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Counting Genus One Fibered Knots in Lens Spaces

Kenneth L. Baker

Abstract. The braid axis of a closed 3-braid lifts to a genus one
fibered knot in the double cover of S3 branched over the closed braid.
Every genus one fibered knot in a 3-manifold may be obtained in this
way. Using this perspective, we answer a question of Morimoto about
the number of genus one fibered knots in lens spaces. We determine
the number of genus one fibered knots up to homeomorphism and up
to isotopy in any given lens space. This number is 3 in the case of
the lens space L(4,1), 2 for the lens spaces L(m,1) with m > 0 and
m �= 4, and at most 1 otherwise. Furthermore, each homeomorphism
equivalence class in a lens space is realized by at most two isotopy
classes.

1. Introduction

Let M be a 3-manifold. We say that a knot K in M is a genus one fibered knot,
GOF-knot for short, if M −N(K) is a once-punctured torus bundle over the circle
and the boundary of a fiber is a longitude of K . In particular, we will always
consider a GOF-knot to be null homologous.

As begun by Burde and Zieschang in [BZ67], González-Acuña [GAn70]
shows that the trefoil (and its mirror) and the figure-eight knot are the only GOF-
knots in S3. Morimoto shows that up to homeomorphism each lens space L(m,1)

contains at least two GOF-knots if m > 0 and exactly two if m ∈ {1,2,3,5,19},
L(4,1) contains exactly three GOF-knots, each of L(0,1), L(5,2), and L(19,3)

contains exactly one GOF-knot, and each of L(19,2), L(19,4), and L(19,7) con-
tains no GOF-knots, [Mor89]. Morimoto then asks the following question.

Question [Mor89]. Are the numbers of GOF-knots in all lens spaces bounded?

In this article we use double branched covers of two-bridge links represented as
closed 3-braids to address this question.

Theorem 4.3. Up to homeomorphisms, the lens space L(α′, β ′) contains exactly

• three distinct GOF-knots if and only if L(α′, β ′) ∼= L(4,1),
• two distinct GOF-knots if and only if L(α′, β ′) ∼= L(α,1) for α > 0 and α �= 4,
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• one distinct GOF-knot if and only if L(α′, β ′) ∼= L(α,β) either for α = 0 or for
0 < β < α, where either
◦ α = 2pq + p + q and β = 2q + 1 for some integers p,q > 1, or
◦ α = 2pq + p + q + 1 and β = 2q + 1 for some integers p,q > 0, and

• zero GOF-knots otherwise.

Remark 1.1. In Theorem 4.5 we further show that each of these homeomor-
phism classes of a GOF-knot in a lens space splits into at most two isotopy
classes; indeed, we determine which homeomorphism classes represent two iso-
topy classes. In particular, the homeomorphism classes of the trefoil in S3 and
the single GOF-knot in S1 × S2 each divide into two isotopy classes related by
an orientation reversing homeomorphism. Furthermore “most” of the lens spaces
with one homeomorphism class of GOF-knots actually have two isotopy classes
related by an involution of the lens space that is not isotopic to the identity.

Theorem 4.3 is proven in Section 4. It is a consequence of the classification of
3-braid representations of two-bridge knots up to homeomorphisms given in The-
orem 4.2 and the correspondence between the braid axes of closed 3-braids and
GOF-knots given in Proposition 2.1. In Section 3 we blend results of Murasugi
[Mur91] and Stoimenow [Sto03] with results of Birman and Menasco [BM93] to
prepare for our proof of Theorem 4.2.

Remark 1.2. The original preprint of this article was written in 2005. The text
and content here is largely the same though we have updated our closing remarks
of Section 5. In particular, we highlight a result from Lott’s thesis [Lot09] in
Theorem 5.3 and point out that we have since answered one of the questions
asked at the end.

1.1. Preliminaries

Throughout this article we will be classifying links in 3-manifolds up to homeo-
morphism. In particular, we consider homeomorphisms without regards to ori-
entation. Therefore, for instance, we regard the right-handed trefoil and left-
handed trefoil in S3 as equivalent. In particular, if h is a homeomorphism between
3-manifolds M and M ′ such that h(K) = K ′ for knots K ⊂ M and K ′ ⊂ M ′, then
we say the pairs (M,K) and (M ′,K ′) are equivalent or simply that the knots K

and K ′ are (homeomorphism) equivalent. However, if M = M ′ and there is an
ambient isotopy that takes K to K ′, then we say that K and K ′ are isotopic. All
our isotopies of links may be regarded as ambient isotopies.

An unknot A in S3 that is disjoint from a link L is a (braid) axis for the link L

if L is braided about A, that is, if the exterior of A may be identified with S1 ×D2

so that L is transverse to each disk fiber. If h is a homeomorphism of S3 such that
h(L) = L′ and h(A) = A′ for links L and L′ with axes A and A′ giving closed
braid representations of L and L′, respectively, then we say that the pairs (L,A)

and (L′,A′) are (homeomorphism) equivalent. If L = L′, then we simply say that
A and A′ are equivalent axes for L even though A and A′ might not be isotopic
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in the complement of L; see Lemma 3.8. We say that (L,A) and (L′,A′) are
isotopic if there is an ambient isotopy of S3 taking L to L′ and A to A′. If L = L′,
then we simply say A and A′ are isotopic axes for L if the ambient isotopy of
S3 that relates A and A′ fixes L. Regardless, because any homeomorphism of S3

is isotopic to either the identity or mirroring [Gug53], if (L,A) and (L′,A′) are
equivalent, then (L,A) is isotopic to either (L′,A′) or the mirror of (L′,A′).

Let ω be the braid word in the standard generators of a braid whose closure is
the link L with braid axis A. Then the absolute value of the exponent sum of ω is
an invariant of the homeomorphism equivalence class of the pair (L,A), whereas
the exponent sum itself is an invariant of the isotopy class of the pair (L,A).
This may be seen as follows. First, fixing A, any isotopy between two braided
configurations of L may be achieved by braid isotopy; thus, their braid words are
conjugate and have the same exponent sum. Next, because the axis A is an unknot,
its symmetry group is Sym(S3,A) = Homeo(S3,A)/Homeo0(S

3,A) ∼= Z2 ×Z2,
which is generated by a mirroring of S3 and an isotopy of S3 that flips over a
sphere containing A. The mirroring that preserves the orientation on A takes the
inverse of ω and thus negates the exponent sum. The flip reverses the orientation
of A while inverting the order the word ω is read and thus preserves the exponent
sum.

We follow the conventions of Burde and Zieschang [BZ03] in regards to con-
tinued fractions, two-bridge links, and lens spaces and further refer the reader
there for background regarding fibered knots, braids, double branched coverings,
etc. In this convention, a continued fraction expansion

β/α = [a1, a2, . . . , an] = 1

a1 + 1

a2 + 1

. . . + 1

an

for coprime integers α and β gives a geometric description of the two-bridge
link b(α,β) whose double branched cover is the lens space L(α,β). By flipping
the signs on both α and β , we may always take α ≥ 0. This link b(α,β) has
Conway [Con70] notation (a1, a2, . . . , an). Figure 1 shows the standard diagrams
of the two-bridge link b(2pq + p + q + 1,2q + 1) for two of its corresponding
continued fraction expansions [p,1,1, q] = 2q+1

2pq+p+q+1 = [p,2,−q − 1]. Due
to the choice of continued fraction convention, the twist regions corresponding
to the coefficients with even index twist in the direction opposite the sign of the
coefficient. We orient the link b(α,β) with β/α = [a1, . . . , an] so that from the
top, the third strand of the diagram goes downward, as does the second if the link
has two components.

Consider two two-bridge links b(α1, β1) and b(α2, β2) with α1, α2 > 0 with
the corresponding lens spaces L(α1, β1) and L(α2, β2). Schubert shows that
the two-bridge links are isotopic as unoriented links and the lens spaces are
orientation-preserving homeomorphic if and only if α1 = α2 and β1 ≡ β±1

2
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Figure 1 The two bridge link (p,1,1, q) is equivalent to (p,2,−q − 1)

mod α0. They are mirrors if and only if α1 = α2 and β1 ≡ −β±1
2 mod α0. As ori-

ented links, the two links are isotopic if and only if α1 = α2 and β1 ≡ β±1
2

mod α0. See Theorem 12.6 [BZ03] for example.

2. GOF-Knots via Double Branched Covers of Closed 3-Braids

Proposition 2.1. The homeomorphism classes of the pairs (M,K) of a GOF-
knot K in a 3-manifold M are in one-to-one correspondence with the homeomor-
phism classes of the pairs (L,A) of a link L in S3 and a braid axis A giving
a closed 3-braid representation of L. The pair (M,K) corresponds to the pair
(L,A) if and only if M is the double cover of S3 branched over L and K is the
lift of A.

Proof. This proposition appears to be known to the experts, and we offer a sketch
here. For further details, see [Bal08, Section 2].

Each orientable once-punctured torus bundle over the circle is the double cover
of a solid torus branched over a closed 3-braid. Moreover, a Dehn filling of such
a once-punctured torus bundle along a slope that intersects each fiber once is the
double cover of S3 branched over a closed 3-braid. This may be seen as follows.
The once-punctured torus T admits an involution τ with three fixed points. Any
orientation-preserving homeomorphism of T is isotopic rel-∂ to one invariant un-
der τ . The involution τ then extends across each fiber of the mapping torus of
such a homeomorphism. The involution further extends across the solid torus of
the Dehn filling described above (cf. Sections 4 and 5 of [MR97]).

A GOF-knot in a 3-manifold M is then the lift of the braid axis of some closed
3-braid in S3 where M is the double cover of S3 branched over the closed 3-braid.
This also becomes evident by considering the genus 2 Heegaard splitting of M

induced by the GOF-knot and the corresponding involution on M (arising from
the hyper-elliptic involution on the genus 2 Heegaard surface that extends across
the two handlebodies) that acts freely on the GOF-knot (cf. Section 5 of [BH75]).
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Quotienting by the involution, the fixed set becomes the closed braid, and the
GOF-knot becomes the braid axis. �

Lemma 2.2. The isotopy classes of the pairs (M,K) of a GOF-knot K in a 3-
manifold M are in one-to-one correspondence with the isotopy classes of the pairs
(L,A) of a link L in S3 whose double branched cover is M and a braid axis A

that gives a closed 3-braid presentation of L.

Proof. Let K and K ′ be GOF-knots in M corresponding respectively to the pairs
(L,A) and (L′,A′) as in Proposition 2.1. An isotopy from (L,A) to (L′,A′)
lifts through double branched covers (branched over the trace of the isotopy from
L to L′) to an ambient isotopy of M taking K to K ′. On the other hand, an
ambient isotopy of M taking K to K ′ provides an isotopy of their once-punctured
torus bundle exteriors, framed with their meridians. The isotopy may be further
taken to relate the involutions τ and τ ′ on these once-punctured torus bundles as
constructed above. These involutions and the isotopy between them then extends
across the knots to all of M . The isotopy of involutions from τ to τ ′ is then an
involution of the isotopy from (M,K) to (M,K ′) whose quotient is an isotopy
from the quotient by τ to the quotient by τ ′ relating the images of their fixed sets
(the links L and L′) and the images of K and K ′ (the axes A and A′). In other
words, the isotopy descends to an isotopy from (L,A) to (L′,A′). �

Remark 2.3. A meridian of the braid axis is a longitudinal curve on the solid
torus containing the closed 3-braid and lifts to two meridians of the GOF-knot in
the double cover. More generally, let V be the solid torus neighborhood of the
braid axis, and Ṽ be the solid torus neighborhood of the GOF-knot that is the lift
of V . The meridian of the solid torus S3 − Int(V ) is the longitude of V and lifts to
the longitude of Ṽ . Since Ṽ double covers V , simple closed curves of slope p/q

on ∂V lift to curves of slope 2p/q on ∂Ṽ . Assuming that p and q are coprime, if
q is even, then the slope 2p/q is to be interpreted as two parallel curves of slope
p/(q/2). It follows that 1/n surgery on GOF-knot corresponds to inserting 2n

full twists (right-handed if n < 0, left-handed if n > 0) into the 3-braid.

3. Two-Bridge Links and Closed 3-Braids

The main two ingredients for our proof of Theorem 4.2 are the classification of
two-bridge links with closed 3-braid representations and the classification of braid
axes giving closed 3-braid representations of a link. Murasugi [Mur91, Propo-
sition 7.2] and later Stoimenow [Sto03, Corollary 8] determine which oriented
two-bridge links have representations as closed 3-braids. The Classification The-
orem of Birman and Menasco [BM93] then permits us to count the number of
braid axes representing an oriented two-bridge link as a closed 3-braid that are
not isotopic in the complement of the two-bridge link. In Lemma 3.8 we show
when these braid axes paired with the link are equivalent by a homeomorphism
of S3. Theorem 4.2 is then proved by determining which orientations of which
two-bridge links admit closed 3-braid representations.
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Figure 2 The standard generators σ1 and σ2 for the three-strand
braid group B3

Let b(L) denote the braid index of the link L.

Proposition 3.1 [Mur91, Proposition 7.2]. Let L be an oriented two-bridge link
of type b(α,β), where 0 < β < α and β is odd. Then

(1) b(L) = 2 if and only if β = 1.
(2) b(L) = 3 if and only if either

(a) for some p,q > 1, α = 2pq + p + q and β = 2q + 1, or
(b) for some q > 0, α = 2pq + p + q + 1 and β = 2q + 1.

Note that in (b) together 0 < β < α, q > 0, and α = pβ + q + 1 imply p > 0.

Corollary 3.2 [Sto03, Corollary 8]. If L is a two-bridge link of braid index at
most 3, then L has Conway notation (p,1,1, q) or (p,2, q) for some p,q > 0.

Remark 3.3. The link with Conway notation (p,2, q) corresponds to type (a) in
Proposition 3.1. The link (p,1,1, q) corresponds to type (b) and is equivalent to
the link (p,2,−q − 1). See Figure 1. Observe then that up to mirror equivalence
the links (p,2, q) for any p ∈ Z+ and q ∈ Z contain all oriented two-bridge links
of braid index at most 3 and that every such link has braid index at most 3.

Let σ1 and σ2 be the standard generators of the 3-braid group as depicted in Fig-
ure 2.

Theorem 3.4 (The Classification Theorem, [BM93]). An oriented link L repre-
sented by a closed 3-braid admits a unique conjugacy class of 3-braid represen-
tatives, with the following exceptions:

(1) L is the unknot which has three conjugacy classes of 3-braid representatives,
namely the classes of σ1σ2, σ−1

1 σ−1
2 , and σ1σ

−1
2 .

(2) L is a type (2, k) torus link, k �= ±1, which has two conjugacy classes of
3-braid representatives, namely the classes of σk

1 σ2 and σk
1 σ−1

2 .
(3) L is one of a special class of links of braid index 3 that have 3-braid represen-

tatives admitting “braid-preserving flypes.” These links have at most two con-
jugacy classes of 3-braid representatives, namely the classes of σ

p

1 σ r
2 σ

q

1 σ δ
2

and σ
p

1 σ δ
2 σ

q

1 σ r
2 , where p, q , r are distinct integers having absolute value at

least 2 and where δ = ±1.

Remark 3.5. The links in the lower-left and lower-right of Figure 3 are related
by an explicit flype, a flipping of a rational tangle that passes a crossing on one
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Figure 3 The two bridge link (p,2, q) and its two typically distinct
closed 3-braid representatives are shown in the top row

side to the other; see [Con70]. The links shown above them contain the corre-
sponding braid axes, thereby justifying Birman and Menasco’s terminology of
“braid-preserving flype.”

Lemma 3.6. A two-bridge link with braid index 3, denoted up to mirror equiva-
lence with Conway notation (p,2, q), belongs to the third type of links in Theo-
rem 3.4 where r = 2 and δ = −1. Such a description gives two braid axes pre-
senting the link as a 3-braid that are distinct up to isotopy in the complement of
the link if and only if p,q ∈ Z− {−1,0,1,2} and p �= q .

Remark 3.7. Note that in Theorem 3.4 the unknot and the (2, k) torus links of
the first two types may all also be written as members of the third type with, say,
r = 0. When presented as such, the braid-preserving flypes do not give rise to
their various braid axes. But of course these links have braid index less than 3.

Proof of Lemma 3.6. By Corollary 3.2 and Remark 3.3, up to mirror equivalence
we may assume that a two-bridge link with braid index 3 has Conway notation
(p,2, q). Figure 3 shows the passage from the link with Conway notation (p,2, q)
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to the two closed 3-braids σ
p

1 σ 2
2 σ

q

1 σ−1
2 and σ

p

1 σ−1
2 σ

q

1 σ 2
2 . These presentations as

closed 3-braids give two braid axes A and A′ for the two-bridge link. By Theo-
rem 3.4 the braid axes A and A′ are not isotopic in the complement of the two-
bridge link if and only if p,q ∈ Z− {−1,0,1,2} and p �= q . �

Lemma 3.8. An unoriented link L that may be represented by a closed 3-braid
admits at most one equivalence class of braid axes giving 3-braid representatives
for a given orientation of L and its reverse, with the following exception: L or its
mirror is a type (2, k) torus link with k > 0, which has two equivalence classes
of 3-braid axes corresponding to the conjugacy classes of σk

1 σ2 and σk
1 σ−1

2 when
coherently oriented.

Proof. This lemma is perhaps suggested by The Classification Theorem of
[BM93], Theorem 3.4. We only need consider the oriented links L with at least
two conjugacy classes of 3-braid representatives as described in Theorem 3.4.

If L is the unknot, the braid axes A and Ā that correspond to the conju-
gacy classes of σ1σ2 and σ−1

1 σ−1
2 , respectively, are equivalent by an orientation-

reversing homeomorphism of S3. They are not equivalent, however, to the braid
axis A′ that corresponds to the conjugacy class of σ1σ

−1
2 since the absolute values

of the exponent sums of the braid words σ1σ2 and σ1σ
−1
2 are not equal. Note that

we may consider the unknot as a type (2,1) torus link.
If L is a type (2, k) torus link with k �= ±1, then let A and A′ be the two braid

axes that correspond to the conjugacy classes of σk
1 σ2 and σk

1 σ−1
2 . If k = 0, then

these axes are equivalent since there is an orientation-reversing homeomorphism
of S3 taking L to L and A to A′. If |k| ≥ 2, then these axes are not equivalent since
the absolute values of the exponent sums of the braid words σk

1 σ2 and σk
1 σ−1

2 are
not equal. Since the (2,−k) torus link is the mirror of the (2, k) torus link, we
may assume that k > 0.

If L is a link that admits a braid-preserving flype, that is, one of the third type in
Theorem 3.4, then let A and A′ be the braid axes that give the two corresponding
conjugacy classes of 3-braid representatives. These axes are typically not isotopic
in the complement of the link as noted in Lemma 3.6 for our special case where
L is a two-bridge link. Nevertheless, there is a homeomorphism of S3 that takes
L to itself and exchanges the axes. Figure 4 illustrates this homeomorphism by
presenting an axis of involution for the link L ∪ A ∪ A′. (The figure also shows
how each of A and A′ becomes the stated braid axis for L when the other is
dropped.) If ι is the involution of S3 about this axis, then ι(L) = L, ι(A) = A′, and
ι(A′) = A. Hence, the braid axes A and A′ give equivalent 3-braid representatives
of L. Note that ι reverses any orientation on L. �

Remark 3.9. Recall that two oriented two-bridge links b(α1, β1) and b(α2, β2)

with α1, α2 > 0 are isotopy equivalent as oriented links if and only if

α1 = α2 and β±1
1 ≡ β2 mod 2α1,
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Figure 4 The (unoriented) link L of the third type in Theorem 3.4
(shown here with δ = −1) admits an involution that exchanges its two
braid axes A and A′

whereas the unoriented two-bridge links are equivalent if and only if the second
condition is taken simply mod α1.

Since oriented two-bridge links are invertible, there is no distinction between
the orientations of a two-bridge knot. However, switching the orientation on one
component of the oriented link b(α,β) yields the link b(α,β −α), which is mirror
equivalent to b(α,α − β). Thus, up to mirror equivalence, every oriented two-
bridge link except the two-component unlink b(0,1) and the unknot b(1,1) is
represented by b(α,β) for some 0 < β < α with β odd.

Remark 3.10. If β and β ′ are odd integers with 0 < β < α and 0 < |β ′| < α such
that ββ ′ ≡ 1 mod 2α, then for positive integers p and q ,

• if α = 2pq + p + q and β = 2p + 1, then β ′ = 2q + 1, and
• if α = 2pq + p + q + 1 and β = 2p + 1, then β ′ = −(2q + 1).

Therefore, up to mirror equivalence, the oriented two-bridge link b(2pq + p +
q + δ,2p + 1) is equivalent to b(2pq + p + q + δ,2q + 1) where δ ∈ {0,1}.
Lemma 3.11. Among two-bridge links up to mirror equivalence, only the link
b(4,1) has two distinct orientations that each admits a closed 3-braid represen-
tation.

Proof. Assume that the unoriented two-bridge link L has two distinct orienta-
tions and a closed 3-braid representative for each. Then, as noted in Remark 3.9,
L is necessarily a link of two components. Also observe that the unlink has only
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one orientation up isotopy, so L is not the unlink. Thus, up to mirror equiva-
lence, the two orientations of L may be denoted as b(α,β) and b(α,α −β) where
0 < β < α. Since α is necessarily even, both β and α − β are odd.
Case 1 (β = 1 or α − β = 1).

We may assume that β = 1. If α = 2, then the two orientations on b(2,1) are
mirror equivalent. Hence, we may further assume that α > 2.

Theorem 3.4 shows that b(α,1) has a closed 3-braid representative. Since
α > 2, a 3-braid representative of b(α,α−1) must be of the second type in Propo-
sition 3.1. Therefore, in accordance with Remark 3.10, we only need check if

α = 2pq + p + q + δ and α − 1 = 2p + 1

for some integers p,q > 0 and δ ∈ {0,1}. It follows that α = 2p + 2 and hence
p = (2 − q − δ)/(2q − 1). The only valid solution is p = 1 = q with δ = 0. Thus,
α = 4. Because 1 · 3 ≡ 3 mod 2 · 4, the two oriented links b(4,1) and b(4,3) are
not mirror equivalent. Therefore, each orientation of the unoriented two-bridge
link L = b(4,1) has a 3-braid representative.
Case 2 (β > 1 and α − β > 1).

Any 3-braid representative of L must be of the second type in Proposition 3.1.
Therefore, again in accordance with Remark 3.10, we only need check if

α = 2pq + p + q + δ and β = 2p + 1

and
α = 2rs + r + s + ε and α − β = 2r + 1

for some integers p,q, r, s > 0 and δ, ε ∈ {0,1}. Eliminating β , we have the three
equations

α = 2pq + p + q + δ = (2p + 1)q + p + δ, (1)

α = 2rs + r + s + ε = (2r + 1)s + r + ε, (2)

α = (2p + 1) + (2r + 1). (3)

Combining equation (3) with (1) and (2), we obtain

(2r + 1) = (2p + 1)(q − 1) + p + δ, (4)

(2p + 1) = (2r + 1)(s − 1) + r + ε. (5)

By examining equation (4), if q = 1, then p > r , and if q > 1, then p < r . Sim-
ilarly, equation (5) implies that if s = 1, then r > p, and if s > 1, then p > r .
Hence, either q = 1 and s > 1 (in which case p > r) or q > 1 and s = 1 (in which
case r > p). These two cases are symmetric.

Assume that q = 1 and s > 1. Then equation (4) gives

2r + 1 = p + δ. (6)

Substituting this into equation (5) yields

2p + 1 = (p + δ)(s − 1) + r + ε

= (s − 1)p + (s − 1)δ + r + ε,
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and thus
(3 − s)p + 1 = (s − 1)δ + r + ε. (7)

Since the right-hand side is necessarily positive, s = 2 or s = 3.
If s = 2, then

p + 1 = r + δ + ε by equation (7),

2r + 1 − δ + 1 = r + δ + ε by equation (6),

r = 2δ + ε − 2.

Since r > 0, δ = ε = 1, r = 1, and p = 2. Thus, α = 8, β = 5, and α − β = 3.
Because 3 · 5 ≡ −1 mod 2 · 8, the oriented links b(8,3) and b(8,5) are mirror
equivalent.

If s = 3, then by equation (7),

1 = 2δ + r + ε.

Since r > 0, δ = ε = 0, r = 1, and p = 3. Thus, α = 10, β = 7, and α − β = 3.
Because 3 · 7 ≡ 1 mod 2 · 10, the oriented links b(10,3) and b(10,7) are equiv-
alent. �

4. Counting Genus One Fibered Knots

Lemma 4.1. An unoriented link L has at most four equivalence classes of braid
axes that represent L as a closed 3-braid.

Proof. By Lemma 3.8, up to reversal each orientation of a link L admits at most
one equivalence class of braid axes representing the oriented link as a closed
3-braid except when L is a type (2, k) torus link with k > 0. When L is ori-
ented as a type (2, k) torus link with k > 0, it has two distinct equivalence class
of braid axes representing it as a closed 3-braid.

Since a (2, k) torus link has at most two components, it has at most two distinct
orientations up to reversal. Therefore, it may have at most four distinct equiva-
lence classes of braid axes representing it as a closed 3-braid.

A link L that may be represented as a closed 3-braid has at most three compo-
nents and so has at most four distinct orientations up to reversal. Assuming that
L is not a (2, k) torus link, each orientation up to reversal admits at most one
equivalence class of braid axes representing it as a closed 3-braid. Therefore, L

may have at most four equivalence classes of braid axes representing it as a closed
3-braid. �

For any given 3-manifold M , there may be several different links in S3 with M as
their double branched covers ([BGAM76; Vir72; Bed84], among others). In par-
ticular, there may be several different links with representations as closed 3-braids
that have M as their double branched covers.

The lens space L(α,β) is the double cover of S3 branched along the (unori-
ented) two-bridge link b(α,β); see, for example, [BZ03]. By classifying involu-
tions on lens spaces Hodgson and Rubinstein show that if the lens space L(α,β)
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is the double cover of S3 branched over a link L, then L is the two-bridge link
b(α,β), [HR85, Corollary 4.12].

Theorem 4.2. Up to homeomorphism, an unoriented two-bridge link L admits
exactly

• three equivalence classes of 3-braid representatives if and only if L is equiva-
lent to b(4,1),

• two equivalence classes of 3-braid representatives if and only if L is equivalent
to b(α,1) for α > 0 and α �= 4,

• one equivalence class of 3-braid representatives if and only if L is equivalent
to b(α,β) either for α = 0 or for 0 < β < α, where either
◦ α = 2pq + p + q and β = 2q + 1 for some integers p,q > 1, or
◦ α = 2pq + p + q + 1 and β = 2q + 1 for some integers p,q > 0,

• no 3-braid representatives otherwise.

Proof. By Lemma 4.1, an unoriented link L has at most four equivalence classes
of braid axes that represent L as a closed 3-braid. By Lemma 3.11, only the two-
bridge link b(4,1) has two inequivalent orientations that each admit closed 3-
braid representatives. Thus, b(4,1) is the only two-bridge link that a priori could
have more than two inequivalent closed 3-braid representatives.

Theorem 3.4 implies that, as an oriented two-bridge link, b(4,1) has two closed
3-braid representatives σ 4

1 σ2 and σ 4
1 σ−1

2 with axes A1 and A2, respectively. By
Lemma 3.8, these two axes are inequivalent. The other orientation, b(4,3), has
Conway notation (1,2,1) and a 3-braid representative σ1σ

2
2 σ1σ

−1
2 . By Theo-

rem 3.4 (and Lemma 3.8), b(4,3) has just one closed 3-braid representative with
braid axis A3. The axes A1 and A3 are not equivalent since the absolute value of
the exponent sums of their 3-braid representatives are distinct. The axes A2 and
A3 are not equivalent since A3 cobounds an embedded annulus with a component
of L, whereas SnapPea [Wee] reports L∪A2 as a hyperbolic link. Thus, the un-
oriented link b(4,1) admits a total of three equivalence classes of closed 3-braid
axes.

Every unoriented two-bridge link of braid index at most 2 is equivalent to
b(α,1) (for α ≥ 0) as noted in Proposition 3.1. By Lemma 3.11 and Lemma 3.8,
if α �= 0 or 4, then such links have exactly two equivalence classes of braid axes
giving closed 3-braid representatives. If α = 0, then Lemma 3.8 implies that the
link has just one equivalence class of braid axes representing L as a closed 3-
braid.

By Proposition 3.1 a two-bridge link of braid index 3 is equivalent to b(α,β)

with 0 < β < α if and only if α and β satisfy either (a) or (b) of the proposition.
By Lemma 3.11 and Lemma 3.8 these links have just one equivalence class of
braid axes representing L as a closed 3-braid.

By Proposition 3.1 a two-bridge link has no closed 3-braid representatives if
it is not equivalent to some b(α,β) where either β = 1, (a) is satisfied, or (b) is
satisfied. Thus, such a link has no equivalence classes of braid axes representing
L as a closed 3-braid. �



Counting Genus One Fibered Knots in Lens Spaces 565

Now we may pull together the proof of our main theorem.

Theorem 4.3. Up to homeomorphisms, the lens space L(α′, β ′) contains exactly

• three distinct GOF-knots if and only if L(α′, β ′) ∼= L(4,1),
• two distinct GOF-knots if and only if L(α′, β ′) ∼= L(α,1) for α > 0 and α �= 4,
• one distinct GOF-knot if and only if L(α′, β ′) ∼= L(α,β) either for α = 0 or for

0 < β < α, where either
◦ α = 2pq + p + q and β = 2q + 1 for some integers p,q > 1, or
◦ α = 2pq + p + q + 1 and β = 2q + 1 for some integers p,q > 0, and

• zero GOF-knots otherwise.

Proof. By Corollary 4.12 of [HR85], the two-bridge link b(α,β) is the only link
in S3 for which the double branched cover is the lens space L(α,β). Therefore,
by Proposition 2.1, a GOF-knot in L(α,β) up to homeomorphism corresponds
exactly to the braid axis of a representation of b(α,β) as a closed 3-braid up
to equivalence. Hence, the classification of equivalence classes of closed 3-braid
representatives of two-bridge links given in Theorem 4.2 yields the desired result.

�

Remark 4.4. Since a link that may be represented as a closed 3-braid has bridge
number at most 3, the full strength of [HR85, Corollary 4.12] is not necessary to
obtain Theorem 4.3. Independently, Viro [Vir72] and Birman and Hilden [BH75,
Theorem 5] show that the double cover of S3 branched over a link of bridge
number b ≤ 3 is a 3-manifold of Heegaard genus b − 1. Since, with the exception
of S3, lens spaces (including S1 × S2) are the 3-manifolds of Heegaard genus 1,
this implies that the only links with representations as closed 3-braids that have a
lens space as their double branched cover are two-bridge links and the unknot.

Theorem 4.5. In a given lens space L(α′, β ′) each homeomorphism equivalence
class of GOF-knots is realized by a single isotopy equivalence class with the fol-
lowing exceptions:

• the trefoil in L(α′, β ′) ∼= S3,
• the sole GOF-knot in L(α′, β ′) ∼= S1 × S2,
• the sole GOF-knot in L(α′, β ′) ∼= L(α,β) with 0 < β < α, where for distinct

p,q ∈ Z− {−1,0,1,2}, either
◦ α = 2pq + p + q and β = 2q + 1, or
◦ α = 2pq + p + q + 1 and β = 2q + 1.

Each of these homeomorphism classes divides into two isotopy classes. These
homeomorphic pairs of isotopy classes in S3 and S1 × S2 are related by
an orientation-reversing homeomorphism. The homeomorphic pairs of isotopy
classes in the remaining lens spaces are related by an involution of the lens space
not isotopic to the identity.

Proof. By Lemma 2.2, Theorem 3.4 may be interpreted as a classification of iso-
topy classes of GOF-knots. On the other hand, Theorem 4.3 by way of Lemma 3.8
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determines the homeomorphism classes of GOF-knots. We may now observe
when distinct isotopy classes are in the same homeomorphism class.

If A and A′ are not isotopic in the complement of L yet are equivalent by a
homeomorphism of S3 taking (L,A) to (L,A′), then this homeomorphism can-
not be isotoped to be the identity on a neighborhood of L while still taking A

to A′. (Orientation-reversing homeomorphisms of S3 and orientation-preserving
involutions of S3 taking L to itself that reverse any orientation on L are examples
of such homeomorphisms.)

The proof of Lemma 3.8 shows: (1) the axes A and Ā presenting the un-
knot as the closed 3-braids σ1σ2 and σ−1

1 σ−1
2 , respectively, are equivalent by an

orientation-reversing homeomorphism, (2) the axes A and A′ presenting the 2-
component unlink as the closed 3-braids σ2 and σ−1

2 , respectively, are equivalent
by an orientation-reversing homeomorphism, and (3) the axes A and A′ present-
ing a two-bridge link admitting a braid-preserving flype as the closed 3-braids
σ

p

1 σ r
2 σ

q

1 σ δ
2 and σ

p

1 σ δ
2 σ

q

1 σ r
2 where r = ±2 and δ = − sgn(r) are equivalent by an

involution that reverses any orientation on the two-bridge link. (By an orientation-
reversing homeomorphism of S3 we may assume that r = 2 and δ = −1.) By The-
orem 3.4 all pairs of these braid axes are in distinct isotopy classes (in the com-
plement of L) so long as in the third case, p, q , and r are distinct integers having
absolute value at least 2. Therefore, the pairs of GOF-knots corresponding to each
of these pairs of axes, though in homeomorphism equivalence classes, are not iso-
topic in their lens space.

Lemma 3.8 further shows that there are no other homeomorphism equivalences
among the remaining braid axes presenting two-bridge links as closed 3-braids.
Hence, these equivalence classes correspond to isotopy classes. �

5. Remarks

Remark 5.1. One may obtain explicit pictures of the fiber surface of these GOF-
knots in lens spaces like those in [Mor89] by carrying a disk that both is bounded
by the braid axis and intersects the 3-braid minimally through the sequence of
steps done to obtain a presentation of a lens space as surgery on the unknot from
its corresponding two-bridge link.

Remark 5.2. As Morimoto notes [Mor89, Remark 1], his knot K2 in the lens
space L(5,1) has two meridians. That is, K2 has a cosmetic surgery [BHW99], a
nontrivial Dehn surgery to a homeomorphic manifold. Indeed, a +1 surgery on K2

produces the manifold L(5,4), which is equivalent to L(5,1) by an orientation-
reversing homeomorphism. This knot (at least its exterior) is also known as the
figure-eight sister.

We observe this in the context of closed 3-braids as follows. The knot K2

in L(5,1) is the lift of the braid axis in the double branched cover of the clo-
sure of the braid σ 5

1 σ2, the two-bridge knot b(5,1). As noted in Remark 2.3, +1
surgery on K2 corresponds to inserting two full left-handed twists (i.e., insert-
ing ((σ1σ2)

3)−2) into the braid. Therefore, +1 surgery on K2 corresponds to the
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Figure 5 Inserting two full left-handed twists into the closed braid
σ 5

1 σ2 produces the closed braid σ−5
1 σ−1

2 after a sequence of braid
isotopies and conjugations

double branched cover of the closure of the braid (σ 5
1 σ2)((σ1σ2)

3)−2, which, as
Figure 5 shows, is equivalent (by braid moves and conjugation) to the closure of
σ−5

1 σ−1
2 , the two-bridge knot b(5,4) that is the mirror of the closure of σ 5

1 σ2.

Observe that 1/n surgery on a GOF-knot confers a GOF-knot in the surgered
manifold. This figure-eight sister example above may be generalized to obtain
GOF-knots in other manifolds that admit a 1/n surgery yielding a homeomor-
phic manifold with the opposite orientation, a cosmetic surgery. In his thesis, Lott
classifies the hyperbolic once-punctured torus bundles with multiple lens space
fillings [Lot09]. As a consequence, he obtains a classification of hyperbolic GOF-
knots in lens spaces with nontrivial lens space fillings. In particular, Lott identifies
a total of three pairs of hyperbolic GOF-knots that admit cosmetic surgeries and
another pair of hyperbolic GOF-knots related by surgery in lens spaces of order 7.

Theorem 5.3 (Lott [Lot09, Theorem 6.6.1]). Assume that K is a hyperbolic
GOF-knot in a lens space M such that +1 surgery on K yields a dual GOF-
knot K ′ in a lens space M ′. Then up to orientation-preserving homeomorphism,
M and M ′ are the double branched covers of the closures of a pair of braids β

and β ′ = β((σ1σ2)
3)−2 in the table below, and the knots K and K ′ are the lifts of

their braid axes.

M = K(∞) M ′ = K(+1) β β ′

L(5,1) L(5,−1) σ 5
1 σ2 σ−5

1 σ−1
2

L(7,1) L(7,−3) σ 7
1 σ2 σ1σ

−2
2 σ−2

1 σ−1
2

L(7,3) L(7,−1) σ 2
1 σ−1

2 σ1σ
2
2 σ−7

1 σ−1
2

L(13,3) L(13,−3) σ 4
1 σ−1

2 σ1σ
2
2 σ−4

1 σ−2
2 σ−1

1 σ2

L(17,−5) L(17,5) σ−4
1 σ−1

2 σ−3
1 σ 2

2 σ 4
1 σ−2

2 σ 3
1 σ2
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Remark 5.4. Our orientation conventions are opposite that of Lott. Though his
Table 6.1 disregards orientations, his proof keeps track of them. Lott’s work fur-
ther implies that, when oriented, the GOF-knots K and K ′ associated to the last
line of the above table are not isotopic to their reverse. In particular, the 3-braid
σ−4

1 σ−1
2 σ−3

1 σ 2
2 is not conjugate to its reverse σ 2

2 σ−3
1 σ−1

2 σ−4
1 .

Remark 5.5. As Morimoto shows in [Mor89] and is further observed in Theo-
rem 4.3, there are lens spaces that contain no GOF-knots. Nevertheless, there are
knots in lens spaces representing a nontrivial element of homology whose exte-
riors are once-punctured torus bundles. For instance, since −19/3 surgery on the
right-handed trefoil yields L(19,7), even though the core of the surgered solid
torus is not a GOF-knot in L(19,7), its exterior is a once-punctured torus bundle.
Indeed, Theorem 4.3 shows that L(19,7) contains no GOF-knots.

Question. Must a lens space contain a knot whose exterior is a once-punctured
torus bundle? If not, which do? [Update: Baldwin [Bal06] answered this question
for lens spaces with prime order fundamental group. Thereafter the author fully
answered this question and classified all such knots [Bak11]. See also Lott’s thesis
[Lot09].]

Remark 5.6. Via double branched covers, we obtain a genus g fibered knot from
the braid axis of a closed braid of braid index 2g + 1. However, not all genus g

fibered knots arise in this manner if g > 1. Again considering that there are lens
spaces that contain no GOF-knots, we ask the following question.

Question. What is the minimal genus among fibered knots in a given lens space
L(α,β)?

Murasugi [Mur91, Theorem B] shows that the braid index of a two-bridge link
may be arbitrarily large. Perhaps then it is not too foolish to conjecture that there
exist lens spaces whose minimal genus fibered knot has an arbitrarily large genus.
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