗V,kb). We have an isomorphism KrV (a, b) � GL(a, b)\H of
stacks.

For integers l, m, the line bundle Ll,m on KrV (a, b) is defined by associat-
ing to a Kronecker V -module e : A ⊗k V → B over a scheme S the line bundle
(detA)⊗l ⊗ (detB)⊗m on S. Under the isomorphism KrV (a, b) � GL(a, b)\H,
the line bundle Ll,m is isomorphic to Lχl,m

, where χl,m : GL(a, b) → k∗ is the
character defined by (f, g) �→ (detf )l(detg)m. By this we find that the space
H0(KrV (a, b),Ll,m) of global sections of Ll,m is isomorphic to the space of semi-
invariant functions on H with weight χl,m.

Lemma 2.1. Let l, m be integers with m positive such that la + mb = 0. Then the
natural map

H0(KrV (a, b),Ll,m)
restr.−−→ H0(KrV (a, b)ss,Ll,m)

is bijective.

Proof. We need to show that if φ is a semiinvariant function with weight χl,m on
Hss (= the open subset consisting of semistable Kronecker V -modules ka ⊗V →
kb), then φ extends to H. By [K, Prop. 3.1] Hss is the set of GIT-semistable points
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with respect to the GL(a, b)-linearized trivial line bundle Lχl,m
on H. Then the

lemma is a consequence of (the poof of) [NR, Lemma 4.15]. �

2.5. Derksen–Weyman’s Theorem

Let a, a′, b, b′ be positive integers, and put v = dimV . Let e : A ⊗k V → B
and e′ : A′ ⊗k V → B′ be universal Kronecker V -modules over KrV (a, b) and
KrV (a′, b′), respectively. The pull-backs of these Kronecker V -modules to the
product KrV (a, b)×KrV (a′, b′) are denoted by the same letters. Over the product
stack KrV (a, b) ×KrV (a′, b′), we consider a morphism

λ : Hom(A′,A) ⊕Hom(B′,B) → Hom(A′ ⊗k V ,B)

of locally free sheaves of the same rank, defined by λ(f,g) = e◦(f ⊗ idV )−g◦e′.
Now assume that a′bv = aa′ + bb′. This assumption means that the source and
target of the morphism λ have the same rank. If V and W denote the source and
target of λ, respectively, then det(λ) defines a section of the line bundle detW ⊗
(detV)∗, which is isomorphic, by direct calculation, to L−a′,a′v−b′ � La−vb,b .
Therefore, det(λ) gives rise to a duality map (up to scalar)

H0(KrV (a, b),L−a′,a′v−b′)∗ → H0(KrV (a′, b′),La−vb,b). (2.4)

The following is a particular case of [DW, Thm. 1 and Cor. 1].

Theorem 2.2 (Derksen–Weyman). The map (2.4) is an isomorphism.

2.6. Moduli of Height Zero

A triad is a triple (E,G,F) of exceptional bundles such that their slopes are of
the form (α,α.β,β), (β − 3, α,α.β), or (α.β,β,α + 3), where α = ε(p/2n) and
β = ε((p + 1)/2n) for some n ∈ Z≥0 and p ∈ Z.

Let (E,G,F) be a triad. Let M be the cokernel of the natural morphism

G → F ⊗k Hom(G,F )∗.

Then M is also an exceptional bundle, and (E,F,M) is a triad. Put G−2 = E,
G−1 = G, G0 = F , F−2 = E∗(−3), F−1 = M∗, F0 = F ∗, and Gi = Fi = 0 for
i /∈ {0,−1,−2}. The following spectral sequence proved by Drezet is called the
generalized Beilinson spectral sequence.

Theorem 2.3 [D86]. If F is a coherent sheaf on P2, then there exists a spectral
sequence

E
p,q

1 = Gp ⊗ Hq(Fp ⊗F)

that converges to F in degree 0 and to 0 in other degrees.

Let M(r, s, d) be a moduli space of height zero, and let γ be the associated ex-
ceptional slope to it. Write as γ = α.β with α = ε(p/2n), β = ε((p + 1)/2n). By
the description of the set E of exceptional slopes in Section 2.2, such α and β are
determined uniquely. There are two cases:



576 Takeshi Abe

(a) γ − xγ < s ≤ γ ,
(b) γ < s < γ + xγ .

In the case (a), by applying Theorem 2.3 to F ∈ M(r, s, d) with (E,G,F) =
(Eβ−3,Eα,Eα.β) we obtain a short exact sequence

0 → Em
β−3

AF−−→ En
α → F → 0, (2.5)

where
m = −χ(E−β ⊗F) and n = −χ(E−(α.β).β ⊗F). (2.6)

From the morphism AF we obtain a Kronecker V -module

tF : km ⊗ V → kn (2.7)

with V = Hom(Eβ−3,Eα)∗. (Conversely, we can recover AF from tF . So giving
AF is equivalent to giving tF .)

Theorem 2.4 [D87]. By the correspondence F �→ tF we obtain an isomorphism

τ : M(r, s, d) → KrV (m,n)ss .

In the case (b), all sheaves in M(r, s, d) are locally free ([D87, p. 40, Remarks]).
By taking dual we have an isomorphism M(r, s, d) � M(r,−s, d). Then −γ −
x−γ < −s < −γ , so we are in the case (a). Let F ∈ M(r, s, d). By applying
Theorem 2.3 to F∗ with (E,G,F) = (E−α−3,E−β,E−α.β) we obtain a short
exact sequence

0 → Em
−α−3

A′
F−−→ En−β →F∗ → 0, (2.8)

where
m = −χ(Eα ⊗F∗) and n = −χ(Eα.(α.β) ⊗F∗). (2.9)

Giving the morphism A′
F is equivalent to giving a Kronecker V -module

t ′F : km ⊗ V → kn (2.10)

with V = Hom(E−α−3,E−β)∗.

Theorem 2.5 [D87]. By the correspondence F �→ t ′F we have an isomorphism

τ ′ : M(r, s, d) → KrV (m,n)ss .

2.7. Moduli of Positive Height

Consider the moduli space M(ξ) where ξ = (r, s, d). Assume that the height of
M(ξ) is positive. As in Section 2.3, we let Qξ be the parabola in the (μ,�)-plane
defined by the equation � = P(μ+ s)− d . Coskun, Huizenga, and Woolf proved
the following [CHW, Thm. 3.1].

Theorem 2.6. The parabola Qξ intersects the line � = 1
2 at two points. If μ0 ∈ R

is the larger of the two slopes such that (μ0,
1
2 ) ∈ Qξ , then there is an exceptional

slope γ ∈ E such that μ0 ∈ Iγ .
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The exceptional slope γ in the theorem is called the corresponding exceptional
slope to ξ . Express γ as α.β with α = ε(p/2n), β = ε((p + 1)/2n).

2.7.1. The case χ(U ⊗Eα.β) > 0 for U ∈ M(ξ). By [CHW, Prop. 5.3], a general
U ∈ M(ξ) has a resolution of the form

0 → E
m1−α−3 → E

m2−β ⊕ E
m3
−(α.β) → U → 0, (2.11)

where m1 = −χ(U ⊗ Eα), m2 = −χ(U ⊗ Eα.(α.β)) and m3 = χ(U ⊗ Eα.β). Put
A := E

m1−α−3 and B := E
m2−β ⊕ E

m3
−(α.β). Let H be the affine space Hom(A,B). Let

V1 be the open subset of H consisting of f : A → B such that f is injective with
torsion-free cokernel. Let V2 be the open subset of V1 consisting of f such that
Cokerf is semistable.

Lemma 2.7. The following inequalities hold:

(1) codim(H \ V1,H) ≥ 2,
(2) codim(V1 \ V2,V1) ≥ 2.

Proof. (1) Consider the subset Z := {(x, f ) | f |x is not injective} of P2 × H.
By [H, Lemma 5.4] Hom(A,B) is globally generated, and by a standard di-
mension counting argument we find that Z is an irreducible closed subvariety
of codimension r + 1 of P2 × H. We need to show that the subset {f ∈ H |
dim(H × {f } ∩ Z) ≥ 1} has codimension ≥ 2 in H. This is true either if r ≥ 2
or if r = 1 and the projection Z → H is surjective. If r = 1 and Z →H is not sur-
jective, then M(ξ) parameterizes a line bundle, which contradicts the assumption
that the height of M(ξ) is positive.

(2) In the proof of [CHW, Prop. 5.3], it is proved that the family U/V1 of
quotients parameterized by V1 is a complete family of prioritary sheaves. Then
the lemma is a consequence of [LP, Lemma 18.3.1]. �

Let G := Aut(A)×Aut(B) act on H by (g1, g2)f := g2 ◦f ◦g−1
1 for (g1, g2) ∈ G

and f ∈H. If U ∈ M(ξ) fits in exact sequences, i = 1,2,

0 → A fi−→ B πi−→ U → 0,

then there exists a unique (g1, g2) ∈ G such that f2 ◦g1 = g2 ◦f1 and π2 ◦g2 = π1.
It follows from this that we have an isomorphism

α : M(ξ)◦ → G\V2

of stacks, where M(ξ)◦ is the open substack of M(ξ) consisting of sheaves U

having a resolution of the form (2.11).
Put H̄ = Hom(A,E

m2−β) and Ḡ = Aut(A) × Aut(Em2−β). We let Ḡ act on H̄ nat-
urally. Since Hom(E−(α.β),E−β) = 0 by (2.1), we have a natural homomorphism
h : G → Ḡ. We have a morphism H→ H̄ by associating to a morphism

A (f,g)−−−→ B = E
m2−β ⊕ E

m3−α.β (2.12)
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a morphism f : A → E
m2−β . This morphism is compatible with the actions of G

and Ḡ, so it induces a morphism

β : G\H → Ḡ\H̄
of stacks. Let � be the composite of morphisms

M(ξ)◦ α−→ G\V2 ⊂ G\H β−→ Ḡ\H̄. (2.13)

Lemma 2.8. Let χ̄ : Ḡ → k× be a character. The natural map

H0(Ḡ\H̄,Lχ̄ ) → H0(M(ξ)◦,�∗Lχ̄ )

is an isomorphism.

Proof. By Lemma 2.7 the natural map

H0(G\H, β∗Lχ̄ ) → H0(M(ξ)◦,�∗Lχ̄ )

is an isomorphism, so we have only to show that the map

H0(Ḡ\H̄,Lχ̄ ) → H0(G\H, β∗Lχ̄ )

is an isomorphism. Put χ := χ̄ ◦ h. Then β∗Lχ̄ � Lχ . Let φ be a semiinvariant
function on H with weight χ . We shall show that φ is a pull-back of a function
on H̄. Since the element(

idA,

(
id

E
m2−β

0

0 aid
E

m3−α.β

))
∈ G

maps to the identity in Ḡ by h, where a ∈ k×, φ is invariant by the action of this el-
ement. From this we see that for (f, g) ∈ H = Hom(A,E

m2−β) ⊕ Hom(A,E
m3−α.β),

we have φ(f,g) = φ(f,0). Hence, φ is a pull-back of a function on H̄. �

2.7.2. The case χ(U ⊗Eα.β) ≤ 0 for U ∈ M(ξ). In this case, a general U ∈ M(ξ)

fits in an exact sequence of the form

0 → E
m1−α−3 ⊕ E

m3
−α.β−3 → E

m2−β → U → 0, (2.14)

where m1 = χ(U ⊗ E(α.β)β), m2 = χ(U ⊗ Eβ), and m3 = −χ(U ⊗ Eα.β) (cf.
[CHW, Section 5.4]). Put H̄ := Hom(E

m1−α−3,E
m3−β) and Ḡ := Aut(Em1−α−3) ×

Aut(Em2−β), and let Ḡ act on H̄ naturally. Let M(ξ)◦ be the open substack of
M(ξ) consisting of sheaves U having a resolution of the form (2.14). As in the
previous case, we define a morphism

� : M(ξ)◦ → Ḡ\H̄ (2.15)

by associating to a sheaf having a resolution

0 → E
m1−α−3 ⊕ E

m3
−α.β−3

f +g−−→ E
m2−β → U → 0 (2.16)

the (equivalence class of) morphism [f ] ∈ Ḡ\H̄. Then the same statement as in
Lemma 2.8 holds.
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3. Proof of Theorem 1.1

We prove Theorem 1.1. Put ξ = (r, s, d) and ξ ′ = (r ′, s′, d ′). We assume that
M ′ = M(ξ ′) is of height zero. There are three cases:

Case (1) The height of M is positive.
Case (2) The height of M is zero.
Case (3) dimM = 0.
Case (1) is a “generic” case, and the others are special cases. We will divide

Case (1) into subcases Case (1-a) and Case (1-b) and give a complete proof for
Case (1-a). For the other cases, we omit some arguments if they are similar to
Case (1-a).

Case (1). Let γ be the corresponding exceptional slope to ξ . In the (μ,�)-plane,
the subset {(μ,�) | μ ∈ Iγ ,� = δ(μ)} and the parabola Qξ intersect at one point.
First, we note the following.

Claim 3.0.1. The intersection point of the subset {(μ,�) | μ ∈ Iγ ,� = δ(μ)}
and the parabola Qξ is (s′, d ′).

Proof. By assumption, the point (s′, d ′) is both on the parabola Qξ and on the
graph of the function δ(μ). The slope of the tangent line of Qξ at (s′, d ′) is s′ +
s + 3/2, which is positive by the assumption s′ + s ≥ 0. Let us show that for
an exceptional slope ζ > γ , Qξ does not intersect {(μ,�) | μ ∈ Iζ ,� = δ(μ)}
(then the claim follows). The slope of the tangent line of the parabola � = P(μ−
ζ )−�ζ at (ζ − xζ ,

1
2 ) is −xζ + 3

2 , and the slope of the tangent line of Qξ at (ζ −
xζ ,P (ζ −xζ + s)−d) is ζ −xζ + s + 3

2 . It suffices to check that ζ −xζ + s + 3
2 >

−xζ + 3
2 or, equivalently, ζ + s > 0. But if (μ̄, 1

2 ) is one of the intersection points
of the parabola Qξ and the line � = 1

2 with bigger μ-coordinate, then μ̄ + s > 0
since the parabola Qξ is increasing for μ ≥ −s − 3/2 and P(−s + s) − d =
1 − d < 1/2 (because d > 1/2). By the definition of γ we have μ̄ ∈ Iγ . Since
ζ > μ̄, we have ζ + s > 0. �
There are two cases:

Case (1-a) γ − xγ < s′ ≤ γ .
Case (1-b) γ < s′ < γ + xγ .
Express γ as α.β with α = ε(p/2n), β = ε((p + 1)/2n).

Case (1-a). We define a morphism

�′ : M(ξ ′) →Kr ′ := KrV (m,n)

by associating to F ∈ M(ξ ′) fitting in the exact sequence (2.5) the Kronecker
V -module in (2.7), where V = Hom(Eβ−3,Eα)∗, and m, n are given by (2.6).

Next, we shall define a morphism

� : M(ξ)◦ →Kr := KrV (m2,m1)

as follows. Recall that in (2.13) we defined a morphism

� : M(ξ)◦ → Ḡ\H̄
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such that if U ∈ M(ξ)◦ is the cokernel of the morphism (2.12), then �(U) is
(represented by) the morphism f : E

m1−α−3 → E
m2−β . If we apply Hom(−,O(−3))

to f , then we obtain a morphism

f † : E
m2
β−3 → Em1

α ,

which is equivalent to giving a Kronecker V -module

t
†
U : km2 ⊗ V → km1 .

Conversely, we can recover f from t
†
U . So we have an isomorphism

Ḡ\H̄ →Kr

of stacks. The morphism � : M(ξ)◦ → Kr is defined to be the composite of �

and this isomorphism.
Let e : A ⊗ V → B and e′ : A′ ⊗ V → B′ be universal families over Kr

and Kr ′, respectively. As explained in Section 2.5, we define a morphism

Hom(A′,A) ⊕Hom(B′,B)
λ−→Hom(A′ ⊗k V ,B) (3.1)

over Kr ×Kr ′. The source and target of the morphism λ have the same rank (see
Remark 3.1). Define the divisor � ⊂ Kr × Kr ′ to be the degenerate locus of the
morphism detλ.

Let U and U ′ be universal families for the moduli stacks M(ξ) and M(ξ ′),
respectively. The pull-backs of U and U ′ to P2 ×M(ξ) ×M(ξ ′) are denoted by
the same letters. Let

p : P2 ×M(ξ) ×M(ξ ′) →M(ξ) ×M(ξ ′)
be the projection. Define � to be the divisor on M(ξ) × M(ξ ′) defined by the
Fitting ideal of R1p∗(U⊗U ′). This is the divisor used to define the strange duality
map. Put �◦ := �|M(ξ)◦×M(ξ ′).

Claim 3.0.2. �◦ = (� × �′)∗� as divisors on M(ξ)◦ ×M(ξ ′).

Proof. Over P2 × (M(ξ)◦ ×M(ξ ′)), express U and U ′ as

0 → Eβ−3 �W ′
1

h−→ Eα �W ′
2 → U ′ → 0,

0 → E−α−3 �W2
(f,g)−−−→ E−β �W1 ⊕ E−(α.β) � S → U → 0,

where W1, W2, S , W ′
1, and W ′

2 are locally free sheaves over M(ξ)◦ ×M(ξ) of
ranks m2, m1, m3, m, n, respectively.

Let G• and F • be respectively the two-term complexes

E−α−3 �W2
f−→ E−β �W1 and Eβ−3 �W ′

1
h−→ Eα �W ′

2

with terms only in degree −1, 0. These are related to the universal families e, e′
of Kronecker V -modules as follows. Applying Hom(−,E−β) to f , we obtain a
morphism

End(E−β) �W∗
1 → Hom(E−α−3,E−β) �W∗

2 � Hom(Eβ−3,Eα) �W∗
2 .
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Taking its push-forward by p, we obtain a morphism

W∗
1 → V ∗ ⊗W∗

2 or equivalently W∗
1 ⊗ V → W∗

2

over M(ξ)◦×M(ξ ′). By the definition of �, this is the pull-back by �×�′ of the
universal Kronecker V -module e. Analogously, applying H(Eβ−3,−) to h and
taking the push-forward of the resulting morphism by p, we obtain a morphism

W ′
1 → V ∗ ⊗W ′

2 or, equivalently, W ′
1 ⊗ V → W ′

2.

This is the pull-back of the universal Kronecker V -module e′ by � × �′.
Since Rp∗(E−(α.β) ⊗U ′) = 0 by the explanation in the penultimate paragraph

of Section 2.3, we have Rp∗(U ⊗ U ′) � Rp∗(G• ⊗ U ′). In the derived category
we have the isomorphisms

G• ⊗ U ′ � Hom(G•∗,U ′)
� Hom(G•∗,F •)
� Hom(Hom(F •[−1],G•∗),O[1])
� Hom(K•,O(−3)[1]),

where K• := Hom(F •[−1],G•∗ ⊗O(−3)). By this we have the isomorphisms

H1(Rp∗(U ⊗ U ′)) � H0(Rp∗Hom(K•,O(−3)[2]))
� H0(RHom(Rp∗(K•),O))

� H0(Hom((� × �′)∗(the complex (3.1)),O)),

where the second isomorphism is a duality isomorphism. The last isomorphism is
a result of the isomorphism

Rp∗(K•) � (� × �′)∗(the complex (3.1)), (∗)

which is explained in the next paragraph. Since for a morphism ϕ : C → D of
locally free sheaves of the same rank, Div(detϕ) = Div(detϕ∗), the claim follows
from the above isomorphisms.

Finally, we explain the isomorhism (∗). The sheaves appearing in the complex
K• are of the form

End(Eβ−3)�?, End(Eα)�? or Hom(Eβ−3,Eα)�?,

where ? are locally free sheaves on M◦(ξ) × M(ξ ′). Since the higher coho-
mologies of End(Eβ−3), End(Eα) and Hom(Eβ−3,Eα) vanish by (2.2), we
have Rp∗(K•) � p∗(K•). The degree 0 term of p∗(K•) is Hom(W ′

1,W∗
1 ) ⊕

Hom(W ′
2,W∗

2 ), and the degree 1 term is V ∗ ⊗ Hom(W ′
1,W∗

2 ). From the de-
scription of the relation of the complexes G• and F • with the universal Kronecker
V -modules e and e′ we see that these are respectively the pull-back by � × �′ of
the source and target of the morphism (3.1). By comparing the definition of the
morphism λ and the definition of a Hom complex we can see that p∗(K•) is the
pull-back of the complex (3.1) by � × �′. �
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Remark 3.1. The proof of the claim shows that the source and target of the mor-
phism λ have the same rank. In fact, we have rank Rp∗(U ⊗ U ′) = 0 by the as-
sumption of Theorem 1.1, and by the proof of the claim we have

Rp∗(U ⊗ U ′) � Hom((� × �′)∗(the complex (3.1)),O)[−1].
Hence, the rank of the complex (3.1) is zero.

Recall that D and D′ are line bundles on M(ξ) and M(ξ ′), respectively, such
that D �D′ � O(�). Let L and L′ be line bundles on Kr and Kr ′, respectively,
such that L�L′ � O(�). Then by the claim we have the following commutative
diagram:

H0(M(ξ),D)

restriction

H0(M(ξ ′),D′)∗

(a)

(b)

(c)

H0(M(ξ)◦,D|M(ξ)◦)

H0(Kr ′,L′)∗ (d)
H0(Kr,L).

(e)

Here (a) is the strange duality map, (c) is the dual of the pull-back map by �′, (d)
is the map induced by the divisor �, and (e) is the pull-back map by �.

By Theorem 2.4 and Lemma 2.1 the map (c) is an isomorphism. By Theo-
rem 2.2 the map (d) is an isomorphism. By Lemma 2.8 the map (e) is an isomor-
phism. From these we see that the map (b) is an isomorphism. So the map (a) is
an isomorphism because the vertical restriction map is injective. This finishes the
proof in Case (1-a).

Case (1-b). First, note that in this case we have χ(U ⊗Eα.β) ≤ 0 for U ∈M(ξ).
In fact, if χ(U ⊗ Eα.β) > 0, then the assumption that Hi (E ⊗ E′) = 0 holds for
some E ∈ M(ξ) and E′ ∈M(ξ ′) is not satisfied because of [CHW, Thm. 3.4].

We define a morphism

�′ : M(ξ ′) →Kr ′ := KrV (m,n)

by associating to F ∈ M(ξ ′) fitting in the exact sequence (2.8) the Kronecker
V -module (2.10), where V = Hom(E−α−3,E−β)∗, and n, m are given by (2.9).

Recall that in (2.15) we defined a morphism

� : M(ξ)◦ → Ḡ\H̄
such that if U ∈ M(ξ)◦ fits in an exact sequence (2.16), then �(U) is the mor-
phism f : E

m1−α−3 → E
m2−β . Giving f is equivalent to giving a Kronecker V -

module
tU : km1 ⊗ V → km2 .

We define a morphism � : M(ξ)◦ → Kr := KrV (m1,m2) by �(U) = tU .
As in Case (1-a), we can define divisors �, �, and �◦ on Kr ×Kr ′, M(ξ) ×

M(ξ ′), and M(ξ)◦ ×M(ξ ′), respectively. Let us see that the same statement as
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Claim 3.0.2 holds. Suppose that U ∈M(ξ)◦ fits in the exact sequence (2.16) and
that F ∈ M(ξ ′) fits in the exact sequence (2.8). Let G• and F • be respectively
the two-term complexes

E
m1−α−3

f−→ E
m2−β and Em

−α−3

A′
F−−→ En−β

with terms only in degree −1, 0. Then we have

H0(P2,U ⊗F) �= 0 ⇔ H0(P2,G• ⊗F) �= 0

⇔ HomD(P2)(F∗,G•) �= 0

⇔ HomD(P2)(F
•,G•) �= 0

⇔ Hom(�′(F),�(U)) �= 0,

where the first equivalence follows from Hi (P2,F ⊗E−α.β−3) = 0 for any i (this
is explained in the penultimate paragraph of Section 2.3), and the last equivalence
follows from the vanishing of higher cohomologies of each term of the complex
Hom(F •,G•). This shows that the same statement as Claim 3.0.2 holds.

Now the rest of the proof goes as in Case (1-a).

Case (2). Let γ and γ ′ be the associated exceptional slopes to M(ξ) and M(ξ ′),
respectively. We divide into two cases:

Case (2-a) γ − xγ < s ≤ γ or γ ′ − xγ ′ < s′ ≤ γ ′.
Case (2-b) γ < s < γ + xγ and γ ′ < s′ < γ ′ + xγ ′ .

Case (2-a). By symmetry we may assume that γ − xγ < s ≤ γ . Consider
the parabola Qξ defined by � = P(μ + s) − d in the (μ,�)-plane. We have
P(−s + s) − d = 1 − d < 1

2 , and by easy calculation we can see that P(−γ +
xγ + s) − d > 1

2 . So the graph of � = δ(μ) and the parabola Qξ intersect at
one point in the area {(μ,�) | −γ < μ < −γ + xγ }. By the same argument as
Claim 3.0.1 the intersection point is (s′, d ′). Write γ as α.β with α = ε(p/2n),
β = ε((p + 1)/2n). Define a morphism

� : M(ξ) → KrV (m,n)

by associating to F ∈ M(ξ) fitting in the exact sequence (2.5) the Kronecker
V -module tF in (2.7), where V = Hom(Eβ−3,Eα)∗, and m, n are given by (2.6).

Every G ∈ M(ξ ′) fits in an exact sequence

0 → Em′
β−3

g−→ En′
α → G∗ → 0, (3.3)

where m′ = −χ(G∗ ⊗E−β) and n′ = −χ(G∗ ⊗E−(α.β).β). Giving g is equivalent
to giving a Kronecker V -module

tG : km′ ⊗ V → kn′
.

We have a morphism

�′ : M(ξ ′) → KrV (m′, n′),
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which maps G to tG . For F ∈ M(ξ) fitting in the exact sequence (2.5) and
G ∈M(ξ ′) fitting in the exact sequence (3.3), we have

H0(F ⊗ G) �= 0 ⇔ Hom(G∗,F) �= 0

⇔ Hom(Em′
β−3 → En′

α ,Em
β−3 → En

α) �= 0

⇔ Hom(�′(G),�(F)) �= 0,

where the two-term complexes in the second line have terms in degree −1, 0.
Now the rest of the proof goes as in the previous cases.

Case (2-b). We shall show that this case does not occur. Consider the parabola
Qξ in the (μ,�)-plane in Case (2-a). The argument in Case (2-a) shows that
the parabola Qξ and the graph of � = δ(μ) intersect at one point in the area
{(μ,�) | −s < μ < −γ + xγ }. Again by the same argument as Claim 3.0.1 the
intersection point is (s′, d ′). Write γ as α.β with α = ε(p/2n), β = ε((p+1)/2n).

Since we are in Case (2-b), we have −γ < s′ < −γ + xγ . So every G ∈ M(ξ ′)
fits in the exact sequence (3.3). Every F ∈M(ξ) fits in the exact sequence

0 → Em
−α−3

f−→ En−β →F∗ → 0

with m, n positive integers. Let G• and F • be respectively the two-term com-
plexes

Em′
β−3

g−→ En′
α and En

β

f ∗
−→ Em

α+3

having terms in degree −1, 0. Then we have

H0(F ⊗ G) �= 0 ⇔ Hom(G∗,F) �= 0

⇔ Hom(G•,F •[−1]) �= 0

⇔ Hom(En′
α ,En

β) �= 0.

Since χ(Eα,Eβ) > 0 by (2.3) and Exti (Eα,Eβ) = 0 for i > 0 by (2.2), we have
Hom(Eα,Eβ) �= 0. Therefore, we have H0(F ⊗ G) �= 0 for every F ∈ M(ξ) and
G ∈M(ξ ′), which contradicts the assumption of the theorem.

Case (3). In this case we have s ∈ E, d = �s and M(ξ) = {Er/rs
s }. We shall show

that the line bundle on M(ξ ′) determined by Es is the trivial line bundle. To see
that, we show that for every G ∈ M(ξ ′), we have Hi (Es ⊗ G) = 0 for any i.

In the (μ,�)-plane, the only point with μ-coordinate greater than or equal to
−s that line on both the parabola defined by � = P(μ + s) − d and the graph
� = δ(μ) is (−s,1 − d). Hence, (s′, d ′) = (−s,1 − d). Since μ(E∗

s ) = μ(G) and
�(E∗

s ) = d < 1 − d = �(G), we have H0(Es ⊗ G) = 0 by semistability. We also
have H2(Es ⊗ G) = H0(E∗

s ⊗ G∗(−3)) = 0 again by semistability. Therefore, we
have Hi (Es ⊗ G) = 0 for any i.
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