Michigan Math. J. 61 (2012), 431-446

Monodromy Groups of Lagrangian Tori in R*

MEI-LIN YAU

1. Introduction

In this paper we work in the standard symplectic 4-space (]R“, o= 2.12.:1 dx;j\ dyj)
unless otherwise mentioned. Let L < (R* w) be an embedded Lagrangian torus
with respect to the standard symplectic 2-form w. The Lagrangian condition means
that the pull-back 2-form t*&v = 0 € Q2(L) vanishes on L. Gromov [7] proved
that L is not exact—that is, the pull-back 1-form ¢*A of a primitive A of w = dA
represents a nontrivial class in the cohomology group H'(L,R).

Let Diff§(R*) denote the group of orientation-preserving diffeomorphisms with
compact support on R* that are isotopic to the identity map. We are interested in
studying various types of self-isotopies of L. It is well known that to a smooth
isotopy Ly, s € [0, 1], between two embedded tori L, L; we may associate a fam-
ily of maps ¢, € Diffg(R“) with ¢y = id such that ¢, (L) = L;. We will make no
distinction between L and the associated maps ¢, from now on.

A path ¢, € Diffé’(R“) with 0 < s < 1 and ¢y = id associates to a fixed torus L
a family of tori L : ¢4(L) in R*. The family of maps ¢, € Diffé‘(R“) is called a
smooth self-isotopy of L if ¢ (L) = L. Moreover, if all L are Lagrangian with
respect to w (w-Lagrangian) then ¢y is called a Lagrangian self-isotopy of L. This
is equivalent to saying that L is ¢}w-Lagrangian. Suppose in addition that the
cohomology class of ("¢ A is independent of s; then ¢ is called a Hamiltonian
self-isotopy of L. Equivalently, ¢, is Hamiltonian if it is generated by a Hamil-
tonian vector field. Each self-isotopy ¢, of L associates to an isomorphism

(p1)«: H(L,Z) — H\(L,Z),

which is called a smooth (resp., Lagrangian, Hamiltonian) monodromy of L if
¢, is smooth (resp., Lagrangian, Hamiltonian). The group of all smooth mon-
odromies of L is called the smooth monodromy group (SMG) of L and is denoted
by S(L). Likewise, £(L) and H (L) denote, respectively, the Lagrangian mon-
odromy group (LMG) and the Hamiltonian monodromy group (HMG) of L. It
is easy to see that H(L) C L(L) C S(L). Although here we focus only on La-
grangian 2-tori, the groups H(L), £L(L), and S(L) are defined for any embedded
Lagrangian submanifold L of any dimension.
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The interest in such monodromy groups is to study the Lagrangian knot prob-
lem [6] from a different perspective. If L and L’ are smoothly isotopic, then clearly
their smooth monodromy groups are isomorphic. Similar conclusions hold for the
Lagrangian and the Hamiltonian cases as well. In[17] we studied 7 (L) for L either
a monotone Clifford torus or a Chekanov torus. The latter was constructed (and
called a special torus) by Chekanov in [3]. We proved that these two tori are dis-
tinguished by their spectrums associated to their Hamiltonian monodromy groups
[17]. Another result concerning H (L) was obtained by Hu, Lalonde, and Leclercq
in their preprint [8], where it was proved that the Hamiltonian monodromy group
‘H(L) is trivial for any weakly exact Lagrangian submanifold L of a symplectic
manifold. In this paper we focus instead on £(L) and S(L).

Recall from [13] that the Maslov class 4 = pu; € H'(L,Z) of a Lagrangian
torus L C R* is nonzero with divisibility 2. Clearly, an element / € £(L) must
satisfy i oh = p. Note that, in general symplectic manifolds, # € £(L) must also
preserve the linking class £; € H'(L,Z) (see [5] and Section 2) whenever defined.
However, since £; = 0 for any embedded L C R* [5], this requirement imposes
no further restriction on £(L). Let G, denote the formal subgroup of all group
isomorphisms g: H{(L,Z) — H(L,Z) such that u o g = . Clearly L(L) is a
subgroup of G,,. Our first result is the following theorem.

THEOREM 1.1.  Assume that T is a Clifford torus. Then L(T) = G,,.

The group G, is freely generated by two generalized reflections fy, f1 (see (2)—(4)

in Section 4) with f;(yo9) = —yo, Where yo € H (T, Z) is a primitive class with

nr(yo) = 0. Therefore, G,, is isomorphic to the infinite dihedral group D, [9].
For the smooth counterpart, our next theorem is due to the vanishing of £, .

THEOREM 1.2. Let Ly = ¢s(Lg) for 0 < s < 1and ¢¢ = id be a smooth isotopy
between two Lagrangian tori Lo, L1 C R* Then, for any y € Hi(Ly,Z),

w(d1.(¥)) — n(y) €4Z;
in other words,
¢t — e H' (Lo, Z) has divisibility 4.

Thus S(L) is a subgroup of
X =X :={gelsom(H\(L,Z)) | ppog —pu €4- H(L,Z)}.
We determine S(L) for the case of a Clifford torus as follows.

THEOREM 1.3. If T is a Clifford torus, then S(T) = Xr. In particular, S(T) is
generated by L(T) and a reflection along a class y € H\(T,Z) with ur(y) = 2.

It turns out that any smooth isotopy between a Lagrangian torus and a Clifford
torus can be modified at either end by a self-isotopy to match the Maslov classes
at both ends. We have the following result.

PROPOSITION 1.4. Let L C R* be an embedded Lagrangian torus smoothly iso-
topic to a Clifford torus T. Then there exists a smooth isotopy ¢, € Diffé(R“),
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s €10,1], with ¢¢ = id and ¢1(T) = L, where ¢ preserves the corresponding
Maslov classes; that is,

dTL = lr.
Moreover, one can modify ¢, so that ¢ (T \ D) is Lagrangian for s € [0, 1], where
D C T is an embedded disc.

However, at the present stage we do not know how to improve ¢,(7) to a genuine
Lagrangian isotopy between 7" and L. To achieve that goal, it seems necessary
(and perhaps enough) to have a better understanding of the isotopy of Lagrangian
discs with prescribed boundary conditions.

We remark that Mohnke [12] showed that all embedded Lagrangian tori in R*
are smoothly isotopic to a Clifford torus. Also, Ivrii [10] showed that any em-
bedded Lagrangian torus in R* is Lagrangian isotopic to a Clifford torus. Both
authors used pseudoholomorphic curve techniques [7] and methods of symplectic
field theory [1; 4].

The rest of the paper is organized as follows. In Section 2 we review necessary
background on the Maslov class and the linking class. In Section 3 we discuss
framings of the symplectic normal bundle of a loop in R* and also the change
of framings under diffeomorphisms. Theorem 1.1 is proved in Section 4. Theo-
rem 1.2 is proved in the beginning of Section 5; this is followed by the proof of
Theorem 1.3, which consists of Propositions 5.3—-5.4. Proposition 1.4 is proved in
Section 6. We will use the convention S! = R/277Z throughout the paper.

2. Maslov Class and Linking Class

Because we are concerned with monodromies of self-isotopies of a Lagrangian
torus, we should first discuss two relevant classes in H'(L,Z): the Maslov class
u = up (see [11] for more details) and the linking class ¢ = £ . The latter is
defined (and denoted by o) in [5].

Maslov Class

The Maslov class u is defined as follows. Given y € H{(L,Z),let C C L be an
immersed curve representing y. Then the tangent bundle 7¢ L over C is a closed
path of Lagrangian planes and hence a cycle in the Grassmannian of Lagrangian
planes in the symplectic vector space R*. In that case, 1(y) is defined to be the
Maslov index of the cycle T¢ L.

THEOREM 2.1 [13].  The Maslov class | of a Lagrangian torus L C R* is non-
trivial and is of divisibility 2.
ExampLE 2.2. Consider a Clifford torus

T =T, :={(ae™,be™)eC? | t,t, € S' = R/277Z)}.

Let y;, € H(T,Z) be the class represented by the curve {(ae™,b) € C? |
th € R/27Z) and let y» € H (T, Z) be the class represented by {(a, be’?) € C? |
ty eR/27Z}. Then pr(yy) =2 = pur(y2).
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The inequality u; # 0 implies that the Lagrangian monodromy group £(L) can
be only a proper subgroup of Isom(H(L,Z)) = GL(2,Z).

Linking Class

The linking class ¢ = £; € H'(L,Z) is defined as follows. Take v to be any
nonvanishing vector field on L that is homotopically trivial; in other words, v
is homotopic to some v’ in the space of nonvanishing vector fields on L such
that v’ generates the kernel of a nonvanishing closed 1-form on L. Let J be an
w-compatible almost complex structure on R*., Then £(y) := Ik(C + eJv, L) is
defined to be the linking number with L of the push-off of C in the direction of
Jv, where C C L is an immersed curve representing the class y.

The class £ is independent of the choices involved. That £(y) is independent
of J can be seen as follows. First of all, the space of w-compatible almost com-
plex structures is contractible and, since L is Lagrangian, Jv is transversal to L
for any w-compatible J. So in particular we can take J to be Jy, the standard com-
plex structure on R*. Second, the independence of v follows from the observation
that vector fields generating the kernels of nonvanishing closed 1-forms on L are
homotopic as nowhere vanishing vector fields. Finally, if C and C’ are two repre-
sentatives of y then, since H;(L) is abelian, C and C" are free homotopic. Hence
£(y) is independent of the choices of v, J, and C with the prescribed conditions.

ExamMpLE2.3. LetC C L be an embedded closed curve representing a nontrivial
class y € Hy(L,Z). Parameterize C by t € S' = R/27Z so that its tangent vec-
tor field C () is nonvanishing. Then C(1) extends to a homotopically trivial vector
field v on L. For example, we can view L as an S'-bundle over S' with fibers rep-
resenting the class [C] € H|(L,Z), and C is one of the fibers. Then take v to be a
nonvanishing vector field tangent to the fibers.

THEOREM 2.4 [5]. The linking class £, = 0 for any embedded Lagrangian torus
L C R

REMARK 2.5. Given an embedded torus L C R*, we consider the set 7 (L) of
almost complex structures J defined on T, R* such that J(TL) th TL and J is
compatible with the orientation of R*. The homotopic class of such a J is isomor-
phic to H'(L,7Z) = 7. Similarly to £; for L being Lagrangian, each J associates
to a linking class £,(J) € H'(L,Z) defined by linking numbers £;(J)(y) :=
lk(C + eJv, L), where C and v are as defined previously.

Then £,(Jo) = £, = 0 if L is Lagrangian and Jj is the standard complex
structure (or any w-compatible one). It will be shown later that the vanishing of
£ implies, for ¢, as in Theorem 1.2, that ((¢1)«Jo)|r, and Jo|z, are homotopic
in JT(L). Hence for any embedded oriented closed curve C C Lo we have
(@D:«NG = Nd‘;’l(c) up to a smooth isotopy rel L, which leads to Theorem 1.2.
Here N{ is the symplectic normal bundle as defined in the beginning of the next
section.
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3. Loops in R* and Their Framings

Before moving on to Lagrangian tori in R, it helps to have a closer look at loops
in R*.

A loop in R* is an embedded 1-dimensional submanifold diffeomorphic to S'.
The pull-back of w on a loop vanishes, so a loop is an isotropic submanifold. Take
aloop C C R%, We fix an orientation of C, fix a trivialization of C = S! =
R/2nZ, and write C(z) for the tangent vector of C at C(¢).

Symplectic Normal Bundle

Let us recall some basic properties of the normal bundle N of C. The bundle N
splits as
N =(T*C) & N*“,

where N, called the symplectic normal bundle of C, is the trivial R?>-bundle over
C defined by

N = {(C(),v) | t € 5", v € Nl|cay, o(C(t),v) = O}.

By Weinstein’s isotropic neighborhood theorem (see [11; 15; 16]), there exists a
tubular neighborhood U C R* of C, a tubular neighborhood V C N of the zero
section of the normal bundle C C R* and a symplectomorphism with C C U
identified with the zero section of N:

(UCRYw) > (VCN=T"C xR wc X ®can)-

Here w¢an = dx Ady is the standard symplectic 2-form on R2, we = dt Adr*is the

canonical symplectic 2-form on 7*C, and #* is the fiber coordinate of 7*C dual to

t. The symplectic normal bundle N“ is identified with {(z,0,x, y) € S xR x Rz}.
Next we explore some properties of N that will be applied in later sections.

LAGRANGIAN TORI ASSOCIATED TO A Loop. Let
Dw C Nw

denote the associated symplectic normal disc bundle with fiber an open disc
{(x,y) € R?, x2 4+ y? < ¢} with some positive radius ¢. With the symplecto-
morphism near C described as before, the boundary L = L := 9D is an em-
bedded Lagrangian torus in R* provided that ¢ > 0 is small enough. Note that,
for each sufficiently small ¢, L with ¢ > 0 fixed is unique up to a Hamiltonian
isotopy.

It is well known that any two loops in R* are smoothly isotopic. The following
proposition can be easily verified.

ProrosITION 3.1.  Let Cy, 0 < s < 1, be a smooth isotopy of loops. Let D? de-
note the symplectic normal disc bundle of C with fiber radius &; > 0, and let
Ly := 0D{. Then there exists an ¢ > 0 such that Ly is a Lagrangian isotopy of
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embedded Lagrangian tori provided that 0 < &; < ¢e. In particular, if Cy = C;
as a set and g9 = &1, then D§ = DY and we get a Lagrangian self-isotopy of
Lo = 0Dg.

In Section 4 we will use this observation to construct Lagrangian self-isotopies of
a Clifford torus.

Framings of N¢

DEFINITION 3.2. To a nonvanishing section (i.e., a framing) o of N“ one can
associate an S'-family of Lagrangian planes

C(yna(r), tesh
we denote the corresponding Maslov index by
pe(0) = u(C(1) Ao(1) €2Z.

Note that 4 (o) depends only on the orientation of C and the homotopy class of
o among framings of N¢.

If we fix a trivialization ®: N® — C x R? = C x C, then the homotopy classes
of framings of N can be identified with [S', R? \ {0}] = [S', S'] = Z. Hence,
for a map 0: S' — S! of degree m, the Maslov index associated to the section
o'(t) = e Do(t)is nuc(o') = e (o) + 2m. In particular, there is a framing o°
of N such that ¢ (%) = 0. We call 6° a 0-framing of C, and it is unique up to
homotopy. Likewise, for each m € Z there is a framing 0™ of N, with o™ unique
up to homotopy, such that ¢ (c™) = 2m.

DEerFINITION 3.3.  We call ™ an m-framing of N or an m-framing of C.

The homotopy classes of framings of N are classified by the framing number
pc(o)/2.

ExampPLE 3.4. Let C C L be a simple closed curve representing the class y €
H,(L,Z) of a Lagrangian torus. Let v be a nonvanishing section of NZ N T¢ L.
Then v is a (u(y)/2)-framing of NZ.

ProposITION 3.5.  Let Cy, s € [0, 1], be a smooth isotopy between loops Cy and
Cy. Write Cy = ¢4(Cy), where ¢ € Diffg(R“) with ¢o = id. Let N” and o"
denote, respectively, the symplectic normal bundle and the m-framing of Cs.

(i) If (@) NG = NP, then
e (@D<00") = e, (0") = e, ($1)400) — e, (07) €4Z.
(1) If e, ((@1)«0y") = e, (0") = 2m then, up to a perturbation of ¢, we may

assume that (¢;) Ny = N and (¢;)«0y" = o).

Proof. (i) First consider the case m = 0. Fix a trivialization S' = R/27Z —
Cy for Cy. This trivialization, when composed with ¢;, becomes a trivialization
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of C;. By applying Weinstein’s isotropic neighborhood theorem, we may sym-
plectically identify a neighborhood of C; € R* with a neighborhood of the zero
section of the normal bundle N, of C,. We can trivialize Ny = §' x R x R? with
coordinates (7, x, y) so that

o C, = S' x {0} x {0},

¢ N? = S'x {0} x R? and

. oxo(t) = (1,0, ¢,0) for some & > 0.

Then, for each s, the differential (¢;).(¢) at Co(¢) with t € S' = R/27Z can be
viewed as a smooth loop in GL*(4, R):

1 % 0

>, (@0)«(1) =id, (PpD)«(1)e |0 c(®) O
0 * GL2,R)

1
@))€ (0 GL*G.R)
Note that, since (¢;).(#) is an isomorphism, it follows that c(¢) # 0 for t € St
We view (¢bg)+(¢) = id as a constant loop in GL*(4, R) parameterized by ¢. Then
(9)«(1),0 < s <1, when viewed as a family of parameterized loops in GL*(4, R),
is a free homotopy between (¢¢).(z) and (¢1)«(¢). This implies that (¢1).(?) is
free homotopic to the trivial class of

71 (GLT(4,R)) = 7;(GL*(3,R)) = Z,.

The lower 3 x 3 block of the matrix form of (¢;), () is invertible. We can there-
fore perturb ¢; by composing it with some suitable family of maps in Diff§(R*),
each of them fixing C; pointwise and with the condition (¢), Ny = N;* preserved
under the perturbation, so that the perturbed ¢; satisfy

1 .
@)1 € (O GL+(3’R)> with (). (1) = Id
and either (¢1).(t) = A(¢) or (¢1)4(t) = A'(t), where
1 0 0 0 1 0 0 0
Ar) = 0 1 0 0 A1) = 0 -1 0 0 0
“l0 0 coskt —sinkt |’ “l0 0 cosktr sinkt
0 O sinkt cos kt 0 0 sinkt —coskt

for some k € Z. Note that A'(¢) is free homotopic to A(z) by a 180° rotation along
the subspace spanned by its second and third column vectors. We can interchange
the two cases (¢).(t) = A(t) and (¢).(z) = A'(¢) by composing with ¢, such a
rotation along Cj.

Now the equality [(¢1)«(2)] = 0 in 7;(GL*(4,R)) implies that k € 27Z. Hence
e, (91)+0)) = 2k + (o) = 2k € 4.

The equality f2¢, ($1):04') — e, (0") = i, (91)e08) — e, (67) follows
from the property that 0" (t) = ™0 (t) up to homotopy.

(ii) The proof follows from the perturbation of ¢, constructed in (i). O
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4. Lagrangian Monodromy Group of a Clifford Torus

In general, the LMG £ (L) must preserve both the Maslov class 1, and the linking
class £; whenever defined. However, for L C R* the class £; = 0 is automati-
cally preserved. In this section we determine the LMG of a Clifford torus in R*,

Identify R* = C2. For a, b > 0, the Clifford torus T, ; is defined to be

T =T, :={(z1,22) | lz1] = a, |z2| = b}.

We fix a basis {y1, y»} of H (T, Z) such that
* y) is represented by the cycle {(ae™,b) | t e R/27Z} and
* y, is represented by the cycle {(a, be') | t e R/2nZ}.
Then y; = ((1)) and y, = (?) when expressed as column vectors. We also denote
y0 := —y1 + ¥2. Then u(y9) = 0and yy = (’}) as a column vector. Likewise,
the Maslov class i € H'(T,Z) is expressed as a row vector . = (2 2).

The mapping class group of T is then isomorphic to GL(2,Z), the group of
2 x 2 matrices with integral coefficients and with determinant 1. Let

G,:={geGLQ2,Z) | pog=npu}
A direct computation shows that G,, = G; U G, where

Gy ={gn:=(""1L) [ nez}, @

Gy ={fi=(3" 150 [ nez}. 3)
Elements of G ; are of determinant 1, and elements of G . are of determinant —1.
Also, g, = (g1)" for g a generator of G; = Z. On the other hand, G, comprises

elements of order 2 in G,. Geometrically, g, = (g1)" is the (—n)-Dehn twist
along y and each f,, is a generalized reflection with f,(y9) = —yo. Note that

()2 =e= f12» (flfO)n = &n» (fOfl)n =8-n= (gn)_l’ gnfm = fn+m

(here e denotes the identity element of G,). Therefore,

Gu={fo. il fi =e=f}) = D 4)

is freely generated by the two elements fy, f; of order 2 and is isomorphic to the
infinite dihedral group D, [©].

Note that if Ly = ¢,(T), s € [0,1], is a Lagrangian self-isotopy of 7 such that
Lo =L, =T and ¢y = id, then the induced isomorphism (¢;). : Hi(T,Z) —
H\(T,Z) is an element of G,,. That is, the LMG L(T) is a subgroup of G,,.

PROPOSITION 4.1.  The LMGs of T, and T, are isomorphic.

Proof. Identify the ordered pairs (a,b) and (a,b’) with the coordinates of
two points in the first quadrant of the R?-plane. Take a smooth path c(s) =
(c1(s),c2(s)), s € [0,1], in the first quadrant so that ¢(0) = (a,b) and c(1) =
(a’,b"). Then T is a Lagrangian isotopy of Clifford tori between T, ;, and T,/ j,.

O
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THEOREM 4.2.  The LMG of a Clifford torus T is L(T) = G,,.

Proof. We will explicitly construct Lagrangian self-isotopies of T with mon-
odromies fo and fi, respectively. Then £(T) = G,, by equation (4).

Case 1: The monodromy f| = ((]) (1)) Recall that in [17] a Lagrangian self-
isotopy for 7}, , was constructed with monodromy f; (denoted by fiin [17]). For
completeness we repeat the construction here. First let us consider the path in the
unitary group U(2) defined by
(cos T —sin’} )

A=\ . = - ]1€GL2,C), 0<s<1

sin 5 cos 5

Here A, acts on C? and is the time-s map of the Hamiltonian vector field X =
T (X105, = X20y, + ¥10y, — ¥20,,) Withw (X, -) = —dH for H = F(x2y1 —X1y2).
Observe that A(7,,5) = Tp, and (A1) = f1 on Hi(T}p,Z). Fix b > 0 and
modify H to get a C™-function H with compact support such that H = H on
{lz1] < 2b, |z2| < 2b}. Let ¢; be the time-s map of the flow of the Hamiltonian
vector field associated to H. Then ¢1(Tp.p) = (Tp,p) and (¢1)« = (A1)« = fion
H(T} 1, Z). Now extend this self-isotopy of 7} ;, by conjugating it smoothly via
a Lagrangian isotopy between 7, , and 7}, 5 as described in Proposition 4.1. We
may assume that the basis {y1, y»} of T},  is transported to the basis {y;, y2} of T,
along the latter isotopy. Readers can check now that the extended isotopy induces
a Lagrangian self-isotopy of T, , with monodromy f;.

Case 2: The monodromy fy = ( (1) j) For s € [0, 1] consider the family of dif-
feomorphisms W, : R* — R%,

Wo(x1, y1,X2,¥2) := (X1 COSTTS — Yo SINTS, y1,X2, Y2 COSTTS + X1 SIN7TS).

Note that W, € SO(4,R) are rotations on the (x;y;)-plane with the (y;x;)-plane
fixed. Consider the simple closed curve C defined by

{(xi =0, yy =0, x, =bcost, y, = bsint) e R* | [0, 27]}.

Define C(t) := W,(Co)(¢) for Cy, s € [0,1], a smooth family of curves. Note
that C; equals Cy but with the reversed orientation. Recall from Proposition 3.1
that for ¢ > 0 small enough, the Lagrangian torus boundary L of the symplectic,
radius-¢ normal disc bundle Dy’ of C, is embedded in R* with core curve C;. Note
that Ly = T, , = L, as sets, so we obtain a Lagrangian self-isotopy of T ; for
& > 0 small enough. This self-isotopy of T j; reverses the orientation of 7 j, so
the corresponding monodromy f is an element of G, with determinant —1 when
expressed as a matrix. Note that W, reverses the orientation of the core curve Cy
of Dy. Since y, C dDg = T ; is longitudinal, this reversal implies that f sends
y2 to —y» + my; for some m € Z. Then a comparison with the formula for f, in
(3)yields f = fo=(y _7) andm = 2.

Now, similarly to what was done in Case 1, extend the Lagrangian self-isotopy
of T, into an Lagrangian self-isotopy of T, ;, through Clifford tori. The corre-
sponding monodromy is fj. This completes the proof. UJ
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REMARK 4.3. If we take C to be the curve
{(xi =acost, yy =asint, x, =0, y, =0) e R* | r €[0,27]},

then W, will induce a Lagrangian self-isotopy of 7, . with monodromy f, =
(*é (1)) The reader can check that G, = (f1, f2 | f = e = f3). Hence L(T)
G, again.

5. Smooth Monodromy Group of a Clifford Torus
We start by proving Theorem 1.2.

Proof of Theorem 1.2. By the linearity of (¢), and w, it is enough to prove the
theorem for the case when y € H|(L, Z) is primitive.

Fix a positive basis {yy, y2} for H{(L,Z) with u(y;) =2 = u(y2). Given a
primitive class y € Hi(Lg,Z), we have (¢1)4(y) = n1y1 +nyy, for some ny,n, €
Z. Let Cy C Ly be an embedded curve representing the class y, and let C; :=
¢5(Cp). We denote by N; and N (respectively) the normal bundle and the sym-
plectic normal bundle of C;. By assumption, C| represents the class n;y; + nays.

Let oy denote a nonvanishing section of the R'-bundle (TeyLo) NN over Co.
Then o is a (u(y)/2)-framing of Ny’. Extend oy to a smooth family o, with 0 <
s <1, sothat oy is a (u(y)/2)-framing of N*. Let m := u(y)/2.

Recall that Jj is the standard complex structure over R* = C2. Fix a trivial-
ization for Ny = S' x R x R x R by taking {JOCJ(t),ax(t), Joog (1)} as the basis
of the fiber of N; at C(¢), so that the coordinate (¢,t* x,y) represents the fiber
*JoCs (1) + x0(1) + yJoo, (1).

Now let ng := ¢4(00). Observe that 1, is a nonvanishing section of N\ N T¢, Ly
and an (n; + ny)-framing of N{*. Let k := n; + n».

Recall that oy is an m-framing of N;*. Up to a homotopy of o; if necessary, we
may assume the following:

e foreachs, n, = o att = 0;
e fort e S' =R/27Z, n1(t) = o1(t) cos(k — m)t + Jyo1(t) sin(k — m)t.

Then, for each s, ¢, associates to a smooth map ®;: § I > GL*(4,R), where

1 *
Dy(1) := (¢s)*(t)€< )s

0 GL*(3,R)
I % 0 *
. 0 =x* 0 *
®o(H) =id, 1) = 0 * cos(k—m)t =
0 *x sin(k—m)t =

The second and fourth columns of &, represent (qb])*(JoCo) and (¢1)«(Jo0oo),
respectively.

Extend Cy to a homotopically trivial nonvanishing vector field uy on L, and
let us := (¢s)uo. Then u;|c, = Cl. By continuity and £;, = 0 we have

Ik(C1+ ¢ - (p1)«Joug, L1) = lk(Co + eJoug, Lo) = 0. )
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Similarly, since £, = 0, it follows that
lk(C1 + eJo(P1)xuo, L1) = lk(Cy + eJou, L) = 0. (6)

Note that (5) and (6) hold for any class [Cy] and thus [C{] = (¢1)«[Co], which
shows that (¢p1).Jo| ., is homotopic to Jo|., in J+(L1) as defined in Remark 2.5.
In particular, (¢;).Jouo is homotopic to Jyu; as nonvanishing sections of the nor-
mal bundle Ny, of L; C R* So up to an L-fixing isotopy we may assume that,
along C1, (¢1):JoCo = JoCy and (¢1). N& = N&. That is, &, = (¢1), satisfies

0

1 0 0 0
0 1 0 0 n

D(1) = 0 0 costk—m)r e GL™(4,R). @)
0 0 sin(k—m)t =

Now @ satisfies the hypothesis of Proposition 3.5(i) and so, by a similar argu-
ment as employed there, up to an L;-fixing isotopy we have

1 0 0 0
0 1 0 0 .
10 = 0 0 cos(k—m)t —sin(k—m)t €GLT(4.R)
0 0 sin(k—m)t cos(k — m)t
with
k—me?2Z, (8)

since the lower 3 x 3 block of @, is free homotopic to id € GL*(3, R) with respect
to the basis {JyC1, 01, Joo1}. This completes the proof. O

COROLLARY 5.1.  The SMG S(L) of an embedded Lagrangian torus L C R* is
contained in the subgroup X C Isom(H'(L, 7)) defined by

X = (g elsom(H\(L,Z)) | ur o g — pur €4~ H'(L,Z)).
COROLLARY 5.2. Let L C R* be an embedded Lagrangian torus. Fix a posi-

tive basis {y1, y2} for H\(L,Z) with u(y1) = 2 = u(y2). Then, with respect to
{y1, v2}, X is represented as

X =X°uX®CGLQ2,7),

where
x={("r\5,) eGLQ,2) | p.q.rs €L}, ©)
X ={(,55,'429) eGLQ2,2) | p,q.rs €Z}. (10)

Proof. Recall that © = up has divisibility 2. Express y; and y, as column vec-
tors ((1)) and (?) respectively. For g = (g;;) € &, that u(g(y;)) — u(y;) € 4Z
implies that both 2(g; + g21) — 2 and 2(gp + g22) — 2 are divisible by 4. Hence
(1) g1 and g, have different parity and (ii) g1, and g, have different parity. Since
detg = =1, the two even-valued entries of g can lie in neither the same column

nor the same row of g; hence either g € X'? or g € X°. UJ
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We now determine the group S(T') of a Clifford torus 7. The proof is divided into
three separate propositions.

PROPOSITION 5.3.  Recall the basis {y1, y2} for H\(Ty,5,Z). Each of the follow-
ing four types of elements of GL(2,Z) = Isom(H (T »,Z)) can be realized as
the monodromy of some smooth self-isotopy of Ty p:

(1) a k-Dehn twist rlk = ((1) '1‘) along yy with k € 27\ {0};
(ii) a k-Dehn twist t5 := (_; V) along yy with k € 22\ {0};
(iii) the y;-reflection 1| := (_(; (1));

(iv) the y,-reflection ry 1= ((1) _0).

Proof. Because the specific values of a,b > 0 are immaterial, we may take val-
ues of a, b that are convenient for the construction of a smooth self-isotopy. In the
following we will denote a Clifford torus as 7. Also, since the Lagrangian mon-
odromy f; = (? (1)) swaps elements in (i) and (iii) with elements in (ii) and (iv),
we need only prove the two cases (i) and (iii).

Let C := {(0,be') | t €[0,27]} C R*

Case (i): rlk (k # 0) is even. Let U be a tubular neighborhood of C, U =
B3 x S!. Parameterize U by (p,,0,t) for (p,,0) € [0, pg] x S2 the spherical
coordinates of the 3-ball B3, where p is the radial coordinate, (¢, 0) denotes the
spherical coordinates on S 2, and (pg, 7/2,0,t) parameterizes the equator of the
S2-fiber over t. We also assume that (po,m/2,0,t) € St x st parameterizes T so
that rlk is represented by the map ¢ (6,¢) = (6 + kt,t). Extend ¢ over U to obtain

¢:U— U, ¢(p,0,0,1) = (p,¥:(9,0),1) == (p, (9,0 + ki), 1).

As aloop in SO(3) parameterized by ¢, the maps , represent the trivial class of
m1(SO(3)) since we assume that k is even. Then there exists between v, and the
constant loop id a smooth homotopy ¥ , € SO(3) with s,z € [0,1] x § !'such that
Yo,r = Id = ¥ 0 and ¥, = ;. This induces a smooth homotopy by, s €10,1],
between ¢, = ¢ and ¢ = idy with

5 (0, (©.0),1) 1= (0, Ys.1(,60),1).
Let X, be the time-dependent vector field on U that generates the isotopy by that
is, d{? =X, o0 qBS and (]30 = id. Note that X is tangent to oU. Extend X over R*
smoothly with compact support. Denote the time-1 map of the extended X as ¢’.
Then ¢’ € Diff§(R*) is isotopic to the identity map and ¢'|;, = ¢.

Case (iii): r,. Parameterize B> by Cartesian coordinates (xi,yi,x;) with
x]2 + )’12 + x22 <lsothat T C U = B> x §'is parameterized by {(xj, y1,0,7) |
x12 + Y12 = 1}. Without loss of generality, we may assume that 7, is represented
by the map ¢ (x1, y1,0,t) = (—x1, y1,0,¢) for (x1,y1,0,¢) € T. Extend ¢ over U
to get

¢: U — U, $(x1,y1,%2,1) = (Y(x1,y1,X2), 1) 1= ((=x1, Y1, =x2), 7).
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-10 0
The map ¢ = ( 8 (1) (1)> € SO(3) is isotopic to the identity map. Let i, be a

smooth Eath in SO(3) with s € [0, 1], ¥ = Id, and ¥r; = . This path induces an
isotopy ¢5: U — U, s € [0, 1]:

b ((x1,y1.%2),1) = (Y (X1, y1,X2), 1).
Now, just as in Case (i), we extend b, over R* with compact support to obtain
¢’ € Diff§(R*), which is isotopic to the identity map, and ¢'|; = ¢. This com-
pletes the proof. O

Let
R Cc GL(Q2,7Z)

be the subgroup generated by elements of £(T) = G, and by ‘Cjz and 7; for j =
1, 2. Clearly we have the following inclusions as subgroups:

RCS(T) CAX.

We will show that ¥ C R and hence that R = S(T') = X. To begin with, consider
the subgroup & C GL(2,Z) generated by t{ and 73. It is shown by Sanov [14]
that £ is free (see also [2]) and that

e=1{("y" I-Eflq) €GL(2,Z) | p.q.r.s € Z}.

PROPOSITION 5.4.  The group X is containedin R, so R = S(T) = X.

Proof. Since X¢ = f1X° and f; € R, it suffices to prove that if 7 € X? then
h € R. Our strategy here is to show that for 1 € X’° there exists a suitable element
geRsuchthat gheE. Thenh = g~ '(gh) e R.

Write h = (52723 ;). We divide the proof into four cases according to the

parity of p and q.

(i) If both p and ¢ are even, then we already have h € £ C R.
(ii) If both p and ¢ are odd, then

. 1 0\/1+2p 25
mmh_( 0 —1)( 2r 1+2q)

C(1=20+p) Y
_( _or 1—2(1+q)>65‘

Hence h € R because 71,7, € R.
(iii) If p is odd and g is even, then

- -1 0\/1+2p 25 1-2(1+p) 2s
r1h= = e
0 1 2r 14 2¢q —2r 142¢q

and again we have h € R.
(iv) The case of p even and ¢ odd is similar; simply observe that 7/, h € £.

Thus we have proved that ¥ C R and hence S(T) = X = R. UJ
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PrROPOSITION 5.5.  The group S(T) C GL(2,7Z) is generated by fi, f», and 1.

Proof. Recall that S(T) = R is generated by 7; and sz with j = 1,2 and by ele-
ments of G,,. The group G, is generated by f; and fj. Observe that

it =rfo, T = o= fifofiti, 2= fiF1fi.
So indeed S(T') is generated by the three elements fj, fi, 7] of order 2. Note that
Fif)™ = firi = =1 fi and (71 f1)? = (fi71)? = —e. The element —e com-
mutes with every element of S(T). O

This concludes the proof of Theorem 1.3.

6. Proof of Proposition 1.4

We divide the proof into two steps. In Step 1 we show that there exists a smooth
isotopy ¢, with ¢((T) = L such that ¢Tp; = pr. In Step 2 we modify ¢, so that
¢s(T \ D) is Lagrangian for all .

Step 1. Let ¥ € Diffg(R“), s € [0,1], be a smooth isotopy with 9 = id and
Yi(L) = T. Then yfup — pur € 4 - H'(T,Z) by Theorem 1.2, from which it
follows that {u; = pur o g for some g € Xr. Since Xr = S(T) by Proposi-
tion 5.4, there exists a smooth self-isotopy ¥/ of T with (/). = g~ and hence
W) Wiue) = @)D" (ur o g) = pur.

Now define ) { v, for 0 <s <1/2,

© Waey for1/2<s <1

Then we have ¢, € Diff§(R*), ¢ = id, ¢1(T) = L, and ¢ = (Y10 ¥])*us =
W) YiuL = pr.

Let Ly := ¢,(T) fors €[0,1]. Then Lo =T and L, = L.

Step 2. We can improve the smooth isotopy L; so that it is indeed a Lagrangian
isotopy outside a disc.

LEMMA 6.1. Let Ly = ¢(Lg), s € [0,1], be a smooth isotopy between a Clif-
ford torus T = Lo and a Lagrangian torus L = L with ¢ € Diff§(R*), ¢ = id,
and ¢ = pr. Then there exist a smooth isotopy L', = ¢ (L}) between T =
Lyand L = L} and a disc D C T such that L', \ ¢(D) is Lagrangian for all
s €[0,1].

Proof. Take two simple curves y, y’ C T that generate H,(7, Z), and suppose that
y intersects with y’ at exactly one point p € T. Fix an orientation of 7. We orient
y and y’ so that the homological intersection y - ¥’ is 1. Denote y; := ¢,(y) and
y] 1= ¢s(y') with induced orientations. Also let p, := ¢;(p).

We start with y,. Let 2m = pr(yo) = ur(y1). Let 6" C N denote the
m-framing of the symplectic normal bundle N of y;, so u,, (6,") = 2m. Clearly
we may take o' to be a nonvanishing section of the normal bundle N,,;r of y =
vo C T. Likewise we may take 0" = (¢1).(0(") because ¢ = pur.
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Now trivialize the normal bundle N, of y, as N, = S! x R x R? with coordi-
nates (,1% x,y) so that (i) ¥, = S' x {0} x {0}, (ii)) N® = S! x {0} x R and
(ii1) o/"(t) = (1,0, &,0) for some ¢ > 0. This is exactly the same setup used in
the proof of Proposition 3.5(i) except that o is replaced by 0" here. With re-
spect to the trivialization of Ny the differential of ¢, along y, defines a loop with
base point Id in the subgroup A C GL*(4,R) comprising matrices of the form
((1) GL+EK3’ R)). Note that ¢ and ¢ correspond to the constant loop. Thus the total
of the family ¢, corresponds to a smooth map ®: I%/0] = S> — A with I? =
[0,1]5 x [0,27], and D (s,t) := (¢s)«(t). Since 7, (A,Id) = m,(SO(3,R),Id)
0, there exists a smooth homotopy E: (12/31?) x [0,1] — A such that E(-,0) =
®, E(,1) =1d,and E(p,u) =Idfor p € 812 and for all u € [0, 1].

This implies that, for each s, there is: a tubular neighborhood U; C R* of Vs
a smooth family of maps ¢, € Diff(;r(]R“) with ¢50 = ¢5, ¢s.u = ¢s ON ys,
and R* \ U,; and @iw = ¢; fori = 0,1 such that ¢, ;(T) is Lagrangian along
¥s—in other words, T,, ¢, (T) is Lagrangian. By a further perturbation if neces-
sary, we may assume that there exists a tubular neighborhood V C T of y, such
that ¢;,1(V') is Lagrangian.

Now apply the same argument to y,; and ¢;,; as we did to y, and ¢,. The result
is (i) an open neighborhood Q C T of y U y’ with D := T \ Q diffeomorphic
to a 2-disc and (ii) a new isotopy L, = ¢ (T) of T = Loand L = L, with ¢, €
Diffg(R“), ¢ = id, such that Q; := ¢;(Q) C L/ is Lagrangian for s € [0,1]. We
may assume that the C; := 0Q; are smooth for all s. Finally,take D =T \ Q. U

This completes the proof of Proposition 1.4.
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