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Monodromy Groups of Lagrangian Tori in R4

Mei-Lin Yau

1. Introduction

In this paper we work in the standard symplectic 4-space
(
R

4, ω =∑2
j=1 dxj∧dyj

)
unless otherwise mentioned. Let L

ι
↪→ (R4,ω) be an embedded Lagrangian torus

with respect to the standard symplectic 2-formω. The Lagrangian condition means
that the pull-back 2-form ι∗ω = 0 ∈ �2(L) vanishes on L. Gromov [7] proved
that L is not exact—that is, the pull-back 1-form ι∗λ of a primitive λ of ω = dλ

represents a nontrivial class in the cohomology group H1(L, R).
Let Diff c0(R

4) denote the group of orientation-preserving diffeomorphisms with
compact support on R

4 that are isotopic to the identity map. We are interested in
studying various types of self-isotopies of L. It is well known that to a smooth
isotopy Ls , s ∈ [0,1], between two embedded tori L0,L1 we may associate a fam-
ily of maps φs ∈Diff c0(R

4) with φ0 = id such that φs(L) = Ls. We will make no
distinction between Ls and the associated maps φs from now on.

A path φs ∈Diff c0(R
4) with 0 ≤ s ≤ 1 and φ0 = id associates to a fixed torus L

a family of tori Ls : φs(L) in R
4. The family of maps φt ∈ Diff c0(R

4) is called a
smooth self-isotopy of L if φ1(L) = L. Moreover, if all Ls are Lagrangian with
respect to ω (ω-Lagrangian) then φs is called a Lagrangian self-isotopy of L. This
is equivalent to saying that L is φ∗sω-Lagrangian. Suppose in addition that the
cohomology class of ι∗φ∗s λ is independent of s; then φs is called a Hamiltonian
self-isotopy of L. Equivalently, φs is Hamiltonian if it is generated by a Hamil-
tonian vector field. Each self-isotopy φs of L associates to an isomorphism

(φ1)∗ : H1(L, Z)→ H1(L, Z),

which is called a smooth (resp., Lagrangian, Hamiltonian) monodromy of L if
φt is smooth (resp., Lagrangian, Hamiltonian). The group of all smooth mon-
odromies of L is called the smooth monodromy group (SMG) of L and is denoted
by S(L). Likewise, L(L) and H(L) denote, respectively, the Lagrangian mon-
odromy group (LMG) and the Hamiltonian monodromy group (HMG) of L. It
is easy to see that H(L) ⊂ L(L) ⊂ S(L). Although here we focus only on La-
grangian 2-tori, the groups H(L), L(L), and S(L) are defined for any embedded
Lagrangian submanifold L of any dimension.
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The interest in such monodromy groups is to study the Lagrangian knot prob-
lem [6] from a different perspective. IfL andL′ are smoothly isotopic, then clearly
their smooth monodromy groups are isomorphic. Similar conclusions hold for the
Lagrangian and the Hamiltonian cases as well. In [17] we studied H(L) forL either
a monotone Clifford torus or a Chekanov torus. The latter was constructed (and
called a special torus) by Chekanov in [3]. We proved that these two tori are dis-
tinguished by their spectrums associated to their Hamiltonian monodromy groups
[17]. Another result concerning H(L) was obtained by Hu, Lalonde, and Leclercq
in their preprint [8], where it was proved that the Hamiltonian monodromy group
H(L) is trivial for any weakly exact Lagrangian submanifold L of a symplectic
manifold. In this paper we focus instead on L(L) and S(L).

Recall from [13] that the Maslov class µ = µL ∈ H1(L, Z) of a Lagrangian
torus L ⊂ R

4 is nonzero with divisibility 2. Clearly, an element h ∈ L(L) must
satisfy µ
h = µ. Note that, in general symplectic manifolds, h∈L(L) must also
preserve the linking class �L ∈H1(L, Z) (see [5] and Section 2) whenever defined.
However, since �L = 0 for any embedded L ⊂ R

4 [5], this requirement imposes
no further restriction on L(L). Let Gµ denote the formal subgroup of all group
isomorphisms g : H1(L, Z) → H1(L, Z) such that µ 
 g = µ. Clearly L(L) is a
subgroup of Gµ. Our first result is the following theorem.

Theorem 1.1. Assume that T is a Clifford torus. Then L(T ) = Gµ.

The groupGµ is freely generated by two generalized reflections f0, f1 (see (2)–(4)
in Section 4) with fi(γ0) = −γ0, where γ0 ∈ H1(T, Z) is a primitive class with
µT (γ0) = 0. Therefore, Gµ is isomorphic to the infinite dihedral group D∞ [9].

For the smooth counterpart, our next theorem is due to the vanishing of �L.

Theorem 1.2. Let Ls = φs(L0) for 0 ≤ s ≤ 1 and φ0 = id be a smooth isotopy
between two Lagrangian tori L0,L1 ⊂ R

4. Then, for any γ ∈H1(L0, Z),

µ(φ1∗(γ ))− µ(γ )∈ 4Z;
in other words,

φ∗1µ− µ∈H1(L0, Z) has divisibility 4.

Thus S(L) is a subgroup of

X = XL := {g ∈ Isom(H1(L, Z)) | µL 
 g − µL ∈ 4 ·H1(L, Z)}.
We determine S(L) for the case of a Clifford torus as follows.

Theorem 1.3. If T is a Clifford torus, then S(T ) = XT . In particular, S(T ) is
generated by L(T ) and a reflection along a class γ ∈H1(T, Z) with µT (γ ) = 2.

It turns out that any smooth isotopy between a Lagrangian torus and a Clifford
torus can be modified at either end by a self-isotopy to match the Maslov classes
at both ends. We have the following result.

Proposition 1.4. Let L ⊂ R
4 be an embedded Lagrangian torus smoothly iso-

topic to a Clifford torus T. Then there exists a smooth isotopy φs ∈ Diff c0(R
4),
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s ∈ [0,1], with φ0 = id and φ1(T ) = L, where φ1 preserves the corresponding
Maslov classes; that is,

φ∗1µL = µT .

Moreover, one can modify φs so that φs(T \D) is Lagrangian for s ∈ [0,1], where
D ⊂ T is an embedded disc.

However, at the present stage we do not know how to improve φs(T ) to a genuine
Lagrangian isotopy between T and L. To achieve that goal, it seems necessary
(and perhaps enough) to have a better understanding of the isotopy of Lagrangian
discs with prescribed boundary conditions.

We remark that Mohnke [12] showed that all embedded Lagrangian tori in R
4

are smoothly isotopic to a Clifford torus. Also, Ivrii [10] showed that any em-
bedded Lagrangian torus in R

4 is Lagrangian isotopic to a Clifford torus. Both
authors used pseudoholomorphic curve techniques [7] and methods of symplectic
field theory [1; 4].

The rest of the paper is organized as follows. In Section 2 we review necessary
background on the Maslov class and the linking class. In Section 3 we discuss
framings of the symplectic normal bundle of a loop in R

4 and also the change
of framings under diffeomorphisms. Theorem 1.1 is proved in Section 4. Theo-
rem 1.2 is proved in the beginning of Section 5; this is followed by the proof of
Theorem 1.3, which consists of Propositions 5.3–5.4. Proposition 1.4 is proved in
Section 6. We will use the convention S1 ∼= R/2πZ throughout the paper.

2. Maslov Class and Linking Class

Because we are concerned with monodromies of self-isotopies of a Lagrangian
torus, we should first discuss two relevant classes in H1(L, Z): the Maslov class
µ = µL (see [11] for more details) and the linking class � = �L. The latter is
defined (and denoted by σ) in [5].

Maslov Class

The Maslov class µ is defined as follows. Given γ ∈H1(L, Z), let C ⊂ L be an
immersed curve representing γ. Then the tangent bundle TCL over C is a closed
path of Lagrangian planes and hence a cycle in the Grassmannian of Lagrangian
planes in the symplectic vector space R

4. In that case, µ(γ ) is defined to be the
Maslov index of the cycle TCL.

Theorem 2.1 [13]. The Maslov class µ of a Lagrangian torus L ⊂ R
4 is non-

trivial and is of divisibility 2.

Example 2.2. Consider a Clifford torus

T = Ta,b := {(aeit1, beit2)∈C
2 | t1, t2 ∈ S1 ∼= R/2πZ}.

Let γ1 ∈ H1(T, Z) be the class represented by the curve {(aeit1, b) ∈ C
2 |

t1 ∈ R/2πZ} and let γ2 ∈ H1(T, Z) be the class represented by {(a, beit2) ∈ C
2 |

t2 ∈R/2πZ}. Then µT (γ1) = 2 = µT (γ2).
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The inequality µL �= 0 implies that the Lagrangian monodromy group L(L) can
be only a proper subgroup of Isom(H1(L, Z)) ∼= GL(2, Z).

Linking Class

The linking class � = �L ∈ H1(L, Z) is defined as follows. Take v to be any
nonvanishing vector field on L that is homotopically trivial ; in other words, v
is homotopic to some v ′ in the space of nonvanishing vector fields on L such
that v ′ generates the kernel of a nonvanishing closed 1-form on L. Let J be an
ω-compatible almost complex structure on R

4. Then �(γ ) := lk(C + εJv,L) is
defined to be the linking number with L of the push-off of C in the direction of
Jv, where C ⊂ L is an immersed curve representing the class γ.

The class � is independent of the choices involved. That �(γ ) is independent
of J can be seen as follows. First of all, the space of ω-compatible almost com-
plex structures is contractible and, since L is Lagrangian, Jv is transversal to L

for any ω-compatible J. So in particular we can take J to be J0, the standard com-
plex structure on R

4. Second, the independence of v follows from the observation
that vector fields generating the kernels of nonvanishing closed 1-forms on L are
homotopic as nowhere vanishing vector fields. Finally, if C and C ′ are two repre-
sentatives of γ then, since H1(L) is abelian, C and C ′ are free homotopic. Hence
�(γ ) is independent of the choices of v, J, and C with the prescribed conditions.

Example 2.3. LetC ⊂ L be an embedded closed curve representing a nontrivial
class γ ∈H1(L, Z). Parameterize C by t ∈ S1 ∼= R/2πZ so that its tangent vec-
tor field Ċ(t) is nonvanishing. Then Ċ(t) extends to a homotopically trivial vector
field v on L. For example, we can view L as an S1-bundle over S1 with fibers rep-
resenting the class [C]∈H1(L, Z), and C is one of the fibers. Then take v to be a
nonvanishing vector field tangent to the fibers.

Theorem 2.4 [5]. The linking class �L = 0 for any embedded Lagrangian torus
L ⊂ R

4.

Remark 2.5. Given an embedded torus L ⊂ R
4, we consider the set J +(L) of

almost complex structures J defined on TLR
4 such that J(TL) � TL and J is

compatible with the orientation of R
4. The homotopic class of such a J is isomor-

phic to H1(L, Z) ∼= Z
2. Similarly to �L for L being Lagrangian, each J associates

to a linking class �L(J ) ∈ H1(L, Z) defined by linking numbers �L(J )(γ ) :=
lk(C + εJv,L), where C and v are as defined previously.

Then �L(J0) = �L = 0 if L is Lagrangian and J0 is the standard complex
structure (or any ω-compatible one). It will be shown later that the vanishing of
� implies, for φs as in Theorem 1.2, that ((φ1)∗J0)|L1 and J0|L1 are homotopic
in J +(L1). Hence for any embedded oriented closed curve C ⊂ L0 we have
(φ1)∗Nω

C = Nω
φ1(C) up to a smooth isotopy relL1, which leads to Theorem 1.2.

Here Nω
C is the symplectic normal bundle as defined in the beginning of the next

section.
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3. Loops in RRR4 and Their Framings

Before moving on to Lagrangian tori in R
4, it helps to have a closer look at loops

in R
4.

A loop in R
4 is an embedded 1-dimensional submanifold diffeomorphic to S1.

The pull-back of ω on a loop vanishes, so a loop is an isotropic submanifold. Take
a loop C ⊂ R

4. We fix an orientation of C, fix a trivialization of C ∼= S1 =
R/2πZ , and write Ċ(t) for the tangent vector of C at C(t).

Symplectic Normal Bundle

Let us recall some basic properties of the normal bundle N of C. The bundle N

splits as
N = (T ∗C)⊕Nω,

where Nω, called the symplectic normal bundle of C, is the trivial R
2-bundle over

C defined by

Nω := {(C(t), v) | t ∈ S1, v ∈N |C(t), ω(Ċ(t), v) = 0}.
By Weinstein’s isotropic neighborhood theorem (see [11; 15; 16]), there exists a
tubular neighborhood U ⊂ R

4 of C, a tubular neighborhood V ⊂ N of the zero
section of the normal bundle C ⊂ R

4, and a symplectomorphism with C ⊂ U

identified with the zero section of N :

(U ⊂ R
4,ω)→ (V ⊂ N = T ∗C × R

2, ωC × ωcan).

Hereωcan = dx∧dy is the standard symplectic 2-form on R
2,ωC = dt∧dt∗ is the

canonical symplectic 2-form on T ∗C, and t∗ is the fiber coordinate of T ∗C dual to
t. The symplectic normal bundle Nω is identified with {(t, 0, x, y)∈ S1×R×R

2}.
Next we explore some properties of Nω that will be applied in later sections.

Lagrangian Tori Associated to a Loop. Let

Dω ⊂ Nω

denote the associated symplectic normal disc bundle with fiber an open disc
{(x, y) ∈ R

2, x 2 + y2 < ε} with some positive radius ε. With the symplecto-
morphism near C described as before, the boundary L = LC := ∂Dω is an em-
bedded Lagrangian torus in R

4 provided that ε > 0 is small enough. Note that,
for each sufficiently small ε, LC with ε > 0 fixed is unique up to a Hamiltonian
isotopy.

It is well known that any two loops in R
4 are smoothly isotopic. The following

proposition can be easily verified.

Proposition 3.1. Let Cs , 0 ≤ s ≤ 1, be a smooth isotopy of loops. Let Dω
s de-

note the symplectic normal disc bundle of Cs with fiber radius εs > 0, and let
Ls := ∂Dω

s . Then there exists an ε > 0 such that Ls is a Lagrangian isotopy of
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embedded Lagrangian tori provided that 0 < εs < ε. In particular, if C0 = C1

as a set and ε0 = ε1, then Dω
0 = Dω

1 and we get a Lagrangian self-isotopy of
L0 = ∂Dω

0 .

In Section 4 we will use this observation to construct Lagrangian self-isotopies of
a Clifford torus.

Framings of Nω

Definition 3.2. To a nonvanishing section (i.e., a framing) σ of Nω one can
associate an S1-family of Lagrangian planes

Ċ(t) ∧ σ(t), t ∈ S1;
we denote the corresponding Maslov index by

µC(σ) := µ(Ċ(t) ∧ σ(t))∈ 2Z.

Note that µC(σ) depends only on the orientation of C and the homotopy class of
σ among framings of Nω.

If we fix a trivialization 0 : Nω → C ×R
2 = C ×C

1, then the homotopy classes
of framings of Nω can be identified with [S1, R2 \ {0}] = [S1, S1] = Z. Hence,
for a map θ : S1 → S1 of degree m, the Maslov index associated to the section
σ ′(t) := eiθ(t)σ(t) is µC(σ

′) = µC(σ)+ 2m. In particular, there is a framing σ 0

of Nω such that µC(σ
0) = 0. We call σ 0 a 0-framing of C, and it is unique up to

homotopy. Likewise, for each m∈Z there is a framing σ m of Nω, with σ m unique
up to homotopy, such that µC(σ

m) = 2m.

Definition 3.3. We call σ m an m-framing of Nω or an m-framing of C.

The homotopy classes of framings of Nω are classified by the framing number
µC(σ)/2.

Example 3.4. Let C ⊂ L be a simple closed curve representing the class γ ∈
H1(L, Z) of a Lagrangian torus. Let v be a nonvanishing section of Nω

C ∩ TCL.

Then v is a (µ(γ )/2)-framing of Nω
C .

Proposition 3.5. Let Cs , s ∈ [0,1], be a smooth isotopy between loops C0 and
C1. Write Cs = φs(C0), where φs ∈ Diff c0(R

4) with φ0 = id. Let Nω
s and σ m

s

denote, respectively, the symplectic normal bundle and the m-framing of Cs.

(i) If (φ1)∗Nω
0 = Nω

1 , then

µC1((φ1)∗σ m
0 )− µC1(σ

m
1 ) = µC1((φ1)∗σ 0

0 )− µC1(σ
0
1 )∈ 4Z.

(ii) If µC1((φ1)∗σ m
0 ) = µC1(σ

m
1 ) = 2m then, up to a perturbation of φs , we may

assume that (φs)∗Nω
0 = Nω

s and (φs)∗σ m
0 = σ m

s .

Proof. (i) First consider the case m = 0. Fix a trivialization S1 ∼= R/2πZ →
C0 for C0. This trivialization, when composed with φs , becomes a trivialization
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of Cs. By applying Weinstein’s isotropic neighborhood theorem, we may sym-
plectically identify a neighborhood of Cs ∈ R

4 with a neighborhood of the zero
section of the normal bundle Ns of Cs. We can trivialize Ns = S1 × R× R

2 with
coordinates (t, t∗, x, y) so that

• Cs = S1 × {0} × {0},
• Nω

s = S1 × {0} × R
2, and

• σ 0
s (t) = (t, 0, ε, 0) for some ε > 0.

Then, for each s, the differential (φs)∗(t) at C0(t) with t ∈ S1 ∼= R/2πZ can be
viewed as a smooth loop in GL+(4, R):

(φs)∗(t)∈
(

1 ∗
0 GL+(3, R)

)
, (φ0)∗(t)= id, (φ1)∗(t)∈


1 ∗ 0

0 c(t) 0
0 ∗ GL(2, R)


.

Note that, since (φ1)∗(t) is an isomorphism, it follows that c(t) �= 0 for t ∈ S1.

We view (φ0)∗(t) = id as a constant loop in GL+(4, R) parameterized by t. Then
(φs)∗(t), 0 ≤ s ≤ 1, when viewed as a family of parameterized loops in GL+(4, R),
is a free homotopy between (φ0)∗(t) and (φ1)∗(t). This implies that (φ1)∗(t) is
free homotopic to the trivial class of

π1(GL+(4, R)) ∼= π1(GL+(3, R)) = Z2.

The lower 3×3 block of the matrix form of (φs)∗(t) is invertible. We can there-
fore perturb φs by composing it with some suitable family of maps in Diff c0(R

4),
each of them fixingCs pointwise and with the condition (φ1)∗Nω

0 = Nω
1 preserved

under the perturbation, so that the perturbed φs satisfy

(φs)∗(t)∈
(

1 0
0 GL+(3, R)

)
with (φ0)∗(t) = Id

and either (φ1)∗(t) = A(t) or (φ1)∗(t) = A′(t), where

A(t) =




1 0 0 0
0 1 0 0
0 0 cos kt −sin kt
0 0 sin kt cos kt


, A′(t) =




1 0 0 0
0 −1 0 0
0 0 cos kt sin kt
0 0 sin kt −cos kt


 (1)

for some k ∈Z. Note that A′(t) is free homotopic to A(t) by a 180◦ rotation along
the subspace spanned by its second and third column vectors. We can interchange
the two cases (φ1)∗(t) = A(t) and (φ1)∗(t) = A′(t) by composing with φ1 such a
rotation along C1.

Now the equality [(φ1)∗(t)] = 0 in π1(GL+(4, R)) implies that k ∈ 2Z. Hence
µC1((φ1)∗σ 0

0 ) = 2k + µ(σ 0
1 ) = 2k ∈ 4Z.

The equality µC1((φ1)∗σ m
0 ) − µC1(σ

m
1 ) = µC1((φ1)∗σ 0

0 ) − µC1(σ
0
1 ) follows

from the property that σ m
s (t) = eimtσ 0

s (t) up to homotopy.
(ii) The proof follows from the perturbation of φs constructed in (i).
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4. Lagrangian Monodromy Group of a Clifford Torus

In general, the LMG L(L) must preserve both the Maslov class µL and the linking
class �L whenever defined. However, for L ⊂ R

4 the class �L = 0 is automati-
cally preserved. In this section we determine the LMG of a Clifford torus in R

4.

Identify R
4 ∼= C

2. For a, b > 0, the Clifford torus Ta,b is defined to be

T = Ta,b := {(z1, z2) | |z1| = a, |z2| = b}.
We fix a basis {γ1, γ2} of H1(T, Z) such that

• γ1 is represented by the cycle {(aeit, b) | t ∈R/2πZ} and
• γ2 is represented by the cycle {(a, beit ) | t ∈R/2πZ}.
Then γ1 =

(
1
0

)
and γ2 =

(
0
1

)
when expressed as column vectors. We also denote

γ0 := −γ1 + γ2. Then µ(γ0) = 0 and γ0 =
(−1

1

)
as a column vector. Likewise,

the Maslov class µ∈H1(T, Z) is expressed as a row vector µ = (2 2).
The mapping class group of T is then isomorphic to GL(2, Z), the group of

2× 2 matrices with integral coefficients and with determinant ±1. Let

Gµ := {g ∈GL(2, Z) | µ 
 g = µ}.
A direct computation shows that Gµ = G+

µ �G−
µ , where

G+
µ = {

gn := (
1−n −n
n 1+n

) ∣∣ n∈Z
}
, (2)

G−
µ = {

fn := (
1−n 2−n
n −1+n

) ∣∣ n∈Z
}
. (3)

Elements of G+
µ are of determinant 1, and elements of G−

µ are of determinant −1.
Also, gn = (g1)

n for g1 a generator of G+
µ
∼= Z. On the other hand, G−

µ comprises
elements of order 2 in Gµ. Geometrically, gn = (g1)

n is the (−n)-Dehn twist
along γ0 and each fn is a generalized reflection with fn(γ0) = −γ0. Note that

f 2
0 = e = f 2

1 , (f1f0)
n = gn, (f0f1)

n = g−n = (gn)
−1, gnfm = fn+m

(here e denotes the identity element of Gµ). Therefore,

Gµ = 〈f0, f1 | f 2
0 = e = f 2

1 〉 ∼= D∞ (4)

is freely generated by the two elements f0, f1 of order 2 and is isomorphic to the
infinite dihedral group D∞ [9].

Note that if Ls = φs(T ), s ∈ [0,1], is a Lagrangian self-isotopy of T such that
L0 = L1 = T and φ0 = id, then the induced isomorphism (φ1)∗ : H1(T, Z) →
H1(T, Z) is an element of Gµ. That is, the LMG L(T ) is a subgroup of Gµ.

Proposition 4.1. The LMGs of Ta,b and Ta ′,b ′ are isomorphic.

Proof. Identify the ordered pairs (a, b) and (a ′, b ′) with the coordinates of
two points in the first quadrant of the R

2-plane. Take a smooth path c(s) =
(c1(s), c2(s)), s ∈ [0,1], in the first quadrant so that c(0) = (a, b) and c(1) =
(a ′, b ′). Then Tc(s) is a Lagrangian isotopy of Clifford tori between Ta,b and Ta ′,b ′ .
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Theorem 4.2. The LMG of a Clifford torus T is L(T ) = Gµ.

Proof. We will explicitly construct Lagrangian self-isotopies of T with mon-
odromies f0 and f1, respectively. Then L(T ) = Gµ by equation (4).

Case 1: The monodromy f1 =
(

0 1
1 0

)
. Recall that in [17] a Lagrangian self-

isotopy for Tb,b was constructed with monodromy f1 (denoted by f̃1 in [17]). For
completeness we repeat the construction here. First let us consider the path in the
unitary group U(2) defined by

As :=
(

cos πs
2 −sin πs

2

sin πs
2 cos πs

2

)
∈GL(2, C), 0 ≤ s ≤ 1.

Here As acts on C
2 and is the time-s map of the Hamiltonian vector field X =

π
2 (x1∂x2 −x2∂x1+y1∂y2 −y2∂y1) with ω(X, ·) = −dH for H = π

2 (x2y1−x1y2).

Observe that A1(Ta,b) = Tb,a and (A1)∗ = f1 on H1(Tb,b, Z). Fix b > 0 and
modify H to get a C∞-function H̃ with compact support such that H̃ = H on
{|z1| ≤ 2b, |z2| ≤ 2b}. Let φs be the time-s map of the flow of the Hamiltonian
vector field associated to H̃. Then φ1(Tb,b) = (Tb,b) and (φ1)∗ = (A1)∗ = f1 on
H1(Tb,b, Z). Now extend this self-isotopy of Tb,b by conjugating it smoothly via
a Lagrangian isotopy between Ta,b and Tb,b as described in Proposition 4.1. We
may assume that the basis {γ1, γ2} of Tb,b is transported to the basis {γ1, γ2} of Ta,b
along the latter isotopy. Readers can check now that the extended isotopy induces
a Lagrangian self-isotopy of Ta,b with monodromy f1.

Case 2: The monodromy f0 =
(

1 2
0 −1

)
. For s ∈ [0,1] consider the family of dif-

feomorphisms 7s : R
4 → R

4,

7s(x1, y1, x2, y2) := (x1 cosπs − y2 sinπs, y1, x2, y2 cosπs + x1 sinπs).

Note that 7s ∈ SO(4, R) are rotations on the (x1y2)-plane with the (y1x2)-plane
fixed. Consider the simple closed curve C0 defined by

{(x1 = 0, y1 = 0, x2 = b cos t, y2 = b sin t)∈R
4 | t ∈ [0, 2π]}.

Define Cs(t) := 7s(C0)(t) for Cs , s ∈ [0,1], a smooth family of curves. Note
that C1 equals C0 but with the reversed orientation. Recall from Proposition 3.1
that for ε > 0 small enough, the Lagrangian torus boundary Ls of the symplectic,
radius-ε normal disc bundle Dω

s of Cs is embedded in R
4 with core curve Cs. Note

that L0 = Tε,b = L1 as sets, so we obtain a Lagrangian self-isotopy of Tε,b for
ε > 0 small enough. This self-isotopy of Tε,b reverses the orientation of Tε,b, so
the corresponding monodromy f is an element of G−

µ with determinant −1 when
expressed as a matrix. Note that 71 reverses the orientation of the core curve C0

of Dω
0 . Since γ2 ⊂ ∂Dω

0 = Tε,b is longitudinal, this reversal implies that f sends
γ2 to −γ2 +mγ1 for some m ∈ Z. Then a comparison with the formula for fn in
(3) yields f = f0 =

(
1 2
0 −1

)
and m = 2.

Now, similarly to what was done in Case 1, extend the Lagrangian self-isotopy
of Tε,b into an Lagrangian self-isotopy of Ta,b through Clifford tori. The corre-
sponding monodromy is f0. This completes the proof.
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Remark 4.3. If we take C0 to be the curve

{(x1 = a cos t, y1 = a sin t, x2 = 0, y2 = 0)∈R
4 | t ∈ [0, 2π]},

then 7s will induce a Lagrangian self-isotopy of Ta,ε with monodromy f2 =(−1 0
2 1

)
. The reader can check that Gµ = 〈f1, f2 | f 2

1 = e = f 2
2 〉. Hence L(T ) =

Gµ again.

5. Smooth Monodromy Group of a Clifford Torus

We start by proving Theorem 1.2.

Proof of Theorem 1.2. By the linearity of (φ1)∗ and µ, it is enough to prove the
theorem for the case when γ ∈H1(L0, Z) is primitive.

Fix a positive basis {γ1, γ2} for H1(L1, Z) with µ(γ1) = 2 = µ(γ2). Given a
primitive class γ ∈H1(L0, Z), we have (φ1)∗(γ ) = n1γ1+n2γ2 for some n1, n2 ∈
Z. Let C0 ⊂ L0 be an embedded curve representing the class γ, and let Cs :=
φs(C0). We denote by Ns and Nω

s (respectively) the normal bundle and the sym-
plectic normal bundle of Cs. By assumption, C1 represents the class n1γ1 + n2γ2.

Let σ0 denote a nonvanishing section of the R
1-bundle (TC0L0) ∩Nω

0 over C0.

Then σ0 is a (µ(γ )/2)-framing of Nω
0 . Extend σ0 to a smooth family σs with 0 ≤

s ≤ 1, so that σs is a (µ(γ )/2)-framing of Nω
s . Let m := µ(γ )/2.

Recall that J0 is the standard complex structure over R
4 ∼= C

2. Fix a trivial-
ization for Ns

∼= S1 × R× R× R by taking {J0Ċs(t), σs(t), J0σs(t)} as the basis
of the fiber of Ns at Cs(t), so that the coordinate (t, t∗, x, y) represents the fiber
t∗J0Ċs(t)+ xσs(t)+ yJ0σs(t).

Now let ηs := φs(σ0). Observe that η1 is a nonvanishing section of Nω
1 ∩TC1L1

and an (n1 + n2)-framing of Nω
1 . Let k := n1 + n2.

Recall that σ1 is an m-framing of Nω
1 . Up to a homotopy of σs if necessary, we

may assume the following:

• for each s, ηs = σs at t = 0;
• for t ∈ S1 = R/2πZ , η1(t) = σ1(t) cos(k −m)t + J0σ1(t) sin(k −m)t.

Then, for each s, φs associates to a smooth map 0s : S1 → GL+(4, R), where

0s(t) := (φs)∗(t)∈
(

1 ∗
0 GL+(3, R)

)
,

00(t) = id, 01(t) =




1 ∗ 0 ∗
0 ∗ 0 ∗
0 ∗ cos(k −m)t ∗
0 ∗ sin(k −m)t ∗


.

The second and fourth columns of 01 represent (φ1)∗(J0Ċ0) and (φ1)∗(J0σ0),
respectively.

Extend Ċ0 to a homotopically trivial nonvanishing vector field u0 on L0, and
let us := (φs)∗u0. Then u1|C1 = Ċ1. By continuity and �L0 = 0 we have

lk(C1 + ε · (φ1)∗J0u0,L1) = lk(C0 + εJ0u0,L0) = 0. (5)
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Similarly, since �L1 = 0, it follows that

lk(C1 + εJ0(φ1)∗u0,L1) = lk(C1 + εJ0u1,L1) = 0. (6)

Note that (5) and (6) hold for any class [C0 ] and thus [C1] = (φ1)∗ [C0 ], which
shows that (φ1)∗J0|L1 is homotopic to J0|L1 in J +(L1) as defined in Remark 2.5.
In particular, (φ1)∗J0u0 is homotopic to J0u1 as nonvanishing sections of the nor-
mal bundle NL1 of L1 ⊂ R

4. So up to an L1-fixing isotopy we may assume that,
along C1, (φ1)∗J0Ċ0 = J0Ċ1 and (φ1)∗Nω

C0
= Nω

C1
. That is, 01 = (φ1)∗ satisfies

01(t) =




1 0 0 0
0 1 0 0
0 0 cos(k −m)t ∗
0 0 sin(k −m)t ∗


∈GL+(4, R). (7)

Now 01 satisfies the hypothesis of Proposition 3.5(i) and so, by a similar argu-
ment as employed there, up to an L1-fixing isotopy we have

01(t) =




1 0 0 0
0 1 0 0
0 0 cos(k −m)t −sin(k −m)t

0 0 sin(k −m)t cos(k −m)t


∈GL+(4, R)

with
k −m∈ 2Z , (8)

since the lower 3×3 block of 01 is free homotopic to id∈GL+(3, R) with respect
to the basis {J0Ċ1, σ1, J0σ1}. This completes the proof.

Corollary 5.1. The SMG S(L) of an embedded Lagrangian torus L ⊂ R
4 is

contained in the subgroup X ⊂ Isom(H1(L, Z)) defined by

X := {g ∈ Isom(H1(L, Z)) | µL 
 g − µL ∈ 4 ·H1(L, Z)}.
Corollary 5.2. Let L ⊂ R

4 be an embedded Lagrangian torus. Fix a posi-
tive basis {γ1, γ2} for H1(L, Z) with µ(γ1) = 2 = µ(γ2). Then, with respect to
{γ1, γ2}, X is represented as

X = X o � X e ⊂ GL(2, Z),

where

X o := {(
1+2p 2s

2r 1+2q

)∈GL(2, Z) | p, q, r, s ∈Z
}
, (9)

X e := {(
2r 1+2q

1+2p 2s

)∈GL(2, Z) | p, q, r, s ∈Z
}
. (10)

Proof. Recall that µ = µL has divisibility 2. Express γ1 and γ2 as column vec-
tors

(
1
0

)
and

(
0
1

)
, respectively. For g = (gij ) ∈ X , that µ(g(γj )) − µ(γj ) ∈ 4Z

implies that both 2(g11+ g21)− 2 and 2(g12 + g22)− 2 are divisible by 4. Hence
(i) g11 and g21 have different parity and (ii) g12 and g22 have different parity. Since
det g = ±1, the two even-valued entries of g can lie in neither the same column
nor the same row of g; hence either g ∈X o or g ∈X e.
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We now determine the group S(T ) of a Clifford torus T. The proof is divided into
three separate propositions.

Proposition 5.3. Recall the basis {γ1, γ2} for H1(Ta,b, Z). Each of the follow-
ing four types of elements of GL(2, Z) ∼= Isom(H1(Ta,b, Z)) can be realized as
the monodromy of some smooth self-isotopy of Ta,b:

(i) a k-Dehn twist τ k
1 := (

1 k
0 1

)
along γ1 with k ∈ 2Z \ {0};

(ii) a k-Dehn twist τ k
2 := (

1 0
−k 1

)
along γ1 with k ∈ 2Z \ {0};

(iii) the γ1-reflection r̄1 := (−1 0
0 1

);
(iv) the γ2-reflection r̄2 := (

1 0
0 −1

)
.

Proof. Because the specific values of a, b > 0 are immaterial, we may take val-
ues of a, b that are convenient for the construction of a smooth self-isotopy. In the
following we will denote a Clifford torus as T. Also, since the Lagrangian mon-
odromy f1 =

(
0 1
1 0

)
swaps elements in (i) and (iii) with elements in (ii) and (iv),

we need only prove the two cases (i) and (iii).
Let C := {(0, beit ) | t ∈ [0, 2π]} ⊂ R

4.

Case (i): τ k
1 (k �= 0) is even. Let U be a tubular neighborhood of C, U ∼=

B3 × S1. Parameterize U by (ρ,ϕ, θ, t) for (ρ,ϕ, θ) ∈ [0, ρ0 ] × S 2 the spherical
coordinates of the 3-ball B3, where ρ is the radial coordinate, (ϕ, θ) denotes the
spherical coordinates on S 2, and (ρ0,π/2, θ, t) parameterizes the equator of the
S 2-fiber over t. We also assume that (ρ0,π/2, θ, t) ∈ S1 × S1 parameterizes T so
that τ k

1 is represented by the map φ(θ, t) = (θ + kt, t). Extend φ over U to obtain

φ̃ : U → U, φ̃(ρ,ϕ, θ, t) = (ρ,ψt(ϕ, θ), t) := (ρ, (ϕ, θ + kt), t).

As a loop in SO(3) parameterized by t, the maps ψt represent the trivial class of
π1(SO(3)) since we assume that k is even. Then there exists between ψt and the
constant loop id a smooth homotopy ψs,t ∈ SO(3) with s, t ∈ [0,1]× S1 such that
ψ0,t = Id = ψs,0 and ψ1,t = ψt . This induces a smooth homotopy φ̃s , s ∈ [0,1],
between φ̃1 = φ̃ and φ̃0 = idU with

φ̃s(ρ, (ϕ, θ), t) := (ρ,ψs,t(ϕ, θ), t).

Let Xs be the time-dependent vector field on U that generates the isotopy φ̃s; that
is, dφ̃s

ds
= Xs 
 φ̃s and φ̃0 = id. Note that Xs is tangent to ∂U. Extend Xs over R

4

smoothly with compact support. Denote the time-1 map of the extended Xs as φ ′.
Then φ ′ ∈Diff c0(R

4) is isotopic to the identity map and φ ′|L = φ.

Case (iii): r̄1. Parameterize B3 by Cartesian coordinates (x1, y1, x2) with
x 2

1 + y2
1 + x 2

2 ≤ 1 so that T ⊂ U = B3 × S1 is parameterized by {(x1, y1, 0, t) |
x 2

1 + y2
1 = 1}. Without loss of generality, we may assume that r̄1 is represented

by the map φ(x1, y1, 0, t) = (−x1, y1, 0, t) for (x1, y1, 0, t) ∈ T. Extend φ over U
to get

φ̃ : U → U, φ̃(x1, y1, x2, t) = (ψ(x1, y1, x2), t) := ((−x1, y1,−x2), t).
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The map ψ =
(−1 0 0

0 1 0
0 0 −1

)
∈ SO(3) is isotopic to the identity map. Let ψs be a

smooth path in SO(3) with s ∈ [0,1], ψ0 = Id, and ψ1 = ψ. This path induces an
isotopy φ̃s : U → U, s ∈ [0,1]:

φ̃s((x1, y1, x2), t) = (ψs(x1, y1, x2), t).

Now, just as in Case (i), we extend φ̃s over R
4 with compact support to obtain

φ ′ ∈ Diff c0(R
4), which is isotopic to the identity map, and φ ′|L = φ. This com-

pletes the proof.

Let
R ⊂ GL(2, Z)

be the subgroup generated by elements of L(T ) = Gµ and by τ 2
j and r̄j for j =

1, 2. Clearly we have the following inclusions as subgroups:

R ⊂ S(T ) ⊂ X .

We will show that X ⊂ R and hence that R = S(T ) = X . To begin with, consider
the subgroup E ⊂ GL(2, Z) generated by τ 2

1 and τ 2
2. It is shown by Sanov [14]

that E is free (see also [2]) and that

E = {(
1+4p 2s

2r 1+4q

)∈GL(2, Z) | p, q, r, s ∈Z
}
.

Proposition 5.4. The group X is contained in R , so R = S(T ) = X .

Proof. Since X e = f1X o and f1 ∈ R , it suffices to prove that if h ∈ X o then
h∈R. Our strategy here is to show that for h∈X o there exists a suitable element
g ∈R such that gh∈ E . Then h = g−1(gh)∈R.

Write h = (
1+2p 2s

2r 1+2q

)
. We divide the proof into four cases according to the

parity of p and q.

(i) If both p and q are even, then we already have h∈ E ⊂ R.

(ii) If both p and q are odd, then

(r̄1r̄2)h =
(−1 0

0 −1

)(
1+ 2p 2s

2r 1+ 2q

)

=
(

1− 2(1+ p) −2s
−2r 1− 2(1+ q)

)
∈ E .

Hence h∈R because r̄1, r̄2 ∈R.

(iii) If p is odd and q is even, then

r̄1h =
(−1 0

0 1

)(
1+ 2p 2s

2r 1+ 2q

)
=

(
1− 2(1+ p) 2s

−2r 1+ 2q

)
∈ E

and again we have h∈R.

(iv) The case of p even and q odd is similar; simply observe that r̄2h∈ E .
Thus we have proved that X ⊂ R and hence S(T ) = X = R.
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Proposition 5.5. The group S(T ) ⊂ GL(2, Z) is generated by f1, f2, and r̄1.

Proof. Recall that S(T ) = R is generated by r̄j and τ 2
j with j = 1, 2 and by ele-

ments of Gµ. The group Gµ is generated by f1 and f0. Observe that

τ 2
1 = r̄2f0, τ 2

2 = f2r̄1 = f1f0f1r̄1, r̄2 = f1r̄1f1.

So indeed S(T ) is generated by the three elements f0, f1, r̄1 of order 2. Note that
(r̄1f1)

−1 = f1r̄1 = −r̄1f1 and (r̄1f1)
2 = (f1r̄1)

2 = −e. The element −e com-
mutes with every element of S(T ).
This concludes the proof of Theorem 1.3.

6. Proof of Proposition 1.4

We divide the proof into two steps. In Step 1 we show that there exists a smooth
isotopy φs with φ1(T ) = L such that φ∗1µL = µT . In Step 2 we modify φs so that
φs(T \D) is Lagrangian for all t.

Step 1. Let ψs ∈ Diff c0(R
4), s ∈ [0,1], be a smooth isotopy with ψ0 = id and

ψ1(L) = T. Then ψ∗
1µL − µT ∈ 4 · H1(T, Z) by Theorem 1.2, from which it

follows that ψ∗
1µL = µT 
 g for some g ∈ XT . Since XT = S(T ) by Proposi-

tion 5.4, there exists a smooth self-isotopy ψ ′
s of T with (ψ ′

1)∗ = g−1 and hence
(ψ ′

1)
∗(ψ∗

1µL) = (ψ ′
1)
∗(µT 
 g) = µT .

Now define

φs =
{
ψ ′

2s for 0 ≤ s ≤ 1/2,

ψ2s−1 
 ψ ′
1 for 1/2 ≤ s ≤ 1.

Then we have φs ∈Diff c0(R
4), φ0 = id, φ1(T ) = L, and φ∗1µL = (ψ1 
ψ ′

1)
∗µL =

(ψ ′
1)
∗ψ∗

1µL = µT .

Let Ls := φs(T ) for s ∈ [0,1]. Then L0 = T and L1 = L.

Step 2. We can improve the smooth isotopy Ls so that it is indeed a Lagrangian
isotopy outside a disc.

Lemma 6.1. Let Ls = φs(L0), s ∈ [0,1], be a smooth isotopy between a Clif-
ford torus T = L0 and a Lagrangian torus L = L1 with φs ∈Diff c0(R

4), φ0 = id,
and φ∗1µL = µT . Then there exist a smooth isotopy L′s = φ ′s(L′0) between T =
L′0 and L = L′1 and a disc D ⊂ T such that L′s \ φ ′s(D) is Lagrangian for all
s ∈ [0,1].

Proof. Take two simple curves γ, γ ′ ⊂ T that generateH1(T, Z), and suppose that
γ intersects with γ ′ at exactly one point p ∈ T. Fix an orientation of T. We orient
γ and γ ′ so that the homological intersection γ · γ ′ is 1. Denote γs := φs(γ ) and
γ ′s := φs(γ

′) with induced orientations. Also let ps := φs(p).

We start with γs. Let 2m = µT (γ0) = µL(γ1). Let σ m
s ⊂ Nω

s denote the
m-framing of the symplectic normal bundle Nω

s of γs , so µγs (σ
m
s ) = 2m. Clearly

we may take σ m
0 to be a nonvanishing section of the normal bundle Nγ/T of γ =

γ0 ⊂ T. Likewise we may take σ m
1 = (φ1)∗(σ m

0 ) because φ∗1µL = µT .
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Now trivialize the normal bundle Ns of γs as Ns = S1 × R × R
2 with coordi-

nates (t, t∗, x, y) so that (i) γs = S1 × {0} × {0}, (ii) Nω
s = S1 × {0} × R

2, and
(iii) σ m

s (t) = (t, 0, ε, 0) for some ε > 0. This is exactly the same setup used in
the proof of Proposition 3.5(i) except that σ 0

s is replaced by σ m
s here. With re-

spect to the trivialization of Ns the differential of φs along γs defines a loop with
base point Id in the subgroup A ⊂ GL+(4, R) comprising matrices of the form( 1 ∗

0 GL+(3, R)

)
. Note that φ0 and φ1 correspond to the constant loop. Thus the total

of the family φs corresponds to a smooth map 0 : I 2/∂I ∼= S 2 → A with I 2 =
[0,1]s × [0, 2π]t and 0(s, t) := (φs)∗(t). Since π2(A, Id) ∼= π2(SO(3, R), Id) =
0, there exists a smooth homotopy D : (I 2/∂I 2)× [0,1] → A such that D(·, 0) =
0, D(·, 1) = Id, and D(p, u) = Id for p ∈ ∂I 2 and for all u∈ [0,1].

This implies that, for each s, there is: a tubular neighborhood Us ⊂ R
4 of γs;

a smooth family of maps φs,u ∈ Diff+0 (R4) with φs,0 = φs , φs,u = φs on γs ,
and R

4 \ Us; and φi,u = φi for i = 0,1 such that φs,1(T ) is Lagrangian along
γs—in other words, Tγsφs,1(T ) is Lagrangian. By a further perturbation if neces-
sary, we may assume that there exists a tubular neighborhood V ⊂ T of γ0 such
that φs,1(V ) is Lagrangian.

Now apply the same argument to γ ′s and φs,1 as we did to γs and φs. The result
is (i) an open neighborhood Q ⊂ T of γ ∪ γ ′ with D := T \Q diffeomorphic
to a 2-disc and (ii) a new isotopy L′s = φ ′s(T ) of T = L0 and L = L1 with φ ′s ∈
Diff c0(R

4), φ ′0 = id, such that Qs := φ ′s(Q) ⊂ L′s is Lagrangian for s ∈ [0,1]. We
may assume that theCs := ∂Qs are smooth for all s. Finally, takeD = T \Q.

This completes the proof of Proposition 1.4.
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