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Rigidification of Holomorphic Germs
with Noninvertible Differential

Matteo Ruggiero

0. Introduction

Our aim in this paper is to study the structure of noninvertible holomorphic germs
f : (C2, 0) → (C2, 0). We shall consider only dominant holomorphic germs, as
defined next.

Definition 0.1. Let f : (C2, 0) → (C2, 0) be a holomorphic germ. Then f is
dominant if det(dfp) is not identically zero.

In this paper we are particularly interested in the following classes of holomorphic
germs.

Definition 0.2. Let f : (C2, 0)→ (C2, 0) be a holomorphic germ, and denote
by Spec(df0) = {λ1, λ2} the set of eigenvalues of df0. Then f is said to be:

• attracting if |λi | < 1 for i = 1, 2;
• superattracting if df0 = 0;
• nilpotent if df0 is nilpotent (i.e., if df 2

0 = 0; in particular, superattracting germs
are nilpotent germs);

• semi-superattracting if Spec(df0) = {0, λ} with λ �= 0;
• of type (0,D) if Spec(df0) = {0, λ} and λ∈D, where D ⊂ C is a subset of the

complex plane.

In particular, the semi-superattracting germs are the ones of type (0, C∗).

We shall denote by D the open disk of radius 1 centered at 0.
A typical problem one would like to solve is to find a classification up to local

(holomorphic, formal or topological) conjugacy; this problem is mostly solved in
dimension 1, and there are classifications of germs in dimension 2 in only a few
cases. One of these cases is the formal and holomorphic classification of attract-
ing rigid germs proved by Favre [F].

Definition 0.3. Let f : (Cn, 0)→ (Cn, 0) be a (dominant) holomorphic germ.
We denote by C(f ) = {z | det(dfz) = 0} the critical set of f and by C∞(f ) =⋃

n∈N f
−nC(f ) the generalized critical set of f. Then a (dominant) holomorphic

germ f is rigid if:
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(i) C∞(f ) (is empty or) has normal crossings at the origin; and
(ii) C∞(f ) is forward f -invariant.

Remark 0.4. In [F] the condition (ii) is not explicitly stated in the definition of
a rigid germ, but it is implicitly used. The second property does not follow from
the first one: if, for example, we consider the map f(z,w) = (λzp, z(1 + w2))

with p ≥ 1 and λ∈C∗, then the generalized critical set is {zw = 0} but f(z, 0) =
(λzp, z) and hence C∞(f ) is not forward f -invariant.

One way to study the local dynamics of a generic holomorphic germ in (C2, 0) and
to find some invariants up to conjugacy is suggested by continuous local dynamics
(see [IY, Chaps. 1 and 2] for main techniques in continuous local dynamics and
[Sei] for Seidenberg’s theorem): we can blow up the fixed point (the origin), re-
placing the ambient space by a more complicated space but simplifying the map,
and study the lift f̂ of f. But a single blow-up is often not enough, and one is
led to consider a composition of point blow-ups π : X → (C2, 0) over the origin
(called modification).

A clever way to study all modifications at the same time was introduced by Favre
and Jonsson [FJ1]. Take the set of all modifications B; for every π ∈B we can
consider a simplicial graph �∗π whose vertices are the irreducible components of
the exceptional divisor of π (we shall call these vertices exceptional components).
Taking the direct limit of these simplicial graphs, we obtain the (Q-)universal dual
graph �∗, which has a natural Q-tree structure. Since it is easier to work with
R-trees, we can take the completion � of �∗, called the universal dual graph.

Favre and Jonsson also showed that the universal dual graph is strictly related
to the set V of all centered and normalized valuations on the ring of formal power
series in two coordinates: V admits an R-tree structure and is isomorphic (in the
strong sense) to �.

It is this isomorphism, which relates the geometry of exceptional components
to the algebra of valuations, that allows us to define the action f• : V → V on the
valuative tree V induced by a holomorphic germ f : (C2, 0)→ (C2, 0) (see [FJ2]).

Favre and Jonsson [FJ2] studied the dynamical behavior off• whenf : (C2, 0)→
(C2, 0) is superattracting; in particular, they proved that one can find a modifica-
tionπ : X→ (C2, 0) and a pointp ∈π−1(0) such that the lift f̂ : (X,p)→ (X,p)
defined as a birational map by f̂ = π−1 � f � π is actually holomorphic in p and
rigid. This can be done by finding a fixed point ν� for f• (this is called eigen-
valuation) and then studying the basin of attraction around this eigenvaluation.
We shall call this process rigidification.

Definition 0.5. Let f : (C2, 0)→ (C2, 0) be a (dominant) holomorphic germ.
Let π : X → (C2, 0) be a modification and p ∈ π−1(0) a point in the exceptional
divisor of π. Then we shall call the triple (π,p, f̂ ) a rigidification of f if the lift
f̂ = π−1 � f � π is a holomorphic rigid germ in p.

We shall follow the Favre–Jonsson strategy for finding eigenvaluations and rigid-
ifications, extending their result to all (dominant) holomorphic germs. We remark



Rigidification of Holomorphic Germs with Noninvertible Differential 163

that the rigidification process is trivial if df0 is invertible (because the map f is
itself rigid). Our main result can be stated as follows.

Theorem 0.6. Every (dominant) holomorphic germ f : (C2, 0) → (C2, 0) ad-
mits a rigidification.

The nilpotent case is much the same as the superattracting case dealt with in [FJ1]
(see Remark 4.2). Hence we shall focus on the semi-superattracting case, proving
a sort of uniqueness of the rigidification process that can be stated as follows.

Theorem 0.7. Let f be a (dominant) semi-superattracting holomorphic germ.
Then f admits a unique eigenvaluation ν�, which must be a ( possibly formal ) curve
valuation with multiplicity m(ν�) = 1. Let us denote ν� = νC , with m(C) = 1.
Then one (and only one) of the following statements holds.

(i) The set of valuations fixed by f• consists only of the eigenvaluation ν�; there
exists only one contracted critical curve valuation νD , and in this case it must
be m(D) = 1.

(ii) The set of valuations fixed by f• consists of two valuations, the eigenvalua-
tion ν� and a curve valuation νD; here D is a ( possibly formal ) curve with
m(D) = 1.

In both cases, C and D have transverse intersection; that is, their intersection
number is C ·D = 1.

We shall prove the formal classification of semi-superattracting rigid germs (the
first case of Theorem 0.8 actually follows from the holomorphic classification of
such germs given in [F]).

Theorem 0.8. Let f : (C2, 0)→ (C2, 0) be a (holomorphic) semi-superattract-
ing rigid germ. Let λ∈C∗ be the nonzero eigenvalue of df0.

(i) If |λ| < 1 or λ = e2πiθ with θ ∈ R \ Q, then f is formally conjugated to
the map

(z,w) �→ (λz, zcwd).

(ii) If |λ| > 1, then f is formally conjugated to the map

(z,w) �→ (λz, zcwd(1+ εzl)),

where ε ∈ {0,1} if λl = d (the resonant case) and ε = 0 otherwise.
(iii) If there exists an r ∈ N∗ such that λr = 1, then f is formally conjugated to

the map
(z,w) �→ (

λz(1+ zs + βz2s ), zcwd(1+ ε(zr ))
);

here r|s, β ∈C, ε is a formal power series in zr, and ε ≡ 0 if d ≥ 2.

In all cases we have c ≥ 0, d ≥ 1, and c + d ≥ 2.

Remark 0.9. In the resonant case of part (ii), it seems difficult to understand
which of the two possible normal forms (with ε = 0 or 1) is the normal form of



164 Matteo Ruggiero

a given germ f—whether we consider the dynamics of f or the action of f• (see
also Remark 3.8).

We shall also present two counterexamples (see Counterexamples 3.10 and 3.12)
that show how the holomorphic classification of rigid germs of type (0, C \ D) is
not trivial, meaning that it does not coincide with the formal classification.

Finally, we shall use the holomorphic classification of attracting rigid germs
given in [F] to give holomorphic normal forms for a rigidification for type (0, D∗)
(see Proposition 4.3), and we also use Theorem 0.8 to give formal normal forms
for a rigidification for type (0, C \ D) (see Proposition 4.4 and Proposition 4.5).

Using a different language, Theorem 0.6 states that one can suppose a germ
to be rigid up to birational conjugacy. Then the normal forms of a rigidification
give us normal forms for the birational classification of these germs. In the semi-
superattracting case we prove Theorem 0.7, a type of uniqueness of this process,
that leads (see Example 4.9) to a type of uniqueness for these normal forms. The
dynamics of these rigidifications f̂ , which are easier to study than the initial germ f

itself, give us information on the dynamics of f (by projection), and the birational
classification gives us information on the holomorphic classification in a very con-
sistent way. In fact (see Remark 2.1), the action of f̂• is related to the action of f•
in a suitable basin of attraction in the valuative tree.

This paper is divided into four sections. In Section 1 we recall the construction
of the valuative tree V and its isomorphic equivalent, the universal dual graph �, as
in [FJ1]; the action f• induced by a (dominant) holomorphic germ f ; and the exis-
tence of an eigenvaluation and of a basin of attraction, as in [FJ2], adapted to deal
with the general case. In Section 2 we prove Theorem 0.6 and Theorem 0.7, and
in Section 3 we deal with the classification of semi-superattracting rigid germs.
In Section 4, we compute normal forms for a rigidification in every case and then
conclude with some remarks on the rigidification process.

Acknowledgments. The author would like to thank Charles Favre and Mat-
tias Jonsson for several useful remarks and clarifications on their works as well as
Marco Abate for many suggestions.

1. The Valuative Tree

1.1. Modifications

The main objects that we wish to study are modifications (i.e., compositions of
point blow-ups) and the lifts of maps over the exceptional divisor of a modifica-
tion. We begin by fixing notation.

Definition 1.1. Let X be a complex 2-manifold and p ∈ X a point. We call a
holomorphic map π : Y → (X,p) a modification over p if π is a composition
of point blow-ups, with the first one being over p, and such that π is a biholo-
morphism outside π−1(p). We call π−1(p) the exceptional divisor of π, and we
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call every irreducible component of the exceptional divisor an exceptional com-
ponent. We will denote by B the set of all modifications over 0 ∈ C2 and by �∗π
the set of all exceptional components of a modification π. We will call a point p ∈
π−1(0) on the exceptional divisor of a modification π ∈B an infinitely near point
(we also consider 0∈C2 to be an infinitely near point).

1.2. Tree Structure

Here we fix notation for R-trees. See [FJ1, Chap. 3] for definitions and proofs and
[FJ2, Sec. 4] for properties of tree maps.

Definition 1.2. Let (T ,≤) be an R-tree. Maximal elements of T will be called
ends.

Let τ1, τ2 ∈ T be two points. We shall denote by [τ1, τ2 ] (resp., [τ1, τ2) and
(τ1, τ2)) the closed (resp., semiopen and open) segment between τ1 and τ2.

We shall denote by TτT the tangent space of T over a point τ, and we denote
by �v = [σ] ∈ TτT a tangent vector over τ (represented by σ). Then the point τ is
a terminal point, a regular point, or a branch point if TτT has (respectively) one,
two, or more than two tangent vectors.

Finally, let τ ∈ T be a point in the tree and let �v = TτT a tangent vector over it;
we shall denote by

Uτ(�v) := {σ ∈ T | �v = [σ]}
the (weakly) open set associated to �v in τ.

1.3. Universal Dual Graph

1.3.1. Dual Graph of a Modification
Given a modification π ∈ B, we can equip the set �∗π of all exceptional com-
ponents of π with a simplicial tree structure (i.e., an N-tree structure; see [FJ1,
pp. 51, 52]).

Definition 1.3. We fix the set of vertices (�∗π ), and we say that two exceptional
components are joined by an edge if and only if their intersection is nonempty. We
will denote by ≤π the induced partial ordering (given by the correspondence be-
tween simplicial trees and N trees). Then (�∗π ,≤π ) will be called the dual graph
of π.

Definition 1.4. Let π ∈B be a modification. A point p ∈π−1(0) in the excep-
tional divisor of π is a free point (resp., a satellite point ) if π is a regular point
(resp., a singular point) of π−1(0).

We remark that satellite points are also known as corners in literature. An equiv-
alent definition will be that p is a free point if it belongs to only one exceptional
component but is a satellite point if it belongs to exactly two exceptional compo-
nents (which will have only one intersection point, with transverse intersection).
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1.3.2. Universal Dual Graph

Definition 1.5. The term universal dual graph will refer to the direct limit of
dual graphs along all modifications in B:

(�∗,≤) := lim−→
π∈B

(�∗π ,≤π ).

The universal dual graph is a way to see all exceptional components of all the possi-
ble modifications at the same time. The next result follows from this construction.

Proposition 1.6 [FJ1, Props. 6.2 and 6.3]. The universal dual graph �∗ is a
Q-tree that is rooted at E0, the exceptional component arising from the single
blow-up of the origin 0∈C2. Moreover, all points are branch points for �∗. If we
have an exceptional component E ∈�∗ then the mapping p �→ �vp = [Ep], where
[Ep]∈ TE�∗ is the tangent vector represented by the exceptional component aris-
ing from the blow-up of p, gives a bijection from E to TE�

∗.

One can complete �∗ to a complete R-tree �, which will also be called the (com-
plete) universal dual graph.

The (complete) universal dual graph is a powerful tool because of all the struc-
ture that arises from the completeness of R. But we do not know how a holomor-
phic germ f acts on the universal dual graph. The answer to this question can be
given thanks to the algebraic equivalent to the universal dual graph, the valuative
tree.

1.4. Valuations

We shall denote by R = C[[x, y]] the ring or formal power series in two coordi-
nates and by K = C((x, y)) the quotient field of R (i.e., the field of Laurent series
in two coordinates). Then R is a unique factorization domain (UFD) local ring
with maximal ideal m = 〈x, y〉. Favre and Jonsson considered a slightly different
concept of valuation; it takes values in [0,+∞], whereas classical Krull valua-
tions take values in a (totally ordered) abelian group. Moreover, these authors
focus their attention on centered valuations—in other words, valuations ν : R →
[0,+∞] that take strictly positive values on m.

The set of all (centered) valuations can be endowed by a partial order as follows.

Definition 1.7. Let ν1 and ν2 be two centered valuations. Then ν1 ≤ ν2 if and
only if ν1(φ) ≤ ν2(φ) for every φ ∈R.
The set of all (normalized) centered valuations with this partial order admits an
R-tree structure: we shall call V the valuative tree. Valuations are naturally em-
bedded into Krull valuations, but the converse is not true (see the exceptional curve
valuations [FJ1, p. 18] for details).

The next theorem is a classic result of algebraic geometry. For a modern expo-
sition, see [ZS2, Part VI, Chap. 5] or [Ha].
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Theorem 1.8 [Ha, Thm. 4.7]. Let ν be a Krull valuation on K = C((x, y)) ⊃
C(x, y), let Rν be the associated valuation ring, and let π : X → (C2, 0) be a
modification. Then there exists a unique irreducible submanifold V of X such
that Rν dominates OX,V , the ring of regular functions in V. Moreover, if ν is cen-
tered then V is a point or an exceptional component in π−1(0).

This V is called the center of ν in X.

The center of a valuation is the main concept allowing us to pass from valuations
to exceptional components, and it gives an isomorphism between the valuative tree
and the universal dual graph [FJ1, Thm. 6.22]. The center of a valuation also gives
special open sets in the valuative tree (see [FJ1, Cor. 6.34] for some properties).

Definition 1.9. Let p ∈ π−1(0) be an infinitely near point of a modification
π : X→ (C2, 0). We shall denote by U(p) ⊆ V the (weakly open) set of all val-
uations whose center in X is p.

For proofs and further details on valuations, see [ZS2, Part VI].

1.5. Classification of Valuations

We shall now describe the classification of valuations and their role in the valua-
tive tree (cf. [FJ1, Chap. 1]).

1.5.1. Divisorial Valuations
Divisorial valuations are associated to an exceptional component E of a modifi-
cation π. In particular, νE is defined by

νE(φ) := (1/bE) divE(π
∗φ),

where divE is the vanishing order along E, π∗φ = φ �π, and 1/bE is necessary for
a normalized valuation (bE ∈N∗ is known as the generic multiplicity of νE [FJ1,
p. 64] or the second Faray weight of E [FJ1, p. 122]). The set of all divisorial val-
uations is often denoted by Vdiv. The divisorial valuations are the branch points of
the valuative tree, and in particular we have TνEV ∼= E.

The most important example is the multiplicity valuation, defined by

νm(φ) := m(φ) = max{n | φ ∈mn};
it is associated to a single blow-up over the origin and plays the role of the root of
V. We will write νm if we want to consider the multiplicity as a valuation (or bet-
ter, as a point on the valuative tree) and will write m if we want to consider only
the multiplicity of an element of R = C[[x, y]].

1.5.2. Irrational Valuations
Irrational valuations are the regular points of the valuative tree. Divisorial and
irrational valuations are called quasi-monomial valuations, and their set will be
denoted by Vqm. For a geometric interpretation of quasi-monomial valuations, see
[FJ1, pp. 16, 17].
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Important examples of quasi-monomial valuations are monomial valuations.
Fix local coordinates (x, y); then the monomial valuation of the weights (s, t) is
defined by

νs,t

(∑
i,j

ai,j x
iy j

)
= min{si + tj | ai,j �= 0}.

1.5.3. Curve Valuations
Curve valuations are ends of the valuative tree, and they are associated to a (for-
mal) irreducible curve (germ) C = {ψ = 0}. In particular, νC is defined by

νC(φ) := C · {φ = 0}
m(C)

,

where byC ·D we denote the standard intersection multiplicity between the curves
C and D and where m(C) = m(ψ) is the multiplicity of C (in 0). We will often
use the notation νψ instead of νC.

Analytic and nonanalytic curve valuations have the same algebraic behavior but
play a different role as eigenvaluations, as we shall see in the proof of Theorem 0.6.

1.5.4. Infinitely Singular Valuations
Infinitely singular valuations are the ones with rk ν = ratrk ν = 1 and trdeg ν =
0, and they share with curve valuations the role of ends of the valuative tree.

It is not so simple to give a geometric interpretation of infinitely singular val-
uations, but we can think of them as curve valuations associated to “curves” of
infinite multiplicity. They can also be viewed as valuations with infinitely gener-
ated value groups.

1.6. Parameterizations

The valuative tree admits (at least) two natural parameterizations (skewness and
thinness) and a concept of multiplicity, features that are useful for distinguishing
the type of valuations. For definitions and properties we refer to [FJ1, Chap. 3];
all we need for this paper is the following result.

Proposition 1.10 [FJ1, Thm. 3.46]. The thinness A : V → [2,∞] is a parame-
terization for the valuative tree. Moreover :

(i) the multiplicity valuation is the only one with A(νm) = 2;
(ii) for divisorial valuations, A(νE)∈Q;

(iii) for irrational valuations, A(ν)∈R \Q;
(iv) for curve valuations, A(νC) = ∞; and
(v) for infinitely singular valuations, A(ν)∈ (2,∞].

1.7. Dynamics on the Valuative Tree

1.7.1. Definition
In this section we define the action f• : V → V induced by a holomorphic germ
f : (X,p)→ (Y, q), where X and Y are two complex 2-manifolds. We shall also
assume that f is dominant (i.e., that rk df is not identically ≤ 1 near p).
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A holomorphic germ f : (X,p) → (Y, q) naturally induces an action f ∗ on
R = C[[x, y]] by composition: φ �→ f ∗φ = φ � f. The natural way to define an
action on (centered) valuations seems to be the dual action f∗ν = ν � f ∗; explic-
itly, we have f∗ν(φ) = ν(φ � f ). This definition works for Krull valuations but
not for all valuations; if ν ∈ V, then clearly f∗ν is a valuation but it might not be
proper. More precisely, f∗ν is not centered if and only if ν = νC is a curve val-
uation, where C = {φ = 0} is an irreducible curve contracted to q by f (i.e., iff
f ∗m ⊆ 〈φ〉). In this case, C must be a critical curve and f∗ν is not proper.

Definition 1.11. Let f : (X,p) → (Y, q) be a (dominant) holomorphic germ.
We call contracted critical curve valuations for f the valuations νC with C a crit-
ical curve contracted to q by f. We denote by Cf the set of all contracted critical
curve valuations for f.

Remark 1.12. The set Cf has a finite number of elements, all of which are ends
for the valuative tree.

So if ν ∈ V \ Cf , then f∗ν is a centered valuation but is not normalized gener-
ally. The norm will be f∗ν(m) = ν(f ∗m); we can renormalize this valuation and
obtain an action f• : V \ Cf → V.
Definition 1.13. Let f : (X,p) → (Y, q) be a (dominant) holomorphic germ.
For every valuation ν ∈ V, we define c(f , ν) := ν(f ∗m) as the attraction rate of
f along ν; if ν = νm is the multiplicity valuation, then we simply write c(f ) :=
c(f , νm) as the attraction rate of f. For every valuation ν ∈ V \ Cf , we define
f•ν := f∗ν/c(f , ν) ∈ V. If f : (X,p) → (X,p), we will also define c∞(f ) :=
limn→∞

n
√
c(f n) as the asymptotic attraction rate of f.

Up to fixed coordinates in p and q, we can consider a germ f : (X,p) → (Y, q)
as a germ f : (C2, 0) → (C2, 0). From now on we will state results in the latter
case, but they can be easily extended to the general case.

In order to have an action on V, we should extend f• to contracted critical curve
valuations.

Proposition1.14 [FJ2, Prop. 2.7]. SupposeC is an irreducible curve germ such
that f(C) = {0} (i.e., νC ∈ Cf ). Then c(f , νC) = ∞. Furthermore, the limit of
f•ν as ν increases to νC exists, and it is a divisorial valuation that we denote by
f•νC. This limit can be interpreted geometrically as follows. There exist modifi-
cations π : X→ (C2, 0) and π ′ : X ′ → (C2, 0) such that f lifts to a holomorphic
map f̂ : X → X ′ sending C to a curve germ included in an exceptional compo-
nent E ′ ∈�∗π ′ for which f•νC = νE ′ .

Definition 1.15. Let f : (C2, 0)→ (C2, 0) be a (dominant) holomorphic germ.
For every ν ∈ V, we denote by d(f•)ν : TνV → Tf•ν

V the tangent map induced
by f at ν. We will often omit the point ν, and write d(f•)ν = df• , when we are
considering the tangent map.

For other properties of the action f• , we refer to [FJ2, Secs. 2 and 3].
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1.7.2. Eigenvaluations and Basins of Attraction
Given the regularity properties of f• (see [FJ2, Thm. 3.1]) and a fixed point theo-
rem for regular tree maps (see [FJ2, Thm. 4.5]), we can obtain eigenvaluations as
follows.

Theorem 1.16 [FJ2, Thm. 4.2]. Let f : (C2, 0) → (C2, 0) be a (dominant)
holomorphic germ. Then there exists a valuation ν� ∈ V such that f•ν� = ν� and
c(f , ν�) = c∞(f ) =: c∞. Moreover, ν� cannot be a contracted critical curve val-
uation or a nonanalytic curve valuation if c∞ > 1. If ν� is an end, then there exists
a ν0 < ν� (arbitrarily close to ν�) such that c(f , ν0) = c∞, f• preserves the order
on {ν ≥ ν0}, and f•ν > ν for every ν ∈ [ν0, ν�). Finally, we can find 0 < δ ≤ 1
such that δcn∞ ≤ c(f n) ≤ cn∞ for every n ≥ 1.

Definition 1.17. Let f : (C2, 0)→ (C2, 0) be a (dominant) holomorphic germ.
A valuation ν� ∈ V is called a fixed valuation for f if f•ν� = ν�. It is called an
eigenvaluation for f if it is either a quasi-monomial fixed valuation or a fixed val-
uation that is a strongly attracting end (see [FJ2, Sec. 4]).

Remark 1.18. In the rest of this paper, we will consider quasi-monomial eigen-
valuations whenever possible. Hence when we say that an eigenvaluation ν� “is an
end” we are implicitly stating that quasi-monomial eigenvaluations do not exist.

Corollary 1.19. Let f be a (dominant) holomorphic germ, and let ν� be an
eigenvaluation for f. Then the following statements hold.

(i) If c∞(f ) > 1, then ν� cannot be a nonanalytic curve valuation.
(ii) If c∞(f ) = 1, then ν� cannot be a quasi-monomial valuation.

Proof. The first assertion has already been stated in Theorem 1.16.
Let us suppose c∞(f ) = 1. Then applying [FJ2, Lemma 7.7] to the eigen-

valuation (and recalling that c∞(f ) = c(f , ν�) by Theorem 1.16), we obtain

A(ν�) = A(ν�)+ ν�(Jf );
this equality is satisfied only if A(ν�) = ∞. It follows that ν� cannot be a quasi-
monomial valuation.

Proposition 1.20 [FJ2, Prop. 5.2]. Let f be a (dominant) holomorphic germ,
and let ν� be an eigenvaluation for f.

(i) If ν� is an end for V then, for any ν0 ∈ V with ν0 ≤ ν� and for ν0 sufficiently
close to ν�, we have that f• maps the segment I = [ν0, ν�] strictly into itself
and is order preserving there. Moreover, if we set U = U(�v) for �v the tan-
gent vector at ν0 represented by ν�, then f• also maps the open set U strictly
into itself and f n

• → ν� as n→∞ in U.

(ii) If ν� is divisorial, then there exists a tangent vector �w at ν� such that, for
any ν0 ∈ V representing �w and sufficiently close to ν�, we have that f• maps
the segment I = [ν�, ν0 ] into itself and is order preserving there. Moreover,
if we set U = U(�v) ∩ U( �w) then f•(I ) ⊂⊂ I, f•(U) ⊂⊂ U, and f n

• → ν�
as n→∞ on U.
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(iii) If ν� is irrational, then there exist ν1, ν2 ∈ V, arbitrarily close to ν� and
with ν1 < ν� < ν2, such that f• maps the segment I = [ν1, ν2 ] into it-
self. Let �vi (i = 1, 2) be the tangent vector at νi represented by ν�, and set
U = U(�v1) ∩ U(�v2). Then f•(U) ⊆ U. Furthermore, either f•|2I = idI or
f n

• → ν� as n→∞ on U.

2. Rigidification

2.1. General Result

In this section we shall prove our main theorem (Theorem 0.6). We have five
cases rather than the four of [FJ2, Thm. 5.1]; the new case is when we have a non-
analytic curve eigenvaluation, and it arises only when we deal with f having a
nonnilpotent differential. For the other cases, we refer directly to [FJ2, Thm. 5.1].

Proof of Theorem 0.6. Let ν� be an eigenvaluation for f (which exists by virtue
of Theorem 1.16), and suppose that it is a nonanalytic curve valuation νC.

Pick ν0 as in Proposition 1.20. By increasing ν0, we can suppose ν0 to be divi-
sorial. Let π ∈B be a modification such that ν0 = νE0 . From [FJ2, Prop. 6.32] it
follows that there exists a unique best approximation νE of ν� for π (it is unique
because ν� is an end of V ). We have ν0 ≤ νE < νC , which can be chosen arbitrar-
ily close to νC (by increasing ν0). We now consider U = U(p) = UνE ([ν�]).

By Proposition 1.20 and [FJ2, Prop. 3.2], we have that f•U ⊂⊂ U, that the lift
f̂ = π−1 � f � π is holomorphic in p, and that f̂ (p) = p. By shrinking U(p),
we can avoid all critical curve valuations. Therefore, C∞(f̂ ) = E has normal
crossings. Moreover, E is contracted to p by f̂ (because f•νE > νE), C∞(f̂ ) is
forward f̂ -invariant, and f̂ is rigid.

Remark 2.1. Studying the behavior of π• for π : (X,p)→ (C2, 0) a modifica-
tion, we see thatπ• is a bijection between V andU(p). Moreover, from the relation
f̂ = π−1 � f � π we see that π• yields a conjugation between f̂• and f•|U(p). So
from the dynamics of f• on U(p) we can obtain information on the rigidification
f̂ . For example, if f n

• → ν� then f̂ will have a unique eigenvaluation π−1
• ν�.

2.2. Semi-superattracting Case

In this section we deal with the semi-superattracting case and prove the unique-
ness of the eigenvaluation in this case (see Theorem 0.7). We shall write

Dλ :=
(
λ 0
0 0

)
.

Lemma 2.2. Let f be a (dominant) semi-superattracting holomorphic germ such
that df0 = Dλ with λ �= 0. Let π : X → (C2, 0) be the single blow-up in 0 ∈
C2, where E := π−1(0) ∼= P1(C) is the exceptional divisor. Set p = [1 : 0] ∈
E, and let f̂ : (X,p) → (X,p) be the lift of f through π. Then f̂ is a semi-
superattracting holomorphic germ and df̂p ∼= Dλ.

Proof. Since df0 = Dλ, we have

f(z,w) = (λz+ f1(z,w), f2(z,w)) (1)
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with f1, f2 ∈ m2. In the chart π−1({z �= 0}) we can choose (u, t) coordinates in
p ∈E such that

(z,w) = π(u, t) = (u, ut).

Hence for the lift f̂ = π−1 � f � π we have

f � π(u, t) = (λu+ f1(u, ut), f2(u, ut)),

from which it follows that

f̂ (u, t) =
(
λu+ f1(u, ut),

f2(u, ut)

λu+ f1(u, ut)

)
.

We have that u2 divides f1(u, ut) and f2(u, ut); if we set f̂ = (g1, g2), then

g1(u, t) = λu(1+O(u)) and

g2(u, t) = u2O(1)

λu(1+O(u))
= αu+O(u2)

for α = λ−1a2,0, assuming that f2(z,w) =∑
i+j≥2 ai,j z

iwj. Thus,

df̂p =
(
λ 0
α 0

)
∼= Dλ.

Hence f̂ is a holomorphic germ with df̂p ∼= Dλ.

Proposition 2.3. Letf be a (dominant) semi-superattracting holomorphic germ
such that df0 = Dλ with λ �= 0, let ν� be an eigenvaluation for f , and let (π,p, f̂ )
be a rigidification obtained from ν� as in Theorem 0.6. Then df̂p ∼= Dλ, and
ν� = νC is a ( possibly formal ) curve valuation with m(C) = 1.

Proof. To prove this result, we follow the proof of [FJ2, Thm. 4.5] under the as-
sumption df0

∼= Dλ. Starting from any ν0 (as in the proof of [FJ2, Thm. 4.5]), we
take any end ν ′0 > f•ν0 and consider the induced tree map F0 on I0 = [ν0, ν ′0 ].
Let ν1 be the (minimum) fixed point of F0. Because f• has no quasi-monomial
eigenvaluations (see Corollary 1.19), ν1 ≥ f•ν0. Up to choosing ν ′0 such that ν ′0 /∈
d(f•)ν0([f•ν0 ]), we can suppose that ν1 = f•ν0.

Let us now apply this argument for ν0 = νm. If f is as in (1), then ν1 = f•ν0

is a divisorial valuation associated to an exceptional component E1 obtained from
the exceptional component E0 of a single blow-up of 0 ∈C2 by blowing up only
free points (i.e., the generic multiplicity b(νE1) of νE1 is equal to 1); as a matter of
fact, f∗ν0(x) = 1 while f∗ν0(φ)∈N for every φ ∈R. Applying this argument re-
cursively (as in the proof of [FJ2, Thm. 4.5]), we get the assertion on the type of
eigenvaluation.

For the result on df̂p we need only observe that—in the proofs of Theorem 0.6
and [FJ2, Thm. 5.1] in the case of an analytic curve eigenvaluation—up to shrink-
ing the basin of attraction we can choose the infinitely near point p such that νEp
has generic multiplicity b(νEp) equal to 1, where Ep denotes the exceptional com-
ponent obtained by blowing up p. Then the modification π on the rigidification is
the composition of blow-ups of free points, which allows us to apply (recursively)
Lemma 2.2 and thereby obtain the thesis.
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Lemma 2.4. Let f be a (dominant) semi-superattracting holomorphic germ such
that df0 = Dλ with λ �= 0. Then, up to a ( possibly formal ) change of coordinates,
we can suppose that

f(z,w) = (
λz(1+ f1(z,w)),wf2(z,w)

)
with f1, f2 ∈m.

Proof. First of all, we can suppose that

f(z,w) = (λz+ g1(z,w), g2(z,w))

with g1, g2 ∈m2.

By Proposition 2.3 we know that there is an eigenvaluation ν� = νC with C =
{φ = 0} a (possibly formal) curve, where φ(z,w) = w − θ(z) for a suitable θ.

Up to the (possibly formal) change of coordinates (z,w) �→ (z,w − θ(z)), we
can suppose that φ = w; in particular, since C is fixed by f , we can suppose that
w|g2. Then

f(z,w) = (
λz(1+ f1(z,w))+ h(w),wf2(z,w)

)
with f1, f2 ∈m and h∈m2. We put g2(z,w) = wf2(z,w).

Now we need only show that, up to a (possibly formal) change of coordinates,
h ≡ 0. We consider a change of coordinates of the form <(z,w) = (z+η(w),w)
with η ∈m2, in which case <−1(z,w) = (z− η(w),w). Therefore,

<−1 � f �<(z,w) = (
λ(z+ η(w))(1+ f1 �<(z,w))

+ h(w)− η � g2 �<(z,w),wf2 �<(z,w)
)
. (2)

We observe that the second coordinate of (2) is always divisible by w; we only
have to show that there exists a suitable η such that the first coordinate of (2), val-
uated on (0,w), is equal to 0. Hence we must solve

λη(w)
(
1+ f1(η(w),w)

)+ h(w)− η � g2(η(w),w) = 0. (3)

Set η(w) = ∑
n≥2 ηnw

n, h(w) = ∑
n≥2 hnw

n, 1+ f1(z,w) = ∑
i+j≥0 fi,j z

iwj,
and g2(z,w) =∑

i+j≥2 gi,j z
iwj (with gn,0 = 0 for every n). Then

λ
∑
i+j≥0

fi,j
∑

H∈N i+1

ηHw
|H |+j +

∑
n≥2

hnw
n =

∑
k

ηk

( ∑
i+j≥2

gi,j η(w)
iwj

)k

. (4)

Comparing the coefficients of wn on both sides yields

ληn + l.o.t. = l.o.t.;

here l.o.t. (low-order term) denotes a suitable function that depends on ηh only for
h < n. Thus, by (4), we have a recurrence relation for the coefficients ηn that is a
solution of (3).

Proof of Theorem 0.7. By Lemma 2.4, we can suppose (up to formal conjugacy)
that

f(z,w) = (
λz(1+ g1(z,w)),wg2(z,w)

)
,

where g1, g2 ∈m. We shall denote f2(z,w) = wg2(z,w).
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It follows that the eigenvaluation ν� given by Proposition 2.3 is ν� = νw and νz
is either fixed by f• or a contracted critical curve valuation. Hence we need only
show that there are no other fixed valuations.

First of all, observe what happens—during the process used in the proof of
Proposition 2.3—to tangent vectors at the valuation ν0 = νm. Consider the fam-
ily of valuations νθ,t , where θ ∈ P1(C) and t ∈ [1,∞], described as follows: if we
put φθ = w − θz for θ ∈ C and if ψ∞ = z, then νθ,t is the valuation of skew-
ness α(νθ,t ) = t in the segment [νm, νφθ ] (i.e., the monomial valuation defined by
νθ,t(φθ ) = t and νθ,t(z) = 1 if θ ∈C); then ν∞,t(z) = t and ν∞,t(w) = 1.

Thus we have that ν1 = f•(νm) = ν0,m(f2 ), where m denotes the multiplicity
function, and that f•(νθ,t ) ≥ ν1 for every θ ∈ C and t. The latter statement fol-
lows because f•(νθ,t )(z) = 1 = ν1(z), f•(νθ,t )(w) ≥ m(f2) = ν1(w), and ν1 is
the minimum valuation that assumes these values on z and w.

We shall use �vθ to denote the tangent vector in νm represented by νθ,∞ and
use �u∞ to denote the tangent vector in ν1 represented by νm. Then, by what we
have shown so far, df•(�vθ ) �= �u∞ for every θ �= ∞ and hence there are no fixed
valuations in Uνm(�vθ ) for every θ �= 0,∞. Moreover, applying this argument re-
cursively as in the proof of Proposition 2.3, we obtain that there are no other fixed
valuations in Uνm(�v0) except for the eigenvaluation νw.

It remains to check for valuations in Uνm(�v∞), and toward this end we con-
sider f•(ν∞,t ). For simplicity we denote ν∞,t = ν0,1/t for every t ∈ [0,1]. Direct
computation reveals that f∗(ν∞,t )(z) = t and that

f∗(ν∞,t )(w) =
∧
j

(aj t + bj )

for suitable aj ∈ N∗ and bj ∈ N. It follows that (i) f•(ν∞,t ) = ν∞,g(t) for a suit-
able map g(t) such that g(t) < t and (ii) d(f•)ν∞,t ([νw]) = [νw] (where the latter
tangent vector belongs to the proper tangent space). If we let t go to ∞ then the
only fixed valuation in Uνm(�v∞) is νz, and we are done.

Remark 2.5. Theorem 0.7 shows that every semi-superattracting germ f has two
(formal) invariant curves:C, which is associated to the eigenvaluation and hence to
the eigenvalue λ of df0; and D, which is associated to the fixed or contracted criti-
cal curve valuation and hence to the eigenvalue 0 of df0. If f is of type (0, C \D),
then both these curves are actually holomorphic by the stable /unstable manifold
theorem (see [A, Thms. 3.1.2 and 3.1.3]). In the general case of f of type (0, C∗),
one can at least recover the manifold associated to the eigenvalue 0 of df0 by using
generalizations of the stable manifold theorem, such as the Hadamard–Perron the-
orem (see [A, Thm. 3.1.4]). In particular, the curve D is always holomorphic.
However, C is not holomorphic in general (see e.g. Proposition 4.3).

3. Rigid Germs

In this section we introduce the classification of attracting rigid germs in (C2, 0)
up to holomorphic and formal conjugacy (for proofs, see [F]) as well as the classi-
fication of rigid germs of type (0, C \D) in (C2, 0) up to formal conjugacy. Stating
our results will require three invariants as follows.
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Table 1

Class C∞(f ) tr df0 det f

1 0 (empty)
2 1 (irreducible) �= 0 = 1
3 ≥ 2
4 = 0 (≥ 2)
5 2 (reducible) �= 0 (�= 0)
6 = 0 �= 0
7 = 0

• The generalized critical set. If f : (C2, 0)→ (C2, 0) is a rigid germ, then C =
C∞(f ) is a curve with normal crossings at the origin that can have either none,
one, or two irreducible components. In other words, C∞(f ) can be empty (if
and only if f is a local biholomorphism in 0), an irreducible curve, or a re-
ducible curve (with only two irreducible components); we will call f regular,
irreducible, or reducible, respectively.

• The trace. If f is not regular then we have two cases: either tr df0 �= 0, and
df0 has a zero eigenvalue and a nonzero eigenvalue; or tr df0 = 0, and df0 is
nilpotent.

• The action on π1(@
2 \ C∞(f )). Because C∞(f ) is backward invariant, f in-

duces a map from U = @2 \ C∞(f ) (here @2 denotes a sufficiently small poly-
disc) to itself and hence an action f∗ on the first fundamental group of U. If
f is irreducible then π1(U) ∼= Z , in which case f∗ is completely described by
f∗(1) ∈ N∗ (f preserves orientation); if f is reducible, then π1(U) ∼= Z ⊕ Z

and f∗ is described by a 2× 2 matrix with integer entries (in N).

Definition 3.1. Let f : (C2, 0)→ (C2, 0) a rigid germ. Then f belongs to:

class 1 if f is regular;
class 2 if f is irreducible, tr df0 �= 0, and f∗(1) = 1;
class 3 if f is irreducible, tr df0 �= 0, and f∗(1) ≥ 2;
class 4 if f is irreducible and tr df0 = 0 (this implies f∗(1) ≥ 2);
class 5 if f is reducible and tr df0 �= 0 (this implies det f∗ �= 0);
class 6 if f is reducible, tr df0 = 0, and det f∗ �= 0;
class 7 if f is reducible, tr df0 = 0, and det f∗ = 0.

See Table 1.

Remark 3.2. If f is irreducible then, up to a change of coordinates, we can as-
sume C∞(f ) = {z = 0}. Now, since {z = 0} is backward invariant, we can write
f in the form

f(z,w) = (
αzp(1+ φ(z,w)), f2(z,w)

)

with φ, f2 ∈m. It can be easily seen that f∗ = p ≥ 1.
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Analogously, if f is reducible then, up to a change of coordinates, we can as-
sume C∞(f ) = {zw = 0}. Since {zw = 0} is backward invariant, f can be
written

f(z,w) = (
λ1z

awb(1+ φ1(z,w)), λ2z
cwd(1+ φ2(z,w))

)
with φ1,φ2 ∈m. In this case, f∗ is represented by the 2× 2 matrix

M(f ) :=
(
a b

c d

)
. (5)

3.1. Attracting Rigid Germs

The classification up to holomorphic conjugacy of attracting rigid germs in C2 is
given in [F, Chap. 1]. Here we need only the following remark.

Remark 3.3. During the proof of [F, Step 1 on p. 491, first case on p. 498], the
author starts from a germ of the form

f(z,w) = (
αzp(1+ g(z,w)), f2(z,w)

)

with φ, f2 ∈m and then uses the theorems of Kœnigs and Böttcher. (See, respec-
tively, [F, Thms. 3.1 and 3.2] as well as [K] and [B] for the original papers and
[M, Thms. 8.2 and 9.1] for a modern exposition of the proofs.) Favre [F] assumes,
up to holomorphic conjugacy, that g ≡ 0 (and α = 1 if p ≥ 2). Yet that argument
does not work. Denote by <(z,w) = (φw(z),w) the conjugation given by those
theorems, and let f̃ = <�f �<−1. We shall also put f(z,w) = (f (1)

w (z), f (2)
w (z)),

and analogously for f̃ .
By hypothesis, φw(z) is such that φw � f (1)

w � φ−1
w (z) = αzp (with α = 1 if

p ≥ 2). But
f̃ (1)
w (z) = φ

f
(2)
w (φ−1

w (z))
� f (1)

w � φ−1
w (z),

which does not coincide with αzp.

We also note that if |α| > 1 then the Kœnigs theorem still applies; however, the
result is false (see Counterexample 3.10). Nevertheless, one can obtain this result
in the attracting case as follows.

We want to solve the conjugacy relation

< � f = e �<, (6)

where e is a germ of the form

e(z,w) = (αzp, e2(z,w))

with e2 ∈m. We look for a solution of the form

<(z,w) = (
z(1+ φ(z,w)),w

)

with φ ∈m. Then the conjugacy relation (6) (comparing the first coordinate) yields

(1+ g)(1+ φ � f ) = (1+ φ)p.
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Now we can consider

1+ φ =
∞∏
k=0

(1+ g � f k)1/pk+1
, (7)

which would work if that product converges. But since f is attracting, there exists
0 < ε < 1 such that ‖f(z,w)‖ ≤ ε‖(z,w)‖, and since g ∈ m, there exists an
M > 0 such that |g(z,w)| ≤ M‖(z,w)‖. It follows that

∞∑
k=0

p−(k+1)|g � f k(z,w)| ≤
∞∑
k=0

M

p

(
ε

p

)k

= M

p − ε
<∞,

so (7) defines a holomorphic germ φ and hence a holomorphic map< that satisfies
the conjugacy relation (6) in the first coordinate.

To choose e2 such that (6) holds also for the second coordinate, we must solve

f2 = e2 �<.
Yet because < is a holomorphic invertible map, we can just define e2 = f2 � <
and we are done.

Note that this approach would not work—not even formally—for rigid germs
of type (0, C \ D).

3.2. Rigid Germs of Type (0, C \ D)

In this section we study (formal) normal forms for rigid germs of type (0, C \D).

If f(z,w) = ∑
i,j fi,j z

iwj is a formal power series and if I = (i1, . . . , ik) and
J = (j1, . . . , jk) are two multi-indices, then we shall denote by fI,J the product

fI,J =
k∏
l=1

fil,jl .

Moreover, when writing the dummy variables of a sum, we shall write the di-
mension of a multi-index after the multi-index itself. For example, I(n) denotes
a multi-index I ∈ Nn. We group together the multi-indices with the same dimen-
sion, separating these groups by a semicolon, and omit the dimension when it is
equal to 1. For example, ∑

n,m;I,J(n);K(m)

is a sum over n,m ∈ N, I, J ∈ Nn, and K ∈ Nm. As a convention, we view a
multi-index of dimension 0 as an empty multi-index.

First of all, we need to recall the formal classification of (invertible) germs in one
complex variable. See [M] for the proof and for the standard theory of dynamics
in one complex variable.

Proposition 3.4 (Formal classification in (C, 0)). Let f : (C, 0)→ (C, 0) be a
holomorphic germ, and denote by λ = f ′(0) the multiplier.
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(i) If λ = 0, then f is formally conjugated to z �→ zp for a suitable p ≥ 2.
(ii) If λ �= 0 and if λr �= 1 for any r ∈ N∗, then f is formally conjugated to

z �→ λz.

(iii) If λr = 1, then there exist (unique) s ∈ rN∗ and β ∈ C such that f is for-
mally conjugated to z �→ z(1+ zs + βz2s ).

Remark 3.5. Suppose f : (C2, 0) → (C2, 0) is a semi-superattracting holo-
morphic germ. Then by Remark 2.5 we have two invariant curves—C and D,
with transverse intersection and multiplicity equal to 1—that play the role of the
unstable /stable manifold. In particular, the formal conjugacy classes of f |C and
f |D are formal invariants.

Moreover, up to formal conjugacy, we can suppose that C = {w = 0} and D =
{z = 0}. Set f = (f1, f2). Then, up to a formal change of coordinates, we can
suppose that f1(z, 0) is equal to one of the formal normal forms given by Propo-
sition 3.4.

Indeed, if φ ∈C[[z]] is the formal conjugation between f1(z, 0) and its formal
conjugacy class h(z), then the formal map <(z,w) = (φ(z),w) is a conjugation
between f and a map g with g1(·, 0) = h(·). We shall refer to the normal form h

of a germ f as the first ( formal ) action of f.

Lemma 3.6. Let f : (C2, 0) → (C2, 0) be a semi-superattracting holomorphic
germ. Then, up to formal conjugacy, we can suppose that

f(z,w) = (h(z), g(z,w)),

where h is the first action of f and g ∈m2.

Proof. We can suppose that f is of the form

f(z,w) = (
λz(1+ f1(z,w)), g2(z,w)

)
,

where f1 ∈ m and w|g2 ∈ m2. We want to find a conjugation map of the form
<(z,w) = (z(1+ φ(z,w)),w) that conjugates f with

e(z,w) = (
λz(1+ e1(z)), e2(z,w)

)
,

where w|e2 ∈m2 and λz(1+ e1(z)) = h(z).

Let us set 1 + f1(z,w) = ∑
i+j≥0 fi,j z

iwj, g2(z,w) = ∑
i+j≥2 gi,j z

iwj,
1+ φ(z,w) = ∑

i+j≥0 φi,j z
iwj, and 1+ e1(z) = ∑

i≥0 eiz
i. Then, for the first

coordinate of the conjugacy equation < � f = e �<, we have:
∑
i+j≥0

φi,jλ
i+1zi+1

∑
I,J∈N i+1

fI,J z
|I |w|J |

∑
H,K∈Nj

gH,Kz
|H |w|K| (8)

|| (9)

λ
∑
h

ehz
h+1

∑
N,M∈Nh+1

φN,Mz
|N |w|M|. (10)

If we denote by In,m and IIn,m the coefficients of znwm in (8) and (10), respec-
tively, then
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In,m =
∑

i,j ;I,J(i+1);H,K(j)
i+1+|I |+|H |=n
|J |+|K|=m

φi,jλ
i+1fI,JgH,K and IIn,m =

∑
h;N,M(h+1)
h+1+|N |=n
|M|=m

λehφN,M.

If we denote by “l.o.t.” all terms depending on φi,j for (i, j) lower than the ones
that are compared in the equation (with respect to the lexicographic order), then

δ0
mφn−1,0λ

nf n
0,0 + l.o.t. = In,m = IIn,m = λe0φn−1,m + l.o.t.

In particular: for n = 0 we have 0 = I0,m = II0,m = 0 for every m ∈ N, and for
every m ≥ 1 we have In,m = l.o.t. for every n ∈ N∗. Since λe0 = λ �= 0, we can
use (9) to define recursively φn,m for every m ≥ 1 once we have defined the base
step for m = 0.

But the case m = 0 is exactly the same as the one considered in the formal clas-
sification of f̃ (z) = λz(1+ f1(z, 0)) as a map in one complex variable. So again
recalling Remark 3.5 and combining our results, we can define a formal map <

that solves the conjugacy relation < � f = e �<.
Proof of Theorem 0.8. By Lemma 3.6 and some simple considerations on rigid
germs (see Remark 3.2), we can suppose that

f(z,w) = (
h(z), zcwd(1+ g(z,w))

)
for a suitable g ∈m, where h(z) = λz(1+ δ(z)) is the first action of f.

We want to find a conjugation C of the form C(z,w) = (
z,w(1 + ψ(z,w))

)
and where, for a suitable ε, C is between f and

e(z,w) = (
h(z), zcwd(1+ ε(z))

)
.

Toward this end, we set δ(z) = ∑
i≥0 δiz

i, g(z,w) = ∑
i+j≥2 gi,j z

iwj,
1+φ(z,w) =∑

i+j≥0 φi,j z
iwj, and 1+ ε(z) =∑

i≥0 εiz
i. Then, for the second

coordinate of the conjugacy equation C � f = e �C, we have:

zcwd
∑
i+j≥0

ψi,jλ
izi

∑
L∈N i

δLz
|L| ∑

I,J∈Nj+1

gI,J z
|I |w|J | (11)

|| (12)

zcwd
∑
h

εhz
h

∑
H,K∈Nd

ψH,Kz
|H |w|K|. (13)

Denoting by In,m and IIn,m the coefficients of zc+nwd+m in (11) and (13), respec-
tively, yields

In,m =
∑

i,j ;L(i);I,J(j+1)
i+cj+|L|+|I |=n

dj+|J |=m

ψi,jλ
iδLgI,J and IIn,m =

∑
h;H,K(d )
h+|H |=n
|K|=m

λεhψH,K.

Then, for (n,m) �= (0, 0), we have

δ0
mψn,0λ

n + l.o.t. = In,m = IIn,m = dψn,m + l.o.t.
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Therefore, if m > 0 then we can use (12) to define recursively ψn,m; with m = 0
there may be some resonancy problems when λn = d, which is exactly the condi-
tion expressed in parts (ii) and (iii) of the theorem. In these cases, the dependence
of IIn,0 on εh yields

IIn,0 = εn + l.o.t.;
here l.o.t. denotes the dependence on lower-order terms εh with h < n. So for each
n that gives us a resonance, there exists an εn that satisfies In,0 = IIn,0. Putting
this all together and (eventually) performing a conjugacy by a linear map, we ob-
tain the thesis.

Remark 3.7. In the statement of Theorem 0.8, f belongs to class 2 if and only
if d = 1, to class 3 if and only if c = 0, and to class 5 otherwise.

Remark 3.8. The composition α � f• , where α is either skewness or thinness, is
not affected by slightly changing the nonnull coefficients of a germ f (provided we
keep these coefficients nonnull); what changes is the action of the differential df•
in suitable tangent spaces. Therefore, the difference between normal forms in the
resonant case of Theorem 0.8 lies in the action of df• , which is not invariant (by
change of coordinates) and exhibits complicated behavior.

Remark 3.9. Let φ(z,w) = ∑
φn,mz

nwm be a formal power series. Then φ is
holomorphic (as a germ in 0) if and only if there exists an M such that

|φn,m| ≤ Mαnβm.

In particular, if φ is holomorphic then lim supn
n
√|φn,m| < ∞ for every m ∈ N,

and the same holds if we exchange the roles of m and n.

Next we show that, for rigid germs of type (0, C \ D), one cannot generally per-
form the conjugacy of either Lemma 3.6 or Theorem 0.8 in a holomorphic way
(this behavior is the opposite of the (0, D) case).

Counterexample 3.10. Here we demonstrate that the conjugation given by
Lemma 3.6 cannot be always holomorphic. Let f(z,w) = (λz(1+ w), zw) with
|λ| > 1 and e(z,w) = (λz, e2), and let

<(z,w) = (
z(1+ φ(z,w)),ψ(z,w)

)
be the (formal) conjugation given by Lemma 3.6. Direct computation yields

φn,1 = λn(n−1)/2,

and from Remark 3.9 it follows that φ is not holomorphic.

Remark 3.11. Suppose we have a germ f = (λz, f2), with |λ| > 1, that is for-
mally conjugated to (λz, zcwd) (i.e., we are not in the resonance case). The proof
of Theorem 0.8 shows also that the conjugation with the normal forms is unique
when it is of the formC(z,w) = (z,w(1+ψ)). But if we consider a general conju-
gation map < = (φ1,φ2) then—since we have two invariant curves D = {z = 0}
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and C = {w = 0}—we have z|φ1 and w|φ2; because the first coordinate is λz, by
direct computation we also have that φ1(z,w) = z. So < is unique up to a linear
change of coordinates. Hence, in order to prove that two germs are formally but
not holomorphically conjugated, we need only show that the conjugation found in
the proof of Theorem 0.8 is not holomorphic.

Counterexample 3.12. Here we show that also the conjugation given by The-
orem 0.8 cannot be always holomorphic. Let f(z,w) = (λz, zw(1 + w)) with
|λ| > 1 and e(z,w) = (λz, zw), and let

C(z,w) = (
z,w(1+ ψ(z,w))

)
be the (formal) conjugation given by Theorem 0.8. By direct computation we have

ψn,1 = λn(n−1)/2,

so again ψ is not holomorphic.

4. Normal Forms

4.1. Nilpotent Case

Favre and Jonsson studied the superattracting case (see [FJ2, Thm. 5.1]). The
nilpotent case is almost the same; in fact, there is just one little difference between
them. To explain this difference, we first prove the following lemma.

Lemma 4.1. Let f be a (dominant) holomorphic germ, where df0 is nonin-
vertible, ν� is an eigenvaluation for f , and (π,p, f̂ ) is a rigidification obtained
from ν� as in Theorem 0.6. Assume that ν� is not a divisorial valuation. Then
c∞(f̂ ) = c∞(f ).

Proof. Directly from the definition of f̂ as a lift of f , we have π � f̂ = f �π. Let
µ� = π−1

• (ν�) (in this case, µ� is an eigenvaluation for f̂ ). Then

c(π � f̂ ,µ�) = c(f̂ ,µ�) · c(π, f̂•µ�) = c(f̂ ,µ�) · c(π,µ�)

||
c(f � π,µ�) = c(π,µ�) · c(f ,π•µ�) = c(π,µ�) · c(f , ν�).

From Theorem 1.16 we have c(f , ν�) = c∞(f ) and c(f̂ ,µ�) = c∞(f̂ ), so if
c(π,µ�) < ∞ then c∞(f ) = c∞(f̂ ). But c(π,µ�) = ∞ if and only if µ� ∈
∂U(p); following the proof of Theorem 0.6, this (always) happens if and only if
ν� is a divisorial valuation.

Remark 4.2. The unique difference between the superattracting case and the
nilpotent case is that c∞(f ) ≥ 2 in the former whereas c∞(f ) ≥

√
2 in the latter.

Moreover, from Lemma 4.1 it follows that, if the eigenvaluation ν� is not diviso-
rial, then c∞(f ) = c∞(f̂ ) for the lift f̂ . Therefore, to obtain the result for the
nilpotent case, we need only ignore the hypothesis c∞(f̂ ) ≥ 2 (when ν� is not
divisorial).
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4.1.1. Germs of Type (0, D∗)

Proposition 4.3. Let f be a (dominant) holomorphic germ of type (0, D∗), let
ν� be an eigenvaluation for f , and let (π,p, f̂ ) be a rigidification obtained from
ν� as in Theorem 0.6. Let λ ∈ D∗ be the nonzero eigenvalue of df0. Then ν� can
be only a ( formal) curve valuation, and the following statements hold.

(i) If ν� is a (noncontracted ) analytic curve valuation, then f̂ ∼= (λz, zcwd)

with c ≥ 1 and d ≥ 1.
(ii) If ν� is a nonanalytic curve valuation, then f̂ ∼= (λz, zqw+P(z))with q ≥ 1

and P ∈ zC[z] with degP ≤ q and P �≡ 0.

Proof. The first assertion follows from Theorem 0.7.
(i) If ν� = νC is a (noncontracted) analytic curve valuation, then directly from

[FJ2, Thm. 5.1] we have that C∞(f̂ ) = E ∪ C̃ or C∞(f̂ ) = E; in both cases, E is
contracted and C̃ is fixed by f̂ . We also know from Proposition 2.3 that tr df̂p =
λ �= 0.

In the first case, C∞(f̂ ) = E ∪ C̃ is reducible and so f̂ is of class 5. Hence
we can choose local coordinates (z,w) in p such that E = {z = 0}, C̃ =
{w = 0}, and

f̂ (z,w) = (λz, zcwd)

with c ≥ 1 and d ≥ 2.
In the second case, C∞(f ) = E is irreducible and so f̂ is of class 2 or 3. How-

ever, since E is contracted to 0 by f̂ , it follows that f̂ is of class 2. Hence we can
choose local coordinates (z,w) such that E = {z = 0}, C̃ = {w = 0}, and

f̂ (z,w) = (λz, zqw + P(z))

with q ≥ 1. Since C̃ is fixed, we have P ≡ 0.
(ii) Suppose now that ν� = νC is a nonanalytic curve valuation. We showed in

the proof of Theorem 0.6 that C∞(f̂ ) = E and that E is contracted to 0 by f̂ .

We also know from Proposition 2.3 that tr df̂p = λ �= 0, so f̂ is of class 2 or 3.
But only for maps in class 2 does f̂ contract the component E in C∞(f̂ ). Hence
we are in class 2, so we can choose local coordinates (z,w) at p such that E =
{z = 0} and such that

f̂ (z,w) = (λz, zqw + P(z))

with q ≥ 1; here P ∈ zC[z] with degP ≤ q. Since f n
• → ν� in U(p), no analytic

curve valuation (besides νz) is fixed by f̂ and thus P �≡ 0.

4.1.2. Germs of Type (0, C \ D)

Proposition 4.4. Let f be a (dominant) holomorphic germ of type (0, C \ D),
let ν� be an eigenvaluation for f , and let (π,p, f̂ ) be a rigidification obtained
from ν� as in Theorem 0.6. Let λ∈C \ D be the nonzero eigenvalue of df0. Then

ν� can be only an analytic curve valuation and f̂
for∼= (λz, zcwd(1 + εzl)), where

for∼= denotes “is formally conjugated to” and where c ≥ 1, d ≥ 1, l ≥ 1, and ε = 0
if λl �= d or ε ∈ {0,1} if λl = d.
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Proof. According to Theorem 0.7, ν� must be a (formal) curve valuation.
Let us suppose ν� = νC is a nonanalytic curve valuation. From the proofs of

Theorem 0.6 and Proposition 1.20(i) we know that f n
• → νC on a suitable open

set U = U(p) and hence f̂ n
• → νC̃ on V \ νE , where C̃ is the strict transform of

C (and is also nonanalytic). Note that νE is an analytic curve valuation when con-
sidered on the valuative tree where f̂• acts. In particular, E is the only analytic
curve fixed by f̂—in contradiction with the stable /unstable manifold theorem [A,
Thms. 3.1.2 and 3.1.3]—because we know from Proposition 2.3 that Spec(df̂p) =
{0, λ} and |λ| > 1. Hence ν� = νC is a (noncontracted) analytic curve valuation.

The assertion on normal forms now follows from Theorem 0.8.

4.1.3. Germs of Type (0, ∂D)

Proposition 4.5. Let f be a (dominant) holomorphic germ of type (0, ∂D), let
ν� be an eigenvaluation for f , and let (π,p, f̂ ) be a rigidification obtained from
ν� as in Theorem 0.6. Let λ ∈ ∂D be the nonzero eigenvalue of df0. Then ν� can
be only a ( formal ) curve valuation, and the following statements hold.

(i) If λ is not a root of unity, then f̂
for∼= (λz, zcwd) with c, d ≥ 1.

(ii) If λr = 1 is a root of unity, then f̂
for∼= (

λz(1+ zs + βz2s ), zcwd(1+ ε(zr ))
);

here c, d ≥ 1, r|s, β ∈ C, and ε is a formal power series in zr or ε ≡ 0 if
d ≥ 2.

Proof. The first assertion follows from Theorem 0.7, and the normal forms are
given by Theorem 0.8.

4.2. Some Remarks and Examples

Remark 4.6. The proof of Theorem 0.6 gives a general procedure for obtain-
ing a rigid germ. But in specific instances we can choose an infinitely near point
lower that the one indicated. In particular, if ν� is divisorial then U = U(p) may
be associated to a free point p and not to a satellite one. In this case we obtain an
irreducible rigid germ of class 2 or 3, and it must be of class 3 because the gener-
alized critical set E is fixed by f̂ . So, for example, if f̂ is still attracting then f̂ ∼=
(zp,αw), where p ≥ 2 and 0 < |α| < 1 (with α = λ if df0 = Dλ).

Example 4.7. We present an example of the phenomenon described in Re-
mark 4.6. Set

f(z,w) = (zn + wn,wn)

with n ≥ 2 an integer. We easily see that νm is an eigenvaluation for f. We want
to study the action of f̂ on the exceptional component E = E0 that arises from
the single blow-up of the origin. We do this by checking the action of f• on E :=
{νy−θx | θ ∈C}∪ {νx}, where we fix the correspondence θ �→ νy−θx between E ∼=
P1(C) and E (setting∞ �→ νx). Direct computations show that

f̂ |E : θ �→ θ n

1+ θ n
.
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Now set p = θ ∈E such that θ is a noncritical fixed point for f̂ |E (i.e., such that
θ n+1= θ n−1), and lift f to a holomorphic germ f̂ on the infinitely near point p.
Using the same arguments as in the proof of Theorem 0.6, we can tell that f̂ is a
rigid germ.

We demonstrate this claim by direct computations. Let us make a blow-up in
0∈C2: {

z = u,

w = ut;
{
u = z,

t = w/z.

Then

f̂ (u, t) =
(
un(1+ t n),

t n

1+ t n

)
.

Choosing local coordinates (u, v := t − θ), we obtain

f̂ (u, v) = (
un(1+ (v + θ)n), vξ(v)

)
for a suitable invertible germ ξ. In particular, f̂ is a rigid germ, belongs to class 3,
and (by direct computation) is locally holomorphically conjugated to (u, v) �→
(un,αv) for a suitable α �= 0; in contrast, [FJ2, Thm. 5.1] would give us a germ
that belongs to class 5. In this case we recover the result of [FJ2, Thm. 5.1] simply
by taking the lift of g = f̂ when we blow up the point [0 : 1]∈E; thus,

ĝ(x, y) = (xny n−1χ(y), vξ(v))

for a suitable invertible germ χ, which is locally holomorphically conjugated to
(xny n−1,αy).

Remark 4.8. We can apply [FJ2, Thm. 5.1] as well as Propositions 4.3–4.5 even
when f is itself rigid, and this allows us to avoid some types of rigid germs. First of
all, from the proof of [FJ2, Thm. 5.1] (and recalling Proposition 2.3), one can see
that class 7 can always be avoided (hence class 7 is not “stable under blow-ups”).
Moreover, from the proof of Theorem 0.6 we see that the germs obtained after lift-
ing are such that f̂• always has only one fixed point µ� = π−1

• ν� of the same type
of ν�, with two exceptions: either ν� is divisorial, and µ� turns out to be an analytic
curve valuation (contracted by π); or ν� is an irrational eigenvaluation, in which
case it may be that f̂• = id on [νz, νw].

In the first case, reapplying Propositions 4.3–4.5 yields the same type of germ.
In the second case, up to local holomorphic conjugacy we have that f̂ (z,w) =
(zn,wn)with a suitable n ≥ 2. Then all valuations on [νz, νw] are eigenvaluations,
and reapplying [FJ2, Thm. 5.1] gives a rigid germ that belongs to a different class.
In particular, making a single blow-up on the origin and considering the germ at
[1 : 1], we obtain a germ of the form (nz(1+ h(z)),wn)—for a suitable holomor-
phic map h such that h(0) = 0—that is (by direct computation) holomorphically
conjugated to (nz,wn).

Example 4.9. When reapplying [FJ2, Thm. 5.1], as in the previous remark, we
usually obtain the same normal form type. But there are cases where the normal
form can change (staying rigid).
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Consider for instance the rigid germ f(z,w) = (w2, z3). Then the only eigen-
valuation ν� is the monomial valuation on (z,w) such that ν�(x) = 1 and ν�(w) =√

3/2. Hence an infinitely near point p that works in [FJ2, Thm. 5.1] can be ob-
tained after three blow-ups: the first at 0 (where we obtain E0), the second at
[1 : 0] ∈E0 (where we obtain E1), and the third at [0 : 1] (where we obtain E2).

We can choose p = [0,1]∈E2, and the lift we then get is f̂ (z,w) = (w6, z).
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