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Pullback of Parabolic Bundles
and Covers of P1 \ {0,1,∞}

Ajneet Dhillon & Sheldon Joyner

1. Introduction

We work over an algebraically closed ground field k of characteristic 0. IfG is a fi-
nite group then, by [8], aG-torsor f : X→ Y in the category of algebraic varieties
can be viewed as a tensor functor Rep-G→ Vect(Y ). More concretely, the asso-
ciated tensor functor sends the representation V to the vector bundle f∗(V ⊗O)G.

When the cover ramifies, as was observed in [9], we need to put tensor functors in
the category of vector bundles with appropriate parabolic structure.

In the case where Y = P1 we have f∗(V × O)G = ⊕ O(si). The integers si
are difficult to compute, and one of our results is to find an upper bound on them
when there is ramification at 0, 1, and ∞ only. The bound described in Theo-
rem 8.4 and Example 8.6 improves the known bound in [3]. There is one case in
which it is easy to compute the integers si—namely, when the group G is cyclic.
Our method is a type of reduction to the cyclic case by removing ramification at
0. More precisely, the endomorphism z 
→ zn of P1 algebraically de-loops loops
around the origin. Pulling back a cover along this morphism removes ramification
of order n at the origin. For our method to work we must define a pullback mor-
phism for parabolic bundles. As in [6] and [3], this entails using the equivalence
of categories (due to Biswas [2]) between parabolic bundles of a certain kind and
vector bundles on an associated root stack. The pullback operation is difficult to
reverse—that is, given a morphism f : X→ Y of smooth projective curves and a
parabolic bundle F• on X, to construct a parabolic bundle on Y that pulls back to
F•. In fact, the difficulty in reversing the parabolic pullback gives a new explana-
tion for why it is difficult to compute the si .

The interest in computing these si can be explained as follows. A finite quotient
q : F2 � G of the free group on two letters produces a cover Xq → P1 rami-
fied at three points. The absolute Galois group GQ of Q acts faithfully on such
covers. For a given q, however, the Galois action is difficult to understand; and it
is not known what finite quotient of GQ acts in sending the cover to some other
nonisomorphic cover. One way of addressing this question is to give a more alge-
braic construction of the cover. The theory of tannakian categories allows one to
do this. One should view the cover as a tensor functor into parabolic bundles and
then understand the Galois action on such tensor functors. This work should be
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seen as a first step toward understanding these tensor functors. In this paper we
identify their parabolic pullbacks. To understand the original functor amounts to
describing faithfully flat descent for parabolic bundles; this is a topic of future
work.

In Section 2 we recall some results of Nori on principal bundles and tensor func-
tors. Section 3 recalls the notion of root stack introduced in [4], and Section 4 in-
troduces parabolic bundles in our context. The definition here is equivalent to the
one in [7]; we also recall from [11] the construction of tensor product and internal
Hom for parabolic bundles. Section 5 is devoted to proving the orbifold–parabolic
correspondence in our context. This result is not new and goes back to [2], though
the formulation here is based on the results of [3].

The new results begin in Section 6, where we describe a construction on para-
bolic bundles that corresponds to the pullback of orbifold bundles. In Section 7
we use some combinatorics to describe the case of cyclic covers. Finally, Sec-
tion 8 gives an upper bound on the integers si described previously in the case of
a G-cover of P1 \ {0,1,∞}; here, the group G need not be abelian.

Acknowledgments. The authors wish to thank DonuArapura and Jochen Hein-
loth for very helpful advice and conversations. The parabolic pullback was origi-
nally described to A.D. by Indranil Biswas. The authors became interested in this
topic after attending a lecture given by Vikram Balaji at the University of Western
Ontario in 2009.

Notation and Conventions.

(i) k is an algebraically closed field of characteristic 0.
(ii) X is a connected smooth projective curve over k.

(iii) For x ∈R we use 
x� to denote the floor of x (i.e., the largest integer smaller
than x).

2. Some Results of Nori

In this section we recall some results from [8] and [9]. We begin by recalling the
notion of a tannakian category. For a more detailed formulation the reader may
refer to [10] or [5].

Let L be a field. We denote by Vect(L) the category of finite-dimensional L-
vector spaces.

Definition 2.1. For any field L, a tannakian category over L consists of a qua-
druple (C,⊗,F,U), where:

T1. C is a small, L-linear, abelian category.
T2. F : C → Vect(L) is an L-linear additive faithful exact functor known as the

fiber functor ;
T3. ⊗ : C×C → C is an associative and commutative functor that is L-linear in

each variable; and
T4. U is a unit for ⊗.
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This data is subject to the following constraints:

C1. F preserves ⊗;
C2. F preserves the associativity and commutativity constraints;
C3. FU ∼−→ k; and
C4. dimFV = 1 if and only if there exists a V −1∈Objects(C) such that

V ⊗V −1 ∼= U.

Remark 2.2. One can use [5, Prop. 1.20] to show that the category C is neces-
sarily rigid.

If G is an affine group scheme over k, then the category Rep-G of finite-dimen-
sional left representations of G is a tannakian category over k. In fact, we have
the following theorem.

Theorem 2.3. Any tannakian category over k is equivalent to Rep-G for some
affine group scheme G over k. Under this correspondence, a homomorphism of
affine group schemes corresponds to a tensor functor that commutes with the fiber
functor and preserves units.

For a schemeX over k, denote by Vect(X) the category of algebraic vector bundles
over X. The category Vect(X) is a k-linear tensor category. The tensor product is
associative and commutative and has a unit. Taking the fiber over a k-point gives
it the structure of a tannakian category.

Definition 2.4. A rigid tensor G-functor on X is a k-linear exact ⊗-functor
F : Rep-G→ Vect(X) such that:

F1. F commutes with ⊗;
F2. F preserves the associativity and commutativity constraint;
F3. rkFV = dimV ; and
F4. F(Vtriv) = OX.

We denote the category of such functors by Func⊗(Rep-G,Vect(X)). A mor-
phism in this category is a natural transformation η : F → G such that the follow-
ing diagram commutes: ⊗

i∈I F(Xi)
∼ ��

η

��

F
(⊗

i∈I Xi

)
η

��⊗
i∈I G(Xi)

∼ �� G
(⊗

i∈I Xi

)
.

Such a natural transformation is necessarily an isomorphism by [5, Prop. 1.13].
Given P → X a G-torsor, we obtain the natural functor

FP ∈ Func⊗(Rep-G,Vect(X))

given by V 
→ P ×G V.

We denote by BunG,X the category of G-torsors over X. Notice that all the mor-
phisms in this category are isomorphisms.



202 Ajneet Dhillon & Sheldon Joyner

Theorem 2.5. There is an equivalence of categories

BunG,X
∼−→Func⊗(Rep-G,Vect(X)).

Proof. See [8].

We will mostly be interested in the case when G is a finite group and X =
P \ {0,1,∞}. To make our setup more useful in this case, we need a ramified
version of Theorem 2.5. Such a theorem already exists in [9], but we wish to re-
state matters in terms of stacks. For now, we record a relevant corollary.

Corollary 2.6. Let H be another finite group acting on X. Denote by BunHG,X

the category of G-torsors with an action of H that commutes with the action of G.
Then we have an equivalence of categories

BunHG,X
∼−→Func⊗(Rep-G,VectH (X)),

where VectH (X) is the category of H -vector bundles on X.

Proof. Given a G-torsor P → X with a commuting H -action, for each h ∈H a
tensor functor we obtain

Fh : Rep-G→ Vect(X).

Yet because the pullbacks P ×X,hX are all isomorphic, the functors described here
are all isomorphic by the theorem; hence we obtain a functor into VectH (X).

Conversely, suppose that we have a tensor functor

F : Rep-G→ VectH (X).

Ignoring theH -action, we obtain a torsorP → X. But now the pullbacksP×X,hX

are all isomorphic because the original bundles were H -bundles.

3. Root Stacks

In this section we recall some constructions from [4].
We shall implicitly make use of the following fact throughout this section: giv-

ing a morphism from a scheme S to the quotient stack [Ak/Gk
m] is the same as

giving a tuple (L i, si)ki=1 of line bundles L i on S and sections si ∈ �(S, L i ); see
[4, Lemma 2.1.1].

Given a k-tuple �r = (r1, . . . , rk) of positive integers, there is a morphism of quo-
tient stacks

θ�r : [Ak/Gk
m] → [Ak/Gk

m]

induced by the morphism

Ak → Ak,

(x1, . . . , xk) 
→ (x
r1
1 , . . . , xrkk ).

Definition 3.1. Let D = (D1, . . . ,Dk) be a k-tuple of effective Cartier divisors
on a scheme S. These data define a morphism S → [Ak/Gk

m]. Define the root
stack SD,�r to be
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SD,�r = S ×[Ak/Gk
m],θ�r [Ak/Gk

m].

Remark 3.2. Let f : T → S be a morphism. A lift of f to a T -point of SD,�r is
the same as giving

(M1, . . . ,Mk , t1, . . . , tk ,φ1, . . . ,φk);
here the Mi are line bundles on T, the φi are isomorphisms Mri

i
∼−→ f ∗O(Di), and

the ti are global sections of Mi such that

φi(t
ri
i ) = sDi

,

where sDi
denotes the tautological section of O(Di) vanishing along Di.

Proposition 3.3. Let Y be a smooth projective curve with an action of a finite
group G. Let ψ : Y → Y/G = X be the projection, and assume that the action is
generically free. Let the ramification divisor of ψ be p1+ · · · + pk with ramifi-
cation indices r1, . . . , rk. Set D = (p1, . . . ,pk) and �r = (r1, . . . , rk). Then

[Y/G] ∼−→XD,�r .

Proof. Let π : XD,�r → X be the canonical morphism, and write

ψ∗(pi) = riDi.

Then the Di produce a G-equivariant morphism

α : Y → XD,�r .

Hence the question of whether we have an isomorphism is a local one.
We consider an open affine SpecA ⊂ X with preimage SpecB ⊂ Y. We may

assume that p1 ∈ SpecA and pi /∈ SpecA for i > 1. Let sp1 be a parameter at p1.

Then π−1(SpecA) is the quotient stack

[Spec(A[t]/(t r1 − sp1))/µr1 ]

(see [4, Exam. 2.4.1]). We have the diagram

Ỹ
��

��

Y

��

Spec(A[t]/(t r1 − sp1))
�� X ,

where Ỹ is the normalization of Y restricted to Spec(A[t]/(t r1 − sp1)). By
Abhyankar’s lemma, Ỹ is a G-torsor and so we obtain a morphism

Spec(A[t]/(t r1 − sp1))→ [Y/G].

Because the torsor Ỹ has aµr -action, we see that this morphism gives the morphism

β : [Spec(A[t]/(t r1 − sp1))/µr1 ] → [Y/G].

Now we need only show that α · β and β · α are automorphisms, and this is easily
checked.



204 Ajneet Dhillon & Sheldon Joyner

Consider a pair (D, �r ) with D = (n1p1, . . . , nkpk) and �r = (r1, . . . , rk). We define

(D, �r )red =
(
(p1, . . . ,pk),

(
r1

d1
, . . . ,

rk

dk

))
,

where di = gcd(ni, ri).

Proposition 3.4. There is a morphism

X(D,�r)red → X(D,�r).

Proof. Consider a scheme f : S → X. A lift of f to a point of X(D,�r)red corre-
sponds to the tuple

(M1, . . . ,Mk , t1, . . . , tk ,φ1, . . . ,φk),

where the Mi are line bundles, with global sections ti and isomorphisms

φi : Mri/di
i

∼−→ f ∗OX(pi), φit
ri/di
i = spi .

Here spi is a section vanishing at pi.

Now, by [4, Rem. 2.2.2], the lifting of a morphism of stacks X(D,�r)red → X to
X(D,�r) is similar to the lifting of a morphism of schemes in that it entails the same
data as given in Remark 3.2. Observe that

M
ni/di
i , t ni/dii , φni

i

give the data of a morphism to X(D,�r).

Proposition 3.5. We work in the situation of Proposition 3.3. Suppose that

[Y/G] = X(D,�r).

Consider f : Z → X with Z a smooth projective curve. Denote by f̃ ∗Y the nor-
malization of the fibered product

Z ×X Y.

Then [
f̃ ∗Y/G

] = Z(f ∗D,�r)red .

Proof. By the proof of Proposition 3.3, this result will follow once we have com-
puted the ramification indices of the morphism

f̃ ∗Y → Z.

Infinitesimally locally, the morphism Y → X is of the form y 
→ y n and the
morphism Z → X is of the form z 
→ zm. The pullback is the high-order cusp
y n = zm, which has d = gcd(n,m) branches in its resolution; a local calculation
then gives the result.

We shall later need the following result.

Proposition 3.6. Every vector bundle on X(D,�r) is locally a direct sum of line
bundles. Furthermore, if X = Spec(R) with R local, then Pic(Xp,r ) is cyclic of
order r and is generated by the canonical root line bundle.
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Proof. See [3, Prop. 3.12] and its proof.

Notation 3.7. We will denote the canonical root line bundles on X(D,�r) by

N1, . . . , Nk.

4. Parabolic Bundles

LetD = n1p1+· · ·+nkpk be an effective divisor onX withpi �= pj for i �= j and
ni ≥ 0. We denote by D the tuple (n1p1, n2p2, . . . , nkpk). Fix a tuple of integers
�r = (r1, . . . , rk) with ri ≥ 1. The set

1

r1
Z× · · · × 1

rk
Z

has a natural partial ordering with(
x1

r1
, . . . ,

xk

rk

)
≤

(
y1

r1
, . . . ,

yk

rk

)
if and only if

xi

ri
≤ yi

ri

for all i. We shall often denote the poset

1

r1
Z× · · · × 1

rk
Z

by
1

�r Z.

If �α = (α1, . . . ,αk) ∈ 1
�r Z , then there is a natural shift functor [�α] on the category

of functors (
1

r1
Z× · · · × 1

rk
Z

)op

→ Vect(X)

given by precomposition with the addition functor

+�α :
1

�r Z→ 1

�r Z.

Definition 4.1. A parabolic bundle supported on D with �r-divisible weights is
a functor

F• :

(
1

r1
Z× · · · × 1

rk
Z

)op

→ Vect(X)

with natural isomorphisms

jF•,i
: F• ⊗O(−nipi)

∼−→F• [0, . . . , 0,1, 0, . . . , 0]

(with 1 in the ith position) that make the following diagram commute:
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F•(−nipi) ��

�����
���

���
�

F• [0, . . . , 0,1, 0, . . . , 0]

���������������

F• .

These data are required to satisfy the following axioms.

(i) If αi ≤ α ′i ≤ αi + 1 for all i, then coker(F�α ′ ↪→ F�α) is a locally free OD-
module; here �α = (α1, . . . ,αk) and �α ′ = (α ′1, . . . ,α ′k).

(ii) For every �α = (α1, . . . ,αk) ∈ 1
�r Z we have that F�α is the fibered product of

F(
α1�,...,
αi−1�,αi,
αi+1�,...,
αk�) over F(
α1�,...,
αk�); that is,

F�α = ×
F(
α1�, . . .,
αk�)

F(
α1�,...,
αi−1�,αi,
αi+1�,...,
αk�).

When the context is clear, we write jF•,i
= ji . The morphisms making up the

functor
F �β → F�α , �α ≤ �β,

are necessarily injective, so the second axiom merely asserts that

F�α =
⋂

F(0,...,0,αi,0,...,0)

when αi > 0 and the intersection is as submodules of F(0,0,...,0).

Remark 4.2. When the underlying divisor is reduced, this definition is equivalent
to the original one of Mehta and Seshadri in [7]. In other words, a Mehta–Seshadri
parabolic bundle with �r-divisible weights and parabolic structure along D consists
of a vector bundle E and, for each pi, a filtration of

Enipi := Epi ⊗OX,pi /m
ni
pi

given by

Enipi = F1,i(Enipi ) � · · · � Fmpi,i
(Enipi ) � Fmpi+1,i(Enipi ) = 0

and rational numbers (αi,j )1≤j≤mpi
of the form l/ri satisfying

0 ≤ αi,1 < · · · < αi,mpi
< 1,

subject to the condition that

Fj,i(Enipi )/Fj+1,i(Enipi )

is locally free as modules over OX,pi/m
ni
pi
.

Let F• be a parabolic bundle as in Definition 4.1. The quotients

F(0,...,0,l/ri,0,...,0)/F(0,...,0,1,0,...,0)

for 0 ≤ l/ri < 1 define a filtration

F1,i(F•) � F2,i(F•) � · · · � Fni,i(F•) � 0

of F(0,...,0)/F(0,...,0,1,0,...,0) = F(0,...,0) ⊗ O(−nipi). We attach weights αi,j to
Fj,i(F•) by setting αi,j = l/ri, where l is maximal such that
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Fj,i(F•) = F(0,...,0,l/ri,0,...,0)/F(0,...,0,1,0,...,0).

This process is clearly reversible.

Definition 4.3. A morphism of parabolic bundles is a natural transformation

φ : F• → F ′
•

such that the following diagram commutes:

F•(−nipi)
∼ ��

��

F• [0, . . . , 0,1, 0, . . . , 0]

��

F ′
• (−nipi)

∼ �� F ′
• [0, . . . , 0,1, 0, . . . , 0].

Denote by Vectpar(D, �r ) the category of �r-divisible parabolic bundles with para-
bolic structure along D. By modifying constructions and arguments given in [11],
it is possible to endow this category with the structure of a rigid tensor category.
This entails defining a suitable tensor product and internal Hom, which we de-
scribe next.

We have an addition bifunctor

+ :

(
1

�r Z

)op

×
(

1

�r Z

)op

→
(

1

�r Z

)op

.

Definition 4.4. Let E• , F• , and P• be parabolic bundles. Then there is a functor

2E• ⊕ F• :

(
1

�r Z

)op

×
(

1

�r Z

)op

→ Vect(X).

A bilinear morphism from E• and F• to P• is a natural transformation

η : E• ⊕ F• → P• � +
such that, for every local section f ∈F�α (resp., e ∈E �α), there is a parabolic mor-
phism induced from η:

E• → P[�α]• (resp., F• → P[�α]•).

As before, let �α denote (α1, . . . ,αk) and similarly for �β and �γ.
Definition 4.5. Given parabolic bundles E• and F• in Ob(Vectpar(D, �r )), define
a functor

(E• ⊗ F•)• :

(
1

�r Z

)op

→ Vect(X)

by setting

(E• ⊗ F•) �α :=
(⊕

β+γ=α E �β ⊗OX
F �γ

)
R �α

,

where R �α is the OX submodule of the direct sum, which is locally generated by
the sections

[E•(
�β → �β ′)]x ⊗ y − x ⊗ [F•( �γ ′ → �γ )]y
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for any �β + �γ = �β ′ + �γ ′ = �α. Here x ∈ E �β and y ∈ F �γ ′ ; [E•(
�β → �β ′)] denotes

the morphism in Vect(X), which is the image of the morphism �β → �β ′ in (
1
�r Z

)op

under the functor E• (and similarly for [F•( �γ ′ → �γ )]); and

x − j
�β, �γ
i x

for i = 1, . . . , k, where j
�β, �γ
i denotes the morphism

(1⊗ jF•,i
( �γ )) � (jE•,i

( �β − (0, . . . , 0,1, 0, . . . , 0))−1⊗ 1)

mapping

E �β ⊗ F �γ → E(β1,...,βi−1,βi−1,βi+1,...,βk) ⊗O(−nipi)⊗ F �γ
→ E(β1,...,βi−1,βi−1,βi+1,...,βk) ⊗ F(γ1,...,γi−1,γi+1,γi+1,...,γk).

Also define the morphism ψ
�α, �α ′
(E⊗F )•

:= (E ⊗ F )•(�α → �α ′) from (E ⊗ F ) �α to
(E ⊗ F ) �α ′ in Vect(X) by specifying, for local sections x ∈ E �β and y ∈ F �γ with
�β + �γ = �α, that

ψ
�α, �α ′
(E⊗F )•

(x ⊗ y modR �α) = ([E•(
�β → �α ′ − �γ )]x)⊗ y modR �α ′

= x ⊗ ([F•( �γ → �α ′ − �β)]y) modR �α ′ .

It is now possible to define, for each i, the isomorphism ji associated to the functor
(E ⊗ F )• as follows. For i = 1, . . . , k, consider

J i
�α :=

⊕
�γ
(1⊗ jF•,i

( �γ ))
mapping⊕

�γ
E(�α− �γ ) ⊗ F �γ ⊗O(−nipi)→

⊕
�γ

E(�α− �γ ) ⊗ F(γ1,...,γi−1,γi+1,γi+1,...,γk).

Then J i
�α(R �α ⊗ O(−nipi)) = R(α1,...,αi+1,...,αk). Hence J i

• descends to the quo-
tient, and we denote this morphism j(E•⊗F•)•,i

.

Lemma 4.6. With these data, (E• ⊗ F•)• is a parabolic bundle with a bilinear
morphism

E• ⊕ F• → (E• ⊗ F•)• � +
that is universal for all bilinear morphisms.

Proof. It is easy to check that ((E• ⊗ F•)• , j(E•⊗F•)•,i
)∈Ob(Vectpar(D, �r )).

To see the universal property, observe (as in [11]) that the canonical maps

f�α, �β : E�α ⊗OX
F �β → (E• ⊗ F•) �α+ �β

determine a canonical bilinear morphism

f•,• : E• ⊕ F• → (E• ⊗ F•)• � +
of E• and F• to (E• ⊗ F•)• via the morphisms f•, �β : E• → (E• ⊗ F•)[ �β]• and
f�α,• : F• → (E•⊗F•)[�α]• defined, respectively, for each fixed local section b ∈F �β
and a ∈ E�α. Since the latter morphisms are canonical embeddings, it follows that
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any bilinear morphism of E• and F• to some parabolic bundle P• factors uniquely
through (E• ⊗ F•)• � +.
Definition 4.7. Given parabolic bundles E• and F• in Ob(Vectpar(D, �r )), define
a functor

Hom(E• , F•)• :

(
1

�r Z

)op

→ Vect(X)

by setting
Hom(E• , F•) �α := Hom(E• , F [�α]•),

the (vector bundle of ) natural transformations from the functor E• to the shifted
functor F [�α]•. The morphism �α → �β in

(
1
�r Z

)op
induces a natural transforma-

tion of F [�α]• to F [ �β]• (i.e., the shift [ �β − �α]) and thereby induces the natural
transformation

Hom(E• , F•) �α → Hom(E• , F•) �β ,

which we regard as the image of �α→ �β under the functor Hom(E• , F•)•.

Lemma 4.8. For a given D and �r, the bundle category Vectpar(D, �r ) (with the ten-
sor product and internal Hom as in Definitions 4.5 and 4.7, respectively) is a rigid
tensor category.

Proof. This follows from the same arguments used to prove Lemmas 3.5 and 3.6
(eq. (3.2)) in [11], modified to accord with our definitions.

An alternative description of the tensor product was given in [1]. This comes in
handy for computations, so for later use we formulate it here. The definition hinges
on the embedding τ : X \D→ X.

Definition 4.9. The BBN tensor of the parabolic bundles E• and F• is the functor

(E• ⊗ F•)
BBN
• :

(
1

�r Z

)op

→ Vect(X)

sending �α to the subsheaf of τ∗τ ∗(E•⊗F•) generated by (the canonical images of )
E �β ⊗ F �γ for all �β + �γ = �α.
Because E• and F• are parabolic, the requisite axioms are automatically satisfied.
To show that the BBN tensor gives a parabolic bundle, one need only prove the
existence of isomorphisms ji . Instead, we prove the following statement.

Lemma 4.10. For any �α ∈ (
1
�r Z

)op
and any parabolic bundles E• and F• ,

(E• ⊗ F•) �α � (E• ⊗ F•)
BBN
�α .

Proof. Any bundle E �β⊗F �γ with �β+ �γ = �α maps into τ∗τ ∗(E•⊗F•) and so yields
a mapping

φ :
⊕
�β+ �γ=�α

E �β ⊗ F �γ → (E• ⊗ F•)
BBN
α ,

which by construction is a surjection. We leave it to the reader to show that
R �α = kerφ.
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We define a parabolic bundle OX• :
(

1
�r Z

)op → Vect(X) by setting

OX(0,...,0) = OX

OX(0,...,0,t,0,...,0) = OX(−npi) for t ∈ (0,1].

It is easily seen that this bundle is a unit for the tensor product.

5. The Parabolic–Orbifold Correspondence

Recall that N1, . . . , Nk denote the canonical line bundles on XD,�r that are roots of
O(nipi). Following [2] and [3], we now define a functor

FD,�r : Vect(XD,�r )→ Vectpar(D, �r ),

F 
→
[(

l1

r1
, . . . ,

lk

rk

)

→ π∗(N −l1

1 ⊗ · · · ⊗N −lk
k ⊗ F )

]
.

Remark 5.1. This functor is actually a tensor functor, where the tensor product
in the category of parabolic bundles is defined as in Section 4. In proving this we
use the description of the tensor product in [1]. Given two vector bundles F1 and
F2, we need to show that the two parabolic bundles F(F1⊗F2) and F(F1)⊗F(F2)

are isomorphic. Away from the support of D, the stack XD,�r is isomorphic to the
curveX; hence both of these bundles are subbundles of τ∗τ ∗(F(F1)⊗F(F2)). We
must establish that they are the same subbundle. This problem is local, so we re-
duce to the case of one parabolic point and Fi = N ai. This is now easily checked.

The main result of this section is our next theorem.

Theorem 5.2. The functor FD,�r is an equivalence of categories.

Proof. The proof given here is entirely analogous to the one given in [3].
We start with a canonical isomorphism

π∗Oα(nipi)→ N αri
i

and a section
s ∈�(XD,�r , Ni ).

By adjointness, this produces the canonical morphism

O(nipi)

l/ri� → π∗(N l

i ). (∗)
Proposition 5.3. The morphism (∗) is an isomorphism.

Proof. See [3, 3.11].

Before proceeding, we recall the notion of a universal wedge in category theory.
Let B and C be categories and consider a functor F : Bop×B → C. A wedge of F
is an object x of C and a collection of morphisms ai : F(i, i)→ x that are dinat-
ural ; in other words, for every morphism f : i → j in B, the following diagram
commutes:
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F(i, i)

ai

����
��

��
��

��

F(j, i)

F(f op,1)
������������

F(1,f )

������������
x

F(j, j).

aj

������������

A smallest such wedge is called a universal wedge. If it exists we will denote it
by

∫ I
F(I, I ).

Proposition 5.4. Let F• ∈Vectpar(D, �r ). The universal wedge∫ (1/�r)Z
N l1

1 ⊗ · · · ⊗N lk
k ⊗ π∗F(l1/r1,...,lk/rk)

exists in Vect(X(D,�r)).

Proof. The problem is local because wedges are colimits, and proof in the local
case has been given in [3].

We use GD,�r to denote the functor arising from Proposition 5.4.

Proposition 5.5. Let F ∈Vect(XD,�r ). The natural map

N l1
1 ⊗ · · · ⊗N lk

k ⊗ π∗π∗(N −l1
1 ⊗ · · · ⊗N −lk

k ⊗ F )→ F
is dinatural in (l1, . . . , lk).

Proof. The morphism in question is derived by tensoring the counit of adjunction,

π∗π∗(N −l1
1 ⊗ · · · ⊗N −lk

k ⊗ F )→ N −l1
1 ⊗ · · · ⊗N −lk

k ⊗ F.
It is relatively straightforward to show that the resulting morphism is dinatural.
The details are spelled out in [3, Lemma 3.18].

Corollary 5.6.
GD,�r � FD,�r � 1.

Proof. By the proposition, there exists a natural transformation

GD,�r � FD,�r → 1.

To show that it is an isomorphism, we may argue locally. This argument can be
found in [3, p. 18].

Finally, we need to show that

FD,�r �GD,�r � 1.
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We have

π∗
(

N −m1
1 ⊗ · · · ⊗N −mk

k ⊗
∫

N l1
1 ⊗ · · · ⊗N lk

k ⊗ π∗F(l1/r1,...,lk/rk)

)

� π∗
(∫

N l1−m1
1 ⊗ · · · ⊗N lk−mk

k ⊗ π∗F(l1/r1,...,lk/rk)

)

�
∫

π∗(N l1−m1
1 ⊗ · · · ⊗N lk−mk

k ⊗ π∗F(l1/r1,...,lk/rk)) (π∗ is exact)

�
∫

π∗(N l1−m1
1 ⊗ · · · ⊗N lk−mk

k )⊗ F(l1/r1,...,lk/rk) (projection formula)

�
∫

O(n1p1)

(l1−m1)/r1� ⊗ · · · ⊗O(nkpk)


(lk−mk)/rk� ⊗ F(l1/r1,...,lk/rk)

�
∫

F(l1/r1−
(l1−m1)/r1�,...,lk/rk−
(lk−mk)/rk�)

� F(m1/r1,...,mk/rk),

completing the proof of Theorem 5.2.

6. The Parabolic Pullback

Consider a morphism f : Y → X of smooth projective curves. We obtain a
diagram

Yf ∗D,�r
g

��

πY

��

XD,�r

πX

��

Y
f

�� X ,

and there are associated equivalences of categories

FX
D,�r : Vect(XD,�r )→ Vectpar(D, �r )

and
FY

D,�r : Vect(YD,�r )→ Vectpar(D, �r ).
There is also an obvious pullback functor:

f ∗ : Vectpar(D, �r )→ Vectpar(f
∗D, �r ).

Proposition 6.1. We have f ∗ � FX
D,�r = FY

f ∗D,�r � g∗.
Proof. The identity follows by flat base change.

In what follows, we will frequently apply the correspondence described in Re-
mark 4.2.

Set �r = (r1, . . . , rk), D = (n1p1, . . . , nkpk), and �n = (n1, . . . , nk). Consider
an �r-divisible parabolic bundle F• with parabolic structure along D. Using Re-
mark 4.2 then yields the filtration

Fi,1 ⊃ · · · ⊃ Fi,mi
⊃ Fi,mi+1 = 0
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and weights

0 ≤ αi,1 = si1

ri
< · · · < αi,mi

= simi

ri
< 1.

Write nisij = aij ri + eij with 0 ≤ eij < ri. We also denote by Fij the preimage of
Fij in F(0,0,...,0). For x ∈ 1

ri
Z∩[0, 1) define a subsheafWx

ij (F•) of F(0,...,0)(nipi) by

Wx
ij (F•) =

{ F(0,...,0)(aijpi)+ Fi,j+1(nipi) if x ≤ eij/ri,

F(0,...,0)((aij − 1)pi)+ Fi,j+1(nipi) otherwise.

We have a subsheaf
F x
i =

⋂
j

W x
ij (F•)

of F(0,...,0)(nipi).

When x ≥ 0, we construct subsheaves �n√F•(0,...,0,x,0,...,0) of

F(0,...,0)(n1p1+ · · · + nkpk)

by setting

�n√F•(0,...,0,x,0,...,0) =
(⋂

j

W x
ij (F•)

)
+

∑
i �=k

F 0
k = F x

i +
∑
i �=k

F 0
k ,

where the nonzero entry of the tuple is in the ith position. If ai(j+1) = aij then
ei,j+1 > eij ; hence x ≤ y implies

�n√F•(0,...,0,x,0,...,0) ⊇ �n√F•(0,...,0,y,0,...,0).

This result extends uniquely to a parabolic bundle

�n√F••
:

(
1

�r Z

)op

→ Vect(X).

Setting �r
�d =

( r1
d1

, . . . , rk
dk

)
for di = gcd(ri, ni), we see that this parabolic bundle is

really �r
�d -divisible!

Set Dred = (p1, . . . ,pk). We have the diagram

X(Dred,�r/ �d )
α ��

π
�����������

X(D,�r)

πn
		��

��
��

��

X

as well as the associated equivalences

F : Vect(XDred,�r/ �d)
��



 Vectpar(Dred, �r/ �d) :G

and
Fn : Vect(XD,�r ) ��



 Vectpar(D, �r ) :Gn.

The balance of this section will be devoted to proving that, for a vector bun-
dle F on X(D,�r),

�n√Fn(F ) ∼= F(α∗(F )).
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In order to motivate the proof and to explicate our definition, we compute some
examples.

Example 6.2. Assume that there is only one parabolic point p with parabolic di-
visor np having r-divisable weights, and set d = gcd(r, n). Consider the root line
bundle N w with 0 < w < r on Xnp,r . A calculation shows that

Fn(N w) :
l

r

→ O(np)
(w−l )/r�,

F(α∗N w) :
dl

r

→ O(p)
(nw−dl)/r�.

We begin our computation of n
√

Fn(N w) by writing wn = ar + e. The filtration
of Fn(N w)0 is then given by

F1 = O, F2 = O(−np),
and the weight of F1 is w/r. Therefore,

Wx
1 =

{ O(ap), 0 ≤ x ≤ e/r,

O((a − 1)p), e/r < x < 1
and so (

n
√

Fn(N w)
)
x
=

{ O(ap), 0 ≤ x ≤ e/r,

O((a − 1)p), e/r < x < 1,

which agrees with F(α∗N w).

Now we compute a rank-2 example. Consider the bundle

N w1 ⊕N w2

with 0 < w1 < w2 < r. A calculation shows that

Fn(N w1 ⊕N w2) :
l

r

→ O(np)
(w1−l )/r� ⊕O(np)
(w2−l )/r�,

F(α∗(N w1 ⊕N w2)) :
dl

r

→ O(p)
(nw1−dl)/r� ⊕O(np)
(nw2−dl)/r�.

To compute n
√

Fn(N w1
n ⊕N w2), we write wjn = aj r + ej . The filtration of

Fn(N w)0 is given by

F1 = O ⊕O,

F2 = O(−np)⊕O,

F3 = O(−np)⊕O(−np),
and the weight of Fj is wj/r when j = 1, 2. Hence

Wx
1 =

{ O(a1p)⊕O(np), 0 ≤ x ≤ e1/r,

O((a1− 1)p)⊕O(np), e1/r < x < 1
and

Wx
2 =

{ O(a2p)⊕O(a2p), 0 ≤ x ≤ e2/r,

O((a2 − 1)p)⊕O((a2 − 1)p), e2/r < x < 1.
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Notice that a1 ≤ a2 and equality implies e1 < e2. Thus n
√

Fα∗(N w1 ⊕N w2)

agrees with F(α∗N w).

Proposition 6.3. Let F be a vector bundle onXD,�r . Then we have the canonical
inclusion

π∗α∗F ⊂ πn∗F(n1p1+ · · · + nkpk).

Proof. We denote the canonical line bundles on XD,�r by

N1,�n, N2,�n, . . . , Nk,�n.
We have the diagram

α∗α∗F �� α∗α∗(F ⊗N r1
n1
⊗ · · · ⊗N rk

nk
)

F ��
�

��

F ⊗N r1
1,�n ⊗ · · · ⊗N rk

k,�n ,
�

��

and we apply π�n,∗ to obtain the diagram

π∗α∗F λ �� π∗α∗(F ⊗N r1
n1
⊗ · · · ⊗N rk

nk
)

π�n,∗F ��
�

��

π�n,∗F(n1p1+ n2p2 + · · · + nkpk).
�

µ

��

The problem is now local and is easily checked.

Theorem 6.4. We have

�n√(FnF )••
� (Fα∗F )•.

Proof. We use Remark 4.2. Both sides are then subbundles of FnF•(n1p1+ · · · +
nkpk), so the problem is once again local. We may assume that there is only one
parabolic point. Applying Proposition 3.6 and Theorem 5.2, we can assume that
(FnF )• is of the form

l

r

→ (O(p)n
(w1−l )/r�)⊕ρ1 ⊕ · · · ⊕ (O(p)n
(wk−l )/r�)⊕ρk

with 0 ≤ w1 < w2 < · · · < wk < r. Pulling back root line bundles along the
morphism

α : Xp,r/d → Xnp,r

yields α∗(Nn) = N (n/d )

1 , where d = gcd(r, n). By Proposition 5.3, (Fα∗F )• is
the parabolic bundle

l

r

→ (O(p)
(nw1−l )/r�)⊕ρ1 ⊕ · · · ⊕ (O(p)
(nwk−l )/r�)⊕ρk .

In order to evaluate �n√(FnF )••
, we first compute the value at l = 0 (one can de-

duce the general result by shifting weights). Thus,
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W 0
1 ((FnF )•) = (O(p)
nw1/r�)⊕ρ1 ⊕O(np)⊕ρ3 ⊕ · · · ⊕O(np)⊕ρk,

W 0
2 ((FnF )•) = (O(p)
nw2/r�)⊕ρ1 ⊕ (O(p)
nw2/r�)⊕ρ2

⊕O(np)⊕ρ4 ⊕ · · · ⊕O(np)⊕ρk,
...

and taking the intersection yields⋂
W 0
j = (O(p)
nw1/r�)⊕ρ1 ⊕ · · · ⊕ (O(p)
nwk/r�)⊕ρk,

which is what was needed.

7. The Cyclic Case

Given a 1-dimensional representation V of Z/cZ , we call the integer j (0 ≤ j ≤
c− 1) the weight of the representation if the generator 1+ cZ acts via multiplica-
tion by exp

{
2πj
√−1/c

}
.

Let q : X → Y be a G-cover that is ramified at points p1, . . . ,pk of Y. Let the
ramification index at pi be ri, and set �r = (r1, . . . , rk) and D = (p1, . . . ,pk). By
combining the results of Corollary 2.6, Proposition 3.3, and Theorem 5.2, we may
view the cover as a tensor functor

Fq : Rep-G→ Vectpar(Y, D, �r ).
If we choose preimages qi ∈X of the pi, we obtain cyclic subgroups Z/riZ of

G that correspond to the stabilizers of qi. We canonically identify the stabilizer
with Z/riZ by insisting that the stabilizer act on the fiber of the sheaf O(−qi) at
qi with weight 1.

Fix an irreducible representation V of G. At each point pi, we have a weight
space decomposition of

V =
⊕
j

W i
j

derived from the induced action of the stabilizers Z/riZ. The spacesWi
j are repre-

sentations of Z/riZ , and the generator of the group Z/riZ acts via multiplication by
exp

{
2πj
√−1/ri

}
. The numbers j do not depend upon the choice of preimage qi.

Proposition 7.1. In the terminology of Remark 4.2, the weights of the Fq(V )•
at pi are j/ri . In other words, consider tuples

I =
(

0, . . . , 0,
j

ri
ith

, 0, . . . , 0

)
, I ′ =

(
0, . . . , 0,

j + 1

ri
ith

, 0, . . . , 0

)
.

Then
Fq(V )I = Fq(V )I ′

if and only if Wi
j = 0.
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Proof. By Proposition 3.3 we have the diagram

X ��

π ′

����
��

��
��

� [X/G] ∼ ��

π

��

Y(D,�r)

Y .

If E is a G-equivariant bundle on X that is the pullback of some Ẽ on [X/G], then
π∗(Ẽ ) = π ′∗(E )G. Set Di = π∗(pi)red. Hence

π∗(N l1
1 ⊗ · · · ⊗N lk

k ⊗ Ẽ ) = π ′∗(O(l1D1)⊗ · · · ⊗O(lkDk)⊗ E )G.
The problem is now local. In formal neighborhoods of qi and pi, the morphism
comes from a morphism of algebras of the form

k[[t]] → k[[s]],

t 
→ sri.

The group action is via multiplication by roots of unity. Computing invariants
gives the result.

Denote by Fm a free group on the symbols x1, . . . , xm. Consider the surjection
q : Fm � Z/cZ that sends xi 
→ 1. There is an associated cover Xq → P1 that
is possibly ramified at {p1, . . . ,pm} ∪ {∞} for some pi ∈ P1 \ {∞}. Set �c =(
c, . . . , c, c

gcd{c, m}
) ∈ Zm+1, D = (p1, . . . ,pm,∞), and D = p1 + · · · + pm +∞.

For the rest of this section,Vj will denote the1-dimensional representation of Z/cZ
where 1+ cZ acts via multiplication by exp

{
2πj
√−1/c

}
. Set

FXq
(Vj )(0,...,0) =: O(sj ),

where sj is some integer. Also, let wj denote the rational number in [0, 1) that
differs from −mj

c
by an integer.

The purpose of this section is to describe the functor FXq
. Toward this end, in

Proposition 7.1 take X = Xq , Y = P1, G = Z/cZ , k = m + 1, Dj = pj for 1 ≤
j ≤ m, Dm+1 = ∞, and Fq(Vj ) = FXq

(Vj )•. This gives the following result.

Corollary 7.2. Let t = a
gcd(m,c)

and suppose 0 ≤ t ≤ wj . Then

FXq
(Vj )(0,...,0,t) = O(sj )

and
FXq

(Vj )(0,...,0,wj+gcd(m,c)/c) = O(sj )(−∞).

Moreover, if the nonzero entry of the tuple is at the ith position for 1 ≤ i ≤ m,
then

FXq
(Vj )(0,...,0,(j+1)/c,0,...,0) = O(sj )(−pi)

but
FXq

(Vj )(0,...,0,j/c,0,...,0) = O(sj ).

Let δij denote the Kronecker delta function.



218 Ajneet Dhillon & Sheldon Joyner

Lemma 7.3. If 1 ≤ w1+ wj , then

(FXq
(V1)• ⊗ FXq

(Vj )•)(0,...,0) = O(s1+ sj + 1+mδc−1,j );
otherwise,

(FXq
(V1)• ⊗ FXq

(Vj )•)(0,...,0) = O(s1+ sj +mδc−1,j ).

Proof. Consider t ∈ gcd(m, c)
c

Z and set

�t = (0, . . . , 0, t).

Write t = n+ f , where f ∈ [0, 1). We compute

(FXq
(V1)�t ⊗ FXq

(Vj )−�t ).
The possibilities are

(FXq
(V1)�t ⊗ FXq

(Vj )−�t ) =




O(s1+ sj + 1),

O(s1+ sj ),

O(s1+ sj − 1),

O(s1+ sj − 2).

We are interested in when the first possibility occurs. The second occurs at t = 0
and so, when we take the sheaf generated by all possible tensor products, the value
will be at least this sheaf.

Suppose that 1≤ w1+ wj , and take t = 1− wj . Then

FXq
(Vj )−�t = O(sj + 1)

and
FXq

(V1)�t = O(s1).

Conversely, suppose that

(FXq
(V1)�t ⊗ FXq

(Vj )−�t ) = O(s1+ sj + 1);
then either

w1− 1≤ wj − 1 < w1 ≤ wj

or
wj − 1≤ w1− 1 < wj ≤ w1.

We conclude that −f ≤ wj − 1 and f ≤ w1 or we must have −f ≤ w1− 1 and
f ≤ wj . Hence there is a t for which

(FXq
(V1)�t ⊗ FXq

(Vj )−�t ) = O(s1+ sj + 1)

if and only if w1+ wj ≥ 1.
Now we turn our attention to the other parabolic points. We preserve the previ-

ous notation except to set

�t = (0, . . . , 0, t, 0, . . . , 0),

where now t ∈ 1
c
Z. We have the chain of inequalities

1

c
− 1≤ j

c
− 1 <

1

c
≤ j

c
.
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Suppose first that j < c − 1. If −f ≤ j

c
− 1 then f ≥ 1− j

c
> 1

c
, and if −f =

1
c
− 1 then f >

j

c
. It follows that

(FXq
(V1)�t ⊗ FXq

(Vj )−�t ) = O(s1+ sj ).

When j < c − 1, the result follows by putting this together.
Now fix j = c − 1. Set

�u = (u1, . . . , um, um+1),

where ui ∈ 1
c
Z for 1 ≤ i ≤ m and um+1 ∈ gcd(m, c)

c
, and write ui = ni + fi for

fi ∈ [0, 1).
When we compute

FXq
(V1)�u ⊗ FXq

(Vc−1)−�u
the possibilities are

O(s1+ sc−1+ g(�u)),
where g(�u) ranges over all integers from −2 to m+1. Indeed, as before, the par-
abolic point at infinity gives at most a contribution of +1 to g(�u) and at least −2
while each finite parabolic point contributes either 0 or +1.

At the same time,

FXq
(V1)(1/c,...,1/c,0) ⊗ FXq

(Vc−1)(−1/c,...,−1/c,0) = O(s1+ sc−1+m).

This means that

(FXq
(V1)• ⊗ FXq

(Vc−1)•)(0,...,0) ⊇ O(s1+ sc−1+m)

by the definition of parabolic tensor product. Therefore, we need only determine
when g(�u) = m+ 1.

Suppose that 1≤ w1+ wc−1. Then, if �u = (
1
c
, . . . , 1

c
,1− wc−1

)
, we have

FXq
(Vc−1)−�u = O(sc−1+m+ 1)

and
FXq

(V1)�u = O(s1).

Conversely, suppose there exists a �u such that

FXq
(V1)�u ⊗ FXq

(Vc−1)−�u = O(s1+ sc−1+m+ 1).

By the same argument as before, this case occurs only when either −fm+1 ≤
wc−1−1 and fm+1 ≤ w1 or−fm+1 ≤ w1−1 and fm+1 ≤ wc−1. Necessarily, then,
w1+ wc−1 ≥ 1.

Remark 7.4. FXq
(Vj )• is the j th parabolic tensor power of FXq

(V1)•. Indeed,
since FXq

is a tensor functor, we must have FXq
(V1)

⊗c
• = FXq

(V ⊗c1 )• = FXq
(V0)• ,

the trivial parabolic bundle. Similarly, FXq
(V1)

⊗l
• = FXq

(Vj )• whenever l ≡ j

modulo c. Therefore, in order to determine FXq
(Vj )• , it suffices to compute s1.

For each j with 1≤ j ≤ c − 1, set

κ(j)m,c =
{

1 if w1+ wj ≥ 1,

0 otherwise
and
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κm,c =
c−1∑
j=1

κ(j)m,c = |{j : 1≤ j ≤ c − 1, w1+ wj ≥ 1}|.

Theorem 7.5. With notation as before,

s1 = −m+ κm,c

c
.

Proof. Applying Lemma 7.3 iteratively along with Remark 7.4, one finds that

O(sc−1) = O((c − 1)s1+ κm,c − κ(c−1)
m,c ).

Next, repeat the calculation once more (in the special case that j = c − 1) to
obtain

O(sc) = O(cs1+ κm,c +m).

The result now follows.

The proof of Theorem 7.5 yields our next corollary.

Corollary 7.6. For 1 ≤ j ≤ c−1, the sj of Corollary 7.2 are given in terms of
s1 by

sj = js1+
j−1∑
i=1

κ(i)m,c = −j
(
m+ κm,c

c

)
+

j−1∑
i=1

κ(i)m,c.

Corollary 7.7. We have s0 = 0 and sj ≤ −1 for j > 0.

Proof. The assertion for s0 is clear. The numbers are necessarily integers and so,
by definition, we have s1 < 0 and hence s1 ≤ −1. The result now follows.

By the preceding computation, κm,c is necessarily congruent to −m modulo c.

This fact may be shown independently as follows.

Lemma 7.8.
κm,c ≡ −m modulo c.

Proof. When m ≡ 0 modulo c, it follows that wj = 0 for all 1 ≤ j ≤ c − 1 and
hence κm,c = 0.

Suppose now that m ≡ −v modulo c for some 0 < v < c. Then w1 = v
c

and,
for j with 1≤ j ≤ c − 1,

wj =




vj

c
0 < vj < c,

...
...

vj−tc
c

tc ≤ vj < (t + 1)c,
...

...

vj−(v−1)c
c

(v − 1)c ≤ vj < vc.

For t with 0 ≤ t ≤ c−1it follows that tc ≤ vj < (t+1)c implies 0 ≤ vj−tc < c.

Now let jt be the largest integer value of j satisfying this inequality. Then
v(jt + 1)− tc ≥ c, so that
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w1+ wjt =
v(1+ jt )− tc

c
≥ 1.

At the same time, for any integer j that satisfies the inequality and that is also less
than jt , we have j + 1≤ jt and necessarily

w1+ wj ≤ vjt − tc

c
< 1.

So among the integers j such that tc ≤ vj < (t + 1)c, there is exactly one with
w1+wj ≥ 1. Since there are exactly v such inequalities, it follows that κm,c = v.

8. Reduction to the Cyclic Case

Suppose that Xq → P1 is a Galois covering with Deck(Xq/P1) = G ramified at
0, 1, and ∞. Let q : F2 � G denote the corresponding surjection and let T =
(0,1,∞). Then, as before, by Corollary 2.6, Proposition 3.3, and Theorem 5.2 the
cover may be viewed as a functor

FXq
: Rep-G→ Vectpar(P

1, T).

Our goal in this section is to produce a bound on the uj for which

FXq
(V )(0,...,0) = O(u1)⊕ · · · ⊕O(uk)

for a fixed V ∈Ob(Rep-G).
The idea is to reduce to the cyclic case by de-looping the ramification at 0 as

follows. Suppose that the ramification index at 0 is m—in other words, that under
the mapping q, the image of the generator of F2 corresponding to a loop about 0
in π1(P1) has order m in G. Form the base change

Xq ×P1 P1 ��

��

Xq

��

P1
z 
→zm

�� P1

and denote the desingularization of Xq ×P1 P1 by Y. Now Y → P1 ramifies at
∞ and the mth roots of unity, µm. Hence Y corresponds to a homomorphism
h : Fm → G, which factors through F2 by mapping the generators of Fm corre-
sponding to each root of unity to the generator σ1 of F2 corresponding to 1. Then
the image of h is generated by q(σ1), which is a cyclic subgroup of G (say, Z/cZ).

We have a decomposition Y = ∐
τ∈G/Im(h) Yτ , where the Yτ are all cyclic cov-

ers. Using our argument at the start of Section 7, we obtain a tensor functor

FY : Rep-G→ Vectpar(P
1, (µm,∞)).

Lemma 8.1. The functor FY factors as

Rep-G
FY ��

��

Vectpar(P1, (µm,∞))

Rep-Z/cZ .

FYe
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Proof. The functors are computed by taking invariants as in the proof of Proposi-
tion 7.1. The result now follows from the disjoint union Y.

We shall need the following statement.

Proposition 8.2. If D = (p1, . . . ,pk) with �r = (r1, . . . , rk) and if D ′ =
(p0,p1, . . . ,pk) with �r ′ = (1, r1, . . . , rk), then there exist natural equivalences
of tensor categories

F′ : Vectpar(D ′, �r ′) ��


 Vectpar(D, �r ) :G′.

Proof. The root stacks XD,�r and XD ′,�r ′ are isomorphic. Now invoke Theorem 5.2.

Remark 8.3. Let ζm denote a primitive mth root of unity. Then, in the notation
of Proposition 8.2, set D = (ζm, ζ2

m, . . . , ζ m−1
m ,1,∞) and �r = (

c, . . . , c, c
gcd(m,c)

)
.

Also take p0 = 0. By Proposition 3.5 and Theorem 6.4, f ∗par(FXq
) = G′FY .

Since G′ is an equivalence of tensor categories, the constants computed in Sec-
tion 7 that pertain to FY are the same as those relating to G′FY .

We denote by κm,c and κ(i)m,c the numbers defined before Theorem 7.5 for the cover
Ye → P1. We will also make use of the notation set up after Proposition 6.1. In
particular, let a1 denote the minimum among the ai1. We also use a0 and a∞ to
denote ai1 for the index i corresponding to the points 0 and∞, respectively.

The representation V, when viewed as a representation of Z/cZ , decomposes
into weight spaces:

V = Vj1 ⊕ · · · ⊕Vjk .

We have
FYe(V )(0,...,0) = O(t1)⊕ · · · ⊕O(tk),

where the ti are as computed in Theorem 7.5 and Corollary 7.6. We may re-index
so that

t1 ≤ t2 ≤ · · · ≤ tk ≤ 0.

The last inequality follows from Corollary 7.7.

Theorem 8.4. With notation as before, consider

FXq
(V )(0,...,0) = O(u1)⊕ · · · ⊕O(uk).

We re-index so that
u1 ≤ u2 ≤ · · · ≤ uk.

Then the uj are bounded above as follows:

uj ≤ tj

m
− a0

m
− a∞

m
.

(Hence, by Corollary 7.7, the uj are negative.)

Proof. We have

f ∗(FXq
(V )(0,...,0)) = O(mu1)⊕ · · · ⊕O(muk).
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With ζm denoting a primitive mth root of unity as before, the curveY ramifies over

p1 = ζm, . . . ,pm = ζ mm = 1, pm+1 = ∞.

By Remark 8.3, the parabolic pullback ofFXq
(V )• also has1-divisibility atp0 := 0.

Now, by the definition of parabolic pullback, f ∗parFXq
(V )(0,...,0) contains the

intersection
⋂

j W
0
ij . Hence

f ∗parFXq
(V )(0,...,0) ⊇ (f ∗(FXq

(V )(0,...,0))(ai1))

because ai1 ≤ aij . Note that

a11 = · · · = am1 = a1.

Therefore,

O(mu1)⊕ · · · ⊕O(muk)
(
a0.0+ a∞.∞+

∑
a1pi

)
� O(mu1+ a0 +ma1+ a∞)⊕ · · · ⊕O(muk + a0 +ma1+ a∞)

⊆ f ∗parFXq
(V )(0,...,0)

= O(t1)⊕ · · · ⊕O(tk).

The result now follows from Lemma 8.5 after we observe that a1 = 0.

Lemma 8.5. If O(s1)⊕ · · · ⊕O(su) ⊆ O(t1)⊕ · · · ⊕O(tu), then there exists a
σ ∈ Su such that sσ(j) ≤ tj for all j with 1 ≤ j ≤ u.

Proof. When u = 1, this is well known. Proceeding by induction, suppose that
the assertion is known to be valid for all u ≤ N − 1. Then consider an injection

φ : O(s1)⊕ · · · ⊕O(sN) ↪→ O(t1)⊕ · · · ⊕O(tN ),

where the sj and tj may be taken to be ordered (i.e., s1 ≤ · · · ≤ sN and t1 ≤ · · · ≤
tN ). Necessarily, sN ≤ tL for some L, but if sN ≤ t1 then we are done. So sup-
pose there exists an i such that ti−1 < sN ≤ ti . For j with i ≤ j ≤ N, consider
the mapping

φj : O(s1)⊕ · · · ⊕O(sN−1)→ O(t1)⊕ · · · ⊕ Ô(tj )⊕ · · · ⊕O(tN )

induced from φ. If there exist j for which φj is injective, then we are done by the
inductive hypothesis. Suppose to the contrary that, for every j, φj is not injec-
tive; then we can show that this implies the original φ could not have been injec-
tive. Indeed, sN > ti−1 implies that, under φ, the restricted morphism O(sN)→
O(t1)⊕ · · · ⊕O(ti−1) is zero.

Passing to the generic point of the curve, we find that the morphism φ is given
by an N ×N matrix whose last row begins with i−1 zero entries. Computing the
determinant of φ by cofactor expansion along this row yields

detφ = 0+ detφi · γi + · · · + detφN · γN
for some constants γj . Hence the morphism at the generic point is not injective.
This is a contradiction, since pullback to the generic point is flat.
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Example 8.6. Denote by Q8 the quaternion group of order 8; it has a 2-dimen-
sional representation given (in terms of matrices) by

i 
→
(√−1 0

0
√−1

)
,

j 
→
(

0 1
−1 0

)
,

k 
→
(

0
√−1√−1 0

)
.

Consider the quotient F2 � Q8 with x0 
→ j and x1 
→ i. Since x1 has a weight-3
eigenspace, it follows that t1 = −3. Both a1 and a∞ are 1, so u1 ≤ −2.

It follows from the lower bound in [3, Thm. 5.12] that u1 must be −2.
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